Exploring Freedom
A Conversation between FLOSS-Culture and
Theological Practices of Freedom

BENEDIKT FRIEDRICH

Ruhr-Universitat Bochum
benedikt.friedrich@rub.de

The idea of the ‘Freedom of a Christian’ entails concrete practices of freedom. In order to unveil
this connection, this paper compares practices of the ‘Free Software Movement’ with key insights
of the Reformation and with how Protestantism develops its theology.

Introduction

“If contemporary theology has a central theme at all, it is Christian freedom.” With
this statement, the German theologian Eberhard Jiingel highlights the foundational
role of the concept of ‘freedom’ in theological discourse. And while, forty years later,
there are still numerous scholars who would agree with Jiingel’s sentence, it is crucial
to investigate which role freedom plays in dogmatic and ethical inquiry beyond claims
of subjective independency and personal sovereignty.

In this paper, I want to examine how every conceptualization of freedom intertwines
with the social practices and structures it entails. In order to do so I will describe
the phenomenon of Free Software and the Free-Libre-Open-Source-Software (FLOSS)

! Jiingel (1978), 16.

ZEITSCHRIFT FUR EXPLORATIVE THEOLOGY

CZETH_3 (2022) S.47-70

DOI: HTTPS://DOI.ORG/10.17885/HEIUP.CZETH.2022.3.24526

ZUVOR VEROFFENTLICHT AUF PUBPUB: HTTP://DOI.ORG/W0.2M28/FB61F6AA.9CF71305
OPEN-ACCESS-LIZENZ CC-BY-SA 4.0

Benedikt Friedrich

cultures it has shaped.” Irrespective of theology, the Free Software Movement has suc-
cessfully developed ways to implement its distinct notion of freedom as a mode of
cooperative engagement in the creative processes of software development.

After explaining the specific aspects of these practices and how freedom is performed
within this field, I will examine resembling structures in the field of Protestant the-
ology, where there exists an analogous intertwining between the notion of the ‘Free-
dom of a Christian’ and concrete theological practices of freedom that derive from
this statement. I will examine the pneumatological implications on each level of these
localisations, which will result in a freedom-based understanding of how theological

knowledge is produced.

1. The Free Software License

What is today known as Free Software began with Richard Stallman’s founding of
the GNU-project and with his vision to create of a fully functional operating system
without copyright restrictions. His main concerns were a participatory and innovative
mode of software development as well as the granting of non-restrictive access to the
very core of all computer programs: the source code.

By developing his idea of Free Software (“think of free speech, not free beer™), Stall-
man introduced a concept of freedom that applied directly to the very practices of
software developers. Of course, ultimately Stallman was not only concerned about
the freedom of developers, but of everyone living in an information based society. In
fact, the ideology that drives the Free Software Movement even today largely consist
of a quasi-eschatological vision of commonly shared knowledge and of a just society
free of restricted access to intellectual goods.

The Free Software Movement understood that, in order to address the freedom of
humans, it was necessary to center the discussion around the involved medium, the
source code. It is thus mainly concerned with the freedom of software, in which users
participate through various modes of interaction.

*T use the term “Free Software” when I explicitly refer to the actual “Free Software Movement” founded by Richard
Stallman as well as when I refer to the legalistic implementations of distinct free licenses that are compatible with
the General Public License (GPL). The term “Open Source Software” is sometimes used as a synonym but it implies a
different policy because of the incorporation of another moral framework. Nevertheless, the concepts of Free Software
and Open Source Software share many of their practices and habits. Thus, when I refer to the practices of Free Software
Tuse the term FLOSS (free, libre, open source software), which serves as a general term of the phenomena that emerge
out of Free and Open Source Software alike.

* The Free Software Foundation (FSF), What is free software? https://www.gnu.org/philosophy/free-sw.html.en.

48

Exploring Freedom

But Free Software does not just approach freedom as a distinct practice of writing code;
it also engages the question of how these practices can be sustained and structurally
secured. By inventing and using ‘free licenses’ (such as the General Public License,
GPU, in its several versions), the movement introduced a powerful instrument that
promised to provide a legal framework both for the moral visions and the pragmatic
dimensions of free software development. It is an ironic incident, then, that law-like
licenses have become the very epitome of freedom of FLOSS.*

At the core of most free software licenses are four paragraphs that state the basic prin-
ciples of free software:

1. Users can freely use the software for any purpose. This is the most essential
statement of the license.

2. Users are free to examine and adapt the software to their own needs. This im-
plies that free software is shipped as open source, in contrast to proprietary soft-
ware distribution of binary code, which won’t allow the user to study its inner
mechanisms and the way it was conceptualized.

3. Users are not only allowed to customize but also to redistribute the software,
with or without additional modifications.

4. While users can improve the software, extend its functions, and make it easier
to use, they are obliged to share those modifications with the public. This of
course also means that the source code of this redistributed new ‘version’ needs

to be publicly available.

Although licences like this challenge many juridical systems with respect to intellectual
property, they have achieved a major transition in the way authorship of software and
other intellectual inventions is assigned: It is no longer a question of property but a
question of engaging in a solution-secking community.

The GPL has now been a reference license for free and open software for over thirty
years, but it has also been at the core of great disputes among the community and
sometimes is even seen as the dividing line between distinct ideological groups within

FLOSS.

* For example, the GNU General Public License opens with highlighting its purpose as a counter-narrative to propri-
etary software licenses: “The license agreements of most software companies try to keep users at the mercy of those
companies. By contrast, our General Public License is intended to guarantee your freedom to share and change free
software” (GPL, Preamble).

49

Benedikt Friedrich

Extremely fast-growing developer communities arose, driven by the goal of defeat-
ing proprietary software, which had become the industrial standard for at least two
decades. Several operating systems (best known are GNU/Linux and BSD) were de-
veloped and licensed as free software. And despite the unquestionable success of Mi-
crosoft Windows and Apple OSX in desktop computing, a huge amount of Free Soft-
ware projects have emerged, developing software for nearly every purpose. The fact
that most of the internet’s infrastructure, the implementations of several standards
within communications technology, and the core (kernel) of every Android and iOS-
device is nowadays based on Free Software shows that it has become much more than
a small counter-movement within hacker communities. Indeed, by establishing com-
plex practices of cooperative and decentralized work driven by this distinct vision of
freedom, Free Software has made a deep impact on how our digital world is structured

today.

It is crucial to understand that the transformative power of Free Software is not only
measured by the extent to which its projects have spread. Beyond the undeniable suc-
cess of the movement in that regard, it is also insightful to investigate the structural
consequences and the practical implementation of its very vision of freedom. From a
freedom-theoretical perspective, it is remarkable that Free Software has found ways to
derive habitually and structurally formative practices from these ideological and legal
foundations of freedom.

2. Recursive Publics and Their Platforms

Free Software licenses understand freedom as a mode of interacting through a certain
medium: the medium of code. Freedom in FLOSS is therefore not a goal in itself but
a mode of collaborative interaction that takes the structural and habitual necessities
into account.” This can be illustrated by looking at several paradigmatic operational
procedures. Free software not only gives anyone who chooses to engage in software
development the chance to contribute their own ideas to a specific project, it also pro-
vides appropriate platforms and environments that allow developers to work on the
same code cooperatively and even simultaneously. Developer communities have in-
vented numerous tools for collective code manipulation for this purpose. The initia-
tive for the creation of these tools came from the core of the Free Software Movement
and was driven by the vision of sharing the different capabilities and the highly specific
knowledge of a great number of people, required for new and original solutions. They

* Cf. Kelty (2008), 2.

50

Exploring Freedom

understood that milestones in large scale projects can only be reached with a critical
mass of participants.

The most important part of the decentralized development process are ‘version con-
trol systems.® They are tools that structure the way people collaborate in software
development by displaying the process of a project’s growth and thus making the his-
tory of co-authored development transparent.

Everyone who has the technical abilities of reading and writing code can engage in
the improvement of different parts of a program by implementing new features, fix-
ing bugs and security issues, adapting it to personal needs, or making it easier to use.
They can either adjust a program to their own needs or engage in the development
community if they consider their ideas beneficial for others.

Depending on the organizational structure of a given project, people can either di-
rectly submit their ideas of improvement (into the so called ‘master branch’) or they
can submit their suggestions by creating their own new branch. This is the very point
that decides whether the freedom of FLOSS leads to a fragmentation of different
branches (where everyone starts their own branch) or to a culture of co-dependent
joint development. The technical term for this process is ‘pull-request’: handing in a
code snipped to the main version of given project. Pull-requests aim at solving exist-
ing security-issues and at finding solutions to both known and overlooked problems
of a program. They eventually reveal new possibilities for improving the software.
Pull-requests can also — in a non-deficient-oriented way — add one’s own sense of cre-
ativity to the project, through contributing ideas of further development that entail
new functions and directions that would meet the needs of other users.

Generally speaking, pull-requests are initiatives of individuals who want to provide so-
lutions that might be useful for the project by contributing their particular knowledge
of how certain issues can be resolved. Contributers need to demonstrate the value of
their pull-requests before they are implemented. They can therefore be accompanied
by large discussions via mailing-lists or other communication tools and sometimes trig-
ger conflicts within the community.

If others determine the submitted modifications to be valuable to the project, the
changes can be merged into the ‘main-branch,” which is authoritative for big releases.
Merging two branches requires a thorough understanding of the specific features of
every branch and eventually leads to an expansion of the initial project. However, if

® For a detailed and visualized description of version control systems (in this case: git) and their capabilities, see
https://nvie.com/posts/a-successful-git-branching-model/.

51

Benedikt Friedrich

the maintainers of the master-branch reject the suggested modifications, it does not
imply the end of this particular development branch. If the initial contributor (maybe
together with a minority of other users) sticks to the assessment that their contribu-
tion is nevertheless valuable, they are free to continue to work on their own branch.
In the long run, their modifications might even turn out to be more useful than at
first assumed and will eventually be merged into the master-branch after all.”

Merging and branching are counterparts of cooperative development, incorporating
high-frequent just-do-it as well as trial-and-error habits. They epitomize the differen-
tiation and synthesizing of creative work that remains revocable and open for change.

All of this can be accomplished with decentralized version control systems. The tech-
nical functions I have outlined show how the idea of free software has led to the devel-
opment of platforms that help facilitating the joint efforts of collaborative software
development by making the contributions organizable with respect to quality control
while they remain highly transparent to the public. Version control systems are thus
an essential part of how the legal framework of the GPL is implemented as a practice
of collaborative freedom. Christopher Kelty, an anthropologist who has published a
book on the habitual practices of FLOSS, sees in developments like these the specific
sustainability of the Free Software Movement, which goes beyond its mere ideologi-
cal foundation: “The ideas of sharing and of common property and its relation to
freedom must always be produced through specific practices of sharing, before being
defended.” Kelty calls these complex interactions, arranged by a specific infrastruc-
tural framework, a ‘recursive public’: “Two things make recursive publics distinct: the
ability to include the practice of creating this infrastructure as part of the activity of
being public or contesting control; and the ability to ‘recurse’ through the layers of
that infrastructure, maintaining its publicness at each level without making it into an
unchanging, static, unmodifiable thing.”

For a concept of freedom that is based on the idea of sharing and on cooperative net-
works such as developer communities, the transparent and revisable development of

7 If the differences of a branch to its initial master branch become significant, such branches sometimes happen to
create a new and independent forked project, which - by the terms of the free license of the initial project — is required
to keep its freedoms. It is thus technically and legally possible that the two projects later still share patches with each
other. Otherwise, one is free to establish this branch as an own fork of the project, hoping to attract other developers.
There are numerous well known software packages that have emerged out of forking processes like these. For example,
the most popular free office suite LibreOffice is a second level fork, as it descends from OpenOffice.org which itself is
afork of StarOffice, a software suite which was popular in the 9os.

® Kelty (2008), 180.

? Kelty (2008), 62.

52

Exploring Freedom

such platforms establishes the structural base of its practices. Without it, its idea of
freedom would be limited to pure potentiality or completely miss an awareness for the
requirements of concrete actions of freedom.

3. Requirements for Participation and Knowledge Communities

So far, I have outlined the emerging structures of collaborative development. These
structures manifest the freedom to study and manipulate software code in a commu-
nal way. I have shown that the ‘freedom’ of free software isn’t only rooted in the ideo-
logical and legal foundations of free licences but also in structurally maintained prac-
tices that depend on a critical mass of interaction.

But this interaction does not only happen between a few skilled programmers. The
success of FLOSS is based on the fact that it has managed to implement ways for less
technically skilled people to participate, for example by translating, sending in bug
reports, and responding to user surveys. Even the mere usage of free software has
driven the standardization of the internet’s foundational communication protocols
(TCP/IP) and data types.”® In other words, both the usage of a given program as well
as different forms of its co-development foster the dimensions of freedom that Free
Software envisions.

In the following, I want to concentrate on the requirements of active and (co)creative
engagement in FLOSS projects because its strategies of lowering the thresholds of
engagement are insightful for a theological adaptation. In FLOSS, these thresholds
are mainly localized on the level of abilities: Co-creative participation in the freedom
of FLOSS is a question of knowledge, experience, and skills; that is, one needs to
know how computer programs are developed, how code is written and how complex
projectsare designed.11 Thelearning and teaching of these abilities requires the mutual
sharing of knowledge, not only about a given project but also about how to connect
and interact with its development community. The simple idea of freedom as a desire
for transparency and openness is worthless if people are unable to benefit from it."”

1*Kelty (2008), 166—7.

" Until a few years ago, even making use of the first freedom stated in the GPL (the freedom to use the software
for any purpose) has only been practicable for enthusiasts who were eager enough to find out how to install and
configure certain programs. In fact, until the mid-2000s the Free Software Movement was more concerned about
security, functionality, and (as a recursive public) the political and social significance of its notion of freedom than
about the implementation of user-friendly interfaces.

' Note, for example, the huge national disparity of pull-requests on one of the major version control systems GitHub:
https://medium.com/@hoffa/github-top-countries-201608-13f6 42493773.

53

Benedikt Friedrich

FLOSS culture realized this from its earliest days and understood that, in addition to
its transparency that makes it a recursive public, it must face the challenge of enabling
and empowering others. In other words, the mere sharing of code is not enough to
produce a liberating effect from the idea of free software.

This is why the Free Software Movement has incorporated ways of mutual education
since its appearance, evidenced in (sometimes excessive) documentations, highly fre-
quented online forums, and various mailing-lists, all of which often provide a wel-
coming and supportive environment while fostering the quality of its contributions.”
Freedom of software correlates with sharing knowledge. It is thus not coincidental that
the idea of Free Software has influenced other knowledge-based sectors. The invention
of a collaborative content management system for documentations, for instance, has
set the foundation of today’s most used encyclopedia: The technical infrastructure
of Wikipedia is a derivative of what participants of Free Software already used decades
ago for documentation purposes and it remains Free Software even today.

The implementation of data-mediated freedom through openness, transparency, and
participation has not only transformed the way software is produced but also lead to
the creation, evaluation, and spread of knowledge. The rise of Open Data, Open Sci-
ence, and Citizen Science are prosperous examples of the entanglement of qualitative
collaborative work with movements focused on education and knowledge.”

However, despite all efforts, it is evident that most implementations of freedom in
FLOSS - especially the freedom to manipulate software and become creative in its
development — are only performed by a few. Apart from a few enthusiasts, engaging
in free software development remains an activity of professionals who are either paid
directly to write code or need it for other professional tasks.

But the long-term effect of what FLOSS envisions is enormous, changing the ways
people communicate and co-author the narratives of the digital. By inventing its own
infrastructural basis of joint efforts, the concept of freedom within free software has
affected the life of everyone who uses an online device. This shows how practices of
freedom and their effects can be masked anonymously. But it also demonstrates that
actively and explicitly oftering freedom in and of itself might not be convincing to ev-

¥ There are numerous step-by-step-introductions for beginners and some platforms even provide lists of especially
beginner-friendly projects. Cf. https://opensource.com/life/16/1/6-beginner-open-source.

" This goes beyond the ideological affinity of FLOSS and Open/Citizen Science, as the former
often provides an appropriate or at least highly adjustable toolkit for large scale research. Cf.
https://www.fastcompany.com/40569993/how-citizen-science-and-open-source-tech-can-create-change. See
also https://opensource.com/article/18/s/citizen-scientists.

54

Exploring Freedom

eryone in the same way — it all depends on how one can make use of it. The prevalence
of free software shows that practices of freedom are required to reveal their immedi-
ate practical use, to provide reasons why someone should spend the time, energy, and
creativity to leave the seemingly safe haven of proprietary software,” which actually
restricts not only developers but also the users in a way that they are often not even
aware of .*°

4. The Risk of Competing Visions

The idea of free software developed as a reaction to limited resources, working hours,
and technological knowledge, and through the creativity of individuals eager to chase
after big visions of technological development. By releasing software under free li-
censes, people like Linus Torvalds, the inventor of the Linux kernel, opened up de-
velopment processes to the public. They trusted the positive eftects of crowd-based
co-creation driven by the commitment of individuals who share their experience and

knowledge.

But licensing software under a public domain must not be misunderstood as the sim-
ple distribution of programming tasks to an arbitrary public. Although this might
be one of the initiator’s interests (especially when FLOSS practices are adopted by
commercial software companies), the consequences of public licences are much more
unpredictable. To dispense with copyrightis to dispense with one’s exclusive decision-
making authority. It implies a switch from a model of ownership to an open process
of co-authorship with unforeseen outcomes.

On an individual level, releasing software as Free Software means to take the risk that
the very work one values as useful and powerful enough to be published wi// be crit-
icized, adapted, or even misused by others. Although the main currency of FLOSS
practices is public recognition and reputation, the publication of code snippets re-
quires the admission that the results are open. As described before, this openness to
competing imaginations and visions can ultimately lead to division within communi-
ties (forking) and is a frequent cause of personal frustration. This can occur due to
a lack of response to pull requests into which people have put energy, due to a lack

' This struggle has been examined in a qualitative study in the field of creative graphics design, cf. Velkova (2016).

' This is the reason why the Free Software Foundation has launched a rather polemical campaign that
raises awareness about the several dimensions of restrictions that, for example, Microsoft puts on their users;
cf. https://www.gnu.org/proprietary/malware-microsoft.html.en.

55

Benedikt Friedrich

of understanding concerning the demands of a project, or simply because of political
: 17
issues.

But FLOSS practices don’t only reveal individual vulnerabilities. FLOSS practices
have been widely adopted by a lot of software companies, which expect positive effects
from encouraging the public to participate in the development of their products.™®

Of course, this poses a potential risk to the driving ideological ideas behind Free Soft-
ware. Its notion of freedom is mediated by software and therefore mainly indepen-
dent from its engaging subjects. But this makes it highly vulnerable to shifts of power,
for instance when whole companies enter the field with a decisive business plan that
becomes authoritative.”” Although a free share-alike-license (which demands that fur-
ther developments have to stay licenced as free) legally guarantees thata FLOSS project
cannot be turned into proprietary software, the funding and organizational leader-
ship of big players still has a strong influence on the dynamics of the project.” On
a small scale, this can influence practices of writing and implementing code; in the
long run, specific ideas of a certain company or patron influence the whole project.
This certainly corrupts the idea of equally competing visions and the openness of the
development process, the most persuasive element of FLOSS.”

That is exactly why the conflict between Open Source and Free Software plays a signif-
icant role for the question of how freedom can be sustained. While the Open Source
Initiative attaches more significance to the actual practices of collaborative develop-
ment, the Free Software Movement is additionally concerned with the explicit con-
ception of these practices as practices of freedom. In theological terms, we could call
the Free Software Foundation’s implementing and sustaining of practices of freedom
its doxology of freedom. Because of it, the Free Software Movement places such great
emphasis on the label ‘free,” which communciates its ideological background and its

' hteps://github.com/stereobooster/react-snap/issues/103

¥ One of the significant milestones in FLOSS was undoubted the release of the code of the Internet Browser Nezscape
Navigator 4: https://www.oreilly.com/openbook/opensources/book/netrev.html. Other examples are the develop-
ment of the Online Learning Platform Moodle (http://oss-watch.ac.uk/resources/cs-moodle) or several software
products of the Open-Source-Company Red Hat, including an enterprise Linux distribution, which made it one
of the most profitable FLOSS driven companies: https://www.wired.com/2012/03/red-hat/.

¥ Lately Amazon has distinguished itself by causing a lot of frustration among the open-source-community:
https://www.businessinsider.com/amazon-responded-to-a-frustrated-open-source-developer-2019-62IR=T. This
demonstrates the dangers of FLOSS-practices that neglect the incorporation of strategies that secure these practices
and protect their actors from being exploited.

** For an example of a share-alike licence, see https://creativecommons.org/licenses/by-sa/4.0/.

' Cf. https://techcrunch.com/2018/11/29/the-crusade-against-open-source-abuse/.

56

Exploring Freedom

visionary narrative.* Sustainability is not a mere wish; the proclaimed vision of a just
society is actively carried out through free and collaborative knowledge production.
In contrast, Open Source is generally more interested in the direct effects of dealing
with the openness of the source code, without missionarily supporting the ideologi-
cal basis of redeeming societies from proprietarily distributed information. In other
words, while Open Source is mainly interested in spreading the concrete practices of
FLOSS in order to foster high quality software through the experience and skills of
the crowd, Free Software shows a tendency to spread its idea of freedom by directly
and deliberately countering proprietary modes of development. It highlights the in-
tertwining of practices of freedom with its praise. It thus does not simply trust in the
system-immanent powers of self-spreading freedom, but it openly and directly faces
the challenges of commercial occupation and the assimilation of its practices through
other ideologies. It incorporates constant and open competitions of different visions

through its doxology of freedom.

5. Theological Resemblances

Free Software is neither a nominalistic claim nor a mere collection of habits of interac-
tion. Rather, as I have shown, Free Software/FLOSS has been able to derive concrete
practices and sustain concrete structures from a distinct concept of freedom. This ob-
servation marks the initial point of my examination of analogies between Free Software
and Protestant theology.

Ever since the Reformation, Protestant theology has referred to certain notions of
freedom in order to describe the Christian faith as well as its dogmatic, ethical, and
existential implications. In the following sections, I want to examine resemblances
between the above described structures of intertwining freedom claims and the shap-
ing of practices of theological freedom within Protestantism. For that purpose, the
analysis of FLOSS culture serves as a spotlight for the texture of Protestantism and its
embedded practices of freedom. It makes visible certain freedom practices in Protes-
tant theology that resonate with FLOSS and illuminates their respective differences.
What follows is an endeavor to search for analogies and contrasts between FLOSS and
Protestant theology.

My considerations are based on the observation that practices of freedom in FLOSS
are concrete communal (inter)actions. This resembles the Pauline understanding of

* Cf. Stallmann, Why Open Source misses the point of Free Software: https://www.gnu.org/philosophy/open-
source-misses-the-point.html.en.

57

Benedikt Friedrich

faith in Christ, which is fostered in communities of faith in the presence of the Holy
Spirit (Rom 8:5—11, 1. Cor 12:12—30). This faith can only be understood in concrete
communal (inter)action. On several occasions, Paul highlights the significance of free-
dom in Christ, a freedom that inevitably leads to the formation of communities where
people come together to serve another with their gifts and virtues. In Galatians, for
instance, he refers to the freedom from the obligations of the law and from the de-
sires of the flesh, leading to the fruits of the spirit, which characterize the spirit of the
community (Gal s:13-25). Thus, I am not following the subjectivist idea of negative
freedom (as mere independence) in favour of an approach that values openness and
co-creativity as characteristic for practises of freedom through faith. Consequently,
freedom is understood in its pneumatological and ecclesiological contexts: A bibli-
cally oriented theology of freedom is about the implementation of practices of free-
dom that tend to shape communal existences. This existence is characterized both by
an openness to its further development by and for its participants and by the building
of structures that foster this very freedom in a communal way.

51. The Struggle of the Reformation against Proprietary Distributions of
Orthodoxy

In a first step, I want to analyze specific adjustments of the Reformation as the imple-
mentation of practises of freedom, practices that free the promise of salvation by faith
from its proprietary distribution. On this first level, we can observe similar structures
in both contexts: FLOSS and Protestantism will appear to be analogues.

It was the Reformers’ struggle to challenge the copyright of Christian orthodoxy in
order to rectify the heretical practice of indulgence trade. The foundational modi-
fication performed by the theologians of the Reformation was only possible by im-
plementing a practice of theological freedom that denied the exclusive authority of
religious and theological authorship of the Roman Catholic Church.** This directly
resembles Free Software’s paradigm of decentralization in decision-making by denying
any sort of copyright and releasing software code into public domains.

In his treatise On the Freedom of a Christian, Martin Luther deals with the same issue
by questioning the centralized restrictions of the Roman Church of his time from an

 In his study on the sociological structures of FLOSS, Christopher Kelty points out that even the free-software-
movement itself refers to the parallels of the Reformation as a common narrative, for example when geeks identify
their own struggle against proprietary software with the reformers st against the Roman Catholic Church. Cf. Kelsy
(2008) 641F.

58

Exploring Freedom

anthropological and christological perspective. His dialectical argument opposes a so-
teriology in which salvation is externally restricted and regulated — historically by the
religious demands of the Roman Church. In a first step, Luther’s writings on free-
dom therefore establish the negative freedom of a Christian whose faith frees them
from a soteriological point of view. This approach is then constructively developed
in two theologoumena, which lead to a positive understanding of freedom and ren-
der Protestantism’s vision for theological authorship. It is the combination of the
mandatory scriptural principle and the non-restrictive priesthood of all believers that
transform the Reformers’s theology of freedom into a mode of doing theology.

The scriptural principle as an epistemological proposition initially leads to what
Matthias Gockel has called “a theology of open sources.”™ It constitutes the refer-
ential standard for all theological search for truth and dogmatic authorship. Luther’s
emphasis on the importance of the linguistic methods of his time shows that theolog-
ical authorship on the basis of Scripture must be implemented in a controlled, com-
prehensible, and therefore transparent way.”’

The scriptural principle was accompanied by a christologically grounded understand-
ing of priesthood, the second foundational implementation of theological practices
of freedom. With reference to 1 Peter 2:9, Martin Luther identified Jesus Christ as the
one and only priest. This means that human beings can be called priests only through
their participation in Christ.*® This is the root of the theologoumenon of the priest-
hood of all believers, a concept that creates a general field of tension between the exclu-

* Cf. Gockel (2018).

* Also historical exegeses itself can be understood as an examination and reflection on cooperative freedom practises
of the biblical authors and editors. Through the eyes of FLOSS, the historical development of the biblical texts can
be understood as the manifold extension and adaptation of testimonies. The different layers of editorial work proves
the existence of this very freedom practice among biblical authors and editors, to engage with previous traditions and
thus showing their testimonial and theological relevance by taking their specific circumstances into account. The
freedom of the biblical canon even tolerates the existence of several branches: While covenant code, deuteronomic
code, and holiness code present different development branches of the law in the Hebrew Bible, the four gospels can
be seen as an equivalent in the New Testament. According to the two-source hypothesis Mt and Lk can roughly be
seen as different merge results of Mk and Q. Thus, historical research on the biblical text does not just satisfy the mere
curiosity about the history of some ancient texts. It also undertakes the task of unfolding the development process
of the binding testimonies of first grade. Thus, the work of historical biblical studies is comparable to the solution of
version control systems: both of them reveal the complex dependencies and motives of multiple actualisations and
adaprations that include external material into the new stage. It shows how the development of the very early texts
of Christianity has been characterized by co-authorship of the biblical editors and their engagement in a canonical
conversation. “This doesn’t mean that it is all opinion, but recipes, like the biblical narrative, required a number of
hands and voices to alter and arrange it prior to its current form” (Ott [2014], 144).

% “Wie nun Christus die Erstgeburt innehat mit ihrer Ehre und Wiirde, ebenso teilt er sie allen seinen Christen mit,
dass sie durch den Glauben auch alle K6nige und Priester mit Christus sind.” Luther (2012), 295.

59

Benedikt Friedrich

sive singularity of priesthood in Christ and its universalisation in all who are baptized.
It marks the area in which concrete practices of freedom may be localized in an eccle-
siological and pneumatological manner.

While Luther and Calvin advocate for a functionally structured church through the
provision of ministry, Ulrich Zwingli, the Zurich Reformer, explicitly ofters a distinct
pneumatological approach. He takes up Luther’s concept of the freedom of a Chris-
tian and emphasizes the significance of the work of the Spirit, which enables human
beings to read the Bible as the Word of God without the guidance of the Church -
or even against it, if it misses to perform its duties. He therefore identifies the involve-
ment of the non-ordained as a liberation from the moral and clerical restrictions of
the Roman Church:

This will help all those who adhere to the Holy Scripture, who stand up to the
enemies of the Scripture. So read and understand, open the eyes and ears of the
heart! Listen and see what God’s Spirit is saying.”

For Zwingli, the freedom of a Christian therefore establishes human practices of
engaging with the Bible, practices that he interprets pneumatologically. Moreover,
Zwingli identifies the work of the Spirit within these very processes of religious and
theological learning through reading Scripture. This notion later became known as
the testimonium spiritus sancti internum (the internal testimony of the Holy Spirit).

He supports this with the confidence that an appropriation of biblical texts is not an
arbitrary but a Spirit-led update from which the individual’s understanding of the
Word of God derives.

Such a pneumatological interpretation of the theologumena of the scriptural princi-
ple and the priesthood of all believers shows parallels to the first two freedom claims
of the free-software license, which establlish the freedom to use and to study a given
program. Analogous to Zwingli, the liberating work of the Spirit empowers individ-
uals to acquire, study, and interpret the biblical texts. However, in order to turn this
empowerment into a freedom practice of the masses, enormous challenges in terms of
accessibility have to be faced. Thus, it was only consistent that the Reformation went
hand in hand with translations of the Bible, the development of the letterpress, and
the encouragement of ordinary people to learn and to read.

¥ Zwingly (1995/1522), 22.

60

Exploring Freedom

However, a mere individual interpretation and application of the biblical texts can
only be understood as a first phase of a theology of freedom. After all, Protestantism
is characterized not only by the individualization and particularization of religious
and theological continuation. The next step, therefore, is to ask about ecclesiological
practices of freedom in light of the analysis of FLOSS culture.

5.2. Software/Ecclesia Semper Reformanda

While the history of FLOSS shows how freedom enables individuals to study program
code and perform adaptations for their personal needs, it is also engaged in the forma-
tion of institutionalized platforms that shape the understanding of the freedom of
software. Public version control systems, for instance, are concrete implementations
of freedom practices that enable people to engage with each other’s impulses for im-
provement and development. They are the consistent embodiment of the fact that
free software is software semper reformanda. It can only draw on the full potential
of its free(ing) license by fostering the creative and competent engagement of a multi-
plicity of contributors. It relies on adequate environments and an infrastructure that
brings those contributions together. To meet this need, FLOSS has created recursive
publics, the basis of collaborative evolution, which are able to handle the concrete
adjustments in the code by executing pull-requests. We might look for analogous pro-
cesses within Protestant theology by asking what structural implementations of the
freedom of a Christian it has developed to perform the idea of ecclesia semper refor-
manda.

Protestant traditions offer multiple models for how this theologoumenon can be im-
plemented theologically in the social structure of the church. One of them is Friedrich
Schleiermacher’s ecclesiology, which highlights the importance of the mutual sharing
of religious experience within the community of the church. Schleiermacher argues
that only the rich plurality of individual impressions can approximate the redemptive
work of Jesus Christ.” He also claims that the shared (and therefore supra-individual)
religious consciousness of the community is the Holy Spirit itself.

Despite the potential of a fundamentally egalitarian approach to biblical hermeneu-
tics through pneumatological interpretation, most Protestant thinkers have seen the
need to organize the complexity of the church, establishing structures that secure
its visible persistence. A challange that returns whenever the church has to conquer

* Cf. Schleiermacher (2008/1831), 299.

61

Benedikt Friedrich

heretical and harmful influences that would corrupt its nature as a community that
derives its communal spirit from its freedom in Christ.”

Within this tension between securing structures and a non-restrictive approach to
hermeneutics, it is insightful to look at those ecclesiological approaches that have
sought to implement practices of freedom precisley through the institutionalized
structures of the church.

One prominent example is the German Lutheran theologian Wolfgang Huber,
whose institution-theoretical approach claims that freedom within Christian theol-
ogy should be understood within a communal paradigm: “Itis realized in community
and in mutual understanding, in communio and communicatio; thus, it may be called
‘communicative freedom.””* That is to say, Huber locates freedom within the con-
crete shapes and actions of communities that individuals engage in. For Huber, this
applies to all sorts of communication within the church, may it be religious, moral, or
theological.

The problem with this concept is that there is a lack of concrete implementations of
structures that actually promote this communicative freedom and its further devel-
opment. Huber’s ecclesiology (“church of freedom”) focuses on znstalling structures
of freedom, but it does not develop an adequate concept for ensuring their continu-
ing developmental openness. Although Huber does mentions the tool of language,
he does not pay enough attention to the dynamics of power within the empirical
church.”!

In this context, FLOSS culture can serve as a contrasting template that shows why
Huber’s ecclesiology lacks a proper implementation of practices of freedom. We have
seen that practiced freedom is always linked to enabling structures through appropri-
ate platforms (recursive publics). Their important task is to implement circular move-
ments of irritation and external impulses by providing interfaces for individuals to
contriute their visions and suggestions for improvement. The most successful of such
platforms have emerged from concrete needs and a knowledge of the communicative

* On the Reformers’ struggle to maintain the teaching of freedom against Rome’s doctrine, cf. Calvin, Offices of
the church and their pneumatological foundation (Calvin, Inst. IV3,2). Another example is the German Church
Struggle, which shows the difficulties of a church that is endangered to submit to National Socialist ideology. Cf.
Barmen Declaration V1.

*%“Sie verwirklichtsich also in Gemeinschaft und in wechselseitiger Verstindigung, in communio und communicatio;
deshalb kann sie ‘kommunikative Freiheit’ genannt werden” (Huber [1983], 118).

*This was one of the decisive critiques of the impulse paper “Church of Freedom” by the EKD, which was presented
by Huber as its former president; see Kirchenamt der Evangelischen Kirche in Deutschland (2007).

62

Exploring Freedom

specifics. The success of FLOSS is based on a bottom-up development principle that
relies on the particular, non-restrictive involvement of additional contributors.

An ecclesiology of freedom that seeks to learn from the successful cooperative prac-
tices of FLOSS may therefore point to a systematic appreciation of co-creative dynam-
ics and to emerging structures maintained by the participants themselves. In comput-
ing as well as in Christian communities, this implies the necessity of educational pro-
cesses that cultivate and perpetuate an expressiveness that leads to the emergence of
recursive publics, which in turn enable individuals to hand in high quality religious
and theological pull requests.

Churches of freedom need grassroot structures that allow for broad religious and the-
ological literacy at an eye level without undermining the different parameters of the
various contributions. For it is the variety and speciality of contributions that drive
the quality of both technical and theological knowledge production.

On a parochial level, this could be exemplified by an appreciation for communicative,
decentralized forms of community. Movements like Fresh Expressions and Emerging
Church have developed reasonable alternatives to the model of the ‘people’s church’
(Volkskirche), which is driven by the vision for an all-compatible program. These move-
ments try to establish platforms of theological co-authorship through flat teaching
hierarchies, the sharing of life experiences from various contexts, and the sensible evo-
lution of religious practices.™

On the specific level of academic theology, approaches such as Citizen Theology pur-
sue the vision of implementing pull-requests that integrate the diversity of Christian
forms of life and religious knowledge in a multidirectional way.”® Context-based learn-
ing from theological adaptations to specific requirements puts one in an epistemo-
logically favorable position and thus function as a starting point for theological pull-
requests. This vision of a systematic implementation of pull-requests is driven by the
pneumatological assumption that the teaching of the Spirit does not only act within
singularities but through engagement — by sharing religious and theological knowl-

*2 It needs to be mentioned that the biggest difference between FLOSS and any religious cultures such as Protes-
tantism is the aspect of timing, speed, and frequency of change. Software development fosters rapid development
and sometimes even forces its users to adapt to recent changes. Changes can even be made on a trial-and-error-basis
that easily risk to lead into a dead end if they turn out as insufficient. Contrary to this, transformations within reli-
gious communities need to take long grown and tenderly fostered traditions that people identify with into account.
This makes changes in religious communities and their theological reflection slow, sometimes even too slow, for ex-
ample when adaptations come to a halt and communities and their theological reflection are unable to keep up with
their environment. Cf. Schleiermacher (1910), §§203.204.

* Cf. Friedrich, Reichel, and Renkert (2019).

63

Benedikt Friedrich

edge beyond certified expertise. Rightly understood, theological authorship is always
theological co-authorship, as reflective assessments about the Christian faith derive
from shared experiences and contextual insights into the meaning of the biblical tra-
ditions.

But such an epistemic adjustment is not without risk. The open source movement ex-
emplifies that the structural integration of cooperative practices does not necessarily
have to support its ideological foundations. The ongoing dispute between Free Soft-
ware and Open Source shows this quite well. This correlates with the question about
the significance of both the orthodoxy and the doxology behind these freedom prac-
tices. This concern, however, is not a sufficient reason to completely abandon such
models. It is a question that every model of ‘church for the world” has to deal with.**

The development of a theology of freedom in the context of ecclesiology builds on the
idea of religious and theological co-authorship. This idea, in turn, needs to be prop-
erly implemented in social structures of the church and in the methodology of its
theologies. It understands these structures and methods as practices of freedom and —
tully aware of the risks — relies on the promise of the Spirit’s presence through the vari-
ous charisms of the members of the Body of Christ. Protestantism needs this breadth
of authors in order for its theologies to be enhanced, constructively challenged, and

further developed.

5.3. Ecumenism of Branches and Merges

On a third level, I want to use FLOSS culture as a contrast medium to elucidate Protes-
tantism’s specific inability to secure its own epistemic standpoint. This makes embrac-
ing the Spirit’s freedom a necessary consequence.

In order to do so and to visualize the scope of this section, I want to concentrate on the
structure of how cooperative development takes place in FLOSS. As described above,
decentralized development in FLOSS often involves the simultaneous execution of

** One might read the story of the healing of a bleeding woman (Mk 5:25-34 parr.) as the synoptic gospel’s sensibility
for the question of mere profiting from the beneficial effects of faith. Moreover, the narration of the dispute of Jesus
with his disciples about the legitimacy of the alien healer can be seen as one possible account on this problem: Mark
clearly states his non-restrictive approval of the healer through Jesus’s answer: “Do not stop him, for no one who
does a mighty work in my name will be able soon afterward to speak evil of me. For the one who is not against us is
for us.” (Mk 9:39-40). Contrary to Mark, Matthew alliterates Jesus’s statement in a slightly different context when
he explicitly demands an affiliation: “Whoever is not with me is against me, and whoever does not gather with me
scatters” (Mt 12:30).

64

Exploring Freedom

different developmental steps by a variety of people. Small-scale changes are being
outsourced to branches and eventually will be merged back into the master branch.

By comparing the practice of this decentralized process of branching different direc-
tions of development with the generation and growth of theological traditions, we
can unveil a specific blind spot of theology, namely its non-foundationalism. To un-
derstand the contrast to FLOSS, we first need to identify the tertium comparationis,
which lies in the analogous freedom practice of the separate, yet parallel development
of different branches. What version control systems make possible for collaborative
code manipulation can also be seen in the history of ecumenism: Theology, not only
understood as an analytic but a constructive enterprise, is a vital continuation of differ-
entiated yet interdependent co-authorship. Difterent theological approaches or even
denominations can be envisioned as branches that continue theology not only as a
linear development but as independent, parallel, and alternative developments of the-
ology.

Examples for externally driven developments are theologies that point to contextual
issues: The emergence of liberal traditions in the nineteenth century were a response
to the Enlightenment philosophy in Western Europe. Likewise, the innovations of
various liberation theologies have emerged from certain life contexts and experiences
of poverty and oppression. Internal reasons, by contrast, are the systematic detection
of theological blind spots within one’s own dogmatics or also new exegetical insights
that attempt to rectify certain theologumena. Of course, in most cases external and
internal reasons concur. The history of the diversity of theological and religious tradi-
tions of Christianity can be read as a complex network of different branches that are
sometimes loose- and sometimes close-knit.

This last point shows that the theological tradition isn’t only one of mere differentia-
tion (branches) but also one of mutual interdependence and stimulation through the-
ological difference (merges). Theological encounters of different branches promise
the possibility of mutual correction. The conversation between different approaches
and traditions in the search for theological knowledge may turn out to be quite con-
flicted or even disruptive, and merge attempts usually pose some big challenges for
the involved branches. What, in software development, signifies a time-consuming
process of merging-conflicts, is, for the fides guaerens intellectum, the place of a con-

65

Benedikt Friedrich

stant and not always consensual search for truth.”> Not only the church but also its
reflective enterprise theology is an endeavor semper Veformanda.%

However, particular merge processes are not only found in the context of explicit the-
ologies. Occasional merges also occur in implicit theologies, in the practical forma-
tion of ecumenical or inter-religious encounters. And, realistically speaking, this of-
ten does not result in a success story of common consensus. Another closer look at
the experiences of FLOSS can illustrate this. Large projects like the Linux kernel, for
example, have a massive number of branches with dead-ends. Due to their techni-
cal, stylistic, or political inadequacy they are never merged into those critical branches
that attract the interest of the public. Of course, this raises the question of power —
for both software production and ecumenism alike. The maintenance of merges, just
like the encounter between different theological developments, does not happen in
an egalitarian way. Like it is possible that the decision-making in the ‘master branch’
of a software project is undertaken by a company or a patron, we can observe similar
tendencies in the writing of theology.

But this is also where the analogy ends and where Protestant theology shows its deci-
sive contrast in its practices of freedom: By renouncing a synthesizing and boundary
marking organizational unity (after all, Protestantism knows of no central teaching
position), it also lacks any empirical organizing reference.

Theology, rightly understood, simply does not have a tool that would allow it to locate
its own branch relative to a master-branch. Christian faith does not operate within
in the category of ownership, but only by means of authorship and co-authorship.
Without any institutionalized and theologically legitimized teaching position, there is
neither a distinct maintainer of the master-branch, nor is there anyone who could even
identify any branch as the universal master-branch without manifesting a paradox of
freedom practices. In contrast to the clearly localizable structure of the branches of a
development tree in a software version control system, the Protestant epistemological
principles lack the possibility of an independent verification of their own branches. I
have demonstrated this znability to verify above by describing the inevitable tension of

** It should be noted that in software development merge-conflicts are not exclusively based on the simple principle
“It is right if it works.” Analogous to the dispute over methods and verification of theological statements (“what is
good theology?”), software development has an open debate about ‘refactoring,” its key question being: “What is
good code?”

*¢ Realistically, one has to admit that merge processes in theology are often not carried out with respect to an en-
tire branch, but with a great deal of particularity. But targeted impulses from other theological and religious tradi-
tions can redirect theological thinking’s attentiveness. Asan example, see https://www.gnu.org/proprietary/malware-
microsoft.html.en.

66

Exploring Freedom

the scriptural principle and a christological reasoning of the priesthood of all believers.
Post-theistic theologies, as well as theologies based on the openness, changeability, and
liveliness of God, will renounce a verifiable reference to a master branch. And they will
do so not only for epistemological but also for theological reasons.

The pneumatological assumption on this third level is that the self-unfolding pres-
ence of the Holy Spirit is not only to be located within the boundaries of what we call
church (which, in particular, can mean one’s own religious, denominational and con-
textual bounds), but that the presence of God acts within the transgressions of these
epistemic borders. However, without assuming a blurred and indistinct presence of
the Spirit, the work of the Spirit can be seen as a force transcending the boundaries of
social and therefore epistemic self-affirmation. In addition to Schleiermacher’s notion
of the Holy Spirit within the communal spirit of the church, it is therefore adequate to
also hope for the presence of God’s Spirit in the differentiated intersections of mutual
ecumenical learning. Practicing theological freedom requires taking the freedom of
the Holy Spirit into account as well as the fact that this freedom might unfold within
unknown contexts that themselves testify to the Spirit of faith, love, and hope. These
testimonies of ozhers might eventually turn out to be a more adequate description of,
and even an impulse for solutions to, one’s own theological and religious quests. This
re-localization would lead from a pneumatology of the spzrit in nos (as observed on
the first and partially on the second level of the constructive part of this paper) to an
understanding of the spzrit extra nos. That is to say, toward an inter nos in the en-
counter of separate branches. While software production mostly follows the logic of
technical compatibility and efficiency, theological development should not only be
functionalized for its practical feasibility but also for the question of truth. This is
why the question of the discernment of the spirits in light of faith, love, and hope be-
comes the crucial question, and it is deeply entangled with what I have described so
far. The assumption of the spirit extra nos and the mere presence of the other is no
guarantee for the enlightening and self-revealing work of the Spirit — and neither is a
mere communal spirit of one’s own branch. It is therefore necessary to understand
theological freedom not only in the sense of independence but as a co-dependent en-
gagement with the source code of the Christian faith rooted in the engagement with
the pluriform and many voiced biblical canon.

A small remark about the eschatological implications of this: The idea of possible and
particular merges must not be understood teleologically. The eschaton is not to be
envisioned as a super-merge that re-includes every single branch. It is rather the jus-

67

Benedikt Friedrich

tification of the diverse and multiple endeavors to conceive the reality of God within
this world through the contextual exploration of the biblical promises.

6. Conclusion

In order to show how FLOSS culture can be compared with the fundamental theol-
ogoumena of Protestant theology, I have outlined the entanglement of a proper con-
cept of freedom with the practices of freedom it entails. I have then described the
concrete phenomena in FLOSS that have proven to be successful and influential for
the ways software is nowadays developed.

Understanding theology as a creative enterprise, the category of authorship has turned
out to be a better category than ownership in terms of its development. After compar-
ing how software development and theological development, according to the funda-
mental convictions of the Reformation, implement structures of free and co-creative
engagement, I described three levels of theological practices of freedom that resem-
ble the fundamental insight of FLOSS, which is the conceptual connection between
a general statement of freedom(s) and its implementation in concrete practices.

The first level is located in the combination of the scriptural principle and the priest-
hood of all believers. It is the practice of a fundamentally non-restrictive openness of
the Bible that enables individuals to engage with the foundational texts of the Chris-
tian faith.

On a second level, I have shown how the social structures of the church and the de-
velopment of its theology can resemble the idea of the ‘Freedom of a Christian.” In
order to foster the freedom of software, FLOSS has developed recursive publics. In
this, it can serve as an example for Protestant ecclesiology, calling it foster structures
that embody the communal aspects of theological co-authorship.

In the last section, I have compared the practices of version control systems (branch-
ing/merging) with the mutual influence and interference of different theological de-
velopments within ecumenism. In consequence, the epistemological uncertainty of
one’s own branch in relation to others has turned out to be one of the major dif-
ferences between FLOSS and Protestant theology. Gaining theological knowledge
therefore depends on the constructive transgressions of denominational and cultural
boundaries.

These different levels on which we can identify theological practices of freedom are
interdependent and may be understood in a pneumatological way: By professing the

68

Exploring Freedom

Freedom of a Christian and developing its corresponding practices of freedom, Protes-
tant theology expresses its faith in the plural and differentiated presence of the reveal-
ing Spirit. Theological enterprise is not driven by the aim of mere innovation, after
all, but is quest for knowledge. A quest that can only be carried out by a free develop-
ment of theology cultivated in cooperative practices of freedom aimed at grasping the
plurality of the self-revealing presence of the Spirit.

Bibliography

Friedrich, Benedikt, and Reichel, Hanna, and Thomas Renkert. 2019. “Citizen The-
ology: Eine Exploration zwischen Digitalisierung undtheologischer Epistemologie.”
In Digitaler Strukturwandel der Offentlichkeit. Interdisziplinire Perspektiven auf
politische Partizipation im Wandel, edited by Jonas Bedford-Strohm, Florian Hohne,
and Julian Zeyher-Quattlender, 175-192. Baden-Baden: Nomos.

Gockel, Matthias. 2018. “Ad fontes: Zu einer Theologie der offenen Quellen.” Cur-
sor_ Zeitschrift Fiir Explorative Theologie 1. https://doi.org/10.21428/d1d24432.

Huber, Wolfgang. 1983. “Freiheit und Institution: Sozialethik als Ethik kommu-
nikativer Freiheit.” In Folgen christlicher Freibeit, edited by Wolfgang Huber, 113-127.
Neukirchen-Vluyn: Neukirchener.

Jungel, Eberhard. 1978. Zur Freibeit eines Christenmenschen: Eine Erinnerung an
Luthers Schrift. Miinchen: Kaiser.

Kelty, Christopher M. 2008. Two Bits: The Cultural Significance of Software,
Durham: Duke University Press.

Kirchenamt der Evangelischen Kirche in Deutschland (EKD). 2007. Kirche der Frei-
heit: Perspektiven fiir die evangelische Kirche im 21. Jabrbundert: Ein Impulspapier des
Rates der EKD. Hannover.

Luther, Martin 2012. Von der Freibeit eines Christenmenschen (1520). in Martin Luther
Deutsch-deutsche Studienaunsgabe: Band 1. Glauben und Leben edited by Dietrich Ko-
rsch. Leipzig: Evangelische Verlagsanstalt.

Ott, Kate M. 2014. “Creating ‘Open Source’ Community: Just Hospitality or Cy-
berspace Ivory Tower?” In zzst Century Feminism: Technology and Community,
edited by Gina Messina Dysert, London: Routledge.

69

Benedikt Friedrich

Schleiermacher, Friedrich Daniel Ernst. 2008. Der christliche Glanbe nach den Grund-
sdtzen der evangelischen Kirche im Zusammenhange dargestellt. Zweiter Band (1831).
Berlin: de Gruyter.

Schleiermacher, Friedrich Daniel Ernst. 1910. Kurze Darstellung des Theologischen
Studiums zum Bebuf einleitender Vorlesungen (1830), edited by Carl Stange. Leipzig:
Deichert.

Stallmann, Richard. Why Open Source Misses the Point of Free Software.
teps://www.gnu.org/philosophy/open-source-misses-the-pointhtml.en (accessed
Jan 23, 2022).

Velkova, Julia. 2016. “Free Software Beyond Radical Politics: Negotiations of Cre-
ative and Craft Autonomy in Digital Visual Media Production”. Media and Com-
munication, 4(4): 43-52, https://doi.org/10.17645/mac.v4i4.693.

Welker, Michael. 1992. Gortes Geist. Neukirchen-Vluyn: Neukirchener.

Zwingly, Hyldrich. 1995. “Die freie Wahl der Speisen” (1522). In Schriften I edited by
Thomas Brunnschweiler and Samuel Lutz, Ziirich: TVZ.

70

https://www.gnu.org/philosophy/open-source-misses-the-point.html.en

