
Chapter 2

Radiation Processes

This chapter deals with radiation processes. These are defined as processes
by which electromagnetic radiation is either scattered, emitted or absorbed
by matter. In the first five sections, radiation will be treated as a classical
electromagnetic wave. We shall begin with the very illustrative case of Thomson
scattering, then give a general description of spectra, proceed to synchrotron
radiation and bremsstrahlung and finally consider the drag that a charged particle
experiences as it moves through a radiation field. Up to that point, our main
theoretical instrument will be Larmor’s formula, either in its fully relativistic
form (1.138) or in its non-relativistic approximation (1.142), which quantifies
the radiation power of a charge moving with a velocity ~β and accelerated by
~̇β. Then, we shall leave the classical picture of electromagnetic waves and
consider quantum properties of radiation. The theory of Compton scattering
treats electromagnetic radiation as a stream of photons. Emission of radiation
by quantum systems will be discussed next, treating their interaction with
electromagnetic radiation at a semi-classical, perturbative level, i.e. without
quantisation of the electromagnetic field. This will lead us to the calculation of
radiative transition probabilities and finally to the shape of spectral lines.

2.1 Thomson scattering

Thomson scattering describes perhaps the simplest case of interaction be-
tween an electromagnetic wave and a point charge: The wave accelerates
the charge transversally to its propagation direction. Due to its accelerated
motion, the charge radiates according to the non-relativistic Larmor formula.
The emitted radiation power, divided by the flux density of the incoming radia-
tion, is the Thomson cross section. Its differential, polarisation-dependent or
polarisation-averaged forms (2.13) and (2.14) as well as the total Thomson
cross section (2.15) are the main results of this section.

Let us begin with a monochromatic, polarised, plane electromagnetic wave
hitting an electron at rest. By the Lorentz force, it will accelerate the electron
to move harmonically. Because of this accelerated motion, the electron will
radiate according to Larmor’s formula, as we have seen in Sect. 1.3.5. We ask
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38 2 Radiation Processes

now how the energy radiated by the electron relates to the energy transported
by the incoming wave.

For definiteness, we introduce a coordinate frame such that the infalling electro-
magnetic wave propagates into the êz direction. The ~E and ~B vectors must then
fall into the x-y plane because electromagnetic waves in vacuum are transversal.
The polarisation angle will be fixed below. We place the electron at rest into the
origin of the coordinate frame.

?
Why are electromagnetic waves in
vacuum transversal? Can you con-
struct situations in which longitudi-
nal electromagnetic waves occur?
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Figure 2.1 The spatial radiation pattern of a non-relativistic charge accelerated
along the x axis is shown here. (The x axis points horizontally towards the bottom
right).
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Figure 2.2 Choice of the coordinate system for the treatment of Thomson scat-
tering in the text.

The electron experiences the Lorentz force

me~̈x = −e~E − e
c
~v × ~B = −e

(
~E + ~β × ~B

)
. (2.1)

For the incoming wave, |~B| = |~E|. If the electron moves non-relativistically,
|~v| � c, the magnetic contribution to the Lorentz force can be neglected since
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the ~E and ~B fields of an electromagnetic wave in vacuum have equal magnitude.
The equation of motion for the electron then reduces to

~̈x = c~̇β = − e
me

~E . (2.2)

The non-relativistic limit of the Larmor formula (1.138) is

dP
dΩ

=
e2

4πc

∣∣∣∣ê × ~̇β ∣∣∣∣2 . (2.3)

It gives the energy radiated per unit time into the solid-angle element dΩ

around the vector ê pointing from the charge to the observer (Figure 2.1). Since
the electron’s motion is non-relativistic, retardation effects can be neglected.
Inserting the acceleration by the Lorentz force (2.2) with (2.3) gives

dP
dΩ

=
e4

4πm2
ec3

∣∣∣∣ê × ~E ∣∣∣∣2 . (2.4)

We rotate the coordinate frame (Figure 2.2) such that the observer lies in the
x-z plane,

ê =

 sin θ
0

cos θ

 , (2.5)

and introduce the polarisation angle α of the incoming ~E field as the angle
enclosed by the ~E vector with the êx axis,

~E = E

 cosα
sinα

0

 . (2.6)

With this choice, we find

ê × ~E = E

 − sinα cos θ
cosα cos θ
sinα sin θ

 , (2.7)

and the radiated power per solid angle given by (2.4) turns into

dP
dΩ

=
e4E2

4πm2
ec3

(
1 − sin2 θ cos2 α

)
. (2.8)

The infalling energy current density is quantified by the Poynting vector of the
incoming wave,

~S =
c

4π

∣∣∣∣~E ∣∣∣∣2 êz . (2.9)

This is the energy per unit area and unit time impinging on the electron. The
ratio between the energy radiated per unit time and unit solid angle and the
energy current density,

1

|~S |
dP
dΩ

=
dσ
dΩ

=
e4

m2
ec4

(
1 − sin2 θ cos2 α

)
, (2.10)

has the dimension of an area. It is the differential Thomson cross section for
polarised light (Figure 2.3a).
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Figure 2.3 These bodies illustrate the polarised and the unpolarised Thomson
cross sections for electromagnetic waves propagating along the positive x direction.
Top panel: The directional dependence of the polarised Thomson cross section
on the scattering angle is shown here, with the polarisation angle being the angle
enclosed with the z axis (i.e. the polar angle). Bottom panel: The unpolarised
Thomson cross section is forward-backward symmetric.

The prefactor e4/m2
ec4 has an interesting and intuitive meaning. Suppose we

want to explain the entire rest-energy of the electron by the electrostatic energy
of the charge e distributed over a sphere of radius re. We would then require

mec2 =
e2

re
(2.11)

and find the classical electron radius

re =
e2

mec2 ≈ 2.81 · 10−13 cm . (2.12)

For ions composed of N nucleons and having a charge number Z, this classical
radius is at least approximately Z2/(1800 N) times smaller because of their
much higher mass. The Thomson cross section of ions is therefore generally
negligibly small compared to that of the electrons. Electromagnetic radiation
flowing through, say, a hydrogen plasma is scattered by the electrons, which
then interact mainly by Coulomb collisions with the ions.
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The classical electron radius brings the differential, polarised Thomson cross
section (2.10) into the simple, intuitive form

dσ
dΩ

= r2
e

(
1 − sin2 θ cos2 α

)
. (2.13) ?

Before moving on, verify (2.13),
then average over polarisation an-
gles and integrate over the solid an-
gle.

For unpolarised light, we need to average (2.13) over all polarisation angles
α. This average leads to the unpolarised, differential Thomson cross section
(Figure 2.3b)

〈
dσ
dΩ

〉
α

=
1

2π

∫ 2π

0

dσ
dΩ

dα =
r2

e

2

(
2 − sin2 θ

)
=

r2
e

2

(
1 + cos2 θ

)
. (2.14)

If we finally integrate over all directions into which the radiation is scattered,
we find the total Thomson cross section

σT =

∫
dΩ

〈
dσ
dΩ

〉
α

= πr2
e

∫ 1

−1
d(cos θ)

(
1 + cos2 θ

)
=

8π
3

r2
e ≈ 6.64 · 10−25 cm2 . (2.15)

This can be interpreted as the area that a single, non-relativistic electron puts in
the way of incoming, unpolarised radiation.

Problems

1. Work out the mean molecular mass for a mixture of neutral, atomic
hydrogen and helium as a function of the hydrogen mass fraction X.

2. Consider an electron at the origin of the coordinate system, illuminated
by two unpolarised electromagnetic wave bundles propagating along the
−y and −z axes with different energy current densities S y and S z.

(a) Find the radiation power radiated into the x direction.

(b) Is the scattered radiation polarised?

2.2 Spectra

This brief section discusses how electromagnetic spectra of accelerated
charges can be computed. The starting point is Larmor’s equation in its
relativistic or non-relativistic forms, giving the radiation power. The total
energy radiated away is the time integral over the power which, by Parseval’s
equation for Fourier-conjugate functions, can be converted to a frequency
integral. Its integrand is the energy per unit frequency, i.e. the spectrum. This
allows us to derive the fully relativistic expression (2.36) for the spectrum.
The substantially simplified versions (2.39) and (2.42) for non-relativistic
charges can be directly derived from the non-relativistic Larmor equation.
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Example: Eddington Luminosity

Let us immediately apply the Thomson scattering cross section to the follow-
ing situation. Suppose ionised gas surrounds a hot, spherically-symmetric,
radiating body of mass M. The radiation carries the momentum current density

~S
c

=
1

4π

∣∣∣∣~E2
∣∣∣∣ ê , (2.16)

given by the components of Maxwell’s stress-energy tensor. Since this is the
momentum flowing per unit time through unit area, it corresponds to a force
per unit area, or a pressure exerted on an ideally absorbing wall.
The total energy emitted by the star per unit time is its luminosity L. Exploiting
the spherical symmetry, we have

L =

∫
~S · d~a = 4πR2 · c

4π

∣∣∣∣~E(R)
∣∣∣∣2 , (2.17)

where ~E(R) is the electric field strength at radius R. According to (2.16), the
radiation pressure there is expressed by L after eliminating the electric field ~E,

~S
c

=
L

4πcR2 ê . (2.18)

Each electron in the surrounding plasma has a Thomson-scattering cross
section of σT and thus experiences the force

~FR =
~S
c
· σT =

L
4πR2c

σTê (2.19)

by the radiation pressure. Recall that the force on the ions in the plasma
is lower by a factor of ≈ Z2/(1800 N) if the ions have the charge Ze and
are composed of N nucleons. This radiation-pressure force acting radially
outward is counter-acted by the gravitational force of the mass M of the central
body,

~FG = −GMm
R2 ê . (2.20)

Both forces compensate each other if the luminosity L satisfies

L
4πR2c

σT =
GMm

R2 , (2.21)

i.e. if the luminosity reaches the Eddington limit

L = LEdd =
4πGMm
σT

c . (2.22)

Inserting a solar mass for M and a proton mass for m here results in

LEdd = 1.26 · 1038 erg
s

= 3.28 · 104 L� (2.23)

(see Tabs. 1.3 and 1.4). J
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Example: Eddington Luminosity (continued)

Note that we have deliberately not specified the particle mass m in (2.20)
and the following equations to be the electron mass. Consider a hydrogen
plasma consisting of an equal mixture of electrons and protons. By (2.12),
the Thomson cross section of a proton is about 18002 ≈ 3.2 · 106 times
smaller than that of an electron. However, while essentially only the electrons
feel the radiation pressure, they are tighly coupled by Coulomb interactions
to the protons. The radiation-pressure force thus needs to compensate the
gravitational force felt by the electrons and the protons together. The particle
mass m inserted in (2.22) should therefore be the total mass per electron rather
than the electron mass alone. For a fully ionised hydrogen plasma, we can
approximate m by the proton mass mp. J

The energy received by an observer from a radiating electron, flowing into the
solid angle dΩ, is

dE
dΩ

=

∫
dt

dP
dΩ

, (2.24)

where dP/dΩ is given by the Larmor formula (1.138). Often, we are interested
in the radiation spectrum, i.e. in the distribution of the energy over frequency
rather than time. Realising that the time t and the frequency ω are Fourier
conjugates, this is most easily found using Plancherel’s theorem,∫ ∞

−∞
dt | f (t)|2 =

∫ ∞

−∞
dω
2π

∣∣∣ f̂ (ω)
∣∣∣2 , (2.25)

which specialises Parseval’s equation for continuous Fourier transforms. It
relates the integral over a function to that over its Fourier transform. The
negative frequencies ω in (2.25) may appear strange here. Nonetheless, they
obtain a well-defined meaning because we require that f (t) be real. Then, its
Fourier transform f̂ (ω) must satisfy the relation f̂ (−ω) = f̂ ∗(ω).

Applying Plancherel’s theorem to (2.24) and inserting the Larmor formula
(1.138), we find

dE
dΩ

=
e2

4πc

∫ ∞

−∞
dt

∣∣∣∣∣∣∣∣∣∣
ê ×

[(
ê − ~β

)
× ~̇β

]
(
1 − ê · ~β

)3

∣∣∣∣∣∣∣∣∣∣
2

=
e2

4πc

∫ ∞

−∞
dω
2π

∣∣∣ f̂ (ω)
∣∣∣2

=

∫ ∞

−∞
dω

d2E
dΩdω

, (2.26)

where f̂ (ω) is now specified to be the Fourier transform of the function

f (t) =

ê ×
[(

ê − ~β
)
× ~̇β

]
(
1 − ê · ~β

)3 (2.27)

that can directly be read off the Larmor formula (1.138). The spectrum is then
given by the absolute square of f̂ (ω),

d2E
dΩdω

=
e2

8π2c

∣∣∣ f̂ (ω)
∣∣∣2 . (2.28)
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The Fourier transform

f̂ (ω) =

∫ ∞

−∞
dt

ê ×
[(

ê − ~β
)
× ~̇β

]
(
1 − ê · ~β

)3 e−iωt (2.29)

simplifies considerably realising that the integrand needs to be evaluated at the
retarded time t′ = t − R/c, where R is the distance from the observer to the
electron at the retarded time. Taking into account that the differential dt′ of the
retarded time is related to dt by (1.136), we can first cancel one factor (1− ê · ~β )
from the denominator and write

f̂ (ω) =

∫ ∞

−∞
dt′

ê ×
[(

ê − ~β
)
× ~̇β

]
(
1 − ê · ~β

)2 e−iω(t′+R/c) . (2.30)

Furthermore, a short calculation shows that the integrand can be written as a
total derivative with respect to the retarded time t′,

ê ×
[(

ê − ~β
)
× ~̇β

]
(
1 − ê · ~β

)2 =
d

dt′

 ê ×
(
ê × ~β

)(
1 − ê · ~β

)  . (2.31)
?

Verify (2.31) by your own calcula-
tion. This leaves us with

f̂ (ω) =

∫ ∞

−∞
dt′

d
dt′

 ê ×
(
ê × ~β

)(
1 − ê · ~β

)  e−iω(t′+R/c) , (2.32)

which calls for partial integration. Before we get to that, however, we decom-
pose the distance vector ~R from the radiating electron to the observer into the
distance vector ~x from the center of the orbit to the electron and the distance
vector ~r from the center of the orbit to the observer,

~R = ~r − ~x . (2.33)

The idea behind this decomposition is that the motion of the radiating charge is
confined to a distant source, and thus to a volume which is far away and small
compared to its distance from the observer. The retarded distance R is then ê · ~R,
and its derivative with respect to the retarded time is

d
dt′

R
c

= −ê · ~β ; (2.34)

compare (1.126). Assuming that the emission in the distant past and in the far
future can be neglected, we can ignore the boundary terms appearing in the
partial integration of (2.32). Taking (2.34) into account, the partial integration
gives

f̂ (ω) = −
∫ ∞

−∞
dt′

 ê ×
(
ê × ~β

)(
1 − ê · ~β

)  d
dt′

e−iω(t′+R/c)

= iω
∫ ∞

−∞
dt′

[
ê ×

(
ê × ~β

)]
e−iω(t′−ê·~x/c) , (2.35)
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where we have ignored the constant phase factor eiωê·~r. It is irrelevant because
we later need to take the absolute value of f̂ (ω) anyway.

It is worth noting again that we have made a single approximation in the
preceding calculation which is perfectly legitimate in typical astrophysical
situations: We have assumed that the radiating electron is confined to a distant
volume that is small compared to its distance from the observer. This has
allowed us to derive a general prescription for calculating radiation spectra,
expressed by (2.29) with f̂ (ω) given by the Fourier transform (2.35),

d2E
dΩdω

=
e2

8π2c

∣∣∣ f̂ (ω)
∣∣∣2 =

e2ω2

8π2c

∣∣∣∣∣∫ ∞

−∞
dt′

[
ê ×

(
ê × ~β

)]
e−iω(t′−ê·~x/c)

∣∣∣∣∣2 ,

(2.36)
understanding that the integrand has to be evaluated at the retarded time t′ and
that ~x = ~x(t′) describes the electron’s orbit about a fixed reference point within
the volume it is confined to. We can now apply this general result to different
circumstances relevant in astrophysics.

The calculation simplifies considerably for non-relativistically moving charges.
Then, relativistic beaming is irrelevant, retardation effects can be ignored, and
terms of higher than linear order in β and β̇ can be neglected. We can then begin
with the direction-integrated, non-relativistic Larmor formula following from
(1.141) by setting γ = 1 and dropping the fourth-order term in β. Then,

E =

∫ ∞

−∞
P dt =

2e2

3c3

∫ ∞

−∞

∣∣∣~a(t)
∣∣∣2 dt , (2.37)

where ~a = ~̈x is the acceleration experienced by the charge. Employing
Plancherel’s theorem (2.25) once more, we can continue writing (2.37) as

E =
2e2

3c3

∫ ∞

−∞
dω
2π

∣∣∣∣~̂a(ω)
∣∣∣∣2 =

∫ ∞

−∞
dω

dE
dω

, (2.38)

which yields the non-relativistic, direction-integrated spectrum

dE
dω

=
e2

3πc3

∣∣∣∣~̂a(ω)
∣∣∣∣2 . (2.39)

The Fourier transform ~̂a of the acceleration can easily be expressed by the
Fourier transform of the orbit itself. Since

~a = ~̈x =
d2

dt2

∫ ∞

−∞
dω
2π

~̂x(ω) e−iωt = −
∫ ∞

−∞
dω
2π

ω2~̂x(ω) e−iωt , (2.40)

the Fourier transform of ~̂a is

~̂a = −ω2~̂x(ω) , (2.41)

which allows us to calculate the spectrum directly from

dE
dω

=
e2ω4

3πc3

∣∣∣∣~̂x(ω)
∣∣∣∣2 . (2.42)
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Example: Electron on a circular orbit

A quite simple example is an electron orbiting on a circle of radius r with an
angular frequency ω0. Since its orbit is given by

~x(t) = r

 cosω0t
sinω0t

0

 , x1(t) + ix2(t) = reiω0t , (2.43)

the Fourier transform of x1 and x2 together is

x̂1(ω) + ix̂2(ω) = r
∫ ∞

−∞
ei(ω0−ω)t dt = 2πr δD(ω0 − ω) . (2.44)

Its spectrum is thus a single, sharp line emitting the energy∫ ∞

−∞
dω

dE
dω

=
4π
3

e2r2ω4
0

c3 . (2.45)

J

Example: Electron under constant acceleration

For another illustrative example, suppose an electron is accelerated with
constant acceleration ~a during a finite time interval −τ/2 ≤ t ≤ τ/2. The
Fourier transform of this acceleration is

~̂a(ω) = ~a
∫ τ/2

−τ/2
e−iωtdt = − i~a

ω

(
eiωτ/2 − e−iωτ/2

)
=

2~a
ω

sin
ωτ

2
, (2.46)

which we can insert directly into (2.39) to find the spectrum

dE
dω

=
4e2~a 2

3πc3ω2 sin2 ωτ

2
. (2.47)

J
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Problems

1. Verify equation (2.31).

2. Let the Fourier transform of a function f (x) and the inverse transform of
its Fourier conjugate f̂ (k) be defined by

f̂ (k) =

∫ ∞

−∞
dx f (x)eikx , f (x) =

∫ ∞

−∞
dk
2π

f̂ (k)e−ikx . (2.48)

Prove the following identities:

(a)
f̂ ∗(−k) = f̂ (k) (2.49)

for real functions, f (x) ∈ R.

(b)
f̂ ∗ g = f̂ ĝ (2.50)

if

( f ∗ g)(x) :=
∫ ∞

−∞
dy f (x − y)g(y) (2.51)

is the convolution of the two functions f and g.

(c) ∫ ∞

−∞
dk
2π

f̂ (k)ĝ∗(k) =

∫ ∞

−∞
dx f (x)g∗(x) (2.52)

(Parseval’s equation).

(d) ∫ ∞

−∞
dk
2π
| f̂ (k)|2 =

∫ ∞

−∞
dx | f (x)|2 . (2.53)

3. Consider an electron whose one-dimensional trajectory x(t) satisfies the
differential equation of a damped harmonic oscillator,

ẍ + 2γẋ + ω2
0x = 0 . (2.54)

(a) What is the oscillator frequency ω if ω0 is the system’s eigenfre-
quency? Hint: Try the ansatz x(t) ∝ e±iωt. What does a complex
frequency mean physically?

(b) Show that the solution of the differential equation is given by

x(t) =
v0

ω̄
e−γt sin ω̄t with ω̄ =

√
ω2

0 − γ2 . (2.55)

if ω0 > γ and the initial conditions are x(t = 0) = 0 and ẋ(t = 0) =

v0.

(c) Calculate the Fourier transform x̂(ω). Assume that x(t) = 0 for
t < 0.

(d) Calculate the spectrum dE/dω of the moving electron.

(e) What does the spectrum look like if both ω � ω0 and ω � γ?
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2.3 Synchrotron radiation

In this section, the power and the spectrum radiated by a relativistic charge
gyrating in a magnetic field are calculated. This is entirely an application of
Larmor’s equation from classical electrodynamics and the general formulae
for calculating spectra derived in the preceding section. We shall first
consider the trajectory of the electron, then discuss relativistic beaming and
its effects, and proceed directly to the synchrotron power in (2.68) and the
synchrotron spectrum in (2.86). The main assumptions are that the emitting
charge is confined to a volume whose dimensions are small compared to its
distance from the observer and that the source is ultra-relativistic. Besides
the shape of the synchrotron spectrum, an important result of the discussion
is that relativistic beaming allows the observer to see the signal only during
a very short time per orbit, which substantially broadens the spectrum since
frequency and time are Fourier conjugates.

2.3.1 Larmor frequency and relativistic focussing

Consider now an electron moving relativistically in a homogeneous magnetic
field. Without electric field, ~E = 0, the Lorentz force (1.146) causes the
acceleration

d
(
γ~v

)
dt

= − e
mc
~v × ~B . (2.56)

Since this purely magnetic Lorentz force is perpendicular to the velocity, it
cannot change the electron’s energy, thus γ = const. Let us rotate the coordinate
frame such that ~B is aligned with the z axis, hence ~B = Bêz. Then,

d(γvz)
dt

= γv̇z = 0 (2.57)

while
v̇x = − eB

γmc
vy , v̇y =

eB
γmc

vx . (2.58)

Taking a second time derivative of either of the two equations (2.58) and
combining it with the respective other equation gives

v̈i +

(
eB
γmc

)2

vi = 0 , i = x, y . (2.59)

This is the equation of a harmonic oscillator with the Larmor frequency

ωL =
eB
γmc

= 17.6 Hz γ−1
(

B
µG

) (me

m

)
. (2.60)

In a constant magnetic field, the electron therefore describes a circular orbit
with cyclic frequency ωL in the plane perpendicular to ~B, while it moves with
constant velocity along ~B (Figure 2.4). If it has vz , 0 initially, it orbits on a
helix with constant radius and pitch angle.

Let us now assume for simplicity that vz = 0 so that the electron moves on
a circle in the plane perpendicular to ~B (Figure 2.5). Alternatively, we can
transform into a reference frame co-moving with the mean motion of the
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~B

Figure 2.4 The trajectory of a charge in a locally constant magnetic field ~B is a
helix.

electron. On a circular orbit, the acceleration is perpendicular to the velocity,
~β ⊥ ~̇β or ~β · ~̇β = 0. Since the electron is supposed to move relativistically, β ≈ 1,
and we can approximate

1 − β =
1 − β2

1 + β
≈ 1

2γ2 , β ≈ 1 − 1
2γ2 . (2.61)

?
Why is it appropriate and consistent
to approximate 1 + β ≈ in (2.61)?Introducing the angle θ between ê and ~β by β cos θ = ê · ~β, we see that the factor

(1 − ê · ~β )−1 = (1 − β cos θ)−1 in the Larmor formula (1.138) is very large. In
the direction of the motion, θ = 0,(

1 − ê · ~β
)−1

= (1 − β)−1 ≈ 2γ2 , (2.62)

and the factor (1 − β cos θ)−1 drops to half its maximum within a narrow angle.
Requiring

1

1 − ê · ~β
&

1
2(1 − β)

, (2.63)

we find the condition

cos θ ≈ 1 − θ
2

2
& 2 − 1

β
, (2.64)

from which we can read off

θ .

√
2
(
1
β
− 1

)
≈

√
2(1 − β) ≈ 1

γ
. (2.65)

The energy radiated by the electron is thus confined to a very narrow beam
with opening angle . γ−1. This will allow us to introduce several well-justified
approximations as we go along.
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2.3.2 Synchrotron power

y

z

x

to observer θ

Figure 2.5 Illustration of how the coordinate frame is chosen for the calculation
of the synchrotron power and the synchrotron spectrum carried out in the text.

Let us first introduce a coordinate frame oriented such that the electron’s orbit
falls into the x-y plane, while the observer is in the x-z plane. Furthermore,
we shift the coordinate origin into the centre of the circular orbit and choose
the zero point of the retarded time t′ such that the electron moves into the êx

direction at t′ = 0. Then, we can write

ê =

 sin θ
0

cos θ

 , ~x = x

 sinϕ
cosϕ

0

 ,
~β = β

 cosϕ
− sinϕ

0

 , ~̇β = βϕ̇

 − sinϕ
− cosϕ

0

 , (2.66)

where x is the radius of the orbit and the dimension-less velocity is β = xϕ̇/c =

xωL/c.

The total synchrotron power follows directly from the integrated Larmor for-
mula (1.141). Since ~β ⊥ ~̇β in the case of synchrotron radiation, we first obtain

P =
2e2

3c
γ6

[
β̇2 −

(
~β × ~̇β

)2
]

=
2e2

3c
γ6β̇2

(
1 − β2

)
=

2e2

3c
γ4β̇2 . (2.67)

Since β̇ = βϕ̇ ≈ ωL, we can further simplify

P =
2e2

3c
γ4ω2

L =
2e2

3c
γ4

(
eB
γmc

)2

=
8π
3

r2
e cγ2 B2

4π
= cγ2σTUB , (2.68)

where UB = B2/4π is the energy density in the magnetic field that can be read
off Maxwell’s energy-momentum tensor, see (1.112), and σT is the Thomson
cross section, derived in the non-relativistic regime. As we shall see later, this
is a very intuitive expression for the total synchrotron power.
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2.3.3 Synchrotron spectrum

We now turn to the evaluation of the spectrum (2.36) under the given circum-
stances. Expanding first the double vector product in (2.36), we find

ê ×
(
ê × ~β

)
=

(
ê · ~β

)
ê − ~β = β

 − cosϕ cos2 θ

sinϕ
cosϕ sin θ cos θ

 . (2.69)

This vector must be perpendicular to the line-of-sight, whose direction is given
by ê. We can thus expand it into two basis vectors perpendicular to ê, which we
choose to be êy and

ê⊥ = ê × êy =

 − cos θ
0

sin θ

 . (2.70)

In this basis,
ê ×

(
ê × ~β

)
= β cosϕ cos θê⊥ + β sinϕêy . (2.71)

The phase ψ of the exponential in (2.36) is

ω

(
t′ − ê · ~x

c

)
=: ψ = ω

(
t′ − x sin θ sinϕ

c

)
. (2.72)

We can now make use of the fact that the radiation of the relativistically moving
electron is strongly focussed into its forward direction, since the opening angle
of the radiation cone is approximately confined to [−γ−1, γ−1], as we have
discussed before. This implies that our observer will see the radiation only
when |ϕ| . γ−1 and |θ − π/2| . γ−1. Since γ � 1, the angle θ is close to π/2.
We introduce its complement θ ≡ π/2 − θ � 1 and approximate

sin θ = sin
(
π

2
− θ

)
= cos θ ≈ 1 +

θ2

2
, cos θ = cos

(
π

2
− θ

)
= sin θ ≈ θ .

(2.73)

The expansion in ϕ is effectively an expansion in t′, for ϕ = ωLt′. We shall see
later that we need to carry it to order t′3, hence

sinϕ ≈ ωLt′
1 − ω2

Lt′2

6

 , cosϕ ≈ 1 − ω
2
Lt′2

2
. (2.74)

We thus have

ê ×
(
ê × ~β

)
≈ βθê⊥ + βωLt′êy ≈ θê⊥ + ωLt′êy , (2.75)

and the Fourier phase becomes

ψ ≈ ωt′
1 − β 1 − ω2

Lt′2

6

 (1 − θ2

2

) ≈ ωt′

2

 1
γ2 + θ2 +

ω2
Lt′2

3

 (2.76)

where we have used the relations

β =
xωL

c
, 1 − β =

1
2γ2 , β ≈ 1 . (2.77)
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To further simplify the expression for the Fourier phase, we pull the factor
(γ−2 + θ2) out of the parenthesis in (2.76) to find first

ψ ≈ ωt′

2

(
1
γ2 + θ2

) (
1 +

τ2

3

)
(2.78)

with the new dimension-less time variable

τ :=
ωLt′√
γ−2 + θ2

. (2.79)

Defining further the dimension-less frequency

ξ :=
ω

3ωL

(
1
γ2 + θ2

)3/2

, (2.80)

we can write the phase as

ψ =
3ξτ
2

(
1 +

τ2

3

)
. (2.81)

?
Verify the approximate expression
(2.81) for the phase function ψ. Combining expression (2.75) for the double vector product, inserting the Fourier

phase ψ from (2.78) and transforming the integration variable from t′ to τ as

defined in (2.79), we find that we can split the function ~̂f (ω) introduced in
(2.35) as

~̂f (ω) = f̂⊥(ω)ê⊥ + f̂‖(ω)êy , (2.82)

where the perpendicular and parallel Fourier amplitudes are

f̂⊥(ω) = −i
ω

ωL
θ

(
1
γ2 + θ2

)1/2 ∫ ∞

−∞
dτ e−iψ ,

f̂‖(ω) = −i
ω

ωL

(
1
γ2 + θ2

) ∫ ∞

−∞
τdτ e−iψ . (2.83)

The remaining integrals are Bessel functions of fractional order,∫ ∞

−∞
dτ e−iψ =

2√
3

K1/3(ξ) ,
∫ ∞

−∞
τdτ e−iψ = − 2i√

3
K2/3(ξ) . (2.84)

Putting these results together, we can express (2.36) as

d2E
dΩdω

=
e2

4πc

[∣∣∣ f̂⊥(ω)
∣∣∣2 +

∣∣∣ f̂‖(ω)
∣∣∣2] , (2.85)

or, introducing the preceding results for the functions f⊥ and f‖,

d2E
dΩdω

=
e2ω2

3πcω2
L

(
1
γ2 + θ2

)2 [
θ2

γ−2 + θ2 K2
1/3(ξ) + K2

2/3(ξ)
]
. (2.86)

This is the synchrotron spectrum (Figure 2.6).

To obtain further insight into the shape of the spectrum, let us shift the observer
into the orbital plane of the electron. Since the radiation is focussed into a
narrow cone with |θ| . γ−1, this is not a strong simplification. We first realise
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Figure 2.6 The shape of the synchrotron spectrum is shown in arbiratry units as
a function of the scaled frequency ξ = ω/ωc. The polar angle was set to θ = π/2,
i.e. this is the spectral shape in the orbital plane of the electron. The Lorentz factor
is irrelevant here since it only affects the amplitude, not the shape of the spectrum.

that the intensity of the radiation component polarised perpendicular to the elec-
tron’s orbit vanishes since f̂⊥(ω) = 0. In the orbital plane, synchrotron radiation
is thus completely linearly polarised in the orbital plane, or perpendicular to the
guiding magnetic field. Then, with θ = 0, (2.86) simplifies to

d2E
dΩdω

=
3
π

e2γ2

c

(
ω

ωc

)2

K2
2/3

(
ω

ωc

)
, ωc = 3ωLγ

3 (2.87)

where we have introduced the cutoff frequency

ωc = 3ωLγ
3 =

3γ2eB
mc

. (2.88)

The Bessel function K2/3(ξ) follows a falling power law for ξ � 1 and drops
approximately exponentially for ξ � 1,

K2/3(ξ) ≈


1
2

Γ

(
2
3

) (
ξ

2

)−2/3
(ξ � 1)

√
π√
2ξ

e−ξ (ξ � 1)
. (2.89)

For small ξ, the synchrotron spectrum is thus a power law in frequency,

d2E
dΩdω

≈ 3 · 24/3

4π
Γ2

(
2
3

)
e2γ2

c

(
ω

ωc

)2/3

(2.90)

Since γ � 1, the frequency range covered by this power-law behaviour is
very wide. Only far above the Larmor frequency, the spectrum is cut off

exponentially near the cutoff frequency ωc. This is a direct consequence of the
narrow radiation cone: During each orbit of the electron, its radiation is only
received by the observer in a very short time interval. The Fourier transform of
this time interval, however, corresponds to a wide frequency range, similar to
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the uncertainty principle in quantum mechanics. For frequencies near or above
the cutoff frequency, the spectrum is approximated by

d2E
dΩdω

≈ 3
2

e2γ2

c

(
ω

ωc

)
exp

(
−2

ω

ωc

)
. (2.91)

Problems

1. Due to the Lorentz force, a non-relativistic electron moving with a veloc-
ity v through the magnetic field ~B experiences the acceleration

ẍ = − e
mc

(
~v × ~B

)
. (2.92)

(a) What is the average amount of energy per unit time and volume,
d2E/(dtdV), radiated away by an isotropic electron distribution with
number density ne?

(b) Assume now further that the electrons are in thermal equilibrium.
In this case, the probability for an electron to have the velocity
v = |~v | is given by the Maxwell-Boltzmann distribution

p(v)dv =

√
2
π

(
me

kBT

)3/2

v2 exp
(
− mev

2

2kBT

)
, (2.93)

where T is the temperature of the electron gas, kB is Boltzmann’s
constant and me the electron mass. Calculate d2E/(dtdV) as a
function of the electron temperature T and the magnetic field ~B.
Hint: You can use that∫ ∞

0
dx x4e−ax2

=
3
√
π

8
a−5/2 . (2.94)

2. The synchrotron spectrum in the orbital plane of a single electron with
Larmor frequency ωL is

d2E
dωdΩ

=
3e2γ2

πc

(
ω

ωc

)2

K2
2/3

(
ω

ωc

)
, (2.95)

where ωc = 3ωLγ
3 and K2/3(x) is the modified Bessel function of order

2/3 of the second kind.

(a) In stochastic particle-acceleration processes, the accelerated elec-
trons typically follow an energy distribution of the power-law form

dN
dE

dE = AE−αdE , (2.96)

where A is a normalisation constant. Calculate the spectrum for
such a population of electrons. Hint: Express the energy E by γ
and and use∫ ∞

0
dx xa K2

2/3(bx2) = b−(a+1)/2

√
πΓ

(
3a−5

12

)
Γ
(

3a+11
12

)
Γ
(

a+1
4

)
8Γ

(
a+3

4

) ,

(2.97)
valid for a > 5/3.

(b) Draw the expected spectrum schematically in a double-logarithmic
plot.
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2.4 Bremsstrahlung

This section is concerned with a conceptually simple, but mathematically
involved problem: Electrons scattering off ions follow hyperbolic orbits, are
accelerated accordingly and emit free-free radiation or bremsstrahlung.
A thermal ensemble of such electrons emits a spectrum characterised
by an exponential cut-off, reflecting the Boltzmann factor of their energy
distribution. The mathematical difficulty arises because, as we have seen in
our general derivation of electromagnetic spectra, the hyperbolic electron
orbits appears in the phase of a Fourier transform. This gives rise to Hankel
functions of continuous order, which are difficult to handle. The main results
of this section are the bremsstrahlung spectrum (2.118) of a single electron,
the mean bremsstrahlung spectrum (2.122) after integrating over electron
impact parameters, and the bremsstrahlung emissivity (2.131) obtained after
integrating over a thermal electron population.

2.4.1 Orbit of an electron scattering off an ion

As we have seen before in (2.42), the spectrum of a non-relativistically moving
charge is determined by the Fourier transform of its orbit ~x(t). Classically, an
electron coming from infinity, scattering off an ion with charge Ze and leaving
to infinity describes a hyperbolic orbit, much like a comet in the Solar System
(Figure 2.7). We borrow the description of the orbit from the treatment of Ke-
pler’s problem in classical mechanics. By angular-momentum conservation, the
orbit will be confined to a plane, in which we introduce plane polar coordinates
(r, ϕ).

y

z

x

ion

electron

Figure 2.7 On the origin of bremsstrahlung: An electron is accelerated by the
Coulomb force of an ion. It performs a hyperbolic orbit around the ion.

The (positive) energy of the electron is

E =
m
2

ṙ2 +
l2

2mr2 −
Ze2

r
, (2.98)

where l is the conserved angular momentum. The solution of Kepler’s problem
tells us that this equation is solved by the conical sections (Figure 2.8), described
in polar coordinates by

r(ϕ) =
p

1 + ε cosϕ
, (2.99)
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with the orbital parameter p and the numerical eccentricity ε expressing the
angular momentum and the energy,

p =
l2

Ze2m
, ε2 = 1 +

2Ep
Ze2 . (2.100)

Since e2 must have the dimension erg cm in the Gaussian cgs system, it is quite
easy to convince oneself that p is a length and ε is dimension-less. We further
introduce the length scale a by

p = a(ε2 − 1) . (2.101)

For a bound elliptical orbit, a is the semi-major axis. Combining (2.101) with
the second equation (2.100), we can express the energy by the orbital parameter
a as

E =
Ze2

2a
. (2.102)

?
If needed, recapitulate the derivation
of equation (2.99) for Kepler orbits,
and the conditions for it to be valid.

ϕ

θ

p

Figure 2.8 Hyperbolic orbit of an unbound particle in an attractive field of force.

We now replace the polar angle ϕ by the so-called eccentric anomaly ψ. For an
unbound orbit, ψ is implicitly defined by

r(ψ) = a(ε coshψ − 1) , (2.103)

which, together with (2.99) and (2.101) implies

cosϕ =
ε − coshψ
ε coshψ − 1

. (2.104)

Now, we eliminate the squared angular momentum l2 between (2.100) and
(2.98), insert the expression (2.102) for the energy into the resulting equation
and solve it for ṙ2,

ṙ2 =
2
m

[
Ze2

2a
+

Ze2

r
− Ze2a(ε2 − 1)

2r2

]
=

2Ze2

mr2

[
r2

2a
+ r − a(ε2 − 1)

2

]
.

(2.105)
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Next, we use (2.103) to introduce the eccentric anomaly into the following
terms,

ṙ = aε sinhψψ̇ ,
r2

2a
+ r − a(ε2 − 1)

2
=

aε2

2
sinh2 ψ . (2.106)

These finally allow us to bring (2.105) into the form

ψ̇2 =
Ze2

ma3(ε coshψ − 1)2 . (2.107)

Separating the variables ψ and t, we can express the time needed by the particle
to get from ψ = 0 to ψ as

t =

∫ t

0
dt′ =

√
ma3

Ze2

∫ ψ

0
dψ′(ε coshψ′ − 1) = τ(ε sinhψ − ψ) , (2.108)

where the time scale τ was introduced. Equation (2.108) is Kepler’s equation
for a hyperbolic orbit.

Caution Note that Kepler’s equa-
tion is transcendental and can thus
only be solved numerically. J

Since the energy E must be the kinetic energy of the electron at infinite distance
from the ion, we can eliminate a from (2.102),

m
2
v2
∞ = E =

Ze2

2a
⇒ a =

Ze2

mv2∞
. (2.109)

In terms of v∞, the time scale τ is thus given by

τ =

√
ma3

Ze2 =
Ze2

mv3∞
=

a
v∞

. (2.110)

2.4.2 Fourier transform of the orbit

By means of Kepler’s equation (2.108), we can now substitute the time t by the
eccentric anomaly ψ in the Fourier transform of the electron’s orbit. First, we
combine (2.103) and (2.104) to write the Cartesian coordinates

x(ψ) = r cos φ = a(ε − coshψ) ,

y(ψ) =
√

r2 − x2 = a
√
ε2 − 1 sinhψ . (2.111)

Moreover, we have from (2.108)

dt = τ(ε coshψ − 1)dψ , eiωt = eiωτ(ε sinhψ−ψ) . (2.112)

It is now convenient to compute the Fourier transform of the velocity, ~̂v = −iω~̂x,
instead of the Fourier transform of the orbit, ~̂x. We thus write

x̂(ω) = − ˆ̇x
iω

∫ ∞

−∞
dt ẋ e−iωt =

i
ω

∫ ∞

−∞
dt

dx
dψ

ψ̇ e−iωt

=
i
ω

∫ ∞

−∞
dψ

dx
dψ

e−iωt(ψ) , (2.113)
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and likewise for ŷ(ω). With (2.111), this gives

x̂(ω) = − ia
ω

∫ ∞

−∞
dψ sinhψ e−iωτ(ε sinhψ−ψ) ,

ŷ(ω) =
ia
√
ε2 − 1
ω

∫ ∞

−∞
dψ coshψ e−iωτ(ε sinhψ−ψ) . (2.114)

These integrals can be expressed by the Hankel function of the first kind of
order ν, H(1)

ν (x), and its derivative, H(1)′
ν (x). In terms of these, we have

x̂(ω) =
πa
ω

H(1)′
iν (iνε) , ŷ(ω) = −πa

√
ε2 − 1
ωε

H(1)
iν (iνε) , (2.115)

where the order ν = ωτ. With (2.42), we thus find the bremsstrahlung spectrum

dE
dω

=
2π2a2e2ω2

3c3

{[
H(1)′

iν (iνε)
]2 −

(
1 − 1

ε2

) [
H(1)

iν (iνε)
]2
}

(2.116)

for a single electron moving on a hyperbolic orbit with eccentricity ε. The sign
in front of the second term in brackets is negative because H(1)

iν (iνε) is purely
imaginary, while its derivative H(1)′

iν (iνε) is real. Before we can continue, we
need to integrate (2.116) over a realistic distribution of the eccentricity ε.

Caution The Hankel function of
the first kind is the complex linear
combination

H(1)
ν (x) = Jν(x) + iYν(x)

of the Bessel functions Jν and Yν
of the first and second kinds. Both
solve Bessel’s differential equation

x2 d2 f
dx2 + x

d f
dx

+
(
x2 − ν2

)
f = 0 .

J

The following relation between Bessel functions and their derivatives comes to
help, which also applies to the Hankel functions,

z
[
Z′2p (z) −

(
1 − p2

z2

)
Z2

p(z)
]

=
d
dz

(
zZp(z)Z′p(z)

)
. (2.117)

Setting z = iνε and p = iν, this allows us to write (2.116) as

dE
dω

= −i
2π2a2e2ω

3τεc3

d
dε

[
εH(1)

iν (iνε)H(1)′
iν (iνε)

]
, (2.118)

where we have used that the order ν = ωτ. The prefactor −i is necessary
because the Hankel function H(1)

iν (iνε) is imaginary.

2.4.3 Integration over impact parameters

The numerical eccentricity ε of an particle’s orbit is determined by its angular
momentum l, which is in turn controlled by the orbit’s impact parameter b.
This is defined as the closest distance of the scattering centre from the straight
line which would be the electron’s unperturbed trajectory. Combining the two
equations (2.100) with E = mv2∞/2, we find

ε2 = 1 +
v2∞l2

Z2e4 (2.119)

for the squared numerical eccentricity. Then, using the expression l = bmv∞
for the angular momentum and replacing the constants occurring by means of
(2.109), the simple result is

ε2 = 1 +
b2

a2 . (2.120)
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We now take the spectrum (2.118) produced by a single electron and multiply it
with the number of scattering events between electrons and ions per unit time
and unit volume. Let ni and ne be the number densities of ions and electrons,
respectively, and v∞ the velocity of the electrons relative to the ions. Consider
a single ion and surround it by a cylindrical shell of radius b, width db, and
height v∞dt. Then, all

ne · (2πbdb) · (v∞dt) = 2πnev∞a2 εdε dt (2.121)

electrons contained in this shell will scatter off the ion within the time interval
dt. Multiplying this number with ni, we find the total number of scatterings
between ions and electrons with relative velocity v∞ and impact parameter
within [b, b + db] per unit time and unit volume. Further multiplying this
number with the spectrum (2.118), and integrating over all impact parameters b
or eccentricities ε, then gives the spectrum emitted by such electrons per unit
time and volume,

d3E
dωdtdV

= i
4π3Z2e6nine

3m2c3v∞

(
Ze2ω

mv3∞

)
H(1)

iν (iν)H(1)′
iν (iν) . (2.122)

For arriving at this expression, we have used (2.109) and (2.110) to substitute a
and τ and regrouped terms for later convenience.

The Hankel functions and their derivatives need to be numerically evaluated,
but we can insert their asymptotic forms for small and large arguments. These
are

ν � 1 : H(1)
iν (iν) ≈ 2

iπ
ln

(
2
γν

)
, H(1)′

iν (iν) ≈ 2
πν

(2.123)

ν � 1 : H(1)
iν (iν) ≈ − i

π
√

3

(
6
ν

)1/3

Γ(1/3) , H(1)′
iν (iν) ≈ 1

π
√

3

(
6
ν

)2/3

Γ(2/3) .

Now, with the further help of

Γ(x)Γ(1 − x) =
π

sin πx
, Γ(1/3)Γ(2/3) =

π

sin(π/3)
=

2π√
3
, (2.124)

we find the low- and high-frequency approximations

d3E
dωdtdV

=
16πZ2e6nine

3m2c3v∞


ln

(
2
γ

mv3∞
Ze2ω

)
ω � τ−1

π√
3

ω � τ−1
. (2.125)

Recall from (2.110) that τ = av−1∞

2.4.4 Average over electron velocities, thermal bremsstrahlung

The dependence of the spectrum on ω is mild for low ω, and absent for high
ω, which is a very interesting result: The energy emitted per unit frequency
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is (almost) independent of the frequency. These asymptotic results motivate
writing the complete spectrum of non-relativistic bremsstrahlung in the form

d3E
dωdtdV

= j(ω) =
16π2Z2e6nine

3
√

3m2c3

gff(v∞, ω)
v∞

, (2.126)

introducing the so-called Gaunt factor gff(v∞, ω). In the high-frequency limit,
gff tends to unity, as (2.125) shows, and depends generally only weakly on v∞
and ω. It is thus reasonable to introduce a velocity-averaged Gaunt factor by〈

gff(v∞, ω)
v∞

〉
= ḡff(ω)

〈
1
v∞

〉
(2.127)

and average the reciprocal velocity over some velocity distribution.
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Figure 2.9 Thermal bremsstrahlung without and with line emission, for plasma
temperatures of 1 keV and 5 keV. The spectra were produced with the xspec
software package using a Raymond-Smith plasma model.

If the electrons scattering off the ions form a thermal population, their velocity
distribution is Maxwellian,

p(v∞)dv∞ = 4π
(

m
2πkBT

)3/2

v2
∞ exp

(
− mv2∞

2kBT

)
dv∞ . (2.128)

For emitting at least a single photon of frequency ω or energy ~ω, an electron
has to satisfy

mv2∞
2
≥ ~ω ⇒ v∞ ≥ vmin =

√
2~ω
m

. (2.129)

The average of v−1∞ then turns out to be〈
1
v∞

〉
= 4π

(
m

2πkBT

)3/2 ∫ ∞

vmin

v∞dv∞ exp
(
− mv2∞

2kBT

)
=

√
2m
πkBT

exp
(
− ~ω

kBT

)
. (2.130)
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Combined with (2.126), this finally gives the emissivity of non-relativistic,
thermal bremsstrahlung (Figure 2.9)

j(ω) =
16π2

3
√

3

Z2e6nine

m2c3 ḡff(ω)

√
2m
πkBT

exp
(
− ~ω

kBT

)
. (2.131)

The Gaunt factor is typically tabulated, but for many astrophysical applications,
ḡff(ω) ≈ 1 is a sufficient approximation.

Problems

1. A simplified derivation of the bremsstrahlung emissivity begins with
Born’s approximation, asserting that the electron’s acceleration can be
evaluated along a straight, undeflected orbit.

(a) Evaluate the electron’s acceleration by an ion along a straight line.

(b) Fourier transform the acceleration and calculate the approximate
bremsstrahlung spectrum.

(c) Carry out the integration over impact parameters. Which problem
occurs?

2.5 Radiation damping

Remarkably, electrodynamics is incomplete in the following sense: Consider
an electron moving in a homogeneous magnetic field in the absence of
electric fields. The Lorentz force then causes the electron to move on
a spiral orbit without changing the electron’s energy. At that level, the
prediction of electrodynamics would be that the electron keeps moving in
this way forever. However, the motion along the spiral is an accelerated
motion, which implies that the electron loses energy by radiation. This loss of
energy is not contained in the equation of motion for the electron. The back-
reaction of the radiation emitted by an accelerated charge on the motion
of that same charge has to be described separately. This is a fundamental
limit of electrodynamics: As a linear theory, it cannot encompass this kind
of back-reaction. In this section, the backreaction of the radiation on the
radiating charge itself is derived. The loss of energy by the charge due to
the radiation can be described by an effective force, the radiation-damping
force, the expression (2.139) for which will be the first main result. As an
important application, the energy transfer from a charge moving through a
sea of radiation to that radiation field itself is developed next, which leads to
the very intuitive result (2.163) for the transferred power.
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2.5.1 Damping force

The loss of energy by radiation can be described as the action of an effective
damping force ~Frad acting on the electron. The energy radiated away within a
certain time interval −τ/2 ≤ t ≤ τ/2,

E =

∫ τ/2

−τ/2
dt P(t) , (2.132)

P being the radiative power, must then equal the work exerted by this radiation-
damping force on the electron during the same time,∫ τ/2

−τ/2
dt P(t) = −

∫
~Frad · d~s . (2.133)

The solid-angle integrated Larmor formula (1.141) shows that the power ra-
diated by an accelerated electron is homogeneous of degree k = 2 in the
acceleration β̇, that is, if the acceleration is scaled by a dimension-less factor
a, the power changes by a factor a2. Generally, a function f (x) is called ho-
mogeneous of degree k if f (ax) = ak f (x) for a ∈ R. The Larmor power thus
satisfies Euler’s theorem for homogeneous functions: If f (~x ) is a homogeneous
function of degree k in ~x, then its derivative satisfies

~x · d f (~x )
d~x

= k f (~x ) . (2.134)?
Can you prove Euler’s theorem
(2.134) for homogeneous functions?
Otherwise, look it up. When applied to the radiation power, Euler’s theorem thus says

~̇β · ∂
∂~̇β

P
(
~̇β
)

= 2P
(
~̇β
)
. (2.135)

We use this statement to express the power in (2.133) by its derivative and
obtain

−
∫

~Frad · d~s =
1
2

∫
dt ~̇β · ∂

∂~̇β
P

(
~̇β
)

= −1
2

∫
dt ~β · d

dt
∂

∂~̇β
P

(
~̇β
)

(2.136)

by partial integration, omitting the boundary terms. This is generally no sub-
stantial restriction because we can typically choose the integration boundaries
wide enough for the radiation power to vanish at both of them. Now, since
~βdt = d~s/c, we can identify the expression

~Frad =
1
2c

d
dt

∂

∂~̇β
P

(
~̇β
)

(2.137)

with the radiation-damping force. In the non-relativistic limit (1.142),

P =
2e2

3c
~̇β 2 ,

∂

∂~̇β
P

(
~̇β
)

=
4e2

3c
~̇β , (2.138)

whence the radiation-damping force turns out to be

~Frad =
2e2

3c2
~̈β (2.139)
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Example: Scattering off bound electrons

We will now directly apply this result to an electron on a bound harmonic
orbit with an angular frequency ω0. Let the electron be externally driven by
an incoming electromagnetic wave with frequency ω. This wave exerts the
electric Lorentz force

~FL = −e
c
~E0 eiωt (2.140)

on the electron. We assume that the electron moves non-relativistically such
that we can ignore the magnetic part of the Lorentz force. Including radiation
damping with a damping constant γ to be determined shortly, the equation of
motion

~̈x + γ~̇x + ω2
0~x = − e

m
~E0 eiωt (2.141)

describes a harmonically driven and damped harmonic oscillator. Its particular
solution is immediately found to read

~x = − e
m

~E0 eiωt

ω2
0 − ω2 − iωγ

(2.142)

after an initial settling phase during which a possible oscillation with the
eigenfrequency ω0 of the bound orbit decays exponentially. We thus have

~̈β = −ω2~β , (2.143)

allowing us to write the radiation-damping force as

~Frad = −2e2ω2

3c2
~β (2.144)

and to identify the damping constant

γ = γ0ω
2 with γ0 =

2
3

e2

mc3 =
2
3

re

c
, (2.145)

where re is the classical electron radius introduced in (2.12). According to
(2.142), the electron’s acceleration is

~̇β = −ω2 ~x
c

=
e

mc

~E0 eiωt ω2

ω2
0 − ω2 − iγ0ω3

, (2.146)

which we can now insert into the non-relativistic, integrated Larmor equation
(1.142) to find

P =
2e2

3c

∣∣∣∣ ~̇β ∣∣∣∣2 =
2e4

3m2c3
~E 2

0
ω4(

ω2 − ω2
0

)2
+ γ2

0ω
6
. (2.147)

The incoming energy current density is given by the amplitude of the Poynt-
ing vector |~S | = c~E 2

0 /(4π), and thus the cross section for scattering off a
harmonically bound charge becomes

σ =
P∣∣∣∣~S ∣∣∣∣ = σT

ω4(
ω2 − ω2

0

)2
+ γ2

0ω
6

(2.148)

with the typical resonance behaviour near ω = ω0 (Figure 2.10). J
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Figure 2.10 Illustration of the cross section for scattering of electromagnetic
radiation off a harmonically bound electron. Left : The cross section (2.148) is
shown (in units of the Thomson cross section σT) for two values of the damping
constant. Right : The same curves, now plotted double-logarithmically, reveal the
ω4 scaling for low frequencies, i.e. the regime of Rayleigh scattering.

in this limit. Since ~β = ~̇x/c, this involves a third time derivative of the electron’s
orbit. This is one of the rare cases of a third-order time derivative in physics.

Some limiting cases of the general cross section (2.148) for scattering off bound
electrons are of particular interest. First, in the high-frequency limit ω � ω0
and ω � γ−1

0 , the driving force oscillates so fast that radiation damping is
strong. The cross section (2.148) then falls off like ω−2,

σ ≈ σT

γ2
0ω

2
. (2.149)

Notice, however, that the electron will be unbound if the incoming radiation
has too high frequency, and then its cross section will turn into the Thomson
cross section, σ ≈ σT.

?
Verify the combined results (2.152)
and (2.153) and confirm that the
Lorentz profile is normalised to
unity. In the opposite limit, when ω � ω0 and ω � γ−1

0 , we find the limit of Rayleigh
scattering,

σ ≈ σT

(
ω

ω0

)4

, (2.150)

with the scattering cross section depending on the fourth power of the frequency.
For ω ≈ ω0 and weak damping, ω0 � γ−1

0 , we approximate

ω2 − ω2
0 = (ω − ω0)(ω + ω0) ≈ 2ω0(ω − ω0) (2.151)

in (2.148) and find

σ ≈ π

2
σT

γ0
φΓ (ω − ω0) , Γ := γ0ω

2
0 , (2.152)

where the function φΓ(ω − ω0) is the so-called Lorentz profile,

φΓ(ω − ω0) =
1
π

Γ/2
(ω − ω0)2 + (Γ/2)2

(2.153)

shown in Fig. 2.11. The Lorentz profile will recur several times in later Sections.
It is normalised to unity.
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Figure 2.11 Near the resonance, the scattering cross section is reasonably
approximated by the Lorentz profile.

2.5.2 Transfer of energy from a moving charge to a radiation field

Consider now an electron moving with possibly relativistic speed ~β through an
isotropic radiation field, whose electric and magnetic field components satisfy〈

~E
〉

= 0 =
〈
~B
〉
, (2.154)

where the average is taken over time intervals long compared to typical oscilla-
tion period 2πω−1 of the radiation field. Now we transform to the rest frame
of the electron. The electron experiences the field components ~E′, ~B′ given by
the Lorentz transform (1.87). They accelerate the electron through the electric
Lorentz force

~̈x ′ =
1
m
~F′L =

e
m
~E′ (2.155)

since the magnetic part of the Lorentz force vanishes in the electron’s rest frame,
where ~v ′ = 0. We can now calculate the power radiated by the accelerated
electron with the non-relativistic Larmor formula, for which we need to evaluate〈∣∣∣~̈x ′∣∣∣2〉 =

e2

m2

〈∣∣∣∣~E′∣∣∣∣2〉 (2.156)

in the electron’s rest frame. Here, we can directly insert the Lorentz transform
of the fields from (1.87) and carry out the average. Doing so, we have to take
into account that the electromagnetic field in its rest frame is randomly oriented
and has an energy density U. This allows us to use

〈
E2

i

〉
=

〈
~E 2

〉
3

=
4π
3

U =
〈
B2

j

〉
(2.157)

for the squares of the electric and magnetic field components and〈
EiB j

〉
= 0 (2.158)

for any combination of i and j. These relations enable us to write〈∣∣∣~̈x ′∣∣∣2〉 = 4πγ2U
e2

m2

(
2
3

+
1

3γ2 +
2
3
β2

)
= 4πγ2U

e2

m2

(
1 +

β2

3

)
(2.159)
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and thus

Pem = γ2U
8πe4

3m2c3

(
1 +

β2

3

)
= cUσTγ

2
(
1 +

β2

3

)
(2.160)

for the power radiated by the electron in its rest frame. However, since the
power is

P =
dE
dt

(2.161)

and both the energy E and the time t transform like the zero components of
four-vectors, the power is invariant under Lorentz transforms. Therefore, the
result (2.160) also holds in the rest frame of the radiation field. On the other
hand, the power absorbed by the electron is given by the Poynting vector times
the cross section,

Pabs =
∣∣∣∣~S ∣∣∣∣σT =

c
4π

~E 2σT = cUσT . (2.162)

The net power transferred by the electron to the radiation field is thus

P = Pem − Pabs = cUσT

[
γ2

(
1 +

β2

3

)
− 1

]
=

4
3
β2γ2cUσT . (2.163)

?
Carrying out the description follow-
ing (2.156), verify the expressions
(2.159) and (2.160) by your own cal-
culation.

We can now proceed to calculate the back-reaction on the electron by its transfer
of energy to the radiation field. Clearly, the loss of kinetic energy of the electron
must equal the negative radiation power (2.163),

dE
dt

= mc2 dγ
dt

= −4
3
β2γ2cUσT = −4

3

(
γ2 − 1

)
cUσT . (2.164)

Separating the variables γ and t and integrating over time gives∫ 0

γ

dx
x2 − 1

= − t
τ

with τ :=
3mc

4UσT
. (2.165)?

Explain the integral boundaries on
the left-hand side of (2.165). Noticing that

1
x2 − 1

=
1
2

(
1

x − 1
− 1

x + 1

)
, (2.166)

we can readily carry this integral out, finding
1
2

ln
γ − 1
γ + 1

= − t
τ
. (2.167)

This equation can now easily be solved for γ or β, giving the essentially expo-
nential decrease

β(t) =
2 exp(−t/τ)

1 + exp(−2t/τ)
(2.168)

of the electron’s velocity with time. This result shows that relativistic electrons,
or charges in general, lose energy on a characteristic time scale

τ =
3mc

4UσT
(2.169)

when interacting with a radiation field. As the expression shows, the time
scale is given by the rest-mass energy of the electron, divided by the energy
of the radiation field flowing per unit time through the Thomson cross section.
Similarly, the characteristic path length for a relativistic electron to lose its
energy in a radiation field is

λ = cτ =
3mc2

4UσT
. (2.170)
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Problems

1. Derive the solution (2.145) of the equation of motion (2.143).

2. Calculate the time scale (2.169) for an electron travelling through the
Cosmic Microwave Background.

3. The velocity of an electron in a homogeneous magnetic field changes due
to the Lorentz force according to

d
(
γ~v

)
dt

=
e

mec

(
~v × ~B

)
(2.171)

(a) Set up the equations of motion for the individual components of ~x
in the field ~B = Bêz.

(b) How does the equation of motion change if the radiation damping
force

~Frad =
2e2

3c3

...
~x (2.172)

is also taken into account? Assume that the energy loss per orbit is
small, i.e. the damping force can be evaluated using the undamped
solution from (a). Under which circumstances is the former assump-
tion valid?

(c) Solve the differential equations for the components xi with the
boundary conditions ~x(t = 0) = (x0, 0, 0)> and ~v(t = 0) = (0, v0, 0)>.
Draw the solution schematically.

2.6 Compton scattering

This section introduces the photon picture for electromagnetic radiation.
So far, incoming electromagnetic waves could only accelerate charges
perpendicular to their direction of motion, which implies that they could
not transfer momentum to the charges. With the discussion of radiation
damping in the preceding section, we have seen how charges experience
an effective force against their direction of motion due to the radiation they
emit. In the discussion of Compton scattering, the incoming radiation is
described as a stream of photons transfering both energy and momentum
to the charges they scatter off from. The main result derived here is the
mean energy loss per photon per collision (2.183). We then proceed to
calculating the energy gained by a moving charge from a sea of radiation by
Compton scattering and combine it with the loss due to radiation damping
to find the total rate (2.193) of energy transfer between the charge and
the photons. Compton scattering is then combined with the Fokker-Planck
approach to work out photon diffusion in phase space due to scattering with
electrons. The main result there is the approximation (2.220) to the so-called
Kompaneets equation which neglects effects from quantum statistics, but is
nonetheless appropriate for many astrophysical circumstances.
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2.6.1 Energy change in the scattering process

So far, we have studied how charges radiate when they are accelerated under
several kinds of circumstances. We have seen in the last section how a charge
can transfer energy to a radiation field by radiation damping.

Recall the physical situation we had in mind: A charge, say an electron, moving
through an isotropic sea of radiation keeps being accelerated by the randomly
oriented electromagnetic fields of the radiation sea. Due to this acceleration,
the charge radiates away part of its kinetic energy and thus transfers energy to
the radiation field.

Let us now consider the reverse question: Suppose we have an electron at rest
and a radiation field streaming past it. Does the radiation field transfer any
energy to the charge? In the classical picture of radiation being composed of
electromagnetic waves, the charge is accelerated by the Lorentz force of the
randomly superposed electromagnetic waves constituting the radiation field.
The magnetic part of the Lorentz force can never change the charge’s energy
since it acts perpendicular to the charge’s velocity.

Since electromagnetic waves in vacuum are transversal, the electric part of
the Lorentz force cannot act in the streaming direction of the radiation in
the charge’s rest frame. Driven by the electric Lorentz force of the radiation,
the charge will thus oscillate perpendicular to the streaming direction. If the
radiation is unpolarised, the electric field experienced by the charge will be
randomly superposed of waves with arbitrary orientations and random phases.
Does this mean that there is no net energy transfer from the radiation field to
the charge?

At this point, it is necessary to change to the photon picture and describe
radiation as a stream of particles, each carrying a four-momentum

k µ =
ω

c

(
1
ê

)
, (2.173)

where ê is the direction of motion. The total energy-momentum four-vector of
the electron, p µ, and the photon ~k µ is conserved, and thus (Figure 2.12)

p µ + ~k µ = p′µ + ~k′µ , (2.174)

where primes denote quantities after scattering. Recall the result (1.63) from
relativistic dynamics, showing that the four-momentum of the electron has the
components

p µ =

(
E/c
~p

)
= γm

(
c
~v

)
(2.175)

and the Minkowski square given by (1.65), 〈p, p〉 = −m2c2, which implies the
relativistic energy-momentum relation (1.66),

E2 = c2~p 2 + m2c4 . (2.176)

We first leave the electron momentum ~p arbitrary and later transform into the
frame in which the electron is initially at rest. The µ = 0 component of (2.174)
gives

E + ~ω = E′ + ~ω′ , (2.177)
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while its spatial components give

c~p + ~ωê = c~p ′ + ~ω′ê′ . (2.178)

Squaring (2.178), using the relativistic energy-momentum relation (2.176) and
eliminating ~p ′ through (2.178) yields

E′2 = E2 + 2~c~p · (ωê − ω′ê′) + ~2 (
ωê − ω′ê′)2 . (2.179)

Next, we use (2.177) to eliminate E′ and find after brief rearranging

E
(
ω − ω′) = ~ωω′(1 − cos θ) + c~p · (ωê − ω′ê′) , (2.180)

where the scattering angle θ of the photon was introduced by cos θ = ê · ê′.
?

Convince yourself of the result
(2.180) by your own calculation.

θ

photon

electron

Figure 2.12 Sketch of the kinematics of a Compton-scattering event. The total
incoming four-momentum is conserved.

Let us now transform into the rest frame of the electron before the scattering
event. There, we can set ~p = 0 and E = mc2 in (2.180). The remaining equation
is quickly solved for the frequency of the photon after scattering,

ω′

ω
=

1
1 + ε(1 − cos θ)

, (2.181)

where ε = ~ω/E0 is the energy ratio between the photon energy and the elec-
tron’s rest-energy. Averaging this last result over angles, taking the unpolarised
Thomson cross section (2.14) into account, we find the mean relative frequency
or energy change per photon,

〈∆Eγ〉
Eγ

=
〈ω′〉
ω
− 1 =

1
σT

r2
e

2

∫ (
1 + cos2 θ

)
sin θ dθ dφ

1 + ε(1 − cos θ)
− 1

=
πr2

e

σT

∫ 1

−1

(
1 + µ2

)
dµ

1 + ε(1 − µ)
− 1

=
πr2

e

σT

ln(1 + 2ε)
(
2ε2 + 2ε + 1

)
− 2ε(1 + ε)

ε3 − 1 . (2.182)

Notice that no approximation has so far been made in the rest frame of the
electron prior to scattering. Now, we introduce the often appropriate limiting
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case of photons whose energy is much below the rest energy of the electron,
ε � 1. Then, by Taylor-expanding the ε-dependent first term in (2.182) to
second order, we find the energy change per photon per Compton-scattering
event

〈∆Eγ〉
Eγ

≈ 8πr2
e

3σT
(1 − ε) − 1 = −ε = − ~ω

mc2 . (2.183)

This is our first important result: The relative energy loss of a photon scattering
off an electron is given by the ratio of the photon energy and the rest energy of
the electron.

?
Show that the result (2.182) is cor-
rect and that second-order Taylor ap-
proximation in ε leads to (2.183).

2.6.2 Net energy transfer

We now have two competing effects. An electron moving through a sea of
radiation is accelerated by the Lorentz force of the electromagnetic radiation
field, hence it radiates and transfers the power given by (2.163) to the radiation
field. At the same time, photons transfer part of their energy through Compton
collisions back to the electrons. For comparing both effects, we first transform
our previous result (2.163) from an energy loss per electron per unit time to an
energy increase per photon per unit time.

When we studied the energy transfer from a moving charge to an isotropic radi-
ation field, we saw that the power transferred from the electron is proportional
to the energy density U of the radiation field. Let now Uω be the specific energy
density of the radiation field contributed by photons with frequency ω. We must
then satisfy the normalisation condition

U =

∫
Uωdω . (2.184)

According to (2.163), a single electron increases the energy in such photons by
the amount

dE+
ω

dt
=

4
3
β2γ2cUωσT (2.185)

per unit time. Let the number density of electrons with velocity β be ne(β), and
the total number density of all electrons be

ne =

∫ ∞

0
dβ ne(β) . (2.186)

Then, the electrons contained in a unit of volume increase the energy density in
photons with frequency ω by the amount

dU+
ω

dt
=

4
3

ne(β)β2γ2cUωσT (2.187)

per unit time, irrespective of the photon frequency. Since the spatial number
density of photons of frequency ω is

nγ(ω) =
Uω

~ω
, (2.188)

the sought energy gained per photon per unit time from the electrons with
velocity β is

dE+
γ

dt
=

dU+
ω

dt
n−1
γ (ω) =

4
3
β2γ2ne(β)c~ωσT . (2.189)
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To find the total energy gain of the photons due to the complete electron
population with number density ne, we need to integrate over the velocity β, see
(2.186). Define the average of β2γ2 by〈

β2γ2
〉

= n−1
e

∫ ∞

0
dβ β2γ2ne(β) , (2.190)

then the energy gain per photon and unit time due to electrons of all velocities
is

dE+
γ

dt
=

4
3

〈
β2γ2

〉
nec~ωσT . (2.191)

Similarly, the number of Compton collisions that a photon experiences with
electrons of total number density ne is cneσT. According to (2.183), the energy
change per photon per unit time is

dE−γ
dt

= −cneσT
(~ω)2

mc2 . (2.192)

Now we can compare the energy gained per photon per unit time, expressed by
(2.191), with the energy loss (2.192) per photon per unit time. The total energy
change per photon per unit time is the sum of gain and loss,

dEγ

dt
=

dE+
γ

dt
+

dE−γ
dt

= cneσT~ω

(
4
3

〈
β2γ2

〉
− ~ω

mc2

)
. (2.193)

2.6.3 The Kompaneets equation

An illustrative combination of the Fokker-Planck approach and Compton scat-
tering leads to an evolution equation for the phase-space density of photons
passing through a hot electron gas. This is most useful in the context of the
Cosmic Microwave Background (CMB). The CMB decouples from the quickly
recombining cosmic plasma when its temperature falls to ≈ 3000 K, corre-
sponding to a thermal energy of ≈ 0.3 eV. After that, the CMB photons are
redshifted by a factor of ≈ 100 . . . 1000 before they propagate through plasma
inside galaxies or galaxy clusters. They have thus typical thermal energies in
the meV range or further below. The electron energies even in relatively cool
plasmas are typically higher by factors & 106, but still well non-relativistic. In
such circumstances, it is appropriate to study Compton scattering under the
approximations

~ω

c
� pe � mc , (2.201)

where pe is the electron momentum.

Let us return with these approximations to the exact equation (2.180) for the
frequency change of the scattered photon and stay in the laboratory frame, thus
leave ~pe , 0. Due to our approximations, we can then neglect the first term on
the right-hand side of (2.180) and write

ω − ω′ ≈ c~pe · (ωê − ω′ê′)
mc2 . (2.202)



72 2 Radiation Processes

Example: Thermal equlibrium between electrons and photons

For a specific example, suppose now that the electrons have a thermal velocity
distribution with a temperature Te such that kTe � mc2. The electrons are
then non-relativistic, allowing us to set γ ≈ 1. By the equipartition theorem,
for systems in thermal equilibrium, their mean-squared velocity must be〈

β2
〉

=
3kTe

mc2 ≈
〈
β2γ2

〉
. (2.194)

For averaging the energy gain (2.191) over all photon frequencies, we need to
adopt a photon spectrum and calculate the mean energy 〈~ω〉 as well as the
mean squared energy 〈(~ω)2〉. Suppose that the photons have a Planck spec-
trum with temperature Tγ. In terms of the dimension-less energy parameter

x :=
~ω

kTγ
, (2.195)

the number of photon states in an infinitesimally thin spherical shell with
radius x and width dx is

nx(Tγ)dx =
1
π2

(
kTγ
~c

)3 x2dx
exp(x) − 1

(2.196)

according to the Bose-Einstein occupation number in (2.392). By means of
the integral ∫ ∞

0

xndx
exp(x) − 1

= n!ζ(n + 1) , (2.197)

the moments of the photon-energy distribution can be calculated to be

〈~ω〉 = kTγ
3ζ(4)
ζ(3)

, 〈(~ω)2〉 = (kTγ)2 12ζ(5)
ζ(3)

. (2.198)

When inserted into (2.193) together with the mean-squared velocity (2.194)
of the electrons, they give the mean energy gain per photon per unit time due
to thermal electrons,〈

dEγ

dt

〉
=

12ζ(4)
ζ(3)

cneσT
(kTγ)(kTe)

mc2

(
1 − ζ(5)Tγ

ζ(4)Te

)
. (2.199)

This is a highly intriguing result: The energy transfer between thermal popula-
tions of electrons and photons should vanish if the temperature of the electrons
was slightly higher than that of the photons,

Te

Tγ
=
ζ(5)
ζ(4)

, (2.200)

even if the ratio between the temperatures is near unity? This could imply
one of two conclusions: Either, finite energy transfer from the photons to
the electrons would remain in thermal equilibrium between the two species,
defined to occur at equal temperatures, or the net energy transfer would cease
if the two species were slightly out of thermal equilibrium? J
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Example: Thermal equlibrium between electrons and photons (con-
tinued)

Needless to say, a perpetuum mobile could be constructed if either one of these
conclusions would be correct, but a perpetuum mobile is forbidden by the
second law of thermodynamics. Therefore, the result (2.199) cannot be quite
right. The error sneaked in when, in (2.196), we assumed a Bose-Einstein
distribution for the photons with vanishing chemical potential, µ = 0. The
conclusion from (2.199), combined with the second law of thermodynamics,
is therefore much more interesting: If a photon and an electron population
coexist in thermal equilibrium, the photons must acquire a finite chemical
potential. Then, they cannot maintain their Planck spectrum any longer,
but must obtain a spectrum that is slightly deformed by the finite chemical
potential. J

The energy change of the photon will thus also be small, and we can proceed to
approximate

~pe · (ωê − ω′ê′) ≈ ω~pe · (ê − ê′
)

= ωpe
∣∣∣ê − ê′

∣∣∣ cos θ , (2.203)

where we have introduced the angle θ between the electron momentum ~pe and
the vector (ê − ê′). Since the modulus of the difference vector (ê − ê′) is∣∣∣ê − ê′

∣∣∣ =
√

2 − 2 cos θ , (2.204)

we can write (2.202) as

δω ≈ −ωpe

mc
cos θ

√
2 − 2 cos θ . (2.205)

This is a typical case suggesting a treatment with the Fokker-Planck approach.
The change of the phase-space density f (ω) of the photons with time is then
described by the radial Fokker-Planck equation (1.175)

∂ f
∂t

+
1
p2

∂
(

jp p2
)

∂p
= 0 , (2.206)

where p is the photon momentum. The current density of the radial photon
momentum is given by (1.177),

jp = D2 f
∂

∂p

(
ln f − ln f̄

)
. (2.207)

To be specific, the distributions f and f̄ are the actual and the equilibrium phase-
space distributions of the photons. In thermal equilibrium with the electrons, the
photons would attain a Bose-Einstein distribution with the appropriate chemical
potential and the temperature of the electrons, Te, which is many orders of
magnitude larger than the actual photon temperature. For this reason, the term
involving f̄ in (2.207) can be neglected altogether in our application, allowing
us to approximate simply

jp ≈ D2
∂ f
∂p

. (2.208)
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This leaves the Fokker-Planck equation (2.206) in the simple form

∂ f
∂t

+
1
p2

∂

∂p

(
D2 p2 ∂ f

∂p

)
= 0 . (2.209)

Next, we need to work out the diffusion coefficient D2. As we have emphasised
in Sect. 1.4.4, its physical meaning is one half of the mean-squared momentum
change per unit time of the population of scattered particles, i.e. of the photons
in the present case. From the frequency change per scattering (2.205), we find
the mean-squared momentum change

D2 =
1
2

〈
δp2

〉
=

1
2
~2

c2

〈
δω2

〉
=

(
~ω

mc2

)2 〈
p2

e cos2 θ
〉

nec
∫

dΩ
dσ
dΩ

(1 − cos θ) . (2.210)

By the equipartition theorem, an electron population in thermal equilibrium
must have the mean-squared momentum〈

p2
e

〉
= 2m

3
2

kTe = 3mkTe , (2.211)

while the mean-squared cos θ gives a factor of 1/3. For the differential cross
section, we use the unpolarised Thomson cross section (2.14),

dσ
dΩ

=
r2

e

2

(
1 + cos2 θ

)
. (2.212)

The solid-angle integral in (2.210) then simply gives the total Thomson cross
section

σT =
8π
3

r2
e . (2.213)

Taking all factors together, we obtain

D2 =

(
~ω

mc2

)2

mcneσTkTe =
p2

mc
neσTkTe . (2.214)

Putting this result back into the Fokker-Planck equation (2.209), we find

∂ f
∂t

+ cneσT
kTe

mc2

1
p2

∂

∂p

(
p4 ∂ f
∂p

)
= 0 . (2.215)

Let us finally replace the time by the so-called Compton parameter y, defined
by

dy =
kTe

mc2 cneσTdt . (2.216)

This has an intuitive physical meaning: The first factor is the relative energy
change of a photon with energy kT by Compton scattering; cf. (2.183). The
second factor is the probability for a photon experiencing a Compton-scattering
event within the time interval dt. Thus, the differential Compton-y parameter
quantifies the mean relative energy change of a photon within the time interval
dt. It allows us to bring the Fokker-Planck-equation into the form

∂ f
∂y

+
1
p2

∂

∂p

(
p4 ∂ f
∂p

)
= 0 . (2.217)
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This is not exactly the so-called Kompaneets equation, which is often derived
and used in this context. However, it is the appropriate limit of the Kompaneets
equation, which reveals its origin from the much more general approach of
Fokker-Planck theory.

Let us now insert the Bose-Einstein distribution for the photons with vanishing
chemical potential,

f =
1

ex − 1
with x :=

cp
kT

(2.218)

into the Kompaneets equation (2.217). Since p appears to fourth order in the
numerator as well as the denominator in the second term of (2.217), we can
replace p by x directly. Further, we use

f ′ = − f 2ex and f ′′ = − f ex (
f + 2 f ′

)
. (2.219)

After brief rearrangement, this turns the Kompaneets equation into

∂ f
∂y

=
xex

(ex − 1)2

(
x

ex + 1
ex − 1

− 4
)
. (2.220)

?
The complete Kompaneets equation
reads

∂ f
∂y

+
1
p2

∂

∂p

[
p4

(
∂ f
∂p

+ f + f 2
)]

= 0 .

Where could the additional terms
arise from, and why is (2.217) an
appropriate limit for our purposes?
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Figure 2.13 The relative change ∆Iω/Bω,0 of the intensity of a black-body spec-
trum due to Compton scattering is shown as a function of the dimension-less
frequency x = ~ω/(kBT ). The intensity is lowered at frequencies below x = 3.83
and increased above.

Aiming at astrophysical applications, we are not quite done yet. Notice that
(2.220) describes the change of the phase-space density (or the occupation num-
ber) of the photons with the Compton-y parameter as they propagate through
a plasma. As we shall show below, the intensity is related to the occupation
number by (2.396). To obtain the change of intensity with the Compton-y
parameter instead, we need to multiply the Kompaneets equation (2.220) by a
factor Bω,0x3, with amplitude Bω,0 of the Planck spectrum defined in (2.401).
Thus, we find after integration over y

∆Iω = Bω,0
x4ex

(ex − 1)2

(
x

ex + 1
ex − 1

− 4
)
y =: Bω,0g(x)y . (2.221)
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This intensity change (Figure 2.13) has an intuitive origin: By Compton scat-
tering, photons are neither created nor destroyed, but only re-distributed in
frequency. Based on our initial assumption (2.201), we have studied the effect
of high-energy electrons scattering low-energy photons. By the inverse Comp-
ton effect, the electrons scatter way more photons from low to high energy rather
than the other way. The net effect is thus a depletion of photons relative to the
Planck spectrum at low frequencies, and an enhancement at high frequencies.
The division between low and high frequencies is set by the root of the function
g(x) defined in (2.221), which is numerically found to be at x0 = 3.83. For
the Planck spectrum of the CMB, we shall see in (2.414) that the frequency
characteristic for its temperature is

νCMB =
kBTCMB

h
= 56.8 GHz , (2.222)

which allows to convert x0 to the frequency

ν0 = x0
kBTCMB

h
= 217.5 GHz . (2.223)

Any hot plasma between us and the CMB will therefore reduce the specific
CMB intensity below 217.5 GHz, and enhance it above.

Perhaps the most prominent example of huge bodies of hot plasma on the way
between the CMB and us are galaxy clusters whose plasma has temperatures
of 1 keV . kBT . 10 keV and radii of order R ≈ 1 Mpc ≈ 3.1 · 1024 cm. Their
electron number densities are typically ne ≈ 10−2 cm−3. A crude estimate for
their Compton-y parameter is

y ≈ kBT
mec2σTneR ≈ 10−4 . (2.224)

Galaxy clusters thus have a very specific spectral signature against the CMB:
They cast shadows on the CMB below 217.5 GHz and appear as sources above.
The amplitude of the shadows and the sources are of order a milli-Kelvin.
This thermal Sunyaev-Zel’dovich effect has turned into an important means for
discovering and probing galaxy clusters.

Problems

1. Carry out the steps leading from (2.178) to (2.180).

2. Electrons passing through a plasma lose energy also by Coulomb scat-
tering, i.e. by their interaction with ions through the Coulomb force.
A detailed treatment of the Coulomb scattering process shows that the
relative energy loss in a single Coulomb-scattering event is

∆E
E

= 4
me

mi
, (2.225)

irrespective of the impact parameter.

(a) Derive the ratio between the remaining energy of an electron and
its initial energy after n Coulomb collisions.
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(b) Approximating me � mi, how many collisions are needed for the
electron to lose half its initial energy?

3. The differential cross section for photons with energy ~ω that are scattered
off free electrons is given by the Klein-Nishina formula

dσ
dΩ

=
r2

e

2
F2(ω, θ)

[
F(ω, θ) +

1
F(ω, θ)

− 1 + cos2 θ

]
, (2.226)

where re is the classical electron radius and

F(ω, θ) =

[
1 +

~ω

mec2 (1 − cos θ)
]−1

. (2.227)

(a) What is the ratio ~ω/mec2 for visible light? How does the Klein-
Nishina formula simplify in this case? Is the solution familiar to
you?

(b) Assume that an electron is hit by a γ photon with ~ω = mec2.
Calculate the total cross section

σKN =

∫
dΩ

dσ
dΩ

(2.228)

and compare it to the classical Thomson cross section σT.

4. Consider a photon with frequency ω scattered by a resting electron under
the angle θ. By the scattering process, its frequency changes to ω′ < ω.
One can transform into the barycentre system, defined by ~ptot = 0 before
and after the scattering, by applying a proper Lorentz boost

(Λµ
ν ) =


γ 0 0 βγ

0 1 0 0
0 0 1 0
βγ 0 0 γ

 (2.229)

to the four-momentum (p µ) = (E/c, ~p)T , assuming that the incoming
photon moves along the negative z-direction.

(a) Calculate the energies and momenta of both the electron and the
photon in the barycentre system as a function of β.

(b) Determine the velocity β as a function of ω and the electron mass
me.

(c) Express the scattering angle θ∗ in the barycentre system as a func-
tion of the scattering angle θ in the rest frame of the electron, ω and
me.

2.7 Radiative Quantum Transitions

This section deals with the interaction of electromagnetic radiation with
quantum systems such as atoms or ions. We first derive the interaction
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Hamiltonian (2.262) by a semi-classical approach treating the electromag-
netic field as a classical rather than a quantum field. Next, we relate the
amplitude of the interaction Hamiltonian to the intensity of the incoming radi-
ation, enabling us to express the quantum-mechanical transition probability
(2.270) by the intensity and the transition matrix element between the initial
and the final state. We then introduce the dipole approximation and simplify
the transition probability (2.291) accordingly. Cross sections for quantum
transitions are defined, and expressions for bound-bound and bound-free
transitions are given in (2.291) and (2.291).

2.7.1 Transition probability

Up to this point, we have treated electromagnetic radiation either as composed
of classical electromagnetic waves, as in Thomson scattering and our treatment
of continuous emission spectra, or as a stream of photons, as in Compton
scattering. From both points of view, the particles interacting with the radiation
had no internal structure. Effects of radiation on their internal structure, or
radiative processes caused by transitions between internal configurations, were
neglected so far.

We now proceed to see how electromagnetic radiation can cause transitions
between quantum states, e.g. in atoms, but also between bound and free electron
states. We begin by recalling a result from time-depedent perturbation theory in
quantum mechanics.

Suppose the Hamiltonian Ĥ of a quantum-mechanical system can be decom-
posed into a time-independent part Ĥ(0) and a time-dependent perturbation
Ĥ(1)(t),

Ĥ(t) = Ĥ(0) + Ĥ(1)(t) . (2.230)

Let the time-dependent eigenstates of the unperturbed Hamiltonian Ĥ(0) with
eigenvalue En be

|n(t)〉 = |n〉e−iEnt/~ , (2.231)

where the state vector |n〉 does not depend on time. We expand the eigenstates
|ψn(t)〉 of the complete Hamiltonian Ĥ(t) into eigenstates of the unperturbed
Hamiltonian,

|ψn(t)〉 =
∑

k

cnk|n(t)〉 , (2.232)

and demand that they solve Schrödinger’s equation,

i~|ψn(t)〉 =
[
Ĥ(0) + Ĥ(1)(t)

]
|ψn(t)〉 . (2.233)

?
Carry out all steps leading from
Schrödinger’s equation (2.233) to
the evolution equation (2.235) your-
self.

In a first step, this leads to

i~
(
ċnk − cnk

iEk

~

)
|n(t)〉 =

∑
k

cnk
[
Ek + Ĥ(1)(t)

]
|n(t)〉 (2.234)

since the |n〉(t) are eigenstates of the unperturbed Hamiltonian Ĥ(0). Now, we
multiply by 〈m | and use the orthonormality of the unperturbed eigenstates to
arrive at

ċnm = − i
~

∑
k

cnk 〈m |Ĥ(1)(t)|k〉 eiωmnt , (2.235)
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where
ωmn =

Em − En

~
(2.236)

is the frequency associated with the difference between the energy eigenvalues
of the unperturbed states |n〉 and |m〉.
The evolution equation (2.235) for the expansion coefficients cnm is exact, but
in general difficult to solve. To proceed, we assume that the system is in the
eigenstate |n〉 of the unperturbed Hamiltonian when the perturbation sets in at
t = 0, thus cnk = δnk, and that the coefficients cnk with k , n remain small even
while the perturbation is acting. Then, (2.235) simplifies to

ċnm = − i
~
〈m |Ĥ(1)(t)|n〉 eiωmnt (2.237)

and can immediately be integrated once the time dependence of the perturbation
Hamiltonian Ĥ(1)(t) is given.

In our context, perturbations by electromagnetic radiation are most important.
We can decompose them into monochromatic waves with frequency ω and thus
write the perturbation Hamiltonian as

Ĥ(1)(t) = V̂ eiωt θ(t) (2.238)

with an operator V̂ representing the constant amplitude of the wave. The step
function θ(t) expresses that the perturbation is supposed to begin at t = 0.
Inserting expression (2.238) into (2.237) and integrating leads us to

cnm = − i
~
〈m |V̂ |n〉

∫ t

0
dt′ ei(ωmn−ω)t′

= − Vmn

~(ωmn − ω)

[
ei(ωmn−ω)t − 1

]
(2.239)

with the transition-matrix element

Vmn := 〈m |V̂ |n〉 (2.240)

of the amplitude V̂ of the perturbation Hamiltonian.

The absolute square of cnm is the transition probability into state |m〉. Dividing
this probability by t gives the transition rate Γ. Using

1 − cos x = 2 sin2 x
2
, (2.241)

we find directly from (2.239) the transition rate

Γ =
|Vnm|2t
~2

[
sin(ωmn − ω)t/2

(ωmn − ω)t/2

]2

. (2.242) ?
Can you confirm the expression
(2.242) for the transition rate Γ?
How could you prove (2.243)?If we can furthermore take the limit t → ∞, i.e. if the perturbation acts for a

time long compared to the time the system takes for the transition from the state
|n〉 to the state |m〉, we can use

lim
a→∞ a

(
sin ax

ax

)2

= πδD(x) (2.243)

with a = t/2 to bring the transition rate into the form

Γ =
2π|Vmn|2
~2 δD (ωmn − ω) . (2.244)
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2.7.2 Perturbing Hamiltonian

Since we are interested in radiative transitions, we need to know the perturbation
Hamiltonian belonging to an incident electromagnetic wave. We have seen in
(1.59) that the Lagrange function of a free relativistic particle is

L = −mc2
√

1 − β2 . (2.245)

If the particle has an electromagnetic charge q, it couples to an electromagnetic
field. With the four-potential Aµ of the field and the four-velocity uµ of the
particle, the Lagrange function is extended by a coupling term

L =

(
−mc2 +

q
c

Aµuµ
) √

1 − β2 . (2.246)?
Determine the equations of motion
from the Lagrange function (2.246).
Which force term do you expect? Since the four-potential and the four-velocity have the components

Aµ =

(
Φ
~A

)
, uµ = γ

(
c
~v

)
, (2.247)

this Lagrange function can be written as

L = −mc2
√

1 − β2 − qΦ +
q
c
~A ·~v . (2.248)

The momentum conjugate to the velocity ~v is

∂L
∂~v

= ~P = γm~v +
q
c
~A = ~p +

q
c
~A , (2.249)

where ~p = γm~v is the momentum of the free particle. The Legendre transform

H = ~P ·~v − L (2.250)

then turns the Lagrange- into the Hamilton function of a charged particle in an
electromagnetic field,

H =
1

2m

(
~P − q

c
~A
)2

+ qΦ + mc2 . (2.251)

According to the correspondence principle, we shall interpret this Hamilton
function as a Hamilton operator. In particular, this implies that ~P will have to
be replaced by the momentum operator P̂,

~P→ P̂ = −i~~∇ . (2.252)

Remaining in quantum mechanics, avoiding the step into quantum electrody-
namics, the electromagnetic field components Aµ will be treated as classical
fields rather than field operators. Yet, they depend on spatial coordinates ~x.
These need to be interpreted as position operators, which do not commute
with the momentum operator P̂. Thus, we also write the vector potential as an
operator Â, understanding that this merely reflects that spatial coordinates xi in
the vector potential need to be replaced by position operators x̂i. Expanding the
square in (2.251), we thus need to distinguish between

P̂ · Â and Â · P̂ . (2.253)



2.7 Radiative Quantum Transitions 81

However, we have not employed the gauge freedom of electrodynamics yet.
Choosing the Coulomb gauge,

~∇ · ~A = 0 , (2.254)

we can pull the momentum operator P̂ past the vector-potential operator Â. In
addition to and without conflict with the Coulomb gauge, we can further gauge
Φ away, Φ̂ = 0, and obtain the Hamilton operator

Ĥ =
P̂ 2

2m
+ mc2 − e

mc
Â · P̂ +

e2

2mc2 Â 2 . (2.255)

The first two terms reproduce the Hamiltonian Ĥ(0) of an unperturbed, free
particle, if P̂ is interpreted as the momentum operator in absence of the electro-
magnetic field.

Let us now compare the two final terms in (2.255) containing the vector potential.
Their ratio η can be estimated by

η ≈ e
2c

A
P
, (2.256)

with typical values A and P of the vector potential and the momentum. In
Coulomb gauge with Φ = 0, the electric field is

~E = −1
c
∂~A
∂t

. (2.257)

If we decompose ~A into plane waves and consider a single mode with frequency
ω,

~E = − iω
c
~A = −ik ~A = −2πi

λ
~A , (2.258)

where we have used the dispersion relation k = ω/c for electromagnetic waves
in vacuum. Thus,

A ≈ λE
2π

. (2.259)

The momentum of the electron in a hydrogen atom is

P ≈ αmc , where α =
e2

~c
=

1
137.04

(2.260)

is the fine-structure constant. Combining all terms, we estimate

η ≈ 1
4πα

λeE
mc2 . (2.261)

The numerator of the second factor is the work done on the electron by a single
wave of the incident electromagnetic field. This is compared to the electron’s
rest energy! Unless the electromagnetic field is so intense that it can deposit
a sizeable fraction of the electron’s rest energy on the electron by a single
wave, we can safely ignore the term quadratic in ~A in (2.255). Our perturbing
Hamiltonian is thus

Ĥ(1)(t) =
e

mc
Â · P̂ = −i

~e
mc

Â · ~∇ . (2.262)
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Figure 2.14 Illustration of an incoming electromagnetic wave causing a transition
between two quantum states.

2.7.3 Decomposition of the electromagnetic field

Let us now decompose the incident electromagnetic field (cf. Figure 2.14) into
plane waves,

~A(~x, t) = A0 ê ei
(
~k·~x−ωt

)
, (2.263)

where A0 is a scalar, time-independent amplitude and ê is the polarisation
direction. Coulomb gauge immediately implies transversality, ê · ~k = 0. We
know that this decomposition into plane waves is possible because the vector
potential of electromagnetic waves in vacuum must satisfy the d’Alembert
equation 2~A = 0, what plane waves do if only they obey the dispersion relation
k = ω/c.

With (2.244), these plane electromagnetic waves in the perturbing Hamiltonian
(2.262) give the transition rate

Γ =
e2

m2c2 |A0|2
∣∣∣∣〈m |ei~k·~xê · ~∇|n〉

∣∣∣∣2 δD (ωmn − ω) . (2.264)

We can now relate the absolute square |A0|2 of the vector-potential amplitude
to the intensity of the incoming light. The energy flux density carried by the
electromagnetic wave is expressed by its Poynting vector,

~S =
c

4π
~E × ~B =

c
4π

~E 2êk , (2.265)

where êk is a unit vector pointing into the direction of the wave vector ~k. The
mean energy flowing past the quantum-mechanical system per unit area and
unit time is thus 〈∣∣∣∣~S ∣∣∣∣〉 =

1
T

∫ T/2

−T/2
dt

∣∣∣∣~S ∣∣∣∣ =
c

4πT

∫ T/2

−T/2
dt ~E 2 . (2.266)

In the limit of very long times, the time integral can be transformed to a
frequency integral by Plancherel’s theorem (2.25), which brings (2.266) into
the form 〈∣∣∣∣~S ∣∣∣∣〉 =

c
4πT

∫ ∞

−∞
dω
2π

∣∣∣∣ ~̂E ∣∣∣∣2 . (2.267)
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The specific intensity, i.e. the energy per unit area, time and frequency, is thus

Iω =
c

8π2T

∣∣∣∣ ~̂E ∣∣∣∣2 . (2.268)

We can now use (2.258) to continue writing

Iω =
c

8π2T
ω2

c2 |A0|2 (2.269)

and return to the transition rate (2.264) with this result. This gives

Γ =
8π2e2

m2c
IωT
ω2

∣∣∣∣〈m |ei~k·~xê · ~∇|n〉
∣∣∣∣2 δD (ωmn − ω) (2.270)

for the transition rate between the states |n〉 and |m〉, given the specific intensity
Iω acting on the system for time T .

2.7.4 Dipole approximation

Before we evaluate the transition matrix element occuring in (2.270), we can
apply a further approximation. Expand the phase factor exp(i~k · ~x ) into a Taylor
series,

ei~k·~x ≈ 1 + i~k · ~x − 1
2

(
~k · ~x

)2
+ . . . . (2.271)

Already the first-order term, ~k · ~r, is very much smaller than unity, as the
following estimate shows. By the dispersion relation, the wave number k of the
electromagnetic wave must be

k =
ωmn

c
=

Em − En

~c
, (2.272)

while |~x | = x must be of the order of the Bohr radius a0,

x ≈ a0 =
~2

me2 = 5.2918 · 10−9 cm . (2.273)

Caution Notice that the Bohr ra-
dius can be expressed by the clas-
sical electron radius (2.12) and the
fine-structure constant α as

a0 =
~2

me2 =
e2

mc2

~2c2

e4 =
re

α2 .

We shall use this relation in (2.300)
below. J

Thus, their product can be estimated to be

~k · ~x ≈ kx ≈ ~

me2c
(Em − En) =

Em − En

αmc2 , (2.274)

where we have identified the fine-structure constant α, see (2.260). As long as
the energy difference between the transitions is very small compared to the rest-
energy of the electron, it is thus very well justified to replace the phase factor by
unity. Consider transitions in the hydrogen atom as an example. The ionisation
energy of hydrogen is 13.6 eV, while αmc2 ≈ (511/137) keV ≈ 3.7 · 103 eV. In
this case, kx ≈ 3.7 · 10−3. We are then left to evaluate the matrix element

〈m |ê · ~∇|n〉 =
i
~
〈m |ê · p̂|n〉 (2.275)

Since |n〉 and |m〉 are eigenstates of the unperturbed Hamiltonian, it is most use-
ful to replace the momentum operator p̂ by means of the following commutation
relation, [

x̂, p̂ 2
]

= p̂x
[
x̂, p̂x

]
+

[
x̂, p̂x

]
p̂x = 2i~p̂x . (2.276)
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It allows us to write [
x̂, Ĥ

]
=

i~
m

p̂ , (2.277)

which turns the transition matrix element (2.275) into

〈m |ê · ~∇|n〉 = −mωmn

~
〈m |ê · x̂|n〉 = −mωmn

e~
〈m |ê · d̂|n〉 , (2.278)

where the dipole operator d̂ = ex̂ was introduced. For this reason, the approxi-
mation exp(i~k · ~x ) ≈ 1 is called the dipole approximation.

?
Verify the relations (2.276) and
(2.277).

If the dipole matrix element 〈m |ê · d̂|n〉 vanishes, we need to proceed to the next
order in the Taylor expansion of the phase factor, arriving at the level of the
so-called quadrupole transitions. The rate (2.270) for dipole transitions has now
assumed the form

Γ =
8π2IωT

c~2

∣∣∣〈m |ê · d̂|n〉∣∣∣2 δD (ωmn − ω) . (2.279)

Finally, for the frequent case of unpolarised radiation, the mean-squared projec-
tion of d̂ on ê gives a factor of 1/3, and we arrive at

Γ =
8π2IωT

3c~2

∣∣∣∣~dmn

∣∣∣∣2 δD (ωmn − ω) , (2.280)

where the dipole matrix element ~dmn = 〈m |d̂|n〉 was defined.

2.7.5 Cross sections

We would like to convert the expression (2.280) for the rate of transitions
between the states |n〉 and |m〉 into an expression for the transition cross sec-
tion. We shall consider two cases; transitions between two bound states and
transitions between a bound and a free state.

Let us begin with transitions between two bound states, which we assume for
simplicity to be non-degenerate. Thus, the initial and the final states can be
occupied by a single electron each. The two states differ by the discrete energy
Em − En, which has to be supplied or carried away by a photon with energy
~ωmn = |Em − En|. To be specific, we choose to consider the absorption of pho-
tons, thus Em > En. Of the incoming specific intensity Iω, only those photons
can be absorbed whose frequency precisely equals ωmn. This is expressed by
the product IωδD(ωmn − ω) in the transition probability (2.280). Notice that
the frequency integral over the Dirac delta function must be dimension-less,
so the delta function must have the dimension [frequency]−1. The number of
incoming photons at the frequency ω during the time T per area is

IωT
~ω

. (2.281)

Dividing (2.280) by this number gives the desired absorption cross section

σmn =
8π2

3c~
ωmn

∣∣∣∣~dmn

∣∣∣∣2 δD (ωmn − ω) , (2.282)
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with the Dirac delta function expressing that the transition is assumed for now
to be needle-sharp in frequency. Conventionally, the dimension-less quantity

fmn :=
2mωmn

3~e2

∣∣∣∣~dmn

∣∣∣∣2 (2.283)

is called the oscillator strength of the transition from the state |n〉 to the state
|m〉. Identifying it in (2.282) allows us to write the cross section in the simple
form

σmn =
4π2e2

mc
fmn δD (ωmn − ω) = 4π2rec fmn δD (ωmn − ω) , (2.284)

where the classical electron radius re = 2.81 · 10−13 cm was introduced from
(2.12).

?
Is the oscillator strength (2.283) re-
ally dimension-less, as claimed?

In realistic situations, as we shall see below, the absorption cross section does
not have the needle-sharp delta profile adopted here, but a broader one. If this
profile is described by a function φ(ωmn − ω) which is normalised to unity, the
cross section reads

σmn =
4π2e2

mc
fmn φ (ωmn − ω) = 4π2rec fmn φ (ωmn − ω) . (2.285)

As we shall see shortly, there is a characteristic line profile function, called the
Voigt profile.

For bound-free transitions, we can proceed in an analogous way as for bound-
bound transitions, except that we have to take the number of available free
electron states into account. We arrive at the bound-free absorption cross
section σbf if we multiply the transition rate (2.270) by the number of final
electron states and divide, as before, by the number of photons incoming per
unit area per unit time. The number of final electron states in an infinitesimally
thin momentum shell in phase space is

4πp2
f dpf

(2π~)3 V =
p2

f dpf

2π2~3 V =
k2

f dkf

2π2 V (2.286)

if the shell has the width dpf = ~dkf in the final electron momentum. Energy
conservation implies that the energy of an incoming photon, ~ω, must come up
for the binding energy E1 of the electron plus the energy of the free electron
after ionisation,

~ω =
p2

f

2m
+ E1 =

~2k2
f

2m
+ E1 . (2.287)

This allows us to relate the width dkf of the shell of electron momenta to the
width dω in photon frequency,

~dω =
~2kf dkf

m
⇒ kfdkf =

m dω
~

. (2.288)

The number of final electron states can thus be expressed by

k2
f dkf

2π2 V =
kfm dω
2π2~

V , (2.289)
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and the number of photons with frequency within [ω,ω + dω] incoming during
the time T per unit area is given by

IωT
~ω

dω . (2.290)

Multiplying the transition rate (2.270) with the number of electron states (2.289)
and dividing by the number (2.290) of incoming photons gives the cross section

σbf =
4e2kf

mc
V
ω

∣∣∣∣〈 f |ei~k·~xê · ~∇|b〉
∣∣∣∣2 (2.291)

between the bound state |b〉 and the free state | f 〉, where the transition matrix
elements still needs to be worked out.

2.7.6 Photoionisation cross section

To give one specific and simple example for the calculation of a bound-free
cross section, we consider the photoionisation of the hydrogen atom from its
ground state. In the position representation, the bound and free electron states
are given by the wave functions

ψb(~x ) = 〈x |b〉 =
(
πa3

0

)−1/2
e−r/a0 ,

ψf(~x ) = 〈x | f 〉 = V−1/2ei~kf ·~x , (2.292)

where the final electron state is assumed to be confined to the volume V .

?
Can you confirm that the wave func-
tions (2.292) correctly represent the
states of an electron bound in the
ground state of a hydrogen atom,
and a free electron, respectively?
Are they properly normalised?

If the energy difference between the final and initial electron states is small
compared to the rest-energy of the electron, i.e. as long as the electron remains
non-relativistic, we can evaluate the transition matrix element in dipole approx-
imation. We thus set exp(i~k · ~x ) ≈ 1 in (2.291) and use the Hermitian property
of the momentum operator to exchange the final and the initial states,∣∣∣∣〈 f |ê · ~∇|b〉∣∣∣∣2 =

∣∣∣∣〈b |ê · ~∇| f 〉∗∣∣∣∣2 =
∣∣∣∣〈b |ê · ~∇| f 〉∣∣∣∣2 . (2.293)

Inserting the initial and final wave functions, the matrix element is now easily
evaluated,

〈b |ê · ~∇| f 〉 =
(
πa3

0V
)−1/2

∫
d3x e−r/a0 ê · ~∇ei~kf ·~x

=
(
πa3

0V
)−1/2

iê · ~kf

∫
d3x e−r/a0+i~kf ·~x . (2.294)

The remaining integral is quickly worked out in polar coordinates,∫
d3x e−r/a0+i~kf ·~x = 2π

∫ ∞

0
r2dr e−r/a0

∫ 1

−1
d cos θ eikfr cos θ

= 4π
∫ ∞

0
r2dr e−r/a0

sin(kfr)
kfr

=
8πa3

0(
1 + k2

f a2
0

)2 ≈
8π

k4
f a0

, (2.295)
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where the final approximation is allowed if the energy of the final state is much
larger than that of the initial state.

Putting the last results back into the bound-free cross section (2.291), we obtain

σbf =
256π

3
e2

mcω
1

(a0kf)5 =
256π

3
α~

mω
1

(a0kf)5 , (2.296)

where we have averaged over all polarisation directions to replace(
ê · ~kf

)2
=

1
3

k2
f . (2.297)

?
Can we really integrate the radius
to infinity in (2.295)? What is the
crucial approximation behind doing
so? Carry out the final radial integral
in (2.295) yourself.

Our previous approximation that the energy of the final state largely exceeds
that of the initial state allows us to ignore the binding energy E1 in (2.287) and
to substitute

kf =

√
2mω
~

(2.298)

and bring the photoionisation cross section into the form

σbf =
64π

3
√

2

α

a5
0

(
~

mω

)7/2

. (2.299)

Rearranging the constants, inserting the Bohr radius (2.273) in the form

a0 =
re

α2 (2.300)

with the classical electron radius (2.12) as well as the Rydberg energy

Ry =
me4

2~2 =
α2mc2

2
= 13.6 eV , (2.301)

we can bring the expression for the bound-free cross section into the more
intuitive form

σbf =

(
4
α

)3

σT

(
Ry
~ω

)7/2

= 1.09 · 10−16 cm2
(

Ry
~ω

)7/2

(2.302)

containing the Thomson cross section (2.15). It should be kept in mind, however,
that this equation is only valid for photon energies much larger than the Rydberg
energy, ~ω � Ry.

Problems

1. The cross section for a transition between an initial state |n〉 and a final
state |m〉 was derived as

σmn =
4π
3c~

ωmn

∣∣∣∣~dmn

∣∣∣∣2 δD (ωmn − ω) , (2.303)

where ~dmn = 〈m |ex̂|n〉 is the dipole matrix element andωmn = (Em−En)/~
is the frequency corresponding to the energy difference between the
states |m〉 and |n〉. The delta distribution assures that only those photons
contribute to the cross section that have the correct frequency.
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(a) Consider the one-dimensional harmonic oscillator with energy lev-
els En = ~ω(n + 1/2) and corresponding wave functions

ψn(x) =

(mω
π~

)1/4 1√
2nn!

Hn

(√
mω
~

x
)

exp
(
−mω

2~
x2

)
(2.304)

with the Hermite polynomials

Hn(x) = (−1)nex2 dn

dxn e−x2
. (2.305)

Calculate the cross section σ10 for the transition from the ground
state (n = 0) to the first excited state (n = 1). Hint: It may be
helpful to use∫ ∞

−∞
dx x2e−αx2

= −
∫ ∞

−∞
dx

∂

∂α
e−αx2

. (2.306)

(b) Consider now an infinitely deep potential well of length L with
energy levels

En =
n2π2~2

2mL2 (2.307)

with n ∈ N and wave functions

ψn(x) =


√

2
L cos

(
nπ
L x

)
if n is odd√

2
L sin

(
nπ
L x

)
if n is even

, (2.308)

with x ∈ [−L/2, L/2]. What is the cross section σ21 for the transi-
tion from the ground state (n = 1) to the first excited state (n = 2)?
Compare the factor in front of the delta distribution with that for
the harmonic oscillator.

2.8 Shapes of Spectral Lines

In this section, three different statements on spectral lines are derived and
applied. First, it is shown that spontaneous transitions between quantum
states broaden spectral lines emitted by electromagnetic transitions between
these states from the needle-sharp profile expected for ideally sharp tran-
sitions to a Lorentz profile whose width is determined by the spontaneous
transition rate. The first main result is the Lorentzian profile function (2.318).
Collisions between emitting quantum systems are shown to have the same
effect, with the spontaneous transition rate replaced by the collision rate.
Second, the Doppler broadening by the motion of the emitting quantum sys-
tems leads to the Gaussian line profile (2.330) if the motion is thermal. Third,
the combined effects of spontaneous or collisional transitions and Doppler
broadening are shown to create the Voigt line profile (2.337). This combined
line profile is then used to determine how the equivalent widths of spectral
lines change with the number of absorbers, leading to the curve-of-growth
described by (2.352).
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2.8.1 Natural line width

Consider now two states of a quantum-mechanical system, for simplicity called
|m〉 and |n〉, which are separated by the energy difference En − Em > 0. If the
system is in the upper state |n〉, it has a finite probability to decay spontaneously
to the lower state |m〉. The state |n〉 thus has a finite lifetime, which causes an
uncertainty in its energy En. The transition energy between the two states |m〉
and |n〉 will thus be distributed around its precise value En − Em. We shall now
work out the shape of this distribution.

?
Why would an excited state sponta-
neously decay into a less energetic
state?We begin with the evolution equation (2.235) for the expansion coefficients

cnm perturbed state |ψ(t)〉 in terms of the eigenstates |k〉 of an unperturbed
Hamiltonian,

ċnm = − i
~

∑
k

cnk〈m |Ĥ(1)(t)|k〉 eiωmnt (2.309)

and assume a radiative perturbation Hamiltonian Ĥ(1)(t) with periodic time
dependence as in (2.238),

Ĥ(1)(t) = V̂ e−iωt θ(t) , (2.310)

with a time-independent operator V̂ .

Let us now restrict our attention to a radiative transition between any two
states |n〉 and |m〉. Their energies Em and En are supposed to satisfy Em > En,
respectively. Initially, we assume the system to be in the state |n〉, which could
be its ground state, and thus begin the evolution with cnn = 1 and cnk = 0 for
k , n. Restricting our general result (2.309) to this simplified two-state system,
the coefficient cnm evolves in time according to

ċnm = − i
~
〈m |V̂ |n〉 ei(ωmn−ω)t . (2.311)

Strictly speaking, cnn is also time dependent, so we would have to solve a
system of coupled differential equations for cnn and cnm. In a first step of what
could turn into an iterative approach, we now assume that the ground state
remains populated as the transitions are going on, hence cnn = 1 for all times.
This is justified if the transition probability from |n〉 to |m〉 is small. Should this
be unreasonable in the situation considered, a first solution for cnm(t) can then
be inserted into the evolution equation for cnn to determine a correction, and so
forth.

Taking, however, cnn = 1 for now, we can immediately solve (2.311) by direct
integration, enforcing the initial condition cnm = 0 at t = 0. This gives

cmn(t) = − 〈m |V̂ |n〉
~(ωmn − ω)

[
ei(ωnm−ω)t − 1

]
, (2.312)

as in (2.239).

However, this result has the problem that it was derived ignoring that the excited
state |m〉 can decay spontaneously. Very much like radioactive decay, we can
phenomenologically model such a spontaneous decay by the introducing a
contribution

ċnm → ċnm − Γ

2
cnm (2.313)
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into the differential equation (2.311), where the spontaneous decay rate Γ/2
was inserted with a factor of 1/2 that will be convenient later. After this ad-hoc
modification, cnm is supposed to evolve according to

ċnm = − i
~
〈m |V̂ |n〉 ei(ωmn−ω)t − Γ

2
cnm . (2.314)

After bringing this additional term Γcnm/2 to the left-hand side and multiplying
the equation with eΓt/2, we see that we can write

∂t
(
cnmeΓt/2

)
= − i
~
〈m |V̂ |n〉 e[i(ωmn−ω)+Γ/2]t . (2.315)

Again, we can directly integrate this equation with the same initial condition as
before, cnm = 0 at t = 0. This gives

cnm(t) =
〈m |V̂ |n〉
~

e−Γt/2 − ei(ωmn−ω)t

(ω − ωmn) + iΓ/2
. (2.316)

After a sufficiently long initial time t � Γ−1, the exponential term in the
numerator dies off. Then, the absolute square of cnm, which gives the probability
for finding the system in state |m〉, becomes time-independent and reads

|cnm|2 =

∣∣∣〈m |V̂ |n〉∣∣∣2
~2

1
(ω − ωmn)2 + Γ2/4

. (2.317)

The dependence of the transition probability on frequency is thus described by
the Lorentz profile function

φΓ(ω − ω12) =
1
π

Γ/2
(ω − ω12)2 + Γ2/4

(2.318)

first encountered in (2.153). Recall that the prefactor in (2.318) is chosen such
that φΓ integrates to unity.

2.8.2 Collisional broadening

When a quantum-mechanical system interacts with another in a collision, its
phase is randomly changed, or reset. We model this process by assuming that
there is a random phase shift δφ in each collision, which we choose to be drawn
from the interval [−π, π]. The probability distribution of δφ within this interval
is supposed to be flat such that all phase shifts within [−π, π] are equally likely.

We cannot know the phase shift after a single collision. However, the average
phase factor after a single collision must vanish,〈

eiδφ
〉

= 0 , (2.319)

because of the flat distribution of δφ ∈ [−π, π]. If more than one collision occurs,
the mean phase factor will still vanish: The phase shift after N collisions will
have a flat distribution over the interval [−Nπ,Nπ], hence the average phase
factor will vanish also if an arbitrary number of collisions has occured.

The number of collisions within a given time t can be modelled as a Poisson
process. Let Γc be the collision rate. Then the expected number of collisions



2.8 Shapes of Spectral Lines 91

within the time t is Γct, and the probability for k collisions to occur during that
time is given by the Poisson distribution,

pk =
(Γct)k

k!
e−Γct . (2.320)

Since the phase factor after time t is zero if any collision has happened, the
mean phase factor will be 〈

eiδφ
〉

= p0 = e−Γct . (2.321)

Since the probability for the system to be in state |2〉 is given by |cnm|2, this
corresponds to modifying the evolution equation for cnm by a term

ċnm = −Γc

2
cnm . (2.322)

A comparison to the treatment of the natural line width above, see (2.314) and
(2.315), shows that the only change to the previous solution (2.316) for the
transition probability |cnm|2 is that the decay rate Γ for spontaneous transitions
is replaced by the sum of the spontaneous and the collisional decay rates,

Γ→ Γ + Γc . (2.323)

The shape of the line profile function (2.318) will thus remain unchanged,
only its width will be enhanced by an amount determined by the sum of the
spontaneous and the collisional decay rates.

2.8.3 Doppler broadening of spectral lines

A further broadening mechanism is caused by the Doppler effect. If the emitting
quantum-mechanical systems, e.g. atoms or molecules, move along the line-of-
sight with the velocity v‖, we observe the frequency

ω = ω0

(
1 +

v‖
c

)
(2.324)

instead of the emitted frequency ω0. This is the non-relativistic approxima-
tion to the Doppler effect, which we can safely use for atoms or molecules
moving thermally. In the thermal case, the emitters can further be expected to
have a Maxwellian velocity distribution with a width σv determined by their
temperature. The equipartition theorem demands

m
2
σ2
v =

kT
2

⇒ σ2
v =

kT
m

. (2.325)
?

If the velocity distribution of the
emitting atoms and molecules would
follow a power law, what would the
line profile look like?

The single velocity component v‖ then has a Gaussian distribution, and the
observed line profile is then given by∫ ∞

−∞

dv‖√
2πσ2

v

δD

[
ω − ω0

(
1 +

v‖
c

)]
exp

− (
v‖ − v̄)2

2σ2
v

 , (2.326)

where v̄ is the mean velocity of the emitting system. Using the identity

δD(ax) =
1
a
δD(x) , (2.327)
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for the Dirac delta function, the Gaussian line profile proportional to

exp

− 1
2σ2

v

(
ω − ω0

ω0
c − v̄

)2 = exp

− c2

2σ2
v

(
ω − ω̄
ω0

)2 (2.328)

emerges. Here, we have defined the centre frequency

ω̄ ≡ ω0

(
1 +

v̄

c

)
, (2.329)

i.e. the average frequency of the line emission, shifted by the Doppler effect
due to the mean motion of the emitting or absorbing medium. The line-profile
function φ(ω−ω0) for thermally moving atoms is thus the (normalised) Gaussian

φ(ω − ω0) =
c

ω0
√

2πσ2
v

exp

− c2

2σ2
v

(
ω − ω̄
ω0

)2 . (2.330)

2.8.4 The Voigt profile

In presence of all three line-broadening effects, i.e. spontaneous, collisional and
Doppler broadening, the line profile is a convolution of the Lorentz profile for
the line broadened by spontaneous and collisional decays with the Gaussian
velocity distribution taking account of the Doppler effect. The combined line
profile is thus determined by the integral

1√
2πσv

∫ ∞

−∞
dv‖ φ

[
ω − ω12

(
1 +

v‖
c

)]
exp

− v2
‖

2σ2
v

 , (2.331)

which can be brought into a standard form by a sequence of substitutions. First,
we introduce a velocity scale v0 and a dimension-less velocity q by

v0 ≡
√

2σv and q ≡ v‖√
2σv

=
v‖
v0

(2.332)

to bring the Gaussian factor in (2.331) into the form

dv‖√
2πσv

exp

− v2
‖

2σ2
v

 =
dq√
π

e−q2
. (2.333)

The Lorentz profile (2.318), with the centre frequency shifted by the Doppler
effect, reads

φΓ

[
ω − ω12

(
1 +

v‖
c

)]
=

1
π

Γ/2[
ω − ω12

(
1 +

v‖
c

)]2
+ Γ2/4

. (2.334)

The further substitutions of a centred, normalised frequency u and a normalised
collision rate a, defined by

u ≡ ω − ω12

ω12

c
v0

and a ≡ Γ

2ω12

c
v0
, (2.335)

bring this profile into the form

φ(u) =
c

πω12v0

a
(u − q)2 + a2 . (2.336)
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The result of the convolution (2.331) thus reads

φ(u) =
ac

π
√
πω12v0

∫ ∞

−∞
dq

e−q2

(u − q)2 + a2 , (2.337)

which is the so-called the Voigt profile (Figure 2.15). Near its centre, this line
profile has a Gaussian shape, while its wings retain the Lorentzian shape.
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Figure 2.15 The Gauss, the Lorentz and the Voigt profiles are shown for σ = 1
and Γ = 1 in arbitrary units. The left and right panels are distinguished only by the
linear and logarithmic scaling of the ordinate. The right panel illustrates in particular
the broad, Lorentzian wings of the Voigt profile.

2.8.5 Equivalent widths and curves-of-growth

Two concepts have been found useful describing the information contained in
observed spectral lines, namely their equivalent width and their curve-of-growth.
The equivalent width quantifies the area under a spectral line. If I0 is the local
specific intensity of the spectral continuum, that is the continuum intensity in
the vicinity of the line, the equivalent width is defined as

W ≡
∫

I0 − I(ω)
I0

dω , (2.338)

where I(ω) is the specific intensity within the line. Thus, the equivalent width
of an absorption line is a measure for the total intensity removed from the
spectrum. An analogous definition can be given for the equivalent width of
emission lines, which then quantifies the total intensity added to the spectrum.
The optical depth within the line is given by the number density of absorbers n,
the geometrical extent L of the absorbing medium and the frequency-dependent
cross section σ(ω),

τ = n Lσ(ω) , (2.339)

where the specific dependence of σ(ω) on the frequency may be given by
(2.279) in dipole approximation. The specific intensity within the line is then
lowered compared to the specific continuum intensity I0 by

I(ω) = I0 e−τ(ω) , (2.340)
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and thus the equivalent width is the integral

W =

∫
dω

[
1 − e−τ(ω)

]
(2.341)

across the line.

?
Why would the specific intensity fall
off exponentially with the optical
depth, as in (2.340)? Since the cross section is proportional to the profile function φ(ω), (2.341) can

equally well be written as

W =

∫
dω

[
1 − e−Cφ(ω)

]
. (2.342)

As shown in (2.280), the frequency-independent constant C inserted here is
C = 2πnLrec f12 for a dipole transition between levels 2 and 1 with oscillator
strength f12. For low optical depth, τ � 1, the exponential function in (2.341)
or (2.342) can be replaced by its first-order Taylor expansion. This results in

W =

∫
dω n Lσ(ω) = 2πnLrec f12 (2.343)

because the profile function is defined to be normalised such that its integral
over frequency ω gives unity. Thus, for low optical depth, we introduce the
column density N = nL and have

W ∝ N , (2.344)

i.e. the equivalent width is simply growing linearly with the column density of
absorbers along the line-of-sight from the observer.

In the opposite, optically thick case τ � 1, the line profile can be approxi-
mated by a sudden drop from the continuum level I0 to zero intensity within
a frequency range of width 2∆, and a sudden rise back to the continuum level.
The spectral line is thus simply described as a rectangular stripe cut from the
spectrum. By definition of the equivalent width,

W ≈ 2∆ (2.345)

in this case. We now need to distinguish whether τ ≈ 1 is reached only in the
core or already in the wings of the spectral-line profile. We first consider the
case of an optically thick core, but optically thin wings. If the line is Doppler-
broadened, as most lines are, the line profile has a Gaussian core, and we can
approximate the optical depth as

τ = NLσ(ω) = 2πNL
rec2 f12√

2πσv
exp

(
−c2(ω − ω12)2

2σ2
v

)
(2.346)

with a thermal velocity dispersion σv given by (2.325). We now determine the
half-width ∆ = ω − ω12 by setting τ = 1 in (2.346) and solving for ∆,

exp
(
−c2∆2

2σ2
v

)
!
=

σv

π
√

2πNLrec2 f12
. (2.347)

Thus, the width ∆ and therefore also the equivalent width scale with N like

∆ ∝
√

ln N , W ∝
√

ln N . (2.348)
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i.e. they depend only very weakly on the number N of absorbers.

If, however, τ ≈ 1 is reached already in the Lorentzian wings of the line,
we adopt the Lorentz profile (2.318) instead of the Voigt profile and further
simplify the Lorentz profile by assuming a damping rate Γ small compared to
the frequency difference to the line centre, Γ � ω − ω12. Then,

φΓ(ω) ≈ Γ

2π(ω − ω12)2 , (2.349)

and the optical depth becomes

τ = NLσ(ω) ≈ πNLrec f12
Γ

(ω − ω12)2 . (2.350)

As above, we find the width ∆ from this equation by setting τ = 1 in (2.350)
and solving for ∆ = ω − ω12. This reveals that in this case of very high optical
depth, ∆ and the equivalent width W scale with the number N of absorbers like

∆ ∝
√

N , W ∝
√

N . (2.351)
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Figure 2.16 Curves-of-growth as a function of Nσ0 for three different line profiles
with the same Gaussian broadening, σ = 1, but different values for the damping Γ.

Summarising, the curve-of-growth W(N) behaves as

W(N) ∝


N small N√
ln N intermediate N√
N large N

. (2.352)

For determining the number N of absorbers, lines with different oscillator
strengths f are required because then the spectral lines fall into different sections
of the curve-of-growth W(N) for the same N. This may prove difficult when
some lines fall into the flat section of W(N) where W(N) ∝ √ln N.
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Problems

1. Besides their natural line width, emission lines with transition frequency
ω0 are broadened due to collisions of the emitting atoms and their ther-
mal velocities. The collisional broadening leads to a line shape that is
described by a Lorentz profile

φΓc(ω − ω12) =
1
π

Γc/2
(ω − ω12)2 + Γ2

c/4
, (2.353)

where Γc = σ〈nv〉 is the collision rate, σ is the cross section for collisions,
n is the number density of atoms, v their velocity and 〈·〉 indicates the
thermal average. The Doppler broadening leads to the Gaussian profile
function

φD =
c√

2πω0σv
exp

− c2

2σ2
v

(
ω − ω0

ω0

)2 , (2.354)

where σv is the velocity dispersion.

(a) Estimate the line width for Doppler broadening from the full width
at half maximum (FWHM) ∆ωD, defined by φD(ω0 ± ∆ωD/2) =

φD(ω0)/2, as a function of temperature T .

(b) Estimate the line width ∆ωc due to collisions from the FWHM of
φc(ω) as a function of T . Assume that σ is set by the Bohr radius
a0 and that the density does not depend on temperature.

(c) How can the results from (a) and (b) be combined to determine the
density of an emitting medium?

(d) Calculate the ratio ∆ωc/∆ωD for the Hα line (6563 Å) emitted from
a cloud of atomic hydrogen with n = 16 cm−3.

2.9 Radiation Quantities

In our treatment of radiation processes, we began with the classical picture
of electromagnetic waves and their emission by accelerated charges. We
added the photon picture when it became necessary for the treatment of
momentum exchange between electromagnetic radiation and charges, and
discussed quantum transitions caused by radiation. We shall proceed to
discuss in this section the propagation and the transport of radiation, treating
radiation in close analogy to a fluid. The main results are the definition of the
specific intensity Iω in (2.360), the angular moments (2.370) of the intensity
and the demonstration that the quantity Iω/ω3 is relativistically invariant.

2.9.1 Specific Intensity

Let us therefore consider radiation again as a stream of particles which carry
energy and momentum. In order to characterise the flow of radiation, we
imagine setting up a small screen of differential area d~A and arbitrary orientation.
Our first question is: What amount of energy is streaming per time interval dt
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into a direction enclosing the angle θ with the normal to the screen into the
solid angle element dΩ and within the frequency interval dω?

We begin with the occupation number of photon states. Let nα~p be the spatial
number density of photons with momentum ~p and the polarisation state α
(α = 1, 2). The energy-momentum four-vector of a photon with energy ~ω is

p µ = ~kµ =
~ω

c

(
1
ê

)
, (2.355)

with the unit vector ê pointing into the direction of light propagation. Since
photons are massless particles, the wave four-vector and hence also the four-
momentum are null vectors, 〈k, k〉 = 0 = 〈p, p〉. Therefore,

E = cp with ~p =
~ω

c
ê , p =

~ω

c
. (2.356)

?
Compare (2.355) with the disper-
sion relation for electromagnetic
waves, and (2.356) with the relativis-
tic energy-momentum relation.

A volume element dΓ = d3xd3 p of phase space is divided in cells of size
(2π~)3 to account for Heisenberg’s uncertainty principle: If the position of a
particle is confined to dx in one spatial direction, its momentum in the same
direction cannot be confined to better than dxdp = 2π~. The number of cells
per phase-space volume element dΓ is thus

d3xd3 p
(2π~)3 = dV

p2dpdΩ

(2π~)3 = dV
ω2dωdΩ

(2πc)3 , (2.357)

where we have expressed the momentum by the frequency ω in the last step.

y

z

x

~e

Figure 2.17 Illustration of photons streaming through an inclined area element.

The amount of energy carried by photons with momentum ~p through the in-
finitesimal screen d~A (Figure 2.17) is now given by the number of available
phase space cells from (2.357), times the number of photons per phase-space
cell with polarisation state α and momentum ~p, times the energy E = cp = ~ω

per photon, times the volume dV = cdt d~A · ê covered by the screen relative to
the stream of photons. Thus, we find

dE =
ω2dωdΩ

(2πc)3

2∑
α=1

nα~p ~ω dA cos θ cdt , (2.358)
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where θ is the angle between d~A and ~p. The energy flowing through the screen
per unit screen area dA, unit time dt and unit frequency dω into the unit solid
angle dΩ defines the specific intensity Iω of the radiation by the assignment

dE
dtdωdAdΩ

=

2∑
α=1

nα~p
~ω3

(2π)3c2 cos θ ≡ Iω cos θ . (2.359)

For unpolarised light, n1~p = n2~p, so the sum in (2.359) merely gives a factor of
two. Then, the specific intensity is related to the occupation number and the
frequency by

Iω =
2~ω3

(2π)3c2 nα~p =
~ω3

4π3c2 nα~p . (2.360)

Two powers of ω in the numerator are due to the volume element in phase space,
the additional factor ~ω is the photon energy.

2.9.2 Moments of the intensity

Let us approach the intensity from a different point of view. For an electromag-
netic wave in vacuum, the Poynting vector is

~S =
c

4π
~E 2k̂ = cUk̂ , (2.361)

where U is the energy density. It is the energy current density in electromagnetic
radiation, i.e. the electromagnetic energy flowing per unit time through unit
area. Dividing by the solid angle 4π of the sphere, we find the intensity

I =
cU
4π

=
1

4π

∣∣∣∣~S ∣∣∣∣ (2.362)

and its relation to the absolute magnitude of the Poynting vector. The first
equation (2.362) shows that the integral of I/c over the solid angle is the energy
density, ∫

dΩ
I
c

= U . (2.363)

According to the second equation (2.362), we can write the Poynting vector as
~S = 4πIk̂. Its integral over a sphere with arbitrary (small) radius R,∫

~S · d~A = 4π
∫

dΩ Ik̂ · êr R2 = 4πR2
∫

dΩ I cos θ (2.364)

must be the energy flowing per unit time through the sphere. Dividing by the
surface area of the sphere, we find the total energy current density

F =

∫
dΩ I cos θ (2.365)

averaged over the complete solid angle.

Maxwell’s stress-energy tensor T̄ , whose components are given in (1.111),
express the momentum current density. Multiplied with an oriented area element
d~A, we find the force d ~F = T̄d~A exerted per area dA by the momentum current
density since the momentum current density times an area is the momentum per
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unit time, hence the force. Without loss of generality, we choose d~A = dAêz for
an area element in the x-y plane. Since the magnetic contribution to T̄ equals
the electric contribution, we write

d ~F = T̄d~A =
1

2π

 ~E 2

2
13 − ~E ⊗ ~E

 dAêz =
1

2π

 ~E 2

2
êz − E3 ~E

 dA . (2.366)

It is easily seen that dF1,2 = 0: There is no net force on the area element in its
own plane, as expected. For dF3, we rather have the force per unit area, or the
radiation pressure,

Prad =
dF3

dA
=

1
2π

 ~E 2

2
− E2

3

 . (2.367)

Averaging over the solid angle, using 〈~E 2〉 = 3〈E2
3〉 for a locally isotropic

radiation field, writing E3 = E cos θ, and replacing ~E 2 = 4πU, we can conclude

Prad =
1

4π

∫
dΩ U cos2 θ =

1
4π

∫
dΩ U cos2 θ =

U
3
. (2.368)

On the one hand, this confirms the well-known result valid for all relativistic
boson gases that their pressure equals a third of their energy density. On the
other hand, we can substitute the intensity I from (2.362) in the first equation
(2.368) to see that the radiation pressure is the second angular moment of I/c,

Prad =

∫
dΩ

I
c

cos2 θ . (2.369)

We have thus established the relations∫
dΩ

I
c

= U , F =

∫
dΩ I cos θ , Prad =

∫
dΩ

I
c

cos2 θ (2.370)

between the energy density U, the integrated energy current density F and
the radiation pressure Prad with the three lowest-order angular moments of
the intensity. They will turn out to be important shortly in our discussion of
radiation transport.

2.9.3 Relativistic invariance of Iω/ω3

Suppose now that the screen d~A is fixed at the origin of an unprimed coordinate
frame such that it points into the êz direction. Let it be observed from another,
primed, frame moving with velocity v into the common êz direction of the
two frames. For simplicity, clocks are supposed to be synchronised such that
t = 0 = t′ when the two frames coincide. An experimentalist resting in the
unprimed frame finds by counting that

dN = dΓ n~p = 2
p2dpdΩ

(2π~)3 n~p dA c cos θ dt (2.371)

photons have passed the screen after a time interval dt. A fellow experimentalist
resting in the primed frame counts

dN′ = 2
p′2dp′dΩ′

(2π~)3 n′
~p′ dA′ (c cos θ′ − v) dt′ (2.372)
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photons in the time interval dt′ measured on his clock. If the two experimental-
ists agree to synchronise the durations of their measurements by

dt′ = γdt (2.373)

to account for the relativistic time dilation, they must count the same number of
photons, dN = dN′. In order to see what this implies for the occupation numbers
n~p in the unprimed and n′

~p′ in the primed frame, we need to Lorentz transform
the absolute value p of the photon momentum, the solid-angle element dΩ and
the direction cosine cos θ. The area elements are unchanged, dA = dA′, for they
are perpendicular to the direction of the relative motion of the two frames.

We have seen in (1.45) and (1.47) that angles and solid angles change like

cos θ′ =
β + cos θ

1 + β cos θ
and dΩ′ =

dΩ

γ2 (1 + β cos θ)2 (2.374)

under Lorentz transforms. The absolute value of the momentum is p = E/c, as
shown in (2.356), and thus transforms like the zero component of a four-vector,

p′ = p′0 = γ
(
p0 + βp3

)
= γ (p + β cos θp) = pγ(1 + β cos θ) . (2.375)

We now insert the primed quantities into (2.372) to find

dN′ = 2
p2dpdΩ

(2π~)3

[
γ(1 + β cos θ)

]3

γ2(1 + β cos θ)2 n′p′ dA c
(
β + cos θ

1 + β cos θ
− β

)
γdt

= 2
p2dpdΩ

(2π~)3 γ2(1 + β cos θ) n′p′ dA c cos θ
1 − β2

1 + β cos θ
dt

= 2
p2dpdΩ

(2π~)3 n′p′ dA c cos θ dt (2.376)

for the number of photons counted by the experimentalist resting in the primed
frame. This agrees with dN from (2.371) if, and only if, the occupation numbers
transform as n~p = n′

~p′ . With (2.360), this implies the important result that the
specific intensity divided by ω3 is invariant,

Iω
ω3 =

I′ω
ω′3

. (2.377)

2.10 The Planck spectrum and Einstein coefficients

In this section, the Planck spectrum is derived from first principles, i.e. from
the grand-canonical partition sum of a photon gas in thermal equilibrium
with a heat bath of given temperature. The first main result is the specific
intensity (2.396) as a function of frequency at given temperature of ther-
mal (black-body) radiation. Then, the Einstein coefficients for absorption,
stimulated and spontaneous transition are introduced. The relations (2.425)
between them required by the Planck spectrum are derived, showing that
spontaneous transitions are necessary and that the rates of stimulated
emission and absorption must be equal.
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Example: The dipole of the Cosmic Microwave Background

To give an example, let us study an instructive consequence of the relativistic
invariance of Iω/ω3. In its rest frame, the Cosmic Microwave Background
(CMB) is an isotropic radiation field with a Planck spectrum. The occupation
number is thus given by

np =

[
exp

(
~ω

kTCMB

)
− 1

]−1

, (2.378)

where TCMB is the CMB temperature. The energy of a photon measured by
an observer moving with a four-velocity u with respect to the rest frame of
the radiation is the (negative) projection of the photon’s four-momentum on
the four-velocity,

E = −〈p, u〉 . (2.379)

This is quickly verified for an observer at rest in the rest frame of the radiation,
who has uµ = (c, 0)T there. With pµ from (2.355), the projection (2.379) is

− 〈p, u〉 = −p µuµ = ~ω (2.380)

for this observer, as it should be. An observer moving instead with u′ =

γ(c,~v)T = γc(1, ~β)T relative to the rest frame of the radiation, however, mea-
sures the photon energy

E′ = −〈p, u′〉 = ~ωγ
(
1 − ~β · ê

)
= Eγ

(
1 − ~β · ê

)
. (2.381)

This is the relativistic Doppler shift: The moving observer measures a relative
energy change of

E′ − E
E

= γ(1 − β cos θ) (2.382)

compared to the observer at rest. For θ = 0, this result simplifies to

E′ − E
E

=
1 − β√
1 − β2

=

√
1 − β
1 + β

≈ 1 − β , (2.383)

where the approximation in the final step is valid for β � 1.
Returning to the CMB, the moving observer sees the occupation number

n′p′ =

[
exp

(
~ω′

kT ′CMB

)
− 1

]−1

=

[
exp

(
~ωγ(1 − β cos θ)

kT ′CMB

)
− 1

]−1

, (2.384)

which must be the same as np from (2.378). This can only be achieved if the
moving observer sees a direction-dependent temperature

T ′CMB = TCMBγ(1 − β cos θ) ≈ TCMB

(
1 − v

c
cos θ

)
, (2.385)

where the approximation is again valid for non-relativistic motion, v � c.
The motion of the Earth relative to the rest frame of the CMB thus imprints
a dipolar pattern on the measured CMB temperature (Figure 2.18). With
β ≈ 10−3 and TCMB ≈ 3 K, the amplitude of this temperature dipole is of
milli-Kelvin order. J
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Figure 2.18 The gray-scale image shows the dipole of the Cosmic Microwave
Background, measured by the Wilkinson Microwave Anisotropy Probe. In red, the
emission from the Galactic disk is shown. (Provided by the WMAP Science Team)

2.10.1 The Planck spectrum

We begin by recalling some general results from statistical physics. Suppose we
have an ensemble of quantum states whose occupation is in equilibrium with a
heat bath of temperature T . For convenience, we shall express the temperature
by the inverse thermal energy β below, β = (kBT )−1. Let these states be labelled
by an abstract index α which may be composed of various quantum numbers,
as appropriate for the system at hand. The energies of these quantum states are
called εα, and the quantum states are occupied nα times. If the total number

N =
∑
α

nα (2.386)

of occupied states is unspecified, the ensemble has the grand-canonical partition
sum

ZGC =

∞∑
N=0

e βµN
∑
{nα}

exp

−β∑
α

εαnα

 , (2.387)

where the summation over {nα} is meant to indicate that the set {nα} must obey
condition (2.386). The chemical potential µ is the energy required to change
the occupation number by unity. With (2.386), the partition sum (2.387) can be
written

ZGC =

∞∑
N=0

∑
{nα}

exp

−β∑
α

(εα − µ)nα

 =
∑
nα

exp

−β∑
α

(εα − µ)nα

 ,
(2.388)

where the decisive last step was possible because the sum over nα, constrained
by the fixed total occupation number N and followed by a sum over all pos-
sible values of N, amounts to an unconstrained sum over nα. The sum in the
exponential translates to a product, and we find

ZGC =
∏
α

Zα , Zα =
∑
nα

e−β(εα−µ)nα . (2.389)
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For Fermi-Dirac systems, nα ∈ {0, 1}, while nα ∈ [0,∞) for Bose-Einstein
systems. Thus,

ZFD
α = 1 + e−β(εα−µ) , ZBE

α =
1

1 − e−β(εα−µ) , (2.390)

where we have carried out a geometrical series for the Bose-Einstein case. The
mean occupation numbers are

n̄α =
1

Zα

∑
α

nαe−β(εα−µ)nα =
1
β

∂

∂µ
ln Zα . (2.391)

Applying this to (2.390), we find

n̄FD
α =

1
e β(εα−µ) + 1

, n̄BE
α =

1
e β(εα−µ) − 1

. (2.392)

For a free photon gas, µ = 0 because photons can spontaneously be created or
destroyed. If we label photon energies εα by their momentum, εα = cp. The
energy density contained per unit photon momentum in the photon gas is then

dUp = 2 · 4πp2dp
(2π~)3 · cp · n̄BE

p =
c

π2~3

p3dp
e βcp − 1

, (2.393)

where the factor of two accounts for the two polarisation states of each photon.
Substituting the momentum p by the frequency ω through

E = ~ω = cp , (2.394)

we find the spectral energy density

dUω

dω
=
~

π2c3

ω3

e β~ω − 1
. (2.395)

Multiplying with c/(4π) according to the definition of the specific intensity in
(2.360), we find the Planck spectrum

Iω =
c

4π
dUω

dω
=: Bω(T ) =

~

4π3c2

ω3

e β~ω − 1
. (2.396)

This is often expressed in terms of the frequency ν = ω/(2π), for which we
obtain

Bν(T ) =
c

4π
dUν

dν
=

2h
c2

ν3

e βhν − 1
. (2.397)

The Planck spectrum has the characteristic frequency

ω0 =
kBT
~

, ν0 =
kBT

h
=
ω0

2π
, (2.398)

which can conveniently be used to introduce the dimension-less frequency

x :=
ω

ω0
=
ν

ν0
, (2.399)

in terms of which the Planck spectrum becomes (Figure 2.19)

Bω =
(kBT )3

4π3(~c)2

x3

ex − 1
, Bν =

2(kBT )3

(hc)2

x3

ex − 1
. (2.400)
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The prefactors of Bω and Bν in (2.400) evaluate to

Bω,0 :=
(kBT )3

4π3(~c)2 = 2.12 · 10−17 erg
cm2 s Hz sr

(T
K

)3
, Bν,0 = 2πBω,0 .

(2.401)
The corresponding spectral energy density is

4π
c

Bω,0 = 8.88 · 10−27 erg
cm3 Hz

(T
K

)3
. (2.402)
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Figure 2.19 This figure shows the function x3/(ex − 1) describing the frequency
dependence of the Planck spectrum. The vertical line marks the location of the
maximum at xmax ≈ 2.82.

?
How would you solve an equation
like (2.403)? Remind yourself of
the Newton-Raphson method. Test
how quickly the method converges
starting with x0 = 3 or x0 = 5. What
happens if you start with x0 ≤ 2?

The maximum of the Planck spectrum is located where

d
dx

x3

ex − 1
= 0 ⇒ (3 − x)ex = 3 , (2.403)

which is a transcendental equation solved by xmax ≈ 2.82. With the help of
(2.403), we have

x3
max

exmax − 1
= x2

max(3 − xmax) ≈ 1.43 (2.404)

there, hence the maximum amplitude of the Planck spectrum is approximately
1.43 Bω,0.

For high frequencies, x � 1, the exponential in the denominator of (2.400)
dominates, and the Planck spectrum can be approximated by Wien’s law,

Bω ≈ Bω,0 x3e−x , (2.405)

while it turns into the Rayleigh-Jeans law for low frequencies, x � 1. Then,
ex − 1 ≈ x, which allows the approximation

Bω ≈ Bω,0 x2 (2.406)

of the spectrum. The Rayleigh-Jeans law is often used to define a radiation
temperature Trad by requiring

2ν2

c2 kBTrad
!
= Iν . (2.407)
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Obviously, this agrees well with the thermodynamic temperature if x � 1 or
hν � 2.82 kBT and Iν = Bν, but the deviation may become considerable for
higher frequencies.

The total energy density contained in the photon ensemble is

U(T ) =

∫ ∞

0

dUω

dω
dω =

(kBT )4

π2(~c)3

∫ ∞

0

x3dx
ex − 1

. (2.408)

The remaining integral is best carried out after expanding the integrand into a
geometrical series,∫ ∞

0

x3dx
ex − 1

=

∫ ∞

0

e−xx3dx
1 − e−x =

∫ ∞

0
x3dx e−x

∞∑
j=0

e− jx =

∞∑
j=1

∫ ∞

0
x3dx e− jx .

(2.409)
Each individual integral in (2.409) gives∫ ∞

0
x3dx e− jx =

Γ(4)
j4

. (2.410)

Returning with this result to the energy density in (2.408), we find

U(T ) =
Γ(4)
π2

(kBT )4

(~c)3

∞∑
j=1

1
j4

=
Γ(4)ζ(4)
π2

(kBT )4

(~c)3 =
π2

15
(kBT )4

(~c)3 =: aT 4 ,

(2.411)
where ζ(4) = π4/90 and Γ(4) = 3! = 6 were used in the step next to the last.
Finally, the derived constant

a :=
π2

15
k4

B

(~c)3 = 7.57 · 10−15 erg4

cm3 K4 (2.412)

was introduced, which is sometimes called the Stefan-Boltzmann constant.
Using the same approach, we find that the number density of the photons is
given by

nγ(T ) =

∫ ∞

0
dω

dUω

dω
1
~ω

=
(kBT )3

π2(~c)3

∫ ∞

0

x2dx
ex − 1

=
2ζ(3)
π2

(kBT )3

(~c)3 , (2.413)

with ζ(3) ≈ 1.202.

?
Carry out the integration (2.410)
yourself, and confirm the result
(2.413).

2.10.2 Transition Balance and the Einstein coefficients

Suppose now that we have an ensemble of simplified atoms with just two
energy levels E1 and E2 > E1 which are supposed to be in equilibrium with an
ambient radiation field characterised by a temperature T . We consider the mean
transition rates in an emission- and absorption process between the photons of
the radiation field and transitions between the two energy levels.

Besides absorption and spontaneous emission, we will have to take stimulated
emission into account, which is a consequence of the Bose character of the
photons. If a quantum state is already occupied by photons, an increase in the
occupation number is more likely.
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Figure 2.20 Spectrum of the Cosmic Microwave Background measured by the
FIRAS instrument on-board the COBE satellite [5].

Example: The spectrum of the Cosmic Microwave Background

The best measured Planck spectrum that we know of is the spectrum of
the cosmic microwave background (Figure 2.20). The CMB temperature of
TCMB = 2.726 K sets the characteristic frequency

ω0,CMB =
kBTCMB

~
= 356.88 · 109 s−1 , ν0,CMB =

ω0,CMB

2π
= 56.80 GHz

(2.414)
and the frequency of the maximum specific intensity is

νmax,CMB =
ωmax,CMB

2π
= 160.18 GHz . (2.415)

There, the specific intensity and the spectral energy density are

Bνmax,CMB = 1.90 · 10−16 erg
cm2 s Hz sr

,

Uνmax,CMB = 7.98 · 10−26 erg
cm3 Hz

. (2.416)

The total energy density in the CMB is

U = 4.17 · 10−13 erg
cm3 , (2.417)

which is contributed by
nγ ≈ 410 cm−3 (2.418)

photons per cubic centimetre. J

The rates of absorption and of stimulated emission, B12 and B21, respectively,
will be proportional to the specific intensity Iω,

(absorption rate) ∝ IωB12 and (stimulated emission rate) ∝ IωB21 ,

(2.419)
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while the rate of spontaneous emission, A21, will not depend on Iω,

(spontaneous emission rate) ∝ A21 . (2.420)

The rate coefficients A and B are called Einstein coefficients.

A21, spontaneous emission

IωB21, stimulated emission

IωB12, absorption

Figure 2.21 Illustration of radiative transitions between two quantum levels and
the Einstein coefficients.

Now, let N1 and N2 be the mean occupation numbers of states with the energies
E1 and E2. Equilibrium between transitions (Figure 2.21) will require as many
transitions per unit time from E1 to E2 as from E2 to E1,

N1IωB12 = N2 [A21 + IωB21] . (2.421)

Solving for Iω, we see that this can be satisfied if the specific intensity is

Iω =
N2A21

N1B12 − N2B21
. (2.422)

Since we assume thermal equilibrium, the occupation numbers N2 and N1 must
also be related by a Boltzmann factor,

N2

N1
= e−β(E2−E1) = e−β~ω . (2.423)

Inserting this into (2.422), we find

Iω =
A21e−β~ω

B12 − B21e−β~ω
=

A21

B12e β~ω − B21
. (2.424)

We can bring this into agreement with Planck’s spectrum derived from quantum
statistics (2.396) if, and only if, the rate coefficients satisfy Einstein’s relations,

B12 = B21 and A21 =
~ω3

4π3c2 B21 . (2.425)

This is a very interesting result, obtained by Einstein long before quantum
statistics was established. It shows that without stimulated emission B21 = 0,
the Planck spectrum cannot be obtained, and the microscopic rates of absorption
and stimulated emission, B12 and B21 must be equal.
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Problems

1. Consider an ensemble of Hydrogen atoms of temperature T . Besides
the ground state, a fraction of atoms is thermally excited so that their
electrons occupy higher energy levels.

(a) Calculate the fraction n j/n1 of Hydrogen atoms in the excited state
j relative to the ground state for j = 2, 3.

(b) Calculate the relative intensity of the Lyman-β (3→ 1) and Lyman-
α (2 → 1) lines for a cloud of atomic hydrogen with T = 100 K.
The oscillator strengths and the wavelengths are fβ = 0.0791, fα =

0.4162 and λα = 1216 Å, λβ = 1026 Å, respectively.

2. For an ensemble of atoms with temperature T in thermal equilibrium
with a radiation field, the rates for spontaneous emission A21, induced
emission B21 and absorption B12 between the energy levels 1 and 2 satisfy

N1IωB12 = N2(A21 + IωB21) , (2.426)

where Iω is the specific intensity of the radiation field and N1,2 are the
numbers of atoms in the first and the second energy levels, respectively.
We can use the former equation to deduce the Lyman-α cross section σα.

(a) Show that the rate equation can be written as

3A21n(ωα) =

∫
dωσα(ω)

ω2

π2c2 n(ω) , (2.427)

where n(ω) = [exp(ω/kBT ) − 1]−1 is the occupation number and
ωα the circular frequency of the Lyman-α transition. The transition
rate B12 is written in terms of the cross section σα.

(b) The cross section can be written as σα = Cφ(ω − ωα) with the
line profile function φ and a constant C. Determine C. Use A21 =

6.25 · 108 s−1 and λα given before. You may assume that the profile
function is very narrow, i.e. it can be approximated by a Dirac delta
function.

2.11 Absorption and Emission

This section begins with the definition of macroscopic coefficients for the
spontaneous emission and absorption of radiation, leading to the net absorp-
tion coefficient, the opacity and the emissivity. The derivation of Kirchhoff’s
law (2.436) follows, which relates these quantities to the specific intensity.
We then set up the radiation-transport equation and solve it under simplifying
assumptions, leading to the solution (2.445). The section concludes with a
discussion of continuous rather than discrete transitions.
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2.11.1 Absorption coefficients and emissivity

We now want to describe how the energy transported by light is changed as the
light propagates through an absorbing and emitting medium. The absorption
coefficient αω is defined in terms of the energy absorbed per unit volume, time
and frequency from the solid angle d2Ω,

αωIω =

(
dE

dVdtdωd2Ω

)
abs

. (2.428)

Since the stimulated emission is also proportional to Iω, an analogous definition
applies for what is called the induced emission coefficient,

αind
ω Iω =

(
dE

dVdtdωd2Ω

)
ind

. (2.429)

To further account for the spontaneous emission, we define the emissivity

jω =

(
dE

dVdtdωd2Ω

)
spn

, (2.430)

which is the energy emitted spontaneously per unit volume, time and frequency
into the solid-angle element d2Ω. Effectively, the net absorption is the difference
between absorption and stimulated emission,

αnet
ω = αω − αind

ω . (2.431)

Since the dimension of the specific intensity Iω is

energy
time · area · frequency · solid angle

, (2.432)

αω must obviously have the dimension (length)−1. The inverse absorption
coefficient α−1

ω thus characterises a length, which can be identified with the
mean free path for a photon of frequency ω.

Let now σω be the cross section of an atom, molecule or other particle for
the absorption of light of frequency ω. The number density of such absorbing
particles be n, and their mass density be ρ. Then, the absorption must be due to
the combined cross sections of these particles,

αω = nσω =: ρκ . (2.433)

The quantity κ introduced in the last step, characterising the absorption by
unit mass of the medium, is called opacity. Its physical dimension must be an
absorption cross section per unit mass, thus an area per unit mass,

[κ] =
cm2

g
. (2.434)

If the absorbing and emitting material is in equilibrium with the radiation field
passing through it, the emitted and absorbed amounts of energy must equal,
hence

jω + αind
ω Iω = αωIω (2.435)
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or, by the definition (2.431) of the net absorption coefficient, the ratio between
emissivity and net absorption coefficient must equal the specific intensity Iω,

Iω =
jω
αnet
ω

, (2.436)

which is Kirchhoff’s law. At the same time, we have the relation (2.421) between
the specific intensity and the Einstein coefficients, which must themselves be
related by Einstein’s relations (2.425). Combining these results, we find the
relation

jω
αnet
ω

=
~ω3

4π3c2

(
N1

N2
− 1

)−1

(2.437)

between the occupation numbers N1 and N2 of two energy levels contributing
to the radiation balance on one side, and the emissivity and the net absorption
coefficient on the other. Thus, if the occupation numbers are known, the
emission and absorption properties in equilibrium can be calculated, and vice
versa. In particular, in thermal equilibrium between radiation and matter, the
specific intensity must be given by the Planck spectrum, Iω = Bω, hence

αnet
ω =

jω
Bω

. (2.438)

2.11.2 Radiation Transport in a Simple Case

Let us now consider an emitting and absorbing medium in which scattering
can be ignored. The medium be characterised by its emissivity jω and a net
absorption coefficient αnet

ω . A light bundle passing through it has its intensity
changed per unit path length by an amount

dIω = jω dl︸︷︷︸
emission

−αnet
ω Iω dl︸   ︷︷   ︸

absorption

, (2.439)

from which we obtain the equation of radiation transport in its simplest case,

dIω
dl

= jω − αnet
ω Iω . (2.440)

The homogeneous equation (2.440) is readily solved. Setting jω = 0 for the
moment,

dIω
dl

= −αnet
ω Iω ⇒ d ln Iω = −αnet

ω dl , (2.441)

thus

Iω(l) = Iω,0 exp
(
−

∫ l

0
αnet
ω (l′)dl′

)
, (2.442)

with an integration constant Iω,0 set by the incoming specific intensity.
?

Why does scattering have to be ig-
nored for (2.440) to hold?

The inhomogeneous equation (2.440) can now be solved by a standard tech-
nique called the variation of constants. We extend the definition of the former
integration constant Iω,0 to allow its dependence on the light path, Iω,0 = Iω,0(l),
and find

jω − αnet
ω Iω

!
=

dIω
dl

=
[
I′ω,0(l) − Iω,0(l)αnet

ω

]
exp

(
−

∫ l

0
αnet
ω (l′)dl′

)
, (2.443)
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Figure 2.22 Illustration of radiation transport. While the incoming radiation is
damped by the absorption, the spontaneous and the stimulated emission of the
medium increase the intensity.

which, with (2.442), implies

jω(l) = I′ω,0(l) exp
(
−

∫ l

0
αnet
ω (l′)dl′

)
. (2.444)

By separation of variables, this differential equation for Iω,0(l) has the solution

Iω,0(l) =

∫
dl

[
jω(l) exp

(∫ l

0
αnet
ω (l′)dl′

)]
+ C (2.445)

with another integration constant C set by boundary conditions.

Example: Constant emission and absorption

If αnet
ω and jω are constant along the light path, the inner integral in (2.445) is

simply ∫ l

0
αnet
ω dl = αnet

ω l , (2.446)

while the outer integration gives

Iω,0(l) =
jω
αnet
ω

eα
net
ω l + C . (2.447)

By (2.442), the specific intensity then develops according to (Figure 2.22)

Iω(l) =
jω
αnet
ω

−Ce−α
net
ω l (2.448)

along the path length of the light bundle. If, for example, the specific intensity
satisfies the boundary condition Iω = 0 at l = 0, it changes as a function of
path length like

Iω(l) =
jω
αnet
ω

(
1 − e−α

net
ω l

)
. (2.449)

J
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Example: Radiation transport in the limiting cases of optically thick
media
Interesting limiting cases of radiation transport are those of optically thin
or thick media. Optically thin means that the mean free path of photons is
large compared to the overall length L of the light path through the medium,
αnet
ω L � 1, while optically thick means the opposite, αnet

ω L � 1. In the
optically thin case, we can expand 1 − e−x ≈ x to first order and approximate

Iω(L) ≈ jω
αnet
ω

αnet
ω L ≈ jωL . (2.450)

The specific intensity is then simply the emissivity times the total path length.
In the optically thick case, the exponential in (2.449) tends to zero, and

Iω(L) ≈ jω
αnet
ω

. (2.451)

This closes the loop: If the radiation is in thermal equilibrium with the optically
thick medium through which it propagates, we can complete (2.451) with
(2.438) to find

Iω ≈ Bω . (2.452)

This shows that radiation in thermal equilibrium with an optically thick
medium leaves the medium with a Planck spectrum. J

Example: Radiation transport in the limiting case of optically thin
media
As a further illustrative example, let us now consider optically thin, thermal
emission of radio waves. As we have seen, an optically thin medium satisfies
αnet
ω L � 1 and Iω = jωL, while thermal equilibrium requires Iω ≈ Bω.

Combining these conditions, we find

Bω ≈ Iω ≈ jωL = αnet
ω LBω � Bω . (2.453)

This evidently contradictory conclusion demonstrates that the two assump-
tions, thermal equilibrium and optically-thin radiation, are in manifest conflict
with each other: Radiation cannot attain thermal equilibrium with an optically
thin medium. J



2.11 Absorption and Emission 113

Example: Planck spectrum shining through gas

For yet another instructive example, consider gas at temperature T1 in thermal
equilibrium with radiation having a Planck spectrum with temperature T0
before it enters the gas. In the gas, Kirchhoff’s law (2.436) demands

jω = αnet
ω Bω(T1) (2.454)

because of the thermal equilibrium. For simplicity, we assume that T1 and
αnet
ω are constant. In the present situation, (2.445) implies

Iω,0(l) = Bω(T0) + Bω(T1)αnet
ω

∫ l

0
dl′eα

net
ω l′

= Bω(T0) + Bω(T1)
(
eα

net
ω l − 1

)
. (2.455)

Then, the specific intensity (2.442) is given by

Iω(l) = Bω(T0)e−α
net
ω l + Bω(T1)

(
1 − e−α

net
ω l

)
, (2.456)

which is a weighed average between the two Planck spectra for temperatures
T0 and T1. As the radiation propagates into the gas, its original Planck
spectrum is gradually being replaced by the Planck spectrum determined by
the gas temperature. J

2.11.3 Emission and Absorption in the Continuum Case

In the case of transitions between discrete energy levels, the emitted energy is
determined by the number of transitions times the energy released per transition,

N2A21︸︷︷︸
(transition number)

· ~ω12︸︷︷︸
(energy per transition)

= δE . (2.457)

The emissivity, defined as the energy emitted per unit time and unit volume into
a unit solid angle, is thus related to the transition number by

jω =
N2A21~ω12

4π
→ N2A21~ω

4π
δD(ω − ω12) , (2.458)

if N2 is taken to be the occupation number of quantum states per unit volume.
The Dirac delta function is introduced here for modeling a needle-sharp line
transition. We generalise this last expression by replacing it with a more detailed
or realistic line profile function φ(ω),

jω =
N2A21~ω

4π
φ(ω) , (2.459)

which quantifies the transition probability as a function of frequency. By a
completely analogous procedure for the absorption coefficient, we find

αω =
N1B12

4π
~ωφ(ω) . (2.460) ?

Beginning with the definition of the
Einstein coefficients, deduce (2.460)
yourself.Now, we consider an electron of energy E which emits the energy

dE
dωdt

≡ P(ω, E) (2.461)
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per unit time and unit frequency. Let further f (~p ) be the momentum distribution
of the electrons, then the number of electrons with energies between E and
E + dE is

n(E) dE = f (~p )
d3 p
dE

dE = 4πp2 dp
dE

f (~p ) dE (2.462)

if we assume the electron distribution to be isotropic in momentum space. Since
each electron emits the energy

dE = P(ω, E) dωdt , (2.463)

we obtain the emissivity

jω =
1

4π

∫ ∞

0
n(E)P(ω, E) dE =

∫ ∞

0
p2 f (p)

dp
dE

P(ω, E) dE . (2.464)

By the relation (2.458) between the emissivity and the Einstein coefficient A21,
we have for a single transition described by the continuous line profile function
φ(ω)

P(ω, E2) = ~ω

∫ E2

0
A21φ(ω) dE1 , (2.465)

since electrons with the energy E2 can emit through transitions to all possible
states with E1 < E2. Using now Einstein’s relation (2.424) between A21 and
B21, we find

P(ω, E2) = ~ω
~ω3

4π3c2

∫ E2

0
B21φ(ω) dE1 . (2.466)

Similarly, the net absorption coefficient is

αω =
~ω

4π

∫
dE1

∫
dE2

 n(E1)B12︸    ︷︷    ︸
(absorption)

− n(E2)B21︸    ︷︷    ︸
(stimulated emission)

 φ(ω) .

(2.467)
Exchanging the order of integrations and inserting (2.466) into the second term,
that term can be rewritten as

~ω

4π

∫
dE2n(E2)

∫
dE1 B21φ(ω) =

π2c2

~ω3

∫
dE2 n(E2)P(ω, E2) . (2.468)

By the same procedure and using E2 = E1+~ω, the first term can be transformed
into

~ω

4π

∫
dE2n(E1 − ~ω)

∫
dE1 B12φ(ω) =

π2c2

~ω3

∫
dE2 n(E2 − ~ω)P(ω, E2) .

(2.469)
We thus obtain the absorption coefficient

αω =
π2c2

~ω3

∫
dE [n(E − ~ω) − n(E)] P(ω, E) . (2.470)

In thermal equilibrium with a heat bath of temperature T and far from de-
generacy, the electron number density must be proportional to a Boltzmann
factor,

n(E) ∝ exp
(
− E

kBT

)
, (2.471)
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thus the difference of the electron number densities at different energies is

n(E − ~ω) − n(E) = n(E)
[
exp

(
~ω

kBT

)
− 1

]
. (2.472)

Inserting to (2.470) with this expression, we find

αω =
π2c2

~ω3

(
e~ω/kBT − 1

) ∫
dE n(E) P(ν, E) . (2.473)

The remaining integral is 4π jω, as (2.464) shows, allowing us to write

αω = jω
4π3c2

~ω3

(
e~ω/kBT − 1

)
. (2.474)

A glance at (2.396) finally reveals that the factor multiplying the emissivity is
the inverse Planck spectrum Bω(T ). We can thus reduce (2.474) to the relation

αω =
jω

Bω(T )
(2.475)

between absorption and emission, just as in the discrete case.

2.11.4 Energy transport through absorbing media

It is useful to re-write the transport equation (2.440) for radiation in spherical
polar coordinates. To do so, we write the total differential dIω of the specific
intensity as

dIω = ∂rIωdr + ∂θIωdθ (2.476)

and use the relations

dr = cos θdl , dθ = −sin θ
r

dl (2.477)

between the coordinate differentials dr, dθ and the path length dl. The radiation-
transport equation then reads

∂rIω cos θ − ∂θIω sin θ
r

= −αnet
ω Iω + jω . (2.478)

We now integrate over frequencies ω, introduce the averaged net absorption
coefficient ᾱnet defined by ∫ ∞

0
dωαnet

ω Iω = ᾱnetI (2.479)

and find
∂rI cos θ − ∂θI sin θ

r
= −ᾱnetI + j . (2.480)

Next, we multiply this equation by cos θ/c and integrate over the complete
solid angle dΩ = sin θdθdϕ. Due to the isotropy of the emissivity j, the second
term on the right-hand side then vanishes altogether. The second term on the
left-hand side is partially integrated to shift the derivative with respect to θ away
from the intensity I. This results in

∂r

∫
I
c

cos θ2 dΩ +
1
r

∫
I
c
∂θ

(
sin2 θ cos θ

)
dθdϕ = −ᾱnet

∫
I
c

cos θ dΩ .

(2.481)
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We have seen earlier in (2.370) that the angular moments of the intensity are
related to the energy density U, the energy current density F and the radiation
pressure Prad. Furthermore, the integral in the second term on the left-hand side
of (2.481) is∫

I
c
∂θ

(
sin2 θ cos θ

)
dθdϕ =

∫
I
c

(
3 cos2 θ − 1

)
dΩ = 3Prad − U = 0 ,

(2.482)
leaving (2.481) in the simple form c∂rP = −ᾱnetF or, with the opacity κ defined
in (2.433),

F = − c
ρκ
∂rP . (2.483)

The energy current density F is determined by the gradient of the radiation
pressure. Since the radiation pressure P is a third of the energy density U,
which is in turn given by U = aT 4 according to (2.411), we can write the result
(2.483) in the very intuitive form

F = −4acT 3

3ρκ
∂rT , (2.484)

which clearly says that the radiative energy current density through an absorbing
medium is driven by the temperature gradient, and inhibited by the opacity κ.

Problems

1. The change of the specific intensity Iω in matter per unit length is given
by the radiation transport equation

dIω
dl

= jω − αnet
ω Iω , (2.485)

where jω is the emissivity and αnet
ω is the net absorption coefficient. As-

sume that radio waves travel through a medium which has a temperature
profile T (l) = T0 exp(−l/λ), where T0 is the temperature at the surface
and λ is a typical length scale for the temperature gradient.

(a) Let αnet
ω be constant throughout the medium, and the radiation be

in local thermal equilibrium with the medium. Solve the radiation
transport equation under the condition that the incoming specific
intensity at l = 0 is Iω,in and ~ω � kBT .

(b) Assume that the incoming spectrum is given by a power law, Iω,in =

I0 (ω/ω0)−ν, which can be seen in many astrophysical phenomena.
Determine the spectrum of the radiation once it has travelled by a
distance L ∼ λ with (αnet

ω )−1 � L. What happens to the shape of
the spectrum?

Suggested further reading: [2, 6, 7, 8, 9]




