Chapter 3

Hydrodynamics

3.1 The equations of ideal hydrodynamics

In this section, the equations of ideal hydrodynamics are derived under the
central assumption that the mean-free path for the particles of a fluid is
infinitely small compared to all other relevant length scales. Starting point
of the derivation is the Boltzmann equation from kinetic theory, moments
of which are formed in a relativistically invariant way to show that the ideal
hydrodynamical equations can be expressed as four-divergences of the
matter-current density and of the energy-momentum tensor. The corre-
sponding equations (3.33) are the first main result. These relativistically
invariant or covariant equations are then reformulated in three-dimensional
form, leading to the set of three equations (3.61) for ideal hydrodynamics:
One each for the conservation of mass, momentum, and energy.

3.1.1 Particle current density and energy-momentum tensor

Even though the one-particle phase-space distribution function f(%, p,1) is
defined such that its integral over momentum space,

f &pf (6.2 F) = n(t7) 3.1)

is the spatial number density of particles, it is useful for more general con-
siderations to derive an integral measure in momentum space that allows the
construction of relativistically invariant or covariant quantities. In order to do so,
let us expand the six-dimensional phase space to an eight-dimensional, extended
phase space by adding time and energy as dimensions. This extended phase
space is then spanned by the position and momentum four-vectors, (x*, p*),
instead by their three-dimensional analogs, (¥, 7). We denote the phase-space
density in this extended phase space by f(x*, pH).

Since the four components of the energy-momentum four-vector p# are related
by the relativistic energy-momentum relation (1.66), real particles must be
confined to a subspace of the extended phase space identified by the condition

(0°) = 52+ m2, 3.2)
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Caution The delta distribution in
(3.3) ensures that the particle sys-
tem is on the hypersurface in four-
dimensional momentum space de-
fined by the energy-momentum rela-
tion (3.2). In quantum field theory,
this hypersurface is called the energy
shell, and the delta distribution en-
sures that the system is “on shell”.
<
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and the condition that their total energy be positive semi-definite, p° > 0. At a
fixed time ct = x°, we must thus be able to return to the phase-space distribution
function f(t, X, ) by integrating

[ar e o) - 2 -me| 0 (o) = s tp) . 63

where the Heaviside step function ®(p°) ensures that the energy is non-negative.

We now use property

1
op g = ) ——=dp(x) (3.4)
lo)] Z g/ Gl >
of the Dirac delta distribution, where the sum extends over all roots x; of g(x)
in the relevant domain. In the case of (3.3), g(x) represents the relativistic
energy-momentum relation. It has two roots in total, one of them positive,
hence i
2 =2

&p [(po) -5~ m2c2] = 2,7 (" -r) - (3.5)
where p% on the right-hand side is related to the particle energy by cp% =E.
Returning with this result to the integral in (3.3), we see that we can write

fd“p FG*.p")op [(po)2 -7 - m2c2] o(p°)

c ((&p . R
= Ef%f(ﬁ‘,po =pp.p) - (3.6)

A further integration over d*x must return the total number of particles,
~ 2
fd4xd4pf(x”,p”) oo [(po) _ _mzcz] o(r")

aix [(E27(on p0 = p0. 5 37
c X Ef(x D —pE,p) 3.7

which must be Lorentz invariant. The four-dimensional volume elements d*x
and d*p are both relativistically invariant because Lorentz transforms have unit
determinant. Since the Dirac-delta distribution and the Heaviside step function
in (3.7) are manifestly Lorentz invariant, we conclude that the distribution
function f in the extended phase-space must be Lorentz invariant as well. The
second equality in (3.7) then shows that d®p/E is a Lorentz-invariant integral
measure for integrations over three-dimensional momentum space. The one-
particle distribution function f(x#, p) in extended phase space, constrained by
the condition p® = p% = E/c, can be identified with the distribution function
f(t, %, P) in ordinary phase space, which is therefore also a Lorentz invariant.

N

Armed with this important insight, we now define two Lorentz-covariant quan-
tities, a four-vector

(1 2 d3p 2 = a
JU(t,X) =c ?f(ﬁx’P)P (3.8)
and a rank-2 tensor

d3
T (1,3) = czf?pf(t,f,ﬁ) Ppr (3.9)
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With p® = E/c and the further relations p' = ymv’ = Ev'/c?, we can write the
components of J* as
n(t, %) (i)

@) =n(tR), J"=%fd3pf(t,f,ﬁ) x"=f, (3.10)

where we have used in the final step that arbitrary properties Q of the system
considered can be averaged over momenta by the operation
[&Ep0f2p) [EpOft2p)
[€pf(t.%.5) n@d)
The quantity (X'} introduced in (3.10) above is therefore the i component of the

velocity averaged over all particles near position ¥ at time ¢. We denote this
mean velocity by

(O)(1,x) = (.11

7=t %) = (¥)(1.%) (3.12)
and write the four-vector J* as
o=@ (e (3.13)
; E .

It characterises the particle current density.
Turnipg now to the tensor components 7%, we find by using p° = E/c = ymc
and p' = ymix' that
7% = mc? f Epft.25)y=mn(t.2)* ) =pt. %)Xy, (3.14)
where the mass density p (¢, ¥) = mn (¢, ¥) was identified, further
T% =p(t, %) c(ys) and T =p(t %) (yi'e) . (3.15)

Their meaning becomes perhaps most evident in the non-relativistic limit. Then,
we can Taylor-expand the Lorentz factor y to lowest order,

2

'yzl+%, <y>~1+i(5c’2>, (3.16)

and the time-time element 7% turns into
00, 2, P/
T% ~ pc +2<x ) (3.17)

which is the sum of the rest-mass and the kinetic energy densities of the particle
ensemble near position ¥ at time ¢. In this way, the tensor T% turns out to be
the energy-momentum tensor of the ensemble.

To third order in v/c, we can approximate the time-space components of the
energy-momentum tensor by

0i o i, P 22 i ol il
T = pcv +2C<x x>, T ~p<xx>. (3.18)
The first term in T is the rest-energy current density, while the expression
P s\ . i
§<x x>—.q (3.19)

in the second term is the mean flow of kinetic energy.
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3.1.2 Collisional invariants and the fluid approximation

We now return to the Boltzmann equation (1.155) and exclude external, macro-

scopic forces for now. This allows us to set 7 = 0 and write
of (1.2 F) + X-Vf (1.2 F) = CUf]. (3.20)

Our next concern is the collision term on the right-hand side, which is yet
unspecified.

Figure 3.1 lllustration of Liouville’s theorem: Trajectories of classical particles are
not lost in phase space.

Recall how Boltzmann’s equation was derived earlier from Liouville’s equation
(cf. Figure 3.1). We closed the BBGKY hierarchy by the assumption that the
two-particle distribution function could be factorised into one-particle contri-
butions. In other words, collisions between fluid particles were restricted to
two-body collisions of otherwise independent particles. We can make sub-
stantial progress now by limiting our consideration to collisional invariants.
These are defined to be quantities whose sum is conserved in each of these
two-body collisions. If the particles can be treated as unstructured, solid bodies
without internal degrees of freedom, then the particle number, their total energy
and momentum can be considered conserved. Summing over many particles
undergoing many collisions, none of these collisional invariants can be changed.
We can thus expect that the integrals

f &pClf] and f & pCLp* (3.21)

must vanish if their integration domains in momentum-space are chosen such
that many collisions are contained. To make this possible is the essential
motivation for the basic assumption underlying hydrodynamics.

A fluid in the sense of hydrodynamics is an ensemble of many particles whose
mean-free path A is very short compared to all other relevant length scales.
Let the overall scale of the system be L, and the scale on which the system’s
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Figure 3.2 lllustration of the fundamental assumption of hydrodynamics: Collec-
tions of particles can be treated as a fluid if their mean-free path A is very much
smaller than the typical scale / on which macroscopic properties change, which is
in turn much smaller than the overall scale L of the system.

macroscopic physical properties are to be determined be /. Then, for the system
to be a fluid, it must be possible to establish the hierarchy of scales

A< L. (3.22)

A swimming pool sets a good example (see also Figure 3.2). For the overall
scale, we can take the smallest of its three dimensions length, width and depth,
which will be of the order of a metre. If we want to describe the flow of the
water in the pool, we need to know its physical properties, such as its local flow
velocity, on a length scale of perhaps a millimetre. Under normal conditions,
a cubic millimetre of water will weigh 1073 g. Since the mass of a single
water molecule is 18 atomic mass units or 3 - 1072 g, there are ~ 3 - 1019
water molecules in each cubic millimetre, with a mean inter-particle separation
of ~ 31078 cm. The mean-free path is certainly smaller than this, so the
hydrodynamical conditions are clearly satisfied very comfortably.

Given this fundamental assumption underlying hydrodynamics, we may safely
assert that even a small spatial subvolume of the fluid will contain very many
particles. They undergo frequent two-body collisions, in each of which five
collisional invariants are conserved: the total particle number, the energy and the
momentum. Any individual two-particle collision may or may not change the
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number of particles in a given phase-space cell. Averaging over an increasing
number of collisions, however, the net change in the number of particles,
their energies and momenta will decrease since all of these quantities must
be conserved. The fundamental assumption of hydrodynamics assures that an
average over very many collisions is possible even if the volume is small over
which the average is extended.

We can thus conclude that, by the assumption (3.22) defining a fluid, the five
integrals

f &pClfl and f &*pClfip (3.23)
over the collision term all vanish.

We now return to the force-free Boltzmann equation (3.20) and take its lowest-
order moments by carrying out the integrals given in (3.23). The lowest-order
moment is

a,n(t,f)+fd3p;%’ﬁf(t,f,ﬁ):0. (3.24)

Since 7 and X are independent, the spatial gradient applied to f(z, %, p) can be
pulled out of the integral, giving

a,n(z,f)N.fd3p5?f(t,f,ﬁ)=o. (3.25)
Comparing this equation with (3.10), we see that we can rewrite it in terms of

the four-vector J for the particle current density in the very simple, manifestly
covariant and Lorentz-invariant form

0o J" =0. (3.26)

Next, we form the higher order moments of the force-free Boltzmann equation.
This means that we multiply it with p# and integrate over d*p. Beginning with
po, we first find

5 f &pf (2 5) P+, f &2 F) ¥ =0, (3.27)

Recalling p® = E/c and &' = p'c?/E, further using d; = ¢dy, we can bring this
equation into the form

2 &p 00, 2 d’p 0.
Caof?f(f,f,ﬁ)l"n +c aif?f(l‘,f,ﬁ)pp’:()_ (3.28)

Here, we can identify the time-time and time-space components of the energy-
momentum tensor defined in (3.9) and bring (3.28) into the covariant form

3,T%" =0. (3.29)

Finally, we multiply the force-free Boltzmann equation with p/ to obtain

8 f Fpf(.7.5) P+ 6 f Cpf(t.3.5) ip =0 (3.30)
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Again, we insert a factor 1 = ¢p®/E into the first term and use X' = p'c?/E in
the second to write this equation as

d3 2 = j d3 2 2 ij
Czaof?pf(t,x,p)p0p1+czaif7pf(t,x,p)ppJ:0, (3.31)

which can be summarised as
9T =0. (3.32)

We thus arrive at the very important and intuitive result that, under the funda-
mental assumption of hydrodynamics, the zeroth- and first-order moments of
the force-free Boltzmann equation can be written as

8 =0, 8,17 =0, (3.33)

with the four-vector J* of the particle-current density and the energy-momentum
tensor T#” of the particle ensemble. These five equations express the conserva-
tion of particles, energy and momentum and can already be seen as one form of
the hydrodynamical equations.

Recall the assumptions their derivation was based upon. Besides the funda-
mental assumption (3.22) of hydrodynamics, we made use of five collisional
invariants to argue that the momentum-space integrals over the collision term
CL[f] should vanish. These were the total particle number, their energies and
momenta. If any of these assumptions is violated, the conservation equations
(3.33) cannot hold any longer. For example, the particle number may change in
collisions if particles combine to form molecules. The (kinetic) energy need
not be conserved if internal degrees of freedom in the particles can be excited
in collisions. Under such circumstances, one needs to return to the collisional
Boltzmann equation and work out the collision term explicitly.

The manifestly Lorentz-covariant equations (3.33) can easily be ported into
General Relativity. We simply need to replace the partial by covariant deriva-
tives,

v,Jt=0, V,T"=0 (3.34)

to find the fundamental equations of generally-relativistic hydrodynamics.

3.1.3 The equations of ideal hydrodynamics

We now insert the specific expressions (3.13) for the components of the particle-
current density J* as well as the non-relativistic approximations (3.17) and
(3.18) for the components of the energy-momentum tensor 7+ into the gen-
eral conservation equations (3.33). For the particle-current density, we find
immediately

an(t,2)+V-[n(t,#)7]=0. (3.35)

Multiplying with the particle mass m turns the number density 7 (¢, ¥) into the
mass density p(t, X), which then satisfies the equation

p+V-(oB)=0. (3.36)
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This is the continuity equation, or the equation for mass conservation: The local
density p changes with time by the divergence of the matter current density pu.

In the conservation equation 9, T#" = 0, the time component, v = 0, selects the
energy-conservation equation, while momentum conservation is expressed by
its spatial components, v = i. With the non-relativistic approximations for 7%
and T% and T derived in (3.17) and (3.18), we find

19, (p62 + 2 (fz>) + V- (pa7+ 51) =0 (3.37)
2 c
for the conservation of the energy density, and
o, (pcl7+ g) +V-(p(¥e®x))=0 (3.38)
c

for momentum conservation. Recall that the vector G is the current density of
the kinetic energy, defined in (3.19). We can re-arrange the energy-conservation
equation (3.37) to read

c[ow+ - (o) + ¢! [at (g (;’?2)) + 9. (7] -0. (3.39)

By the continuity equation (3.36), the first term in brackets vanishes, which
expresses the fact that mass conservation implies the conservation of rest-mass
energy. The energy-conservation equation is thus simplified to

PX (g (fz)) +V.3=0. (3.40)

Comparing terms in the momentum-conservation equation (3.38), we see that
the current density of the kinetic energy ¢ is smaller by a factor of order v /c?
compared to the current density pc?# of the rest-energy density. We can thus
safely neglect it in our non-relativistic approximation and write momentum
conservation as

d;(pv')+ V- (p(¥@ %)) =0. (3.41)

Having arrived at this point, we split up the microscopic velocities Xinto the
mean macroscopic velocity  of the fluid flow and a random velocity i about
the mean,

X=0+il. (3.42)

As U has been defined as the average over X, the average of & must vanish by
definition. The average over the squared microscopic velocity is therefore

(¥7) =52+ (@) (3.43)

which allows us to split up the kinetic energy density into a macroscopic part
pv?/2 and a microscopic or internal part p{u>)/2. If this internal kinetic energy
density is of thermal origin, we can identify it with the thermal energy density

e=b(w) = %nkBT . (3.44)

The kinetic-energy current density ¢ has been introduced as the average

q= g (22%) (3.45)
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in (3.19). Splitting the microscopic velocities as in (3.42), we can write
(%) = (0P + 20 i+ 02) @+ &) = 0’0+ (1P) T+ 2(i @i )T (3.46)

because all terms must vanish in which components of iZ appear linearly. Thus,
the kinetic-energy current density is

i=5(7 + (@) v+ ptieiyi= (5 +e)teptiairs. (47
2 2
The first two terms are the current densities of the macroscopic and the internal

kinetic energies, and the meaning of the third term remains to be clarified.

We finally study the stress-energy tensor T with elements 7%/,
T=p(xex)=p(@+i)e@+i))=p@ei+(@ei)) , (348

where we have used once more that all terms linear in & must average to zero.
The average (il ® il ) appears again. In the rest frame of the macroscopic fluid
flow, & = 0. The trace of the stress-energy tensor is then three times the pressure
of the fluid,

pTr(i®i)=p(u’)=3P. (3.49)

If the fluid is microscopically isotropic, the random velocity components '
must be independent, hence (u'u/) = 0 for i # j and

p(u"u“>=§Tr<ﬁ®ﬁ>=P. (3.50)
Combining these arguments, we can write

c}’:(gv2+s+P)ff and T =pr'®@ i+ Pls. 3.51)

With these results, we can now bring the momentum-conservation equation
3.41) into the form

8, (p?) +V - (p?® 1)+ VP =0. (3.52)

Once more, we can re-group terms suitably to identify and remove the two
terms representing mass conservation,

|00+ V- (00)|0+p [0+ (- V) 7|+ VP = p(0, + - V) 5+ VP = 0. (3.53)
Momentum conservation is thus expressed by Euler’s equation
p(0,+7-V)F+VP=0. (3.54)
The differential operator in parentheses is the total time derivative,

o ox o d
7-V = = . —=— .
O +0 O+ ot ox dr (5.35)

Equation (3.54) thus simply states that ideal fluids are accelerated by pressure
gradients,

aw o
pd—l; - _VpP, (3.56)
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in absence of external, macroscopic forces.

We finally turn to the energy-conservation equation (3.40). With our results
(3.43) and (3.51), it becomes

a,(guz+s)+ﬁ-[(§ﬁ+s+1>)ﬁ] -0. (3.57)

Expanding the derivatives and re-grouping terms, we can identify those terms

here that must vanish due to mass conservation and momentum conservation,
02 = - P A o -

E[(')tp+V-(pv)]+§((9t+v-V)v +0,e+V-[e+P)0]=0. (3.58)

By mass conservation, the first term in brackets vanishes. By momentum
conservation, the second term in parentheses is

E(@+0-9)02 = pi- (0, +7- V) 3=~ VP ==V (P) + PV - 3. (3.59)
With this identification, the energy-conservation equation shrinks to
de+V-(e0)+PV-7=0. (3.60)

Again, this has a very intuitive interpretation: The internal energy density
changes locally not only by the current density &7, but also by the pressure-
volume work PV - 7 that the fluid has to exert against its surroundings. If the
velocity field is divergent, V7> 0, the fluid expands, and part of its internal
energy must be used for working against the pressure of its surroundings.
Conversely, if V.i< 0, the velocity field is convergent, the fluid is compressed,
and its surroundings increase its internal energy by pressure-volume work.

Summarising, our final set of equations for ideal hydrodynamics reads

p+V-(p?)=0 ,
o+ (7-V)i+— =0,

de+V-(e8)+PV-7=0 . 3.61)

They express mass, momentum, and energy conservation in a very intuitive
way. They are five equations for the mass density p, the internal energy density
&, the pressure P, and the velocity 7, which are six quantities in total. The set
(3.61) of equations thus needs to be complemented by an equation of state that
relates the pressure to the density, P = P(p). The second equation, describing
momentum conservation, is often called Euler’s equation.

With a slight rearrangement in the energy-conservation equation, we can identify
the total time derivative of the energy density,

d B}
d—f+(s+P)V-ﬁ=0. (3.62)

From the point of view of thermodynamics, this is quite intuitive since the
sum of the internal energy density € and the pressure P is the enthalpy per unit
volume, or the enthalpy density #,

h=ec+P. (3.63)
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Energy conservation can thus also be expressed by

dS -
— +hV-0=0, 3.64
dr ¢ ( )

which is the first law of thermodynamics at given pressure.

If external, macroscopic forces are present, such as the gravitational force, the
momentum-conservation equation must be augmented by the corresponding
force densities. Let ® be the Newtonian gravitational potential, its negative
gradient —V is the gravitational force per unit mass. It can be added to the
right-hand side of the momentum-conservation equation to yield

)i+ % =-Vo. (3.65)

<l

a0+ (-

It is sometimes useful to write the complete set of equations (3.61) in terms of
total time derivatives. It then reads

dp = dl7 6[) - de =

— +pV-=0, —+—=-VO, —+hV-7=0. 3.66

5 TPV ot - ot U (3.66)
Problems

1. The energy-momentum tensor is defined as

v 2 d3p v N

T = ¢ — ptp" f(X, p, 1), (3.67)
E(p)

where (p*) = (E/c,p )T is the four-momentum, E the energy, and

f(%, p,t) the one-particle phase-space density distribution. While the

energy density is £ = T, the pressure is given by one third of the

stress-energy tensor’s trace, hence P = (1/3) ¥, T*.

(a) Determine T+ for a single particle of mass m with trajectory x(¢)
and momentum py(¢). Compare to the energy momentum tensor of
an ideal fluid.

(b) Determine T for a photon of frequency w with trajectory %o(?).

(c) How is the energy density related to the pressure in the two cases
discussed?

2. The hydrodynamical equations describing mass conservation, momentum
conservation, and energy conservation for an ideal fluid are

p+V-(pi)=0, (3.68)

a0+ (8-V)7 = e (3.69)
P

de+V-(s8)=-PV 7. (3.70)

respectively.
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(a) Show using equation (3.70) that an isothermal ideal fluid, i.e. a
fluid with constant temperature 7'(x, t) = Ty, is also incompressible,
V.g=0.

(b) Show that for a spherically symmetric and isothermal flow of an
ideal gas, equations (3.68) through (3.70) simplify to

2 2
op+vo,0=0, Ow-— % = —cga, Inp, (3.71)

where ¢s = kgTo/m is a characteristic thermal speed.

3.2 Relativistic Hydrodynamics

This section is a detour from the main track of this book in so far as General
Relativity is otherwise avoided. Yet, it is an irresistible temptation to show
how generally-relativistic, ideal hydrodynamics emerges simply if the partial
derivatives in the covariant conservation equations (3.33) are replaced by
covariant derivatives, and Poisson’s equation by (the appropriate limit of)
Einstein’s field equation. The first main result are the relativistic versions
(3.81) and (3.82) of the continuity and Euler equations. In the limit of weak
gravitational fields, the relativistic generalisations (3.95) of these equations
are derived. Together with the gravitational field equation in the same limit,
the final set of hydrodynamical equations is given by (3.106). Perturbative
analysis then yields the linear, second-order evolution equation (3.116) for
the fluid density.

3.2.1 Hydrodynamic Equations

We shall now derive the ideal hydrodynamic equations from the generally-
relativistic equation of local energy conservation. We do this for one specific
reason. In the preceding section, we have derived the equations of ideal hy-
drodynamics by taking appropriate moments of the Boltzmann equation. In
that derivation, it has become clear how ideal hydrodynamics builds upon the
fluid approximation, and how viscosity and other transport processes such as
heat conduction arise if the ideal-fluid approximation is gradually released. Yet,
that derivation does not easily allow incorporating the main repercussions of
General Relativity in hydrodynamics, which arise because pressure has inertia
and contributes as a source to the gravitational field. Therefore, we give this
relativistic derivation of the hydrodynamical equations here, borrowing from
the differential-geometric formalism of General Relativity without detailed
explanation, and contrasting the generally-relativistic hydrodynamic equations
at the end with their Newtonian analoga. Our main motivation is that sometimes
fluids occur in astrophysics which either move relativistically or whose pressure
is comparable to their energy density. In both cases, the classical Newtonian
hydrodynamical equations are suspect, and their relativistic counterparts should
be used instead.

Readers unfamiliar with general relativity might wish to skip the following
subsections, returning when the equations of relativistic hydrodynamics will be
summarised and compared to the Newtonian equations.
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We begin with the equation of local energy-momentum conservation,
v, " =0, (3.72)

which states that the covariant four-divergence of the energy-momentum tensor
T has to vanish. This is an immediate consequence of Einstein’s field equations.
By the second contracted Bianchi identity, the covariant divergence of the
Einstein tensor G vanishes identically, so the covariant divergence of the energy-
momentum tensor needs to vanish as well.

At this level, we only need to specify that the covariant derivative V is a bi-linear
map of (tangent) vectors (x,y) € TM to a manifold M into the real numbers,

V:TMXTM >R, (x,y)— Vyy, (3.73)
satisfying the Leibniz (product) rule,
Vify) =df(xy + fViy , (3.74)
with functions f.

In a coordinate basis of tangent space, the covariant derivatives are uniquely
represented by the Christoffel symbols. More generally, in an arbitrary basis
{eu} of tangent space, the covariant derivative is defined by the connection
1-forms,

Viey =, (ey . (3.75)

We now choose to insert the energy-momentum tensor of an ideal fluid,
_ (2
T—(pc +p)u®u—pg, (3.76)

which is spanned by the only two tensors available in relativistically flowing
ideal fluid, namely the tensor product of the four-velocity u# with itself and the
metric tensor g. The local fluid properties are given by the density p and the
pressure p measured by the observer flowing with the four-velocity u. Writing
the energy-momentum tensor as in (3.76) implies that the four-velocity # must
be dimension-less, and thus be measured in units of the light speed ¢. The
components of the energy-momentum tensor 7', without specifying the basis
vectors yet, are

™ = (pc2 + p) wu’ — pg"” . (3.77)

Inserting these into the local conservation equation (3.72) gives
'V, (pc2 + p) + u (p62 + p) Vou+ (p62 + p) V' +VEp =0 (3.78)
if we specify the covariant derivative V as usual to be metric, requiring Vg = 0.

We now project equation (3.78) first on the local time direction by contracting
it with the (dual) four-velocity u,, and then on the three-space perpendicular to
the four-velocity. By their construction, these projections will yield the time and
space components of the local conservation equation (3.72), which generalise
the continuity and Euler equations.

By definition of the proper time 7, the four-velocity must be normalised by

(uyuy = uut = -1. (3.79)

Caution  The connection conven-
tionally used in general relativity
is specified by two further condi-
tions: it is supposed to be symmetric
(torsion-free) and metric-compatible
(Vg =0). <



?

Projection tensors 7 (or, more gener-
ally, projections) need to be idempo-
tent, i.e. they need to satisfy 7> = 7.
Why is this so? Show that 7 =
g +u®u is indeed idempotent. Writ-
ten in terms of tensor components,
show that m,Prg, = 7oy,
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In particular, this normalisation condition implies that
0=V, () = 20, V.0 . (3.80)

Taking (3.79) and (3.80) into account, contracting (3.78) with u, gives the
relativistic continuity equation

Vu(pc?) + (pc* + p)V-u=0 , (3.81)

while its spatial projection by contraction with the projection tensor my, =
Jau + gty yields the relativistic Euler equation

(¢ + p) Vatte + Vop + ugVup = 0 . (3.82)

It can easily be seen that 7., is a projection tensor perpendicular to the four
velocity since it maps the four-velocity to zero,

T = (gaﬂ + uau,,) W =uy—u,=0. (3.83)

Equations (3.81) and (3.82) form the basis for the following calculations. What
do they mean?

The continuity equation (3.81) begins with the covariant derivative of pc? in
the direction of the local four-velocity. This generalises the time derivative
of the matter density p in the continuity equation in three ways. First, the
derivative with respect to the coordinate time 7 is replaced by a derivative with
respect to proper time; second, the partial derivative is replaced by a covariant
derivative; and third, the matter density is replaced by the energy density pc?.
The second term in the continuity equation generalises the divergence of the
velocity field to the four-divergence of the four-velocity, multiplied with the
energy density plus the pressure rather than the density alone: The relativistic
continuity equation automatically contains the contribution of pressure-volume
work to energy conservation.

The Euler equation starts with the four-acceleration, i.e. the covariant derivative
of the four-velocity into the direction of the local four velocity itself. The
prefactor (pc? + p) shows the inertia of pressure. The second term is the
pressure gradient, while the third term adds a proper time derivative of the
pressure times the flow velocity.

3.2.2 Hydrodynamics in a Weak Gravitational Field

We now proceed to specialise the generally-relativistic continuity and Euler
equations, (3.81) and (3.82), to weak gravitational fields. In any metric theory
of gravity, in the weak-field limit, the line element can be expressed by means
of the two Bardeen potentials ¢,  as

ds? = — (1 +2¢) 2dr> + (1 + 29) d@2 . (3.84)

Both potentials are given in units of ¢?, thus dimension-less, and they are
assumed to be small, ¢, < 1. For simplicity, we further take the potentials to
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be time-independent, ¢ = 0 = . The line element (3.84) suggests introducing
the dual basis

O =1 +¢)dr, 6 =(1+y)dx (3.85)
and its orthonormal basis
eo=(1-¢)c'0,, e=1-v)0;. (3.86)

By this choice of the (dual) basis, the components of the metric become
Minkowskian, g, = diag(-1,1,1,1). By means of Cartan’s first structure
equation, the dual basis {6#} implies the connection forms

(,_)Oi = ¢i00 s (/_)ij = [ﬁjel - (//,9] . (3.87)

Now, in a coordinate basis, the four-velocity is

u:ﬁ”c’)ﬂ:? - (388)
From the line element (3.84), we can read off the proper-time element
2
dr = [(1+20) - (1 + 2098 cdr ~ (1 +é- %]cdl , (3.89)

valid to first and relevant order in ¢ and E 2 Here, as usual, ﬁ =0/c= );c’/ ¢, and
the dot abbreviates the derivative with respect to the coordinate time. Thus, to
the same order in ¢ and g3, the four-velocity is

ﬁz dxt 52 i
u:[]—¢+7)Eaﬂ=(l—¢+7)(6o+ﬁ6i) (3.90)

in the coordinate basis. Its components in the basis {e,} introduced in (3.85) are
then determined by u# = 6*(u) or, again to first order in ¢ and 2,

WL=1+=, =4 (3.91)
Using now the expressions

2
V.f=euf Vuf=uﬂvyf=(l—¢+%)c_lf+,8i6if (3.92)

for arbitrary scalar functions f and
Vot = dut(v) + o, (v) (3.93)

for the component i of the covariant derivative of a vector u into the direction
v, we can finally bring the hydrodynamic equations (3.81) and (3.82) into the
form

1 £\, Fpc + (pc + )¢ -+ 1, ()] = 0
( —¢+?)pc+(,8- )pc +(pc +p) -p+c ,(?) =0,
(pc2+p)6r(ﬁ;)+ﬁ2p+cﬁﬁp=0,

>

(o« )+ (5918 So] 1~ e (5-F)p =0,
(3.94)
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In these equations, V with a vector arrow is now specialised to be the ordinary
gradient operator in three-dimensional, Euclidean space. The second of these
equations, which is the time component of the Euler equation, shows that the
term E . 61) is of order 82, thus lfﬁp is of order 8° ~ 0 because the potential ¢
is itself of order 82. The continuity equation, to linear order in 3, and the Euler
equation, to quadratic order in v, are thus

pc+(ﬁ~§)pc2+(pc2+p)6-ﬁ_)=0 ,
(pc2 +p) [c_l,g+ (ﬁ €)ﬁ+ %] + ﬁp + c_lpﬁ_): 0. (3.95)

Notice that, reassuringly, all terms in both these equations have the dimension
[energy density]/[length].

3.2.3 Gravitational Field Equation

To linear order in ¢ and y, the curvature 2-forms implied by the connection
1-forms (3.79) through Cartan’s second structure equation are

Q% =i/ A6, Q= yut A -yt A6 (3.96)
From them, the components of the Ricci tensor can be found via
Ry = Q% (eq. ) . (3.97)
With (3.96), they are
Roo=V?¢, Ryi=0, Rij=—(¢+)ij— 5;']'62!# . (3.98)
The Ricci scalar is
R=R') =2V} (¢ +2¢) , (3.99)

and thus the components of the Einstein tensor become

Goo = =2V, Gui=0, Gy=-@+i+6,V@+y). (3.100)
With (3.100), the time-time component of the field equations gives
—V2y = 4nG [pc + B (pc® + p)] . (3.101)
while the spatial trace of the field equatlons yields
V¢ +y) = [3p +B(pc® +p)| - (3.102)
The sum of the latter two equations gives the generalised Poisson equation

V2 = 4nG [pc +3p+28” (pc® + p)| - (3.103)
The trace of the field equations is
V2 +2V2y = (3p pc?) (3.104)
and their off-diagonal components require

8nG
— @+ == (o + p)Bib; (3.105)
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3.2.4 The Combined Set of Equations

Thus, to lowest relevant order in ¢, y and 8% = v?/c?, the combined hydrody-
namic and gravitational equations are

=

p+(l7~V)p+(p+I;

—)6.3=o,
C

= = 6 Tiflea
U+(,7.V)3:_V®_va/;
p+plc
=22 3p
VO = 47G p+—=]. (3.106)
C

They generalise the Newtonian hydrodynamic equations
p’+(17'6)p+p€~3=0,
. - - 6
i+ (3-V)o= Vo - L,
P
V20 = 4nGp , (3.107)

where ® = ¢ is the Newtonian gravitational potential in physical units.
Comparing (3.106) and (3.107), one clearly sees the pressure-volume work in
the continuity equation, the inertia of the mass-density equivalent p/c? of the
pressure in the Euler equation and the contribution of 3p/c? to the source of the
gravitational field. Notice also the additional force term oc pi/c? in the Euler
equation.

3.2.5 Perturbative Analysis

Let us now continue with a perturbative analysis of the set of equations (3.1006).
As usual, we assume that a smooth background solution is already given,
which is indicated by a subscript 0. We thus have a set of fields (oo, po, 0o, ¢0)
which separately satisfy Eqgs. (3.106). They are perturbed by small deviations
(6p, 6p, 60, 6¢). The equations will be linearised in these perturbations, mean-
ing that terms will be dropped that are of quadratic or higher order in the
perturbations.

We transform into a coordinate system comoving with the unperturbed flow,
which allows us to set 7y = 0. We assume that the perturbations are small
compared to the overall length scale of the unperturbed solution, hence gradients
of the background solution can be neglected. Finally, we assume that the fluid
has a polytropic equation of state,

Y
P=ﬁ([—_)) ) (3.108)

where (p, p) are arbitrary reference values for the density and the pressure and
v is the adiabatic index of the fluid. Since the squared sound speed is

2_ 9

=% (3.109)
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at constant entropy, the pressure fluctuations can be written as dp = cf&p. We
express the density fluctuation by the dimension-less density contrast

5
5= 6p=pys, (3.110)

0

which allows to write the pressure fluctuation as

5p = c2pos . (3.111)

Substituting p = pg + dp = po(1 + &) and ¥ = ¥y + 60 = 67 into the continuity
equation gives, to lowest order in the perturbations,

po=0, (3.112)
and to first order
5+(1+"—°2)6-5ﬁ=0. (3.113)
pPoC

By the polytropic equation-of-state, (3.112) also implies pg = 0. Then, to
first order in the perturbations, Euler’s equation and the generalised Poisson
equation are reduced to

i - 6365
ov=-Vod — .
1+ 25
poc
=22 303
V260 = 4nGpos 1+ == | . (.114)
C

Taking the time derivative of the continuity equation (3.113) and the divergence
of the Euler equation from (3.114) transforms these equations into

S+(l +p—02)6~63 0,
Poc

c§§25
po
poc?

V.60 = —V250D —

(3.115)

Eliminating the divergence of the peculiar acceleration, v. 57, between these
equations and inserting the generalised Poisson equation from (3.114) then
leads to the evolution equation

3 33 Po 2925 _

0 —4nGpoo(l+ —|[1+ —|-cV6=0 (3.116)
c LoC

for the density contrast ¢. In the non-relativistic limit, when the sound speed

¢ is small compared to the light speed ¢ and the pressure pg is negligible

compared to the rest-energy density poc?, this linear evolution equation for the

density contrast shrinks to

8 —4nGpos — V%6 =0 . (3.117)
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Example: Without gravity

Some special cases should now be instructive and illustrate why we went
through this analysis here. Let us first ignore gravity completely. Then, the
second term in (3.116) disappears altogether because it originates from gravity
alone. Ignoring gravity can formally be expressed by setting the Newtonian
gravitational constant to zero, G = 0, and thus suppress all gravitational
coupling. Then, the density fluctuations ¢ are found to obey the wave equation

06=0, (3.118)

where the sound speed cs appears as the characteristic velocity in the
d’Alembert operator. The density contrast then undergoes ordinary sound
waves.

Example: With gravity on a non-relativistic background

If gravity is switched back on, but the background remains non-relativistic,
Eq. (3.116) simplifies to

8 —4nGpod — c2V*6 =0 . (3.119)

If we expand ¢ into plane waves, the Laplacian is replaced by the negative
square of the wave number k, and ¢ obeys

8~ (47Gpy - 2K*) 6 =0 . (3.120)
This is an ordinary oscillator equation, with

c2k? — 4nGpy = w* (3.121)

taking the role of the squared frequency. If w? > 0, i.e. if k is larger than the
so-called Jeans wave number

1/2
ky = (47er0) : (3.122)

2

the solutions oscillate like sound waves, satisfying the dispersion relation

w=cs‘/k2—kJ2. (3.123)

Otherwise, if k is smaller than the Jeans wave number, there is an exponentially
growing and an exponentially decaying mode of the density fluctuations.
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Example: With gravity on a relativistic background
If, finally, the background fluid is relativistic, we have the full equation
i 3¢ Po 272
0 —|4nGpo (1l + —|[1+ — |- ck"|6=0 (3.124)
& poc2

for plane waves of wave number k. Suppose, for example, we have a plasma
tightly coupled to a dominating photon gas like in the early universe. Then,
the fluid is relativistic, py ~ poc?/3 and cg ~ ¢%/3, and

3¢ Po 8

The Jeans wave number then changes to

2 1/2 2 1/2
kJ=(3 ”Gpo) =(3 ”G”O) , (3.126)

3¢2 c?

which is typically much smaller than for a non-relativistic fluid. Acoustically
oscillating perturbations are thus possible in a much wider range of scales in a
relativistic than in a non-relativistic fluid, and growth or decay of perturbations
is possible only for very large perturbations. <«

3.3 Viscous hydrodynamics

So far, we have considered ideal fluids, whose particles have a negligibly
small mean free path. In this section, we shall loosen this approximation
and allow a very small, but finite mean free path. The fluid particles can
now move relative to the mean flow and transport fluid properties by small
distances, in particular mass, momentum and energy. The transport of
momentum causes friction and energy dissipation, the transport of energy
gives rise to heat conduction. The first important result is the diffusive exten-
sion of the energy-momentum tensor (3.143) which can then be introduced
into the conservation equation to derive the Navier-Stokes equation (3.148)
and the energy-conservation equation (3.155) containing heat flow and
dissipation. Finally, we introduce gravitational forces into the equations of
viscous hydrodynamics and derive the tensor virial theorem (3.189).

3.3.1 Diffusion of particles, momentum and internal energy

Previously, we have assumed that our fluid is ideal, that is, that the mean-
free path A is negligibly small. We have used this implicitly when we set
the momentum-space integrals over the collision term to zero. If we cannot
neglect the mean-free path any more, we must take into account that particles
may move over small, but non-vanishing distances and thereby carry their
physical properties with them. In that way, transport phenomena occur over
small distance scales.
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Let us begin with a simple example. Suppose there is a homogeneous ideal
fluid, into which we place a screen of the small cross-sectional area dA. For
definiteness, we set up a coordinate system such that the screen is perpendicular
to one of the coordinate axes, say the x axis, which it may intersect at the
coordinate origin. This screen and the coordinate system may flow with the
mean fluid velocity.

Particles will move by random motion from one side of the screen to the other.
Let n(0) be their mean number density at the location of the screen, and the
screen be small enough for us to neglect any change of the number density
across the screen. If the particle number density behind the screen is the same
as in front of the screen, the same number of particles will cross the screen per
unit time in the positive as in the negative x direction, and the net number of
particles flowing through the screen will be zero.

Now let us gradually relax this stationary situation by imagining a number-
density gradient along the x direction (cf. Fig. 3.3). Then, there will be fewer
particles behind than before the screen, and even though their random velocities
in the +x directions will be the same, more particles will flow down than up
the gradient. Let & be a characteristic velocity of the particles. Since their
random velocities i will average to zero, i could be set to the root mean-square
velocity, it = @2, How exactly i and (ii?)!/? relate depends on the velocity
distribution of the particles, which is however irrelevant for our purposes.
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Figure 3.3 Particle diffusion: If there are more particles on one side of the
imagined screen than on the other, such as there are more blue than red particles
in this example, particles will effectively diffuse from the denser region to the less
dense.

Then if the particle velocities are randomly oriented, the velocity in the x direc-
tion, perpendicular to the screen, will be of order i/ V3. Since approximately
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half of the particles will move into the positive x direction, the number of
particles N moving through the screen in either direction per unit time is

dN it
— ~———dA[n(x+ ) —nx-2)], (3.127)
dr 243
where A is the mean free path of the particles. If A is finite, but small, we can
replace the difference in particle number densities by a derivative to find the
particle current density
dN ad én

AR 12
= qad T T Fox (3-128)

In three dimensions, the derivative with respect to x is replaced by the gradient,
Jjp=——""7=Vn. (3.129)
V3
Gradients in particle number densities drive particle diffusion. Inserting this
current together with the particle number density into the continuity equation
for the particles gives Fick’s (second) law for diffusive particle transport,
- o = = uAl
on+V-j,=0 = on=V-(DVn), D="Z. (3.130)
V3
Recall that the expression given here for the diffusion coefficient D has been
heuristically derived. More precise definitions can be given if the probability
distribution of the random velocities is known.

Let us now apply the same approach to momentum and energy transport. Con-
sider how particles transport a velocity component v’ diffusively into the x
direction. If o' changes with x, the velocity component v’ of the particles diffus-
ing towards the positive x direction differs from the v’ that the particles transport
towards the negative x direction. By essentially the same argument that led to
(3.127), we find the current density component (jy ). of v/

nid o'

v (3.131)

(o)l =

The diffusive transport of the velocity component v’ into the spatial direction x i
can accordingly be described by the rank-2 tensor
N niid o'
= 3.132
Gy =5 5 (3.132)
This suggests that the stress-energy tensor Ty describing diffusive momentum
transport should be proportional to the tensor of spatial velocity derivatives,

Tax—(Ve 17)T , (3.133)

with a proportionality constant giving the right-hand side the appropriate di-
mension of a momentum current density.

Energy transport by diffusion is easily completed. Completely analogously to
the previous derivations, we find the diffusive current density of the internal
energy

nid >
—-—Ve. (3.134)
V3

-
&
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We can express the gradient of the internal energy by a temperature gradient

and obtain
nid de 5 nidey

AT V3
For the second equality, we have inserted the heat capacity ¢, at constant
volume, and the last equality defines the heat conductivity «.

VT = —«VT . (3.135)

q’s=_

The diffusive stress-energy tensor requires further consideration. While the
velocity-gradient tensor Ve may be asymmetric, the stress-energy tensor
should be symmetric. This suggests to assume that the diffusive stress-energy
tensor should be set proportional to the symmetric part of Ve U, or

Ty oc — [(6@3) - (6@3)1 . (3.136)

This is reasonable also because of the following consideration. If a system of
particles rotates like a solid body of angular velocity @, i.e. with the velocity
field

F=ax?, o=¢ %, (3.137)

no momentum transport should occur. The derivatives of the velocity compo-
nents (3.137) are

' = 9 (8jkl wkxl) = sjkl wkéf = ajkl. o, (3.138)

which is manifestly antisymmetric because of the antisymmetry of the Levi-
Civita symbol. Excluding momentum-transport effects in systems rotating
like solid bodies thus also argues for setting the diffusive stress-energy tensor
proportional to the symmetrised velocity-gradient tensor.

It is further often convenient to distinguish between divergent or convergent
flows, for which
V-i=d0' =Tr(Ven) 0, (3.139)

and so-called shear flows, for which the trace vanishes,
Tr(Ved)=0. (3.140)
We thus split up the symmetrised velocity-gradient tensor into a trace-free part
(6@5)+(6®3)T+§6-313 (3.141)
and a diagonal part carrying the trace,
v.7ls, (3.142)

and assemble the diffusive stress-energy tensor from these two contributions
separately,

Td=—n[(6®a)+(e®af-§\7~au3]—ﬁ~m3. (3.143)

The two constants 77 and ¢ introduced here represent the viscosity of the fluid.

2

Explain the factor of 2/3 in the trace-
free part (3.141) of the velocity-
gradient tensor.
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The components of the stress-energy tensor must have the dimension of a
momentum current density, hence

-5

Since the velocity gradient components have the dimension s~!, the viscosity
constants must have the dimension

s - eme (3.144)

] =——=1I. (3.145)

-
cm
3.3.2 The equations of viscous hydrodynamics

The diffusion of fluid particles cannot affect mass conservation, so the continuity
equation (3.36) for the mass density must remain unchanged. However, the
preceding considerations of diffusive particle, energy and momentum transport
have shown that we have to augment the stress-energy tensor of an ideal fluid
by the diffusive stress-energy tensor,

T>T+Tqy. (3.146)

Since momentum conservation is expressed by the spatial components 8, T+ =
0 of the conservation equation d,7*” = 0, the additional, diffusive part of the
stress-energy tensor creates the further terms

-Tq

<

-n[623+v”(6-3)-§6(v*.3)] 99 -9)

—Wzﬁ—(g+ g)ﬁ(ﬁ ) (3.147)
in the momentum-conservation equation (3.54). With those terms, it turns into
the Navier-Stokes equation

p(at+ﬂ-€)5+6p=n€2ﬁ+(g+g)v(ﬁ-ﬁ) . (3.148)

In the energy-conservation equation, we must first of all take the diffusive
transport of the internal energy into account, thus

§—G+Gs=G—«VT (3.149)

needs to be substituted in (3.40). However, this is not all, since the diffusive
momentum-current density corresponds to a force per unit area, or a pressure.
This force, times the flow velocity, is the internal work carried out per unit time
by the diffusing particles on the fluid itself; in other words, it is the energy per
unit time dissipated by friction. The current density of this friction work is the
flow velocity times the force per unit area,

G = ~Ta?, (3.150)
which must also be added to the energy current density §. Thus,

g 31T - Tg? (3.151)
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must be replaced in (3.40). Deriving the final form for the energy-conservation
equation, we must finally recall that the momentum-conservation equation has
also changed. We used it before to bring the energy-conservation equation into
the form (3.60), subtracting the momentum-conservation equation, multiplied
with the flow velocity, from the energy-conservation equation. We thus have
to subtract a further term (ﬁ - Ty) - U from the energy-conservation equation.
Summing up, the right-hand side of the energy-conservation equation must now
be replaced by the terms

V- (VT +Tgd) = (V- Ta) - 5= V- (¥T) + Tr[T] (Vo5)| . (3.152)

Since the diffusive stress-energy tensor is symmetric, any antisymmetric part of
the velocity-gradient tensor V ® # would be cancelled in its contraction with Ty,
hence we can just as well write

Tr [7_";— (6 ® U)] =Tr (T;Dv) , (3.153)
where Dv abbreviates the symmetrised velocity-gradient tensor,

szzé[(ﬁw)qﬁ@ﬁf] . (3.154)

The energy-conservation equation for a viscous fluid then reads
de+V - (e0)+ PV -§=V - (kVT) + Tr(T] Dv) . (3.155)

This intuitive equation shows that temperature gradients cause diffusive heat
transport, and viscosity creates heat by friction. Together with the unchanged
continuity equation (3.36) for the density p, the Navier-Stokes equation (3.148)
and the energy-conservation equation (3.155) are the fundamental equations for
viscous hydrodynamics.

3.3.3 Entropy

It is instructive to translate the energy-conservation equation (3.155) to an
equation explicitly containing the fluid entropy. For doing so, we introduce the
internal energy and the entropy per unit mass, &€ and §, respectively, by defining

e=8o, s=3p, (3.156)
This enables us to bring the left-hand side of (3.155) into the form
Oie+V - (e8) + PV - 7= 8,(3p) + V - (8p0) + PV - 7. (3.157)
Subtracting the continuity equation leaves us with

- - - - dN -
a,g+v-(33)+Pv.17=p(a,+z7-v)é+1>v-3=pd—‘j +PY-3. (3.158)

The volume per unit mass, V, is the reciprocal density, V= p‘l, hence

v adp

_ _ _ 2 PR v — -1¢g .
=P g =P (0 +7-V)p=p'V-7, (3.159)
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where we have used the continuity equation once more in the final step. Solving
for the velocity divergence,

V-i=p—, 3.160
U=pg ( )
we can write (3.158) as
R . dg dv
0 V- () +PV-T=p|—+P—]. 3.161
e+ V- (el) + U p(dz + dt) ( )

By the first law of thermodynamics, 7d§ = d& + PdV, we can finally identify

" o ds
6,g+V~(sﬁ)+PV~¢7=pTd—i (3.162)
and write the energy-conservation equation (3.155) as an equation for the total
time derivative of the specific entropy,
dg =2 - =T
pTo =V (k9T + T (T Do) . (3.163)
This shows explicitly how heat conduction and viscous friction change the
entropy. In absence of transport processes, k = 0 = 7 = £, the specific entropy
is conserved. In particular, flows of ideal fluids are isentropic.

3.3.4 Fluids in a gravitational field

From a consistent, generally-relativistic point of view, fluids in a gravitational
field should be treated starting from the covariant, local energy-momentum
conservation laws (3.33). The covariant derivative would then automatically
take care of gravitational forces. Here, in our non-relativistic, Newtonian
approach, we have to add gravitational fields by hand to the fluid equations. We
shall do so by deriving the energy-momentum tensor of the free gravitational
field, whose space-space components can then be added to the stress-energy
tensor 7% of the fluid.

In a specially-relativistic theory for a scalar field ¢ characterised by a Lagrange
density L(¢, 8,¢), the energy-momentum tensor 7%, of the field is given by the
Legendre transform

oL
TH, =0 -6L; 3.164
y = 0vo 90.0) L ( )
cf. (1.104) and the explanation given there. The Lagrange density
1
L= %5#(153% + ¢p (3.165)
serves our purposes because its Euler-Lagrange equation,
a 0
s = ——£=O, (3.166)
0ug) 09

reproduces Poisson’s equation if the potential ¢ does not change very rapidly
with time,
—008° = 20 < 0,0 . (3.167)
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Then, we can approximate the d’ Alembert by the Laplace operator and find the
familiar field equation

V2 = 4nGp (3.168)
relating the potential to the density, i.e. the Poisson equation.
We thus take 1
Lree = %ay¢ay¢ (3.169)

as the Lagrange density of the free, Newtonian gravitational field and find the
energy-momentum tensor

1 1
H = 1
(7 V)grav = G (6v¢6"¢ - §5v0a¢0“¢) (3.170)
for it. Its stress-energy tensor is then
Tom = —— |V V9 1(6 )211 (3.171)
gy = G 3 ¢) 13|, .

again neglecting the time derivative of ¢ compared to its spatial derivatives. This
gravitational stress-energy tensor must now be introduced into the equations for
momentum and energy conservation.

The momentum-conservation equation must be augmented by the divergence of

Tgrav,
- - 1 = = =
V- Toray = — (V?¢) Vo = pV¢ ,
wav = 7= (V6) Vo = oV
where the Poisson equation (3.168) was used in the last step. With this additional

specific force term, the Navier-Stokes equation becomes

(3.172)

p(a, +7- ﬁ)l’)’+ VP = —pVd + nV25 + (§+ g)ﬁ(ﬁ . 17) . (3.173)
In most applications, the stress-energy tensor for the free gravitational field
is integrated over the entire volume of a body. If the boundary surface of the
integration volume is chosen large enough, we can use Gauss’ law to add or
subtract arbitrary divergences from Tgrav without changing the volume integral
over it. This allows us to modify the expression for the stress-energy tensor to
bring it into more familiar forms that can more easily be interpreted. We shall
use the sign = here to express that two expressions for Té{,av differ only by a
divergence.

Let us begin with the expression (3.171) and write

- 6([)@6(}5 15 > > 13
T gy = ————— — —V - (oV =
= T ag) (V) 50
Voo Ve 13
~ L2 D (3.174)

The trace of the final expression is

Te Ty = o (90 + 300 = =9 (696) - 0 + 290

1

= 5pd .

2 (3.175)

Caution  Of course, we could
have guessed the additional
gravitational-force term —pﬁ@ in
the Navier-Stokes immediately
since it simply expresses the
gravitational-force density. Return-
ing to the stress-energy tensor of
the gravitational field and taking its
divergence emphasises the common
origin of all force terms in the Euler
or Navier-Stokes equations. <
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Can you confirm the calculation
shown in (3.183)?
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If we rather begin with the expression ¥® T for an arbitrary, not necessarily
gravitational stress-energy tensor, we can write

-%0(V-T)=-V-(¥oT)+T=T. (3.176)

Applying this result to the gravitational stress-energy tensor, and identifying its
divergence (3.172), we find

Tyay =~ —pXO V. (3.177)

This leads to Chandrasekhar’s expression for the gravitational potential energy,
which is often used in stellar dynamics,

fd%fgrav =U= —fd3xp)?® Vo . (3.178)

From our previous result (3.175), we can further infer that the volume integral
over the trace of Ty is

_ 1
fd3x Tt Tyay = Tr U = 5 fd3xp¢ ) (3.179)

Comparing (3.178) and (3.179), we find the useful equality

%fd%p(p:—fd%pf-%. (3.180)

3.3.5 The tensor virial theorem

We can now derive an important generalisation of the virial theorem from
classical mechanics, which is typically derived there for point particles on
bounded orbits. We begin with the inertial tensor of a body, defined by

I=fd3xp)?®)?. (3.181)

Integrating over a fixed volume, the position vectors X do not depend on time.
The total time derivative of I is

dI .
o =(a,+ﬁ-v)fd3xpf®f=fd3x(a,p)f®f (3.182)

because the volume integral does not depend on ¥. The continuity equation
allows us to continue

fd3x(6tp))?®i’: —fd%ﬁ-(pa)f@f

—fd3x€-(pf®f®ﬁ)+fd3xp(z®a+a®f)

fd3xp()?®17+ 7®X) . (3.183)

The second absolute time derivative of the inertial tensor is thus

2
% - fd3x (6, (o) ® £+ £® 6 (o7)] . (3.184)
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Now, we use (3.176) and take advantage of momentum conservation, 9T +
0,TY = 0, to replace the divergence of the stress-energy tensor by the time
derivative of the energy-current density 7% = pcv/,

T = xi9oT% = xi9, (o) . (3.185)

Symmetrising this expression,
-1
TZE[)?®(9,(017)+(%(,017)®)?] s (3.186)

and inserting the result into (3.184), we can finally write

1d2%1 _
SR =fd3xT. (3.187)

For a perfect fluid in a gravitational field, the stress-energy tensor reads

T=pi®@0+PL3+ Tomy - (3.188)

We integrate this over the complete volume of the fluid, use (3.178) and find
1d%7
Eﬁzfd%pﬁ@m ]lgfd3xP+U ) (3.189)
This is the tensor virial theorem for a pefect fluid in its most general form. If

the system is stable, the left-hand side vanishes, and a relation between the
kinetic-energy tensor

1
Kzifd3xpz')’®l7, (3.190)

the potential-energy tensor U/ and the volume-integrated pressure remains,

2K = -13 fd3xP— U. (3.191)

3.3.6 Transformation to cylindrical or spherical coordinates

It is convenient in many applications of hydrodynamics to use coordinates other
than Cartesian ones, in particular when systems with axial or spherical symmetry
are to be studied. Then, of course, the spatial differential operators need to be
transformed accordingly, but there is one more aspect of the transformation that
needs to be taken into accout.

In cylindrical coordinates (7, ¢, z), the basis vectors expressed in Cartesian
coordinates are

cos —sing 0
é =\ sing [, é,=| cosgp |, e =|0/[. (3.204)
0 0

Since the position vector is ¥ = ré, + z&;, the velocity is

U= i, +ré, + 28, = ie, + rgpéy + 72, , (3.205)
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Example: Virial theorem applied to a homogeneous sphere

To illustrate the power of the virial theorem to find out about the equilibrium
state of a perfect fluid in a gravitational field, suppose we have a homogeneous
sphere of density p, mass M and radius R which is macroscopically at rest,
' = 0. The kinetic energy tensor vanishes, K’/ = 0. The fluid is assumed to
have an ideal equation of state,

P=Lpr, (3.192)
m
with a constant temperature throughout. Then,
M
fd3xP = “kpT. (3.193)
m

By (3.179), the trace of the potential-energy tensor is

1 4nGp R M(r) , 3G (4r) 25
TTU== | d& =5 —rdr=—+|[—= R
rU f X pd j(; p rodr I 3 p

. 3GM?
- 10 R

(3.194)

The trace of the tensor virial theorem (3.191) thus implies the relation

kgT 1 GM
=2 o =2 3.195
m 10 R (3.195)

between the mass, the radius and the temperature of the sphere in equilibrium.
Its so-called virial radius is

1 GMm

=—— .1
10 kgT (3.196)

Suppose now that the sphere is rotating slowly like a solid body. The rotation
needs to be slow to ensure that the body can still be assumed to be spherical.
With a constant angular velocity &, the velocity field is

T=adx7?, #*=wrsin’6 (3.197)

if we arrange the z axis of the coordinate system to be parallel to the angular
velocity ¢ and 6 is the usual polar angle. The trace of the kinetic-energy tensor
3.190) is

2n R4 S
TrK = —pw f rdrf sin” 0 sin 6d0
2 0 0
1

_ T 255 2
_5prI1(1 ,u)d,u

- %szz , (3.198)

The trace of the tensor virial theorem (3.191) now gives the cubic equation

2 3 3GM
ZWRP + ZkgTR- —— =0. (3.199)
5 m 10



3.3 Viscous hydrodynamics 147

Example: Virial theorem applied to a slowly rotating, fin shomoge-
neous sphere

For a slowly rotating sphere, R will deviate little from the virial radius (3.196)
of the sphere at rest, which we now call Ry to write

R
R=R0+6R=R0(1 +%) ; (3.200)
0

To lowest order in the small quantities w? and 6R, (3.200) can be approximated
by

—|-———=0. 201
5 Ro 10 0 (3:201)

With Ry from (3.196), we can further simplify this equation to

2 R M
ZW'R + szTRo(l 8 )— GM_
m

4 W2RY
SR=--—2,
3 GM

(3.202)

Therefore, if the temperature of the fluid in the rotating sphere is the same as
in the non-rotating sphere, its virial radius is reduced because the centrifugal
force partly stabilises the body against gravity, allowing the body to be smaller.
We can even set 7 = 0 in (3.199) and find

1/3
R= (3GM) (3.203)

4w?

for the radius of a stable, self-gravitating, rotating sphere. <
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Convince yourself by your own cal-
culation of the expressions (3.208)
and (3.213) for the time derivatives
of the unit vectors.
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where &, = @e, was inserted. We read off the velocity components
=T, V=g, V=7 (3.206)
and write the acceleration as
a =08y + 08y + 1:8; + 0,8y + V8, - (3.207)
Since the time derivatives of the unit vectors &, and &, are
b=2o,, b,= —UT“’é, , (3.208)
we can immediately identify the acceleration components

o o, .
ar=b——, ap=10,+ , a;=70;. (3.209)
r r

Therefore, the components of the acceleration cannot simply be written as
time derivatives of the velocity, but acquire additional terms. The expressions
(3.209) imply that, in cylinder coordinates, the components in (r, ¢, z) direction
of the total time derivative on the left-hand side of Euler’s equation needs to be
augmented as

5: Urlyp
dw, = dwr ——, dw, — dwy + , dw, > dw, . (3.210)
r r

In much the same way, we proceed for spherical polar coordinates (r, 6, ¢), for
which the basis vectors are

sin 6 cos ¢ cosfcos —sing
é,=| sinfsing |, @ég=| cosfsing [, &,=| cos¢ |. (3.211)
cos@ —sinf 0

Since &, = 629 + @ sin 6é,, the components of the velocity 7 = 7, + ré, are
V=7, vg=16, Uy = rpsing . (3.212)

‘We can thus write the time-derivatives of the unit vectors as

A Vg Uy A Vo 2 ~
e, = —éy+ —¢e¢ , bg=——b+ 2L cotbe, ,
r r r r
A vtﬁ A~ A
ey = - (e, + cot ey) (3.213)

and immediately identify the components

2 2 2
v, +v U
. [4 . Urbg
a, =0, — so’ ag = by + ! —icote,
r r
. Uy VgV,
ay = by + — + —% cot§ (3.214)
r

of the acceleration.
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In spherical coordinates, then, the left-hand side of Euler’s equation needs to be
transformed as

2 2
U9+U¢

dv, — d, —

Uylg U2

"0 _ % coth
p

V0, VgV,

T2 Lot (3.215)
r

d;vg — dyvg +

dwy — div, +

The total time derivatives in the transformations (3.210) and (3.215) remain
formally unchanged,

dy; = (at +7- 6) v, (3.216)

but the gradient operator V needs to be expressed in the respective coordinate
basis.

Example: Hydrodynamic equations in cylinder coordinates

To give one specific example, we express the continuity and Euler equations
for ideal hydrodynamics in cylinder coordinates (7, ¢, z). Since the gradient
and the divergence are

N

= e SR 1 1
Vf=2¢0 + 7‘”@, +¢,0, and V-f= ;6,(rf,) + ;84,]‘4, +0,f,, (3.217)
the continuity equation transforms to
1 1
ap + ;8,(rpv,) 3 ;6¢(pv¢) + 0,(pv;) =0, (3.218)

while the components of Euler’s equation turn into

; - 1, (P
By + (7 V)v, + U:‘O =——8¢,(—+¢) .

r\p
e P
. + (7 V), = -0, (— + ¢) , (3.219)
o)
with the representation of V to be taken from (3.217). <

Problems

1. Young stars often form in the centre of a thin accretion disk whose height
is much smaller than its radius. If the mass of the central object M is
much larger than the disk’s mass, the gas particles move on approximately
Keplerian orbits which are almost circular.

(a) What is the velocity v of a gas particle as a function of the radius r?
Determine also the divergence of the velocity field.
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(b) Calculate the components of the velocity tensor
vij = 1 ((91‘0,' - 6,~vj) (3220)
2

for the Keplerian disk.

3.4 Flows under specific circumstances

In this section, the hydrodynamical equations are applied to a variety of
different flows. We begin with a perturbative analysis to derive the equation
(3.226) for sound waves, identifying the expression (3.228) for the sound
speed. Following the introduction of polytropic equations of state, we dis-
cuss hydrostatic equilibrium configurations and derive the Lane-Emden
equation (3.259). Vorticity and circulation are defined next in the derivation
of Kelvin’s circulation theorem (3.280). Then, we demonstrate Bernoulli’s
law (3.286) for stationary flows by integration of Euler’s equation and apply
it to Bondi’s problem of spherical accretion, leading to the relations (3.308)
between velocity and radius in polytropic or isothermal flows. Next, we
extend Bernoulli’'s law to non-stationary, but irrotational flows in (3.315).
Viscous flows are briefly discussed at the end of the section. We begin with
the diffusion of vorticity (3.317), define the Reynolds number (3.321) and
conclude with viscous flow through a pipe, leading to the Hagen-Poiseulle
law (3.329).

3.4.1 Sound waves

We begin with an ideal fluid for which we assume that a solution of the hydro-
dynamical equations is already given. This solution may consist of functions p,
o and P, with the subscript 0 indicating that these functions are considered as
a fixed, given, so-called background solution. We transform into the rest frame
of this background solution and can thus assume & = 0. Then, we perturb this
solution by small amounts §p, 67 and 6P, insert the perturbed solution

p=po+op, =068, P=Py+0P (3.221)

into the continuity- and Euler equations and keep only terms up to first order in
the perturbations. This procedure, which is typical for a perturbative analysis,
results in

V(Py + 6P
V(P +6P) =0. (3.222)
Po +6p

8,00 +6p) + V - (0068) =0, 9,60 +
Typically, the background solution is smooth on the length scale of the pertur-
bations. If we may assume this, we can neglect gradients of py and Py as well
as dypp and continue writing

R vép
0,60 +poV-60=0, 860+—=0. (3.223)
PO
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We further relate the gradient of the pressure perturbation to the gradient of the
density perturbation by

=3 (9P =3 =3
VoP = =-Veép =: cAVep , (3.224)
/Y

introducing the abbreviation cf, for the partial derivative of the pressure with
respect to the density. Equations (3.223) then become

8:6p +poV - 68 =0, podoi+c2Vop =0. (3.225)

Taking a further time derivative of the first equation and the divergence of the
second equation allows us to eliminate the velocity perturbation altogether and
express the density perturbation as

op—2V26p =0 . (3.226)
This is a d’ Alembert equation for the density contrast,
O6p=0, (3.227)

in which ¢ appears as the characteristic velocity. The solutions of (3.227) are
linear density waves, accompanied by waves in the velocity perturbation. Such
waves are sound waves, and

1/2
B = (@) (3.228)
dp

is the sound speed. The derivative in (3.228) has to be taken at constant entropy.

The solutions of the d’ Alembert equation can be expanded into plane, mono-
“chromatic” waves. Let

op = aelf¥-e) 55— peilFa-wi) (3.229)

be such waves with wave vector X and frequency w for the density and velocity
perturbations. Inserting them into the d’ Alembert equation gives the dispersion
relation

K== (3.230)
a

familiar from electrodynamics, but with the sound speed in place of the light
speed. The second equation (3.225), however, gives

wpob = c2dk . (3.231)

The amplitude b of the velocity perturbation is thus oriented with the wave
vector k, showing that 67 is longitudinal.

3.4.2 Polytropic equation of state

We have noticed earlier that the equations of hydrodynamics are a set of five
equations (one each for the conservation of the mass density, its internal energy
and each of its momentum components) for six quantities, namely the density,

2
Why would the sound speed (3.228)
have to be determined at constant en-
tropy? Is this necessarily so? What
assumption may enter here?




?

Why are infinitesimal changes of
the internal energy and the enthalpy
givenby dE = ¢,dT and dH = ¢,dT,
respectively, with ¢, and ¢, being the
heat capacities at constant volume or
pressure?
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the pressure, the internal energy or temperature of the fluid and its macroscopic
velocity. One equation is missing. Typically, an equation of state is chosen for
this purpose, that is an equation relating the pressure to the other fluid properties,
such as the density and the temperature.

In astrophysics, it is frequently appropriate to assume the so-called polytropic
relation between pressure and density,

o\
P(p) = Py (—) , (3.232)
PO

which can be derived for any fluid under adiabatic conditions. To see this,
consider the first law of thermodynamics, §Q = dE + PdV. If no heat is
exchanged, 60 = 0, and

dE = ¢,dT = -PdV . (3.233)
The enthalpy is obtained from the internal energy by the Legendre transform
H=E+PV, dH=dE+PdV+VdP. (3.234)
Under adiabatic conditions, therefore,

dH = ¢,dT = VdP . (3.235)

If we now divide (3.235) by (3.233), the temperature differential d7 cancels,
and we find

(3.236)

where vy is defined to be the adiabatic index. Separating variables leads immedi-
ately to

P dv

P -y v
or P oc V77 o p?, which is already the polytropic relation (3.232). Notice in
particular that we have nowhere used the assumption of an ideal gas. The entire
derivation is based on the adiabatic condition that the fluid does not exchange
heat with its environment. If we can additionally treat the fluid as an ideal gas,
we have PV oc T and conclude

(3.237)

PV = (PV)V"' o« TV™! = const. (3.238)
For an ideal gas, the polytropic relation (3.232) thus implies

y-1
T = To(ﬁ) . (3.239)

PO

The sound speed in a polytropic fluid is easily derived. We have to take the
derivative of the pressure with respect to the density at constant entropy, but the
polytropic relation has already been derived assuming that entropy is constant.
It is therefore justified to write

oP P -l
cg =—=y—= "30 L . (3.240)
o p Po
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For the enthalpy, we begin from (3.235) to derive the enthalpy per unit mass, A.
Since the volume per unit mass is simply p~!, we must have

- dp P 2
- Fzy_zlzzyc—bI' (3.241)

The relations (3.240) and (3.241) are frequently used and often very convenient
in discussions of astrophysical fluid flows.

Let us briefly remark on entropy here before continuing with the discussion of
hydrodynamical flows under specific circumstances. The first law of thermody-
namics states

TdS =dE + PdV = ¢,dT + PdV = ¢, dT + d(PV) - VdP, (3.242)

where cy is again the heat capacity at constant volume. Dividing by T, using
the equation of state PV = NkgT for an ideal gas and the relation

¢p — ¢y = Nkp (3.243)
between the heat capacities ¢, and ¢y at constant pressure and constant volume,
respectively, we transform (3.242) into

dTr dpP
ds = oo - (cp— CV)F . (3.244)

Recalling the adiabatic index y = ¢p/cy, we have

dr dpP
= — —-(y-1D—1, 24
ds cv[y Y )P] (3.245)
from which we can infer the derivatives Caution Recall the Maxwell rela-
tion
oS Cy aS Cy
— | =y= d =] =-(y-1D—= 24
(57), =5 =0 (5), =005 (3240 as\ __(av
or),  \oT),

for the entropy with respect to T at constant P, and vice versa. We shall need
these relations in the derivation of the convective instability below. which, when evaluated for an ideal

. . . . as, results in
From the ideal gas equation written in the form &

PV P G247) (3_5) _ _Nks _ -
- NkB - o kB . (')P T P P
with the mean particle mass 7, we immediately infer that b
dr  dP
e (3.248)
T P P
and insert this expression into (3.244) to find
dpP dp
ds = v T cp; . (3.249)

The derivatives of the entropy with respect to P at constant p and vice versa are

thus o5 a5
Cy Cp
=) = — | =-=". 2

(5P)p P (6p)p p 3-250)
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We shall return to these relations in the discussion of the thermal instability.

Finally, it is instructive to conclude from (3.249) that the entropy as a function
of pressure and density is

P Y
S(P.p) = cy 1n[—(@) ] . (3.251)
Py\p
For a polytropic gas with P « p”, the entropy is manifestly constant, as it should
be by construction.

3.4.3 Hydrostatic equilibrium

We begin our study of hydrodynamical flows under specific, generally simplify-
ing conditions with a fluid in hydrostatic equilibrium. In a static situation, the
flow velocity vanishes, & = 0, and the Navier-Stokes equation (3.148) shrinks to

VP =—pVo. (3.252)
Taking the curl of this equation, we immediately see that
Vox Vo =0 (3.253)

because the curl of a gradient vanishes identically. The gradients of the gravita-
tional potential and of the density must therefore be parallel to each other, which
means that the equipotential surfaces, i.e. the surfaces of constant potential,
must also be the surfaces of constant density. In hydrostatic equilibrium, the
shape of the fluid body thus adapts to the shape of the gravitational potential.

Taking the divergence of the hydrostatic equation, we can use Poisson’s equation
to write

<u

vp
. (_] = -4nGp . (3.254)
P

Once an equation of state is chosen for the fluid, i.e. a relation between the
pressure P and the density p, this equation determines the configuration of the
fluid density in its own gravitational field. Let us suppose that the pressure satis-
fies the polytropic relation, and restrict the discussion to spherically-symmetric
configurations. Then,

1 8,P\ ¢ 7!
0, (r2 ): 05, r2(ﬁ) d,p| = —4nGp . (3.255)
r p r o

Instead of the adiabatic index, we now introduce the polytropic index n by
defining
1
y—-1l=-. (3.256)
n
Moreover, we introduce a function 6 to describe the density as

L _g, (3.257)

PO

define a characteristic radius

ne2 2
sO
= .2
o ( 471Gp0] (3.258)
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and use that to introduce the dimension-less radial coordinate x = r/ry. These
operations leave (3.255) in the dimension-less form

S0:(20:0) = 0" . (3.259)

which is called the Lane-Emden equation.

Given a polytropic index n, it can be solved with the boundary conditions
00 = 0and 6 = 1 at x = 0O to return the density profile of a polytropic,
self-gravitating gas sphere. Expanding the differential operator in (3.259), the
Lane-Emden equation reads

0" + z9’ +6"=0. (3.260)
X

Example: Solutions of the Lane-Emden equation

Analytic solutions for the Lane-Emden equation exist for » = 0, n = 1 and
n = 5. For n = 0, direct integration of (3.259) results in
2 A
g=-=-—+p (3.261)
6 x
with two integration constants A and B. The boundary conditions require
A = 0 for the solution to remain regular at the centre and B = 1 for 6 to reach

unity there. Thus,
2

0x) =1 — % (3.262)

for n = 0. For n = 1, (3.260) is a spherical Bessel differential equation of
order zero, which is solved by spherical Bessel function

0(x) = jo(x) = % . (3.263)

Numerical solutions for the Lane-Emden equation with adiabatic indices
v = 5/3 (polytropic index n = 3/2) or y = 4/3 (n = 3) are often used to model
the internal structure of white dwarfs or other stars (Figure 3.4). <

Another interesting and illustrative example for systems in hydrostatic equi-
librium is the case of a gas filled into a spherical gravitational potential well
caused by the dominant dark matter. If the gas mass is overall negligible, the
gravitational potential is given independently, and the gas just responds to it.
This requires us to separate the gas density p,,s from the dark-matter density
ppuM in the hydrostatic equation, thus

1 2
0, (’—a,P) = —47Gppy - (3.264)
r Pgas
With the equation of state for an ideal gas,
P=T (3.265)
m

where m is the (mean) mass of a gas particle, we find by integrating once

2 k r
L By, (PeaskT) = —47G f 2dr’ ppm = ~GMpm(r) (3.266)
Pgas M 0

2

Independently carry out all steps
leading from the hydrostatic equa-
tion (3.252) to the Lane-Emden
equation (3.259).




156 3 Hydrodynamics

8(x)

Figure 3.4 Solutions of the Lane-Emden equation are shown for different choices
of the polytropic index. The curves are displayed up to their first root only.

where Mpm(7) is the dark-matter mass enclosed by a sphere of radius r. Solving
this equation for the dark-matter mass shows how it is related to the logarithmic
gradients of temperature and gas density,

Mpm(r) = — (3.267)

rkBT dlnpgas dinT
mG \ dinr dinr

This equation is often applied to find mass estimates for galaxy clusters. There,
the two logarithmic gradients can be inferred from X-ray observations of the
hot intracluster gas.

3.4.4 Vorticity and Kelvin’s circulation theorem

‘We shall now give up the hydrostatic assumption, but still neglect any dissipative
effects, such as viscous friction and heat conduction. In the Navier-Stokes equa-
tion (3.148), we therefore set n = 0 = £, and k = 0 in the energy-conservation
equation. We then also know from (3.163) that entropy is conserved under such
circumstances. Momentum conservation is then expressed by Euler’s equation

>

W, VP
o+ (0-V)i+ — + V0 =0. (3.268)
P

The identity

>

02 52\ o
) = V(E) - (o V)v (3.269)

<L

ﬁ’x(ﬁx

enables us to replace the convective velocity derivative (7 - 6)17’ in (3.268) to
obtain

. (0 VP
03— x (Vx7) = —V(”—) - S, (3.270)

The curl of the velocity,
Q:=VxU, (3.271)



3.4 Flows under specific circumstances 157

is called the vorticity of the flow. If we take the curl of Euler’s equation in its
form (3.270), we find the evolution equation for the vorticity

ﬁpxﬁP

6,ﬁ:§x(ﬁxﬁ)+ P

(3.272)

since the curl of the gradients vanishes identically. If the pressure P is a function
of p only, as for example in a polytropic fluid, the gradients of P and p must
align because then

= dP > - -
VP=Vp = VPxVp=0. (3.273)
o

For such barotropic fluids, the vorticity equation simplifies to

= :ﬁx(ﬁx ﬁ) . (3.274)

Figure 3.5 lllustration of Kelvin’s circulation theorem: The circulation of the veloc-
ity field in an inviscid fluid is conserved.

Having derived an evolution equation for the vorticity, we now consider the
so-called circulation, which is the line integral over the velocity along closed
curves swimming with the fluid flow,

r:= Sgﬁ-df. (3.275)
C

We are interested in the total change with time of the circulation embedded
into the flow (Figure 3.5). We must therefore take into consideration that the
contour C is deformed by the flow. The total time derivative of I' consists of the
change of the velocity field within the contour, plus the change of the contour
itself. For a more transparent notation, we write the infinitesimal path length ar
as a difference 67 of the position vectors pointing at the beginning and the end
of dl. Accordingly, we write

dr ar - dsr
= _U.dl+563._r. (3.276)
R U

2
What does 8,8 = 0 imply for the

solution(s) of the vorticity equation
(3.274) for barotropic fluids?
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In the first term on the right-hand side, we expand the total time derivative of
the velocity into

d—'?—am(aﬁ)ﬁ—amv* L —7IxQ (3.277)
dr ! o 2 : )

The line integral suggests taking the curl and applying Stokes’ law. The curl of
(3.277)is

1o S

E:a,g—Vx(uxQ)=o (3.278)
according to the vorticity equation (3.274), hence the first term of the total time

derivative (3.276) of the circulation vanishes. The second term is

dor S(v\
56,7._r=9§g.5,7zggv("_)-dz=o, (3.279)
c dr fo c \2

which also vanishes because an integral along a closed loop of a gradient field
must vanish. The circulation is thus conserved in a barotropic, ideal fluid,

dr
= = 2
= 0, (3.280)

which is Kelvin’s circulation theorem.

3.4.5 Bernoulli’s constant

If the fluid is not static, but the flow is stationary, all partial derivatives with
respect to time will vanish. In such cases, flow lines can be introduced as the
integral curves of the velocity field. Quite obviously, the flow lines must obey

the equations

d dy d
D _ gy _E (3.281)
Uy vy Vg

In ideal fluids, we have seen that the specific entropy § is constant because
energy dissipation and heat flows do not occur. For a stationary flow, 8,5 = 0

and
i—f:a,n(aﬁ)s:(aﬁ)s:o, thus  (3-V)5=0 (3.282)

The specific entropy must therefore be constant along flow lines. Moreover, we
have seen in (3.241) that the specific enthalpy per unit mass satisfies

dh = — (3.283)
P

under adiabatic conditions.

For stationary flows, 9,0 = 0, and Euler’s equation in its form (3.270) implies
V(@) -xQ=-—-Vo. (3.284)

Let us now multiply (3.284) with the fluid velocity 7 to obtain the change of
its terms with time along flow lines. The term containing the vector product
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#x € then vanishes because it is perpendicular to 7. The remaining terms can
be combined under the gradient,

2
ﬁ-V(%+E+<D)=O. (3.285)

This reveals that the term in parentheses,

<
o

> i+ ® =: B = constant along flow lines (3.286)

must be a constant B along flow lines, which is called Bernoulli’s constant.
We have thus proven Bernoulli’s very important and intuitive law for ideal
flows. It shows that the specific kinetic energy of the flow, v?/2, is not only
balanced by the specific potential energy in the gravitational field, but also by
the specific enthalpy. For example, if a gas flow is expanding as it propagates
into a surrounding medium and against a gravitational field, the enthalpy term
takes into account that the gas will have to exert pressure-volume work against
the surrounding medium and thereby cool.

Example: The faucet

Bernoulli’s law, together with the equation of continuity, are very powerful
tools to study stationary fluid flows. Let us begin with water flowing from a
faucet, accelerated by gravity (Figure 3.6). Everyday experience tells us that
the diameter of the water shrinks as it falls. How exactly does the diameter
depend on the height, and why?

Bernoulli’s law tells us that the quantity

2
% +5i+® = const (3.287)

along the flow lines of the water. Here, we can replace the gravitational
potential by ® = gz if z points vertically upwards, where g is the local
gravitational acceleration. The pressure is set by the atmospheric pressure
surrounding the water, the density can be assumed to be constant. Bernoulli’s
law then tells us that the water accelerates as it falls according to v* = v} +
2g(h — z) if it is initially at rest at the height A.

To evaluate the continuity equation for a stationary flow, d;0 = 0, we integrate
the divergence V. (p0) = 0 over an infinitesimally thin cylinder with cross
section A whose axis is aligned with the water. Gauss’ law then implies that

PVA = const = pupAy , (3.288)

from which we conclude that

A
pymp— R (3.289)

\JUs +29(h - 2) .

The cross section of the water decreases as it falls from z = A to z = 0.
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Example: The Laval nozzle

Completely analogous is the discussion of gas flowing through a nozzle whose
cross section first decreases, then increases along the gas flow. For definiteness,
the x axis of the coordinate system may point into the direction of the gas
flow, and the cross section A(x) is given. Continuity now demands

PUA(X) = povoAo , (3.290)

while Bernoulli’s law requires

2 22 v?
Y Sy_ 150 - 30 (3.291)

Dividing by the squared initial sound speed cfo gives the dimension-less

equation

_ 2
wo o' -1y

e N = 3.292

2 y—1 2 ( )

where the dimension-less density @ := p/pg was introduced. A similar
operation brings the continuity equation into the form

auA = upAo . (3.293)

Let us now take the total differentials of both equations (3.292) and (3.293).
This leads us to
da dA

d
udu + o 2da =0, ;+7”+X=0. (3.294)

Eliminating de between these two equations leaves us with the equation

y-1 1
udu(l - 0’—2) = udu(l - W) = ay‘l% , (3.295)
u

where we have identified the squared local Mach number M? = u?/a?~!. As
long as the flow remains subsonic, M < 1, the left-hand side is negative.
The flow will continue to accelerate, udu > 0, if the cross section of the
nozzle decreases, dA < 0. This agrees with everyday experience: A gas flow
through a narrowing pipe accelerates. However, the sign changes once the
flow becomes supersonic, M > 1. Then, for udu to remain positive, the cross
section of the nozzle must increase, dA > 0! Otherwise, once the sonic point
is reached, the gas will decelerate in narrowing nozzle. If the situation is
arranged such that the sound speed is reached at the narrowest point of the
nozzle, the flow will continue accelerating. This is the principle of the Laval
nozzle, which is used for example in rocket engines (Figure 3.7).
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Figure 3.6 Water running from a faucet has a cross section determined by
Bernoulli’'s law.

3.4.6 Bondi accretion

Completely analogous to the discussion of the faucet and the Laval nozzle
is Bondi’s accretion problem. The situation is as follows: A star or another
point-like gravitating body of mass M is placed into a formerly homogeneous,
extended gas cloud of density pg and pressure Py. Driven by gravity, the gas
will flow towards the star. How does it flow, and how much gas per unit time
will the star accrete? Again, Bernoulli’s law and the continuity equation provide
the complete answer.

For a stationary, spherically-symmetric flow, the continuity equation reads
La (Ppv) =0 2pv = 3.296
50; pv)— = r°pv = const. (3.296)
’

The constant has the dimension gs~! and therefore corresponds to the accretion
rate, i.e. the rate at which matter flows onto the star. If we multiply (3.296) with
47, we obtain the mass per unit time M flowing through the complete spherical
surface,

4nrtpv = M | (3.297)

where the minus sign is introduced to express that the mass is flowing towards
the star.

Bernoulli’s law reads ,

v oci-cy GM _o

— 3.298

2 y-1 r ( )
because the gas is assumed to be at rest far away from the star. This equation
holds for adiabatic gas which can be treated as a polytrope. If the gas is

isothermal and ideal rather than polytropic, its enthalpy per unit mass is

. (dP kT (4
h= | =B[22 1n(£) : (3.299)
pmJop Po
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Figure 3.7 An example for a de Laval nozzle is the Vulcain-Il engine of an Ariane
5 rocket (Wikipedia, Creative Commons License)

and Bernoulli’s law becomes
2
GM
e 1n(ﬁ) -2Z -0 (3.300)
2 £0 r
instead. We now divide both versions of Bernoulli’s law by the unperturbed,
squared sound speed czo, introduce the dimension-less velocity u = v/cy, the
density @ = p/po, the so-called Bondi-radius
GM
B = —— (3.301)
%0

and the dimension-less radius x := r/rg. These substitutions leave our two
versions of Bernoulli’s equations in the convenient, dimension-less forms

)

u =1 1 u? 1
s _Z-)0 — +lha--=0. 3.302
2 y-1 X cop ey ( )

The same substitutions turn the continuity equation into

2 M

xXau=p, p:=-— (3.303)

—_—.
4nr BPOCs0

The parameter y is the accretion rate in units of the so-called Bondi accretion
rate,
Mg = 4nrpocy - (3.304)
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We now have two equations, the continuity equation (3.303) and Bernoulli’s
law (3.302), for the two functions @ and u. Eliminating @ between them leaves
one equation for the velocity u,

y—-1
2 () -1 @ ()]
L 77 A S 1(-)--:0. 3.305
2+ y-1 x 2+nx2u X ( )

But what accretion rates are possible? Does the flow turn supersonic some-
where? And if so, what happens? In order to see this, let us take complete
differentials of the continuity equation,

2dx da d
e (3.306)
X a u
and of Bernoulli’s law,
da d do d
wdu+ 'L 0, wdu+ L 0, (3.307)
a x? a X2

and eliminate de/a between them. For the polytropic gas, the squared sound
speed is ¢ = cfoaﬂ‘l according to (3.240), while it is constant ¢2 = cfo for the
isothermal gas. This leads to

d 1

& (2&7_1 - —) polytropic
1 X X
W) - dx( 1) ’ (3-308)

udu(l—
7= =
X

X

isothermal

where we have once more identified the squared Mach number M as before in
(3.295) for the Laval nozzle.

2

15

u = v/cg

0.5

X =1/t

Figure 3.8 The radial velocity is shown as a function of radius for isothermal
Bondi accretion. Velocity curves are given for three different accretion rates: the
critical accretion rate . in units of the Bondi accretion rate as well as 50 % more
or less. The curve for u. > 1 is mathematically possible, but physically excluded
because it corresponds to two velocities at the same radius.

This equation shows that there exists a critical radius, x. = 1/2 in the isothermal
and x. = a'77/2 in the polytropic case, where the right-hand side vanishes. The



2

What would happen to the preceding
calculation if the accretion rate —M
from (3.297) would be set negative?
What physical situation would this
corresponed to?
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left-hand side must then also vanish, which is either possible if the flow comes
to a halt there, u = 0, if the velocity reaches a maximum, du = 0, or if the flow
turns supersonic, M = 1. What exactly happens, depends on the accretion rate
(Figure 3.8). If the flow turns supersonic at the critical radius, > = o' in the
polytropic and u = 1 in the isothermal case, we can solve Bernoulli’s equation
(3.302) for the dimension-less density « there, obtaining

2 1/(y-1)
a:(;jf) (polytropic), a =e*? (isothermal) .  (3.309)
-3y

The continuity equation finally gives the critical accretion rate,

1 2 (5-39)/Q20-1) e3/2
=—|— s =—. 3.310
He 2 (5 — 3’)’) Hc 4 ( )

For accretion rates smaller than y, the flow speed reaches a subsonic maximum
at the critical radius, corresponding to a gen