
Chapter 1

Theoretical Foundations

1.1 Units

1.1.1 Lengths, masses, times, and temperatures

We use Gaussian centimetre-gram-second (cgs) units throughout. Lengths are
measured in cm, masses in grams and time in seconds. The derived units of
force, energy and power are listed in Table 1.1. Temperatures are unvariedly
measured in Kelvin (K).

Table 1.1 The units of force, energy and power are listed here in the cgs system
together with their relations to SI units.

quantity cgs unit alternatives

force mass · acceleration
g cm

s2 dyn 10−5 N

energy mass · velocity2 g cm2

s2 erg 10−7 J

power energy / time
erg
s

10−7 W

The main reason for using these rather than SI units is they allow electromag-
netic relations to be expressed in a much easier way, as we shall now discuss.

1.1.2 Charges and electromagnetic fields

The unit of charge is chosen such that the Coulomb force between two charges
q separated by the distance r is

FCoulomb =
q2

r2 . (1.1)

With this choice, the dielectric constant of the vacuum, ε0, becomes dimension-
less and unity. Electric and magnetic fields are defined to have the same unit.
This is most sensible in view of the fact that they are both related, and can be
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2 1 Theoretical Foundations

converted into each other, by Lorentz transforms. Their unit is chosen such that
the force caused by an electric field E on a charge q is

Felectric = qE . (1.2)

This implies that charge, electric and magnetic fields must have the units given
in Table 1.2. The squared electric or magnetic field strengths then have the
dimension of an energy density.

?
Confirm the cgs units of charge and
electric or magnetic fields listed in
Tab. 1.2. Table 1.2 This table lists the units of charge, electric and magnetic field in the

Gaussian cgs system, their physical dimensions, and alternative units.

quantity cgs unit alternative

charge force1/2· length
g1/2cm3/2

s
esu

electric or magnetic field force / charge
g1/2

cm1/2 s
Gauss

By definition, the units of charge in the SI and the Gaussian cgs systems are
related by

1 Coulomb = 2.9979 · 109 esu . (1.3)

Electrostatic potential differences, or electrostatic potential energy changes per
unit charge, are measured in Volts in SI units. Consequently, we must have

1 Volt = 1
Joule

Coulomb
=

107 erg
2.9979 · 109 esu

=
1

299.79
g1/2 cm1/2

s
. (1.4)

The energy gained by a unit charge moving through an electrostatic potential
difference of 1 Volt, defined as the electron-Volt, must then be

1 eV = 1.6022 · 10−12 erg . (1.5)
?

Use the Boltzmann constant kB to
convert 1 eV to an equivalent tem-
perature.

1.1.3 Natural constants

The most frequently used natural constants in cgs units are tabulated in Ta-
ble 1.3.

In addition, some units used in astronomy and astrophysics are listed in Ta-
ble 1.4.

Caution Note that the light speed
is exact by definition of the metre. J

1.1.4 Conventions and notation

For the Minkowski metric, we use the signature

η = diag (−1,+1,+1,+1) . (1.6)

We adopt the convention

f̃ (k) = F [
f
]
(k) =

∫
ddk

(2π)d f (x) e−ik·x (1.7)
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Table 1.3 The most frequently used natural constants are tabulated here with
their common symbols and their values in cgs units. The values are taken from the
Particle Data Group (http://pdg.lbl.gov/, last accessed on Nov. 22, 2020).

quantity symbol value in cgs units
light speed c 2.9979 · 1010

elementary charge e 4.8032 · 10−10

electron mass me 9.1094 · 10−28

proton mass mp 1.6726 · 10−24

Boltzmann’s constant kB 1.3806 · 10−16

Newton’s constant G 6.6743 · 10−8

Planck’s constant ~ 1.0546 · 10−27

Table 1.4 Some units common in astronomy and astrophysics are listed here.

unit symbol type value in cgs units
Solar radius R� length 6.9634 · 1010

astronomical unit AU length 1.4960 · 1013

light year ly length 9.4607 · 1017

parsec pc length 3.0857 · 1018

Earth mass M♁ mass 5.9724 · 1027

Jupiter mass MX mass 1.8990 · 1030

Solar mass M� mass 1.9884 · 1033

tropical year y time 3.1557 · 107

sidereal year y time 3.1558 · 107

Solar luminosity L� energy/time 3.8460 · 1033

Jansky Jy specific intensity 10−23
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for the Fourier transform in d dimensions, and

f (x) = F −1(x) =

∫
dd x f̃ (k) eik·x (1.8)

for its inverse. We use the short-hand notation∫
x

:=
∫

dd x and
∫

k
:=

∫
ddk

(2π)d (1.9)

for the integrals over coordinates x ∈ Rd and wave vectors k ∈ Rd.

1.2 Lorentz Invariance

This section summarises the concepts of special relativity and their conse-
quences for the structure of space-time and for the dynamics of a particle.
Its most important results are the relativistic time dilation (1.36) and the
Lorentz contraction (1.40), the addition theorem for velocities (1.42) and the
transformation of angles (1.45), the combination of energy and momentum
into the momentum four vector (1.63) and the relativistic relations (1.66) and
(1.67) between energy, momentum and velocity.

Perhaps it is helpful to begin with the statement that classical physics aims to
quantify the behaviour of physical entities in space with time. Point mechanics,
for example, studies the trajectories of particles with negligible extension. A
trajectory can be quantified by a vector-valued function ~x(t) which assigns a
spatial vector ~x to any instant t from a finite or infinite time interval. Field
theory describes forces as the effect of fields, which are functions of space and
time obeying their own dynamics. Immediately, we are led to the question how
we want to identify points in space and instants in time in a quantifiable manner.

This is achieved by a reference frame or a coordinate system. In Newtonian
physics, space and time were both assumed to be absolute. A rigid reference
frame was assumed to exist which identified each point in space by a triple ~x of
real-valued, spatial coordinates, and by a real number t for the time. Having
formulated the laws of physics in this absolute frame, the immediate further
question arises as to how other frames of reference, or coordinate systems,
could be chosen such that those laws would remain valid without changing their
form. The answer of Newtonian physics was that the laws of physics are the
same in all so-called inertial frames. In slightly different words, the laws of
physics were claimed to be invariant under all transformations leading from
one inertial frame to another.

A clarifying remark should be in order here before we move on. Notice the
perhaps trivial point that not the physical quantities are generally assumed to
be unchanged under transformations from one inertial frame to another, but
the form of the physical laws relating them. For example, Newton’s second
axiom, force is mass times acceleration, is expected to hold in all inertial frames,
irrespective of the specific values of the acceleration and the force. In another
inertial frame, the values of force and acceleration may and generally will be
different, but the statement of the law, force equals mass times acceleration, is
expected to remain valid. Valid physical laws are expected to be invariant in this



1.2 Lorentz Invariance 5

sense. If, in addition, physical quantities can be identified that remain invariant
under transformations from one inertial frame to another, such conserved quan-
tities play an important role in the analysis of specific physical systems under
consideration. It is thus of central importance for any part of theoretical physics
to clearly state which type of transformation should lead from one inertial frame
to another.

In a more mathematical language, transformations between inertial frames
form groups. Admissible physical laws are those which are invariant under
the operation of those groups. The identification of the invariance group of a
physical theory is perhaps the most fundamental step in its foundation.

1.2.1 The Special Lorentz Transform

In Newtonian mechanics, inertial frames are related by Galilei transformations.
If one inertial frame is given, any Galilei transform turns it into another one.
The Galilei transforms form a ten-parameter group of transformations. They
contain shifts of the origin in space and time (four parameters), translations
with constant velocity (three parameters), and rotations in space (further three
parameters, e.g. the Euler angles). Consequences of the Galilei invariance of
Newtonian mechanics are the existence of an absolute time and the Galilean
addition theorem for velocities.

However, the Galilei invariance of Newtonian mechanics leads to contradictions
with experience. The decay of muons sets a prominent example. Myons are
leptons comparable to the electron, but with a mass of 105.6 MeV instead of
0.511 MeV. They decay according to

µ→ e− + ν̄e + νµ (1.10)

into electrons and (anti-) neutrinos with a half-life of τµ = 1.5 · 10−6 s. Ex-
periments show, however, that the lifetime increases if the muon moves in the
laboratory frame with velocities near the speed of light. The electron emitted
in the decay has almost light speed, but never exceeds it even if the muon had
already moved with almost the speed of light. Clearly, the muon seems to live
longer in the laboratory rest frame than in its own rest frame, and the Galilean
theorem for adding velocities does not longer apply.

Einstein’s theory of Special Relativity replaced the Galilei invariance of New-
tonian mechanics by the Lorentz invariance of relativistic physics. Special
Relativity grew from the problem that the speed of light c appears as an absolute
velocity in Maxwell’s vacuum equations of electrodynamics. Einstein radically
solved this problem by elevating the postulate to a principle that the speed of
light c is a universal constant, independent of the state of motion of the light
source relative to the observer. Interestingly, the concepts of absolute space and
time underlying Newtonian physics were thus replaced by the concept of an
absolute, observer-independent maximal velocity.

Consider now two inertial frames, S and S ′, moving relative to each other at
an arbitrary, constant speed (Figure 1.1). Imaginge a flash of light going off.
By the principle of the constant light speed, the wave front of the flash must
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Figure 1.1 Left : Two inertial frames are shown moving with constant velocity ~v
relative to each other. They are synchronised such that their origins coincide at
t = 0 = t′. Right : A light signal emerging from a source at the common origin of
both frames, illustrated by the coloured spheres, propagates in the same way in
both frames, despite the relative motion of the two frames.

propagate in the same way in both frames irrespective of their relative velocity
and therefore obey the condition

d~x2 − c2dt2 = d~x ′2 − c2dt′2 . (1.11)

For definiteness and without loss of generality, we now rotate the coordinate
frames S and S ′ such that they move with respect to each other along their
common êz axis, and further set the origin of time such that both frames coincide
at t = 0 = t′. Requiring further that the transformation between S and S ′ be
linear leads directly to the special Lorentz transform

x′3 = γ
(
x3 + βct

)
, ct′ = γ

(
ct + βx3

)
, (1.12)

where β = v/c is the relative velocity in units of the light speed, and the Lorentz
factor

γ :=
(
1 − β2

)−1/2
(1.13)

appears. In the limit of low velocities, β � 1, the Lorentz factor is γ ≈ 1 + β2/2
to second order in β, or γ ≈ 1 to first order. Note that we write the vector
indices in (1.12) as superscripts. This may appear arbitrary here, but has a
deeper mathematical sense that will shortly be explained.

As (1.12) shows, the time t and the spatial coordinates xi cannot be uniquely
or invariantly separated under special Lorentz transforms. They lose their
independent identity and become coupled to each other, depending on the
relative motion of the frames in which they are measured. Instead of the rigid
Newtonian, Euclidean space-time with its uniquely defined, absolute time axis,
we thus need to adopt a four-dimensional space-time with a different structure.
We introduce ct := x0 as a further coordinate and combine the coordinate
quadruples to four-vectors x = (xµ) = (x0, x1, x2, x3)>. This four-dimensional
space with a structure to be clarified below is called Minkowski spaceM = R3+1.

The Lorentz transform connects any two inertial frames in the four-dimensional
Minkowski space. General Lorentz transforms are composed of special Lorentz
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transforms in all spatial directions, the so-called Lorentz boosts, plus the or-
thogonal three-dimensional spatial rotations. Poincaré transforms are general
Lorentz transforms combined with arbitrary translations in space and time. Like
the Galilei transformations, Poincaré transformations have ten parameters: the
three Euler angles for the orthogonal three-dimensional rotations, the four trans-
lations, and one velocity for the Lorentz boosts in all three independent spatial
directions. In relativistic mechanics, the Poincaré transformations replace the
Galilei transformations of Newtonian mechanics.

1.2.2 Minkowski Space

Since Lorentz transforms leave the expression −(x0)2 + ~x 2 invariant by con-
struction, we define the Minkowskian scalar product between two four-vectors
as

〈x, y〉 = −x0y0 + ~x · ~y = η(x, y) , (1.14)

where ~x · ~y is the ordinary scalar product between two vectors in Euclidean
space. The product 〈·, ·〉 is a pseudo-scalar product because it is not positive
semi-definite. Based on this scalar product, the Lorentz group as the invariance
group of relativistic physics, abbreviated by O(3, 1), can now formally be
defined as the set of all linear transforms represented by real-valued, square,
4 × 4 matricesM(4,R) that leave the scalar product (1.14) unchanged,

O(3, 1) = {Λ ∈ M(4,R) : 〈Λx,Λy〉 = 〈x, y〉 ∀ x, y ∈ M} . (1.15)

This clearly repeats as a mathematical statement that Lorentz transforms are
defined as those linear transforms leaving the speed of light invariant.

?
Show that the condition

Λ>ηΛ = η

is equivalent to 〈Λx,Λy〉 = 〈x, y〉.
The object η introduced in (1.14) satisfies the definition of a second-rank tensor,
as it is a bilinear map of two vectors from Minkowski space M into the real
numbers,

η : M ×M→ R , (x, y) 7→ η(x, y) = 〈x, y〉 . (1.16)

This tensor is the metric tensor of Minkowski space, or the Minkowski metric.
Generally, a metric is a second-rank, symmetric tensor which is non-degenerate.
This means that if 〈x, y〉 = 0 for all x ∈ M, then y = 0. Once a Cartesian coordi-
nate basis is introduced for Minkowski space, the metric can be represented by
the diagonal matrix (

ηµν
)

= diag(−1, 1, 1, 1) , (1.17)

which allows us to write the scalar product (1.14) as

〈x, y〉 =
∑
µ,ν

ηµνxµyν . (1.18)

The subscripted indices introduced here are again not arbitrarily set and will be
further illustrated below. By means of the metric, the linear map x∗ defined by

x∗ : M→ R , y 7→ x∗(y) = η(x, y) = 〈x, y〉 (1.19)

can be introduced on Minkowski space. It maps vectors into the real numbers
as shown. The set of all such linear maps forms the dual vector space M∗ to
Minkowski spaceM.
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While vector components are identified by upper indices, dual-vector compo-
nents are written with lower indices. Then, according to

〈x, y〉 =
∑
µ,ν

ηµνxµyν =

4∑
ν=0

 4∑
µ=0

ηµνxµ
 yν , (1.20)

the dual vector x∗ of a four-vector x has the components

xν =

4∑
µ=0

ηµνxµ =
(
−x0, x1, x2, x3

)
. (1.21)

In Euclidean space, the distinction between vectors and dual vectors is irrelevant
because its metric can be represented by the unit matrix. In Minkowski space,
it becomes vitally important because of the minus sign of the time-time (or 0-0)
component in the metric.

We now introduce Einstein’s sum convention in the following form. If an
index appears twice in a product and at different levels (i.e. one sub- and one
superscripted), a sum over the repeated index is implied. Thus, for example,

xµyµ =

3∑
µ=0

xµyµ . (1.22)

This notation simplifies the previous expressions considerably. Written in
components, the scalar product between two vectors x and y simply becomes

〈x, y〉 = xµyµ . (1.23)

The notation of four-vectors and their dual vectors is made consistent by writing
the inverse Minkowski metric η−1 with superscripted indices, since then

xµ = ηµαxα = ηµαηανxν = δ
µ
ν xν . (1.24)

Thus, we must have
ηµαηαν = δ

µ
ν , (1.25)

from which we conclude that the matrix representations of the Minkowski
metric as well as of its inverse can be brought into the diagonal form(

ηµν
)

=
(
ηµν

)
= diag(−1, 1, 1, 1) . (1.26)

In the notation developed so far, the special Lorentz transform (1.12) can be
written as

x′µ = Λ
µ
ν xν with (Λµ

ν ) =


γ 0 0 γβ

0 1 0 0
0 0 1 0
γβ 0 0 γ

 . (1.27)

Since the Lorentz transform is constructed to leave the Minkowski scalar prod-
uct invariant, recall (1.15), we must have

ηαβxαxβ = 〈x, x〉 = 〈x′, x′〉 = ηµνΛ
µ
α xαΛν

β xβ =
(
ηµνΛ

µ
α Λν

β

)
xαxβ , (1.28)
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showing that the Lorentz transform also leaves the Minkowski metric invariant,

ηαβ = ηµνΛ
µ
α Λν

β . (1.29)

This relation replaces the perhaps more familiar orthonormality relation in
Euclidean space. There, orthonormal transformations R need to satisfy the
condition (

R~x
) · (R~y )

= ~x · ~y , (1.30)

which implies the condition R> = R−1 on matrix representations of R.

?
Compare (1.29) with the condition

Λ>ηΛ = η .The Minkowskian orthonormality relation (1.29) implies that dual-vector com-
ponents must transform under Lorentz transformations as

x′µ = Λ
ν
µ xν , (1.31)

which differs from the transformation (1.27) of vector components. Quantities
transforming like vector or dual-vector components under Lorentz transforms
are called Lorentz contravariant or covariant, respectively. Quantities unchanged
by Lorentz transforms are Lorentz invariant. Vectors are consequently some-
times addressed as contravariant vectors, dual vectors as covariant vectors,
which is a terminology which we avoid here because it hides the more funda-
mental mathematical distinction between vectors and dual vectors (which is
also decisively important elsewhere, e.g. in quantum mechanics).

Since the coordinate time becomes largely arbitrary in Special Relativity as it
loses any invariant meaning, it needs to be replaced by an invariant measure of
time. The only Lorentz-invariant quantity that can be defined to characterise
the separation between two space-time points xµ and xµ + dxµ is the so-called
line element of the Minkowski metric (1.14),

ds2 = ηµνdxµdxν . (1.32)

This line element is interpreted as the so-called proper time dτ by the identifica-
tion

ds2 = −c2dτ2 . (1.33)

This definition is meaningful since the proper time equals the time measured
by an observer in his or her own rest frame. In that frame, an observer arbi-
trarily placed at the spatial coordinate origin has the Minkowski coordinates
(x0, 0, 0, 0)>. Two subsequent events experienced by that observer at instants of
coordinate time separated by dx0 in the rest frame have the invariant distance

c2dτ2 =
(
dx0

)2
= c2dt2 , (1.34)

which shows that the proper time agrees with the coordinate time in any ob-
server’s rest frame.

1.2.3 Some Properties of the Minkowski World

We briefly summarise some essential conclusions from the Lorentz covariance
of the Minkowski world (see also Figure 1.2). First, let two events happen in
the unprimed system S at the same location ~x = 0, but with a time difference
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Figure 1.2 Lines of constant t′ (dark red) and x′ (light red) are shown in the
unprimed system S for β = 0.25 (left) and β = 0.5 (right). The lines are inclined
with an angle arctan(β) relative to the unprimed axes.

δt or δx0 = cδt. These events have the four-vectors x1 = (0, 0, 0, 0)> and x2 =

(δx0, 0, 0, 0)>. By the special Lorentz transform (1.27), they are transformed
into the events

x′1 = (0, 0, 0, 0)> , x′2 =
(
γδx0, 0, 0, βγδx0

)>
. (1.35)

Thus, in the primed system S ′, they are separated by the larger time interval

δx′ 0 = γδx0 or δt′ = c−1δx′ 0 = γδt . (1.36)

This is the relativistic time dilation: Moving clocks go slow.

Next, we consider a unit rule oriented in the direction of the relative motion of
the two frames and resting in the unprimed system S . Its end points, measured
at an arbitrary time ct = x0 in S , are marked by the four-vectors x1 = (x0

1, 0, 0, 0)
and x2 = (x0

2, 0, 0, 1). Now, an observer in S ′ measures its end points. It is
important that he does so at one fixed instant of his coordinate time, which
we arbitrarily and without loss of generality set to be x′ 0 = 0. By (1.27), this
requires

0 = x′ 0 = γx0 + βγx3 or x0 = −βx3 . (1.37)

For the two end points of our unit rule, this simultaneity condition implies that

x0
1 = 0 and x0

2 = −β (1.38)

since x3
1 = 0 and x3

2 = 1 by construction. The unit rule’s end points x1,2 appear
at

x′1 =
(
γx0

1, 0, 0, βγx0
1

)>
, x′2 =

(
γx0

2 + βγ, 0, 0, βγx0
2 + γ

)>
(1.39)

in the primed observer’s rest frame S ′. Inserting (1.38) here gives

x′ 31 = 0 and x′ 32 =
(
1 − β2

)
γ = γ−1 . (1.40)

Thus, in the primed system S ′, the unit rule turns out to have the length x′ 32 −
x′ 31 = γ−1, which is smaller than its unit length in the rest frame. This is the
relativistic length contraction: Moving rods are shorter.
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Let us now consider a particle moving with velocity ~u = (ux, uy, uz)> in the un-
primed system. Its four vector in S , x = (x0, uxt, uyt, uzt)> = x0(1, ux/c, uy/c, uz/c)>,
is transformed into

x′ = x0

(
γ + βγ

uz

c
,

ux

c
,

uy
c
, βγ + γ

uz

c

)>
. (1.41)

The velocity components of the particle in the primed system S ′ are then found
to be

u′x,y = c
x′1,2

x′0
=

ux,y

γ(1 + βux,y/c)
, u′z = c

x′3

x′0
=

v + uz

1 + vuz/c2 . (1.42)

The last equation is the relativistic law for the addition of velocities. While the
velocity components perpendicular to the relative motion of the two frames S
and S ′ are reduced by the Lorentz factor γ, the velocity component parallel to
the motion adds to the relative velocity of the two frames in such a way that the
sum of the two velocities uz and v never exceeds c.

Let the particle now fly with the speed of light into a direction enclosing the
angle θ with the êz axis along which the two frames move relative to each
other. For simplicity, but without loss of generality, we further rotate both
coordinate frames about their common êz axis such that the particle moves in
the x-z coordinate plane. Then,

ux = c sin θ , uy = 0 , uz = c cos θ , (1.43)

in the unprimed system, and

u′x = c sin θ , u′y = 0 , u′z =
v + c cos θ
1 + β cos θ

(1.44)

in the primed system. Since the absolute velocity must also remain |~u′| = c in
the primed frame, the direction of motion in S ′ is

cos θ′ =
u′z
c

=
β + cos θ

1 + β cos θ
. (1.45)

This is the relativistic aberration of light: Light rays propagating perpendicularly
to êz in S enclose an angle θ′ = arccos β with the ê′z axis in S ′. For non-
relativistic velocities, β � 1 and cos θ′ ≈ β + cos θ to first order in β.

?
Confirm the non-relativistic limit of
the relation (1.45).

Consequently, the solid-angle element spanned by light rays also changes due to
the relative motion of S ′ relative to S . As the velocity components perpendicular
to the direction of motion are unchanged, so is the azimuthal angle, φ′ = φ and
dφ′ = dφ. From the aberration formula (1.45), we have

d cos θ′ =
d cos θ

1 + β cos θ
− (β + cos θ)βd cos θ

(1 + β cos θ)2 =
d cos θ

γ2(1 + β cos θ)2 , (1.46)

which implies that the solid-angle element spanned by a light bundle transforms
as

dΩ′ = dφ′d cos θ′ =
dφd cos θ

γ2(1 + β cos θ)2 =
dΩ

γ2(1 + β cos θ)2 . (1.47)

This is relativistic beaming: Isotropic radiation in the unprimed system S
attains a highly anisotropic angular distribution in S ′, pointing strongly into the
forward direction (Figures 1.3 and 1.4).
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Figure 1.3 Illustration of the relativistic deformation of the solid-angle element
dΩ′/dΩ for the three different velocities β = 0.2, 0.4, 0.6 as indicated. The curves
illustrate how isotropic radiation emitted by a point source resting in the unprimed
system S would appear focussed into the direction of motion in the primed system
S ′.

1.2.4 Relativistic Dynamics

Since the coordinate time has no invariant meaning any more in relativity, the
definition of velocity must be changed. The four-velocity is introduced as the
derivative of a position four-vector with respect to the invariant proper time τ,

uµ =
dxµ

dτ
. (1.48)

By definition of the proper time in (1.32),

dτ = c−1
√
−ds2 = c−1

√
−dxµdxµ = c−1

√
c2dt2 − d~x 2 = dt

√
1 − β2

= γ−1dt . (1.49)

Accordingly, the components of the four-velocity are

uµ = γ
(
c,~v

)>
= cγ

(
1, ~β

)>
, (1.50)

hence its (Minkowski) square is

u2 = 〈u, u〉 = uµuµ = −c2γ2
(
1 − β2

)
= −c2 , (1.51)

which is obviously and by construction invariant. Since dτ is also invariant, uµ

transforms like the four-vector xµ under Lorentz transformations, and is thus
also a four-vector.

Similarly, the four-momentum of a particle with mass m is defined as

pµ = muµ = γmc
(
1, ~β

)
. (1.52)
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Figure 1.4 The relativistic deformation of the solid angle is shown here in a
pseudo-three-dimensional representation. The blue sphere around a source at rest
illustrates isotropy. When the source is moving, the sphere surrounding it in its rest
frame appears strongly distorted into its forward direction.

Up to second order in β, the zero (time) component of the four-momentum is

p0 = γmc ≈ mc
(
1 +

β2

2

)
= c−1

(
mc2 +

m
2
v2

)
. (1.53)

Here, the non-relativistic kinetic energy mv2/2 appears together with the rest
energy mc2.

In analogy to classical mechanics, we now search for the action S of a free,
relativistic particle, i.e. a particle moving relativistically in absence of external
forces. The action must be Lorentz invariant since it must not depend on the
arbitrary state of motion of any observer. Therefore, it must only depend on
Lorentz scalars characterising a free particle. For a free particle, the only such
scalar is the proper time τ, scaled with a constant α to be determined later,

S = α

∫ b

a
dτ , (1.54)

where a and b mark the fixed four-dimensional start and end points of the
particle’s trajectory. The action must have the dimension [energy]·[time]. Since
τ has the dimension [time], the constant α must be a constant energy, which we
shall determine later.

Writing the action as a function of the coordinate time t, we find

S = α

∫ tb

ta
dt

√
1 − β2 , (1.55)

from which we can identify the Lagrange function

L
(
~x,~v, t

)
= α

√
1 − β2 (1.56)

for the free relativistic particle. For non-relativistic motion, β � 1, this must
reproduce the Lagrange function of a free particle in Newtonian mechanics,

α

√
1 − β2 ≈ α

(
1 − β

2

2

)
= α − αv

2

c2 . (1.57)
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Ignoring the irrelevant constant α left as a first term on the right-hand side, the
second term shows that α = −mc2 must be chosen to satisfy the limit of non-
relativistic mechanics. Accordingly, the action of the free relativistic particle
is

S = −mc2
∫ b

a
dτ , (1.58)

and its Lagrange function is

L = −mc2
√

1 − β2 . (1.59)

The Euler-Lagrange equation requires

d
dt
∂L
∂~v

=
d
dt

γmc2
~β

c

 = mc
d
dt

(
γ~β

)
= 0 , (1.60)

which implies ~̇β = 0 = ~̇v: The free particle moves on a straight line, as expected.

The momentum conjugate to the three-dimensional position vector ~x is

~p =
∂L
∂~v

=
m~v√
1 − β2

= γm~v . (1.61)

The particle’s Hamilton function follows from the Legendre transform

H = ~v · ~p − L = γmv2 + mc2
√

1 − β2 = γmc2
(
β2 +

1
γ2

)
= γmc2 . (1.62)

This is to be interpreted as the energy E of the particle. Taking the results (1.61)
and (1.62) together and comparing them with the momentum four-vector shows
that we can write the latter in the form

pµ =
(
E/c, ~p

)> . (1.63)

This identifies the momentum four-vector with the energy-momentum vector of
a relativistic particle. Its Minkowski square is

〈p, p〉 = pµpµ = −E2

c2 + ~p2 , (1.64)

while the equivalent definition pµ = muµ implies

〈p, p〉 = m2〈u, u〉 = −m2c2 . (1.65)

Together, (1.64) and (1.65) form the relativistic energy-momentum relation

E2 = c2~p 2 + m2c4 . (1.66)

Combining (1.61) and (1.62) finally gives the very useful relation

~p =
E
c2 ~v =

E
c
~β . (1.67)

Let us conclude this section with a remark on energy, momentum and their
conservation in relativity. Energy and momentum are conserved if the Lagrange-
or Hamilton functions of a system are invariant under translations in time and
space, respectively. In relativity, time and space lose their independent existence.
Time intervals and spatial distances can at least partially be transformed into
each other, depending on the observer’s state of motion relative to the system
considered. Therefore, separate energy-momentum conservation cannot retain
an invariant meaning in relativistic mechanics, and must be combined to the
joint energy-momentum conservation.
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Problems

1. Recall the mathematical definitions of a group, a field, a vector space, a
scalar product, a dual vector space, and a tensor.

2. Write down the transformations of time t → t′ and position ~x→ ~x′ under
Galilei transformations.

3. Which of the following quantities are Lorentz invariant?

~x 2 , xµxµ , xµxν , ηµν , ds2 ,
(
dx0

)2
, γ , dτ2 (1.68)

4. Compute the following expressions:

∂αxµ , ∂αxµ , ∂α〈x, x〉 = ∂α
(
xµxµ

)
. (1.69)

5. Light rays are described by their wave vector kµ = (ω/c,~k), where ~k is
the three-dimensional wave vector pointing into the propagation direction
of the light ray and satisfying the vacuum dispersion relation ω = ck with
the frequency ω.

(a) Compute the (Lorentz-invariant) scalar product of the wave vector
kµ and an arbitrary four-velocity uµ. Explain why the frequency
measured by an observer moving with four-velocity uµ is

ωobs = −〈u, k〉 = −uµkµ . (1.70)

(b) Comparing two observers, one at rest and one moving with respect
to the first with velocity ~v, derive the relativistic Doppler relation

ω′

ω
=

1 − ~n · ~β√
1 − β2

, (1.71)

where ~β = ~v/c and ~n = ~k/k.

(c) The four-momentum of a particle is pµ = muµ, where the four-
velocity

uµ =
dxµ

dτ
(1.72)

is the derivative of the coordinates xµ with respect to the proper
time τ. Starting from the relativistic Hamilton function

H =
1

2m
pµpµ , (1.73)

of a free particle, derive the equations of motion and show that its
Lagrange function is

L =
m
2

uµuµ . (1.74)

6. Beginning with the defining condition

Λ>ηΛ = η with
( −1 0

0 1

)
(1.75)

for the Lorentz transform in two dimensions,
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(a) argue why an angle ψ must exist such that

Λ(ψ) =

(
coshψ sinhψ
sinhψ coshψ

)
. (1.76)

(b) Define β = tanhψ and show that coshψ = γ and sinhψ = βγ.
(c) Show that Λ(ψ1)Λ(ψ2) = Λ(ψ1 + ψ2). Use this result to derive the

relativistic law for adding velocities.

1.3 Electromagnetism

This section summarises the foundations and some important results of
classical electrodynamics. The theory is motivated as the only Lorentz in-
variant, linear theory for six field components that satisfies Coulomb’s force
law. Maxwell’s equations are derived in covariant form from the appropriate
action and solved by means of the retarded Greens function. The general
formalism for the energy-momentum tensor of a field theory is introduced
and applied to the electromagnetic field. From the Liénard-Wiechert po-
tentials, Larmor’s formula is derived in relativistic form, and the covariant
expression for the Lorentz force is derived from the action. The main re-
sults are Maxwell’s equations themselves, most compactly expressed in
Lorenz gauge by the wave equation (1.100), the energy-momentum ten-
sor (1.110) for the electromagnetic field, the Liénard-Wiechert potentials
(1.117), the relativistic Larmor formula (1.138), its solid-angle integrated
version (1.141) and its non-relativistic approximation (1.143), and finally the
relativistic expression (1.147) for the Lorentz force.

1.3.1 Field Tensor and Sources

Electromagnetism is a classical field theory with six degrees of freedom, namely
the three components each of the electric and magnetic fields ~E and ~B. Fields
are functions of space and time. Since special relativity teaches us that space
and time are not independent, any field theory must explicitly be constructed to
agree with the space-time structure of special relativity. The electromagnetic
field must thus be expressed as a four-vector or a tensor field. Obviously, a
four vector is not sufficient to describe six degrees of freedom. The simplest
object available is a rank-2 tensor, which offers 16 independent components in
its most general form. A symmetric rank-2 tensor in four dimensions still has
ten independent components, while an antisymmetric rank-2 tensor has exactly
the required six degrees of freedom. The simplest possibility to describe six
degrees of freedom with a Lorentz-covariant object in four dimensions is thus
provided by an antisymmetric field tensor F of rank two, whose components
must satisfy

Fµν = −Fνµ , Fµν = −Fνµ . (1.77)

The antisymmetry is most conveniently ensured expressing the components of
F as derivatives of a four-potential A with components

Aµ =

(
Φ
~A

)
, (1.78)
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where Φ is the ordinary scalar potential and ~A is the three-dimensional vector
potential. The components of the rank-(2, 0) field tensor are then written in the
manifestly antisymmetric form

Fµν = ∂µAν − ∂νAµ . (1.79)

They can be conveniently summarised as

(
Fµν) =

(
0 ~E>

−~E B
)

(1.80)

where the matrix
Bi j = εi jaBa (1.81)

is formed from the components of the magnetic field. The fields themselves

Caution As usual, εi jk is the to-
tally antisymmetric Levi-Civita sym-
bol, defined such that εi jk = 0 if any
two of its indices are equal and εi jk

is the signature of the permutation
of the indices (i jk). J

are thus given by
~E = −1

c
~̇A − ~∇Φ , ~B = ~∇ × ~A . (1.82)

Given our signature (−,+,+,+) of the Minkowski metric, the associated rank-
(0, 2) tensor has the components

(Fµν) =

(
0 −~E>
~E B

)
. (1.83)

?
Convince yourself that (1.80) and
(1.83) are correct.The source of the electromagnetic field is the four-current density j which has

the components

( jµ) =

(
ρc
~j

)
, (1.84)

where ρ is the charge density and ~j is the three-dimensional current density.
Charge conservation is expressed by the vanishing four-divergence of the four-
current,

∂µ jµ =
∂ρ

∂t
+ ~∇ · ~j = 0 . (1.85)

1.3.2 Lorentz transform of the electromagnetic field

Changing from one inertial frame to another moving with a velocity~v = c~β with
respect to the original frame, the field tensor is Lorentz transformed according
to

F′µν = Λ
µ
α Λν

β Fαβ . (1.86)

Orienting both coordinate frames such that their êz axes coincide with the
direction of relative motion, the special Lorentz transform is represented by the
matrix given in (1.26), and (1.86) gives the following transformation rules for
the electric and magnetic field components:

?
Confirm the transformation equa-
tions (1.87) for the electric- and
magnetic-field componentsE′x = γ(Ex + βBy) , E′y = γ(Ey − βBx) , E′z = Ez ,

B′x = γ(Bx − βEy) , B′y = γ(By + βEx) , B′z = Bz . (1.87)

While the field components in the direction of motion remain unchanged, the
transverse components are enhanced by the Lorentz factor γ. In particular, a
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purely electric or magnetic field in one frame obtains a magnetic or electric
component in the other, moving frame, repectively. It is, however, not possible
to transform a purely electric field into a purely magnetic field or vice versa.
This is easily understood because the Lorentz transform must keep all Lorentz
invariants unchanged that can be formed from the field tensor. These invariants
can be written as

FµνFµν = 2
(
~B2 − ~E2

)
, (∗F)µνFµν = −4~E · ~B , (1.88)

where ∗F is the (Hodge-) dual field tensor. Any Lorentz transform must thus

Caution The Hodge dual field
tensor is obtained from the field ten-
sor by replacing ~E → ~B and ~B →
−~E,

(∗Fµν) =

(
0 ~B>

−~B −E
)

with Ei j = εi jaEa. J

conserve (~E2 − ~B2) and ~E · ~B. Starting with ~B = 0 in one inertial frame first
of all demands that ~E′ and ~B′ must remain perpendicular to each other in any
inertial frame. By the invariance of (~E2− ~B2), a complete conversion of a purely
electric to a purely magnetic field would require

~E2 = −~B′2 , (1.89)

which is only possible in the trivial case ~E = 0 = ~B′ because ~E2 and ~B′ 2 are
positive definite otherwise.

?
Can you confirm Eqs. (1.88)?

One remark on the transformation formula (1.86) may be in order to avoid
confusion. In Euclidean space, a transformation R from one coordinate frame
to another changes the matrix representation of a tensor T according to

T ′ = RTR−1 = RTR> (1.90)

if R is orthogonal, R−1 = R>. Although the matrix representation (1.26) of the
Lorentz transform does not satisfy this relation, the Lorentz transform is still
orthogonal in the sense that it leaves (Minkowski) scalar products invariant, just
as orthogonal transformations in Euclidean space leave the Euclidean scalar
product unchanged; see also the discussion of this issue in Sect. 1.1.2 above.
For this reason, (1.86) remains valid for Lorentz transformations.

1.3.3 Maxwell’s Equations

The dynamical equations of a field theory are the Euler-Lagrange equations
applied to a Lagrange density which, for a linear theory like electrodynamics,
must satisfy three conditions: It must be Lorentz invariant, it must contain at
most quadratic terms in the field quantities to ensure a linear theory, and it must
reproduce the Coulomb force law in the case of electrodynamics. The only
Lagrangian that satisfies these criteria is

L =
1

16π
FµνFµν − 1

c
jµAµ , (1.91)

where the constants must be chosen such as to reproduce the measured coupling
strength of the electromagnetic field to matter. The otherwise perfectly legiti-
mate term AµAµ is excluded because it would give the electromagnetic field an
effective mass and thus violate the Coulomb force law.

Since the field tensor depends on Aµ only through derivatives, it is invariant
under the gauge transformation

Aµ → Aµ + ∂µχ , (1.92)
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where χ is an arbitrary function of all four coordinates xµ. At first sight, the
Lagrangian (1.91) appears to violate gauge invariance, but Gauss’ law applied
to the action

S =

∫
d4xL (1.93)

shows that charge conservation (1.85) ensures gauge invariance.

Maxwell’s equations are now the Euler-Lagrange equations

∂ν
∂L

∂(∂νAµ)
− ∂L
∂Aµ

= 0 (1.94)

of the Lagrangian (1.91). They turn out to be

∂νFµν =
4π
c

jµ , (1.95)

which are four inhomogeneous equations. Since the field tensor is antisymmet-
ric, it identically satisfies the equation

∂[αFβγ] = 0 , (1.96)

which represents the homogeneous Maxwell equations. For α = 0, (β, γ) =

(1, 2), (1, 3) and (2, 3), the homogeneous equations (1.96) give

~̇B + c~∇ × ~E = 0 , (1.97)

while we find
~∇ · ~B = 0 (1.98)

for α = 1, (β, γ) = (2, 3). Setting µ = 0 and µ = i, the inhomogeneous equations
(1.95) give

~∇ · ~E = 4πρ , c~∇ × ~B − ~̇E = 4π~j , (1.99)

respectively.

With the definition (1.79) of the field tensor in terms of the four-potential and
with the Lorenz gauge condition ∂µAµ = 0, the inhomogeneous equations (1.95)
can be cast into the form

2Aµ = −4π
c

jµ , (1.100)

where 2 = −∂2
0 + ~∇2 is the d’Alembert operator. The particular solution of this

inhomogeneous wave equation is given by the convolution of the source with
the retarded Greens function

G(t − t′, ~x − ~x ′) =
1∣∣∣~x − ~x ′∣∣∣δD

t − t′ −
∣∣∣~x − ~x ′∣∣∣

c

 , (1.101)

i.e. by

Aµ(t, ~x) =
1
c

∫
d3x′

∫
dt′G

(
t − t′, ~x − ~x ′) jµ

(
t′, ~x ′

)
. (1.102)

The Greens function (1.101) has an intuitive meaning (Figure 1.5). Its first
factor, proportional to the inverse distance between the observer and the source,
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world line

x

t

Figure 1.5 Illustration of the geometrical meaning of the retarded Green’s function:
All signals received from the observer on the red world line at a given instant of
time must originate from the backward light cone ending at that time.

expresses Coulomb’s force law, which is an immediate consequence of photons
being massless. If photons had a mass, the Greens function would have a
Yukawa shape with an exponential cut-off. The second factor, the delta function,
shows that only such sources can influence the potential at the observer whose
world lines intersect with the observer’s backward light cone.

Since the Greens function is defined as

2G
(
t − t′, ~x − ~x′) = −4πδD

(
t − t′, ~x − ~x′) , (1.103)

it represents any component of the four-potential created by a point source on
the backward light cone of the observer. The convolution (1.102) assembles the
complete four-potential by superposition of all contributing sources. This is
possible only because electromagnetism is a linear field theory.

1.3.4 Energy-Momentum Conservation

A field theory with a Lagrangian L(q, ∂νq) for a single field q and its derivatives
∂νq has the energy-momentum tensor

T µ
ν =

∂L
∂(∂µq)

∂νq − Lδµν , (1.104)

which simply corresponds to the Legendre transformation leading from the La-
grange to the Hamilton function in classical mechanics. Should the expression
(1.104) turn out to be asymmetric, it needs to be symmetrised to ensure the
symmetry of the energy-momentum tensor. For the electromagnetic field, any
Aγ can take the role of q, thus

T µ
ν =

∂L
∂(∂µAγ)

∂νAγ − Lδµν . (1.105)

With the Lagrange density of the free electromagnetic field,

L = − 1
16π

FµνFµν , (1.106)
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this implies the energy-momentum tensor

T µ
ν =

1
4π

(
FµλFνλ − 1

4
FαβFαβδ

µ
ν

)
(1.107)

of the electromagnetic field. From the representations (1.80) and (1.83) of the
field tensor, we find first

FµλFνλ =

 −~E2 −
(
~E × ~B

)>
~E × ~B −EiE j + δi j~B2 − BiB j

 (1.108)

and confirm
FαβFαβ = 2

(
~B2 − ~E2

)
. (1.109)

Thus, the energy-momentum tensor can be written as

T µ
ν =

1
4π

 −(~E2 + ~B2)/2
(
~E × ~B

)>
−~E × ~B 0

 +

(
0 0
0 T̄i j

)
, (1.110)

where

T̄i j =
1

4π

[(
1
2
~E2δi j − EiE j

)
+

(
1
2
~B2δi j − BiB j

)]
(1.111)

are thew components of Maxwell’s stress tensor, whose magnetic part will
become important in magnetohydrodynamics. The energy density of the elec-
tromagnetic field is

ε = T00 =
~E2 + ~B2

8π
. (1.112)

?
Carry out all calculations leading to
the results (1.110) and (1.111) for
the energy-momentum tensor of the
electromagnetic field.

The energy-momentum tensor satisfies the conservation equation

∂νT µν = 0 (1.113)

which, for µ = 0, returns the continuity equation

∂ε

∂t
+ ~∇ · ~S = 0 (1.114)

for the energy density, where the Poynting vector

~S =
c

4π
~E × ~B (1.115)

represents the energy-current density of the electromagnetic field.

1.3.5 Liénard-Wiechert Potentials and the Larmor Formula

A particle with charge q on a trajectory ~r0(t) has the current density

jµ = q
(

c
~v

)
δD

[
~r − ~r0(t)

]
. (1.116)

When inserted into the convolution (1.102) with the retarded Greens function,
this yields the Liénard-Wiechert potentials

Φ(~r) =
q

R
(
1 − ê · ~β

) , ~A(~r) =
q~β

R
(
1 − ê · ~β

) = Φ~β , (1.117)
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where the right-hand sides have to be evaluated at the retarded time

t′ = t − R
c
. (1.118)

The vector ~R ≡ ~r − ~r0(t′) points from the retarded particle position to the
observer, R = |~R|, and ê is the unit vector in ~R direction,

ê =
~R
R
. (1.119)?

Can you confirm expressions (1.117)
for the Liénard-Wiechert potentials
of a point charge? The fields ~E and ~B are obtained as the usual derivatives of Φ and ~A, but it must

be taken into account that the potentials are expressed in retarded coordinates,
while we need the derivatives with respect to the observer’s coordinates. The
spatial derivatives of Φ are

∂iΦ = − q(
R − ~R · ~β

)2

(
∂iR − β j∂iR j − R j∂iβ j

)
. (1.120)

While the first two terms decrease ∝ R−2, the third decreases ∝ R−1. Aiming at
the fields far away from any source, we retain only the latter, thus

(∂iΦ)far =
qR j∂iβ j(

R − ~R · ~β
)2 =

q
(
ê · ~̇β

)
∂it′

R
(
1 − ê · ~β

)2 . (1.121)

The remaining spatial derivative of the retarded time is

∂it′ = −∂iR
c

= −R j

R
∂iR j = −e j

(
δi j

c
− β j∂it′

)
= −ei

c
+

(
ê · ~β

)
∂it′ . (1.122)

This equation gives
∂it′ = − ei

c
(
1 − ê · ~β

) , (1.123)

which implies with (1.121)

(~∇Φ)far = −
q
(
ê · ~̇β

)
ê

Rc
(
1 − ê · ~β

)3 (1.124)

for the gradient of Φ in the far-field. The time derivative of ~A is

(∂t ~A)far = Φ∂t~β + ~β∂tΦ =
q~̇β∂tt′

R
(
1 − ê · ~β

) +

q~β
(
ê · ~̇β

)
∂tt′

R
(
1 − ê · ~β

)2 (1.125)

if we again drop all terms with a steeper R dependence than R−1 to isolate the
far-field. Now, the time derivative of t′ is given by

∂tt′ = 1 − ∂tR
c

= 1 − R j

Rc
∂tR j = 1 + ê · ~β∂tt′ , (1.126)

thus
∂tt′ =

1

1 − ê · ~β
. (1.127)
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The far-field time derivative of ~A then turns into(
∂t ~A

)
far

=
q

R
(
1 − ê · ~β

)3

[(
1 − ê · ~β

)
~̇β + ~β

(
ê · ~̇β

)]
. (1.128)

From this, together with (1.124), and using the identity ~a × (~b × ~c) = (~a · ~c)~b −
(~a · ~b)~c twice, we find the electric field far from the source,

~Efar =
q

Rc
(
1 − ê · ~β

)3 ê ×
[(

ê − ~β
)
× ~̇β

]
. (1.129)

The magnetic field is

~B = ~∇ × ~A = Φ~∇ × ~β − ~β × ~∇Φ . (1.130)

Taking the curl of the velocity ~β, we must be aware that ~β depends on position
through the retarded time t′. In components, we have(

~∇ × ~β
)
i
= εi jk∂ jβk = εi jkβ̇k∂ jt′ . (1.131)

With the help of (1.123), we then find

~∇ × ~β = − ê × ~̇β
c
(
1 − ê · ~β

) , (1.132)

which, together with (1.124), allows us to write

~Bfar = − q

Rc
(
1 − ê · ~β

)3 ê ×
[
~̇β + ê ×

(
~β × ~̇β

)]
. (1.133) ?

Convince yourself by your own cal-
culation that expressions (1.129) and
(1.133) for the electric and magnetic
fields far from the source are correct.

Comparing to (1.129), it is straightforward to confirm that

~Bfar = ê × ~Efar . (1.134)

Using this result, the Poynting vector far away from the source is

~S =
q2

4πR2c
(
1 − ê · ~β

)6

∣∣∣∣∣ê × [(
ê − ~β

)
× ~̇β

]∣∣∣∣∣2 ê . (1.135)

This quantifies the energy received per unit area per unit time by the observer.
We now need to distinguish between a time interval dt measured by the observer
and the corresponding interval dt′ of the retarded time. The latter is the time
interval during which the source needs to emit for the observer to see its
radiation for the time interval dt. Since, according to (1.127), the retarded time
interval dt′ is related to the time interval dt measured by the observer through

dt =
(
1 − ê · ~β

)
dt′ , (1.136)

the energy emitted per the observer’s unit time dt into the solid angle element
dΩ is

dE = ~S · êR2dΩdt =
q2

4πc
(
1 − ê · ~β

)5

∣∣∣∣∣ê × [(
ê − ~β

)
× ~̇β

]∣∣∣∣∣2 dΩdt′ , (1.137)
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Figure 1.6 The radiation power according to the relativistic Larmor formula is
illustrated for a charge accelerated parallel (left) and perpendicular (right) to its rela-
tivistic velocity. Three curves are given for three arbitrary values of the acceleration.
Notice the different scales of the two plots!

and thus the power emitted per unit solid angle and per unit retarded time dt′ is

dP
dΩ

=
q2

4πc
(
1 − ê · ~β

)5

∣∣∣∣∣ê × [(
ê − ~β

)
× ~̇β

]∣∣∣∣∣2 . (1.138)

This is the relativistic Larmor formula which describes the power radiated by a
source per unit solid angle (Figures 1.6 and 1.7).

The total emitted power is the solid-angle integral of (1.138). This calculation
is not difficult to carry out, but lengthy. Perhaps the most straightforward way
begins by expanding the double vector product using the identity

~a ×
(
~b × ~c

)
=

(
~a · ~c )~b − (

~a · ~b
)
~c , (1.139)

followed by squaring the result. Then, it is useful to introduce coordinates such
that the velocity ~β points into the êz direction, ~β = βêz, the acceleration ~̇β falls
into the x-z plane, ~̇β = β̇(sinαêx + cosαêz), and

ê =

 cos φ sin θ
sin φ sin θ

cos θ

 . (1.140)

Then, the φ and θ integrations can be carried out in this order, giving the result

P =
2e2

3c
γ6

[
β̇2 −

(
~β × ~̇β

)2
]
. (1.141)?

Can you confirm that integrating the
Larmor formula (1.138) over the
solid angle results in (1.141)? The factor γ6 is most remarkable: A relativistically moving charge with a high

Lorentz factor radiates with an enormous power. For non-relativistically moving
charges, equations (1.138) and (1.141) simplify to

dP
dΩ

=
q2

4πc

∣∣∣∣∣ê × (
ê × ~̇β

)∣∣∣∣∣2 =
q2

4πc

∣∣∣∣∣~̇β − (
~̇β · ê

)
ê
∣∣∣∣∣2 =

q2

4πc
β̇2
⊥ , (1.142)
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Figure 1.7 Three-dimensional illustrations of the radiation power of two acceler-
ated charges with β = 0.5. A charge accelerated perpendicular to its direction of
motion has its emission peaked strongly into the forward direction of its motion (top
panel), while the radiation of a charge accelerated parallel to its direction of motion
is emitted into a collar surrounding its trajectory (bottom panel).

where ~̇β⊥ is the acceleration perpendicular to ê, and

P =
2q2

3c
β̇2 . (1.143)

1.3.6 The Lorentz Force

The action for a relativistic particle with mass m and charge q in an electromag-
netic field with vector potential Aµ is

S = −mc2
∫

dτ +
q
c

∫
Aµdxµ . (1.144)

This is the simplest Lorentz-invariant expression that can be formed from the
only Lorentz-invariant quantity of a free particle, i.e. its proper time τ, the four
potential Aµ and the coordinates xµ of the particle trajectory. Variation of the
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action (1.144) with respect to the particle trajectory under a fixed four-potential
Aµ and equating the result to zero leads to the equation of motion

m
duµ

dτ
=

q
c

Fµ
ν uν . (1.145)

With u0 = γc, ui = γvi and dτ = γ−1dt, the 0-component of this equation means

d
dt

(
γmc2

)
= q~E ·~v , (1.146)

showing that the work done by the electric field changes the energy γmc2 of the
particle. The spatial components give

m
d
(
γ~v

)
dt

= q~E +
q
c
~v × ~B . (1.147)

For non-relativistic motion, γ = 1, and (1.147) reproduces the common equation
of motion under the Lorentz force.

?
Derive the equation of motion
(1.145) as the Euler-Lagrange equa-
tion of the action (1.144).

Problems

1. Starting from the Lorentz transform (1.86) of the electromagnetic field
tensor, expressly derive the Lorentz transform (1.87) of the field compo-
nents.

2. Show by explicit calculation that Maxwell’s equation in three-dimensional
form follow from their relativistic forms (1.95) and (1.96).

3. Convince yourself that the components of the energy-momentum tensor
(1.110) have the appropriate physical units.

4. From the invariants (1.88) of the electromagnetic field tensor, derive the
following statements:

(a) If ~E and ~B have the same amplitude |~E| = |~B| in one inertial frame,
then also in all other inertial frames.

(b) If ~E and ~B are orthogonal in one inertial frame, then also in all other
inertial frames.

5. Apply the Larmor formula to the classical picture of an electron in a
hydrogen atom.

(a) Decide whether the non-relativistic approximation of the Larmor
formula can be applied.

(b) Estimate the classical lifetime of a hydrogen atom.

6. Derive the electromagnetic field of a point charge q uniformly moving
with the velocity ~v0.
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(a) Calculate the Liénard-Wiechert potentials (1.117) for a point charge
moving with constant velocity along a straight line and compute
the electromagnetic fields from them. Hint: Since the velocity
is constant, we never need the retarded time itself, but only the
separation R between the charge and any point ~x at the retarded
time. Introducing the vector ~ω = ~x −~v0t helps greatly.

(b) Find the fields by a suitable Lorentz transform and compare the two
results.

1.4 Elementary kinetic theory

This section serves a dual purpose. The discussion of the Boltzmann equa-
tion and the BBGKY hierarchy prepares the derivation of the hydrodynamical
equations later in this book. The Fokker-Planck equation derived thereafter
from a diffusion approximation of the collision terms occurs under a variety of
circumstances in astrophysics, from radiation transport to stellar dynamics.
The main results are the Boltzmann equation (1.156), the master equation
(1.161), the Fokker-Planck equation in its original form (1.163), its form
(1.172) with one of the diffusion coefficients eliminated by equilibrium con-
siderations, and its form (1.180) for small changes in absolute momentum.

1.4.1 The BBGKY hierarchy and the Boltzmann equation

Kinetic theory describes how ensembles of particles change in time, in ab-
sence or in presence of mutual collisions. In classical mechanics, generalised
coordinates qi are assigned to the degrees of freedom that the system under
consideration has. The number of degrees of freedom d depends on the number
of components of the system and their mutual relations to each other. If the
system consists of N independent point particles in three-dimensional space,
d = 3N. If those particles are linked to form a solid body, d = 6, because only
three degrees of translational and three degrees of rotational freedom remain.
By Newton’s second law, two initial conditions must be given for each degree
of freedom, which can be chosen to be the generalised coordinates qi and the
associated velocities, q̇i, at some initial time.

If the system can be described by a Lagrange function L(qi, q̇i, t), the canonically
conjugated momenta

pi =
∂L(qi, q̇i, t)

∂q̇i
(1.148)

can be substituted for the velocities q̇i by the Legendre transform

H(qi, pi, t) =

d∑
i=1

q̇i pi − L
[
qi, q̇i(pi), t

]
, (1.149)

leading to the Hamilton function H(qi, pi, t). The equations of motion for all
degrees of freedom are then Hamilton’s equations,

q̇i =
∂H(qi, pi, t)

∂pi
, ṗi = −∂H(qi, pi, t)

∂qi
. (1.150)



28 1 Theoretical Foundations

The physical state of such a system is fully characterised by the d generalised
coordinates ~q = (q1, . . . , qd) and their d canonically conjugated momenta
~p = (p1, . . . , pd). The generalised coordinates ~q span the configuration space
of the system. Together with their conjugate momenta, they span the 2d-
dimensional phase space.

It is by no means unique how the 2d phase-space coordinates are to be divided
into generalised coordinates and their conjugate momenta. Canonical transfor-
mations applied to phase space leave Hamilton’s equations invariant, but can
turn coordinates into momenta and vice versa.

The classical physical state of the system is given by the system’s location in
the 2d-dimensional phase space. Statistical mechanics is not interested in the
phase-space coordinates of all particles in an ensemble. Rather, it divides phase
space into cells of small, but finite size, sums the number of particles in each
cell and studies the time evolution of this number instead of the time evolution
of each individual pair (qi, pi) of phase-space coordinates. We thus introduce a
distribution function f (d)(t, ~q, ~p ) such that the probability for finding the system
in a small phase-space cell around to the phase-space point (~q, ~p ) at time t is

dP(d) (t, ~q, ~p )
= f (d) (t, ~q, ~p )

ddq dd p . (1.151)

For systems with very many degrees of freedom, the full phase-space distribu-
tion function f (d) becomes utterly unmanageable, apart from the fact that the
complete knowledge of the evolution of all d degrees of freedom is then neither
desired nor necessary. Rather, we are then interested in the reduced phase-space
distribution function f (k), obtained by integrating f (d) over d − k coordinates
and momenta,

f (k)(t, q1, . . . , qk, p1, . . . pk) =

∫
dqk+1 . . . dqd

∫
dpk+1 . . . dpd f (d)(t, ~q, ~p ) .

(1.152)

By Liouville’s theorem and Hamilton’s equations, the time evolution of the full
phase-space distribution function f (d) is determined by Liouville’s equation

∂ f (d)

∂t
+ q̇i

∂ f (d)

∂qi
+ ṗ j

∂ f (d)

∂p j
=
∂ f (d)

∂t
+
∂H
∂pi

∂ f (d)

∂qi
− ∂H
∂q j

∂ f (d)

∂p j
= 0 . (1.153)

Searching for an evolution equation for any of the reduced phase-space dis-
tribution functions f (k), we have to integrate Liouville’s equation over d − k
degrees of freedom and sort terms accordingly. It then appears that the evolution
of the reduced distribution function f (k) depends on the reduced distribution
function at the next higher level, f (k+1). This establishes the so-called BBGKY
hierarchy of equations of motion for the reduced distribution functions, where
the acronym stands for the authors Born, Bogoliubov, Green, Kirkwood and
Yvon.

To see what the BBGKY hierarchy means, let us begin with the reduced phase-
space distribution f (1) for a single degree of freedom. It will depend on the
distribution function f (2) for two degrees of freedom, which expresses the
notion that individual degrees of freedom do not evolve in isolation, but in
correlation with others. In an ensemble of particles, the motion of a single
particle is determined by two-body correlations with other particles, which in
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turn are affected by three-body correlations, and so forth. Clearly, the BBGKY
hierarchy needs to be terminated somewhere, or closed, for us to make any
progress. This closure is typically set by ignoring any correlations higher than
a certain order.

We are particularly interested in the evolution of the distribution function for
single particles. Let us therefore imagine that we have an ensemble of N
point particles with d = 3N degrees of freedom. We then integrate out all
3N − 3 = 3(N − 1) degrees of freedom belonging to N − 1 of the N particles
and arrive at an evolution equation for the one-particle distribution function.
According to the BBGKY hierarchy, this evolution equation will contain two-
particle correlations. Closure can now be achieved by assuming that any two
particles are statistically uncorrelated. The joint probability for finding a pair
of particles at two positions in phase space is then simply the product of the
probabilities for finding one of the particles at one position and the other at the
other position. The two-particle distribution function can then be written as a
product of one-particle distribution functions.

This closure condition means that any two particles affect each other’s motion
exclusively by direct two-body collisions. They move independently until they
collide, and continue moving independently after the collision. This is possible
if the interaction potential between any two particles is short-ranged compared
to the mean inter-particle distance.

Following these considerations, we introduce a one-particle distribution function
f (t, ~q, ~p ) by integrating f (d) over all but those degrees of freedom that belong
to a single particle. For an ensemble of point particles in three-dimensional
space, f (t, ~q, ~p ) is then defined on an effective, six-dimensional phase space.
Moreover, we normalize the distribution f (t, ~q, ~p ) such that

f (t, ~q, ~p ) d3q d3 p = dN (1.154)

is the number of particles expected to be found within the infinitesimal phase-
space volume dΓ = d3qd3 p around the phase-space position (~q, ~p ). For this
one-particle phase-space distribution function f (t, ~q, ~p ), Liouville’s equation
reduces to Boltzmann’s equation,

∂ f
∂t

+ ~̇q · ∂ f
∂~q

+ ~̇p · ∂ f
∂~p

= C[ f ] , (1.155)

where the term C[ f ] is called collision term: According to our closure condition
for the BBGKY hierarchy, particle interactions are determined by direct particle
collisions only and thus by the one-particle distribution function itself. The
collision term must then be a functional of f . For a Hamiltonian system with
Hamilton function H = H(t, ~q, ~p ), Boltzmann’s equation reads

∂ f
∂t

+
∂H
∂~p
· ∂ f
∂~q
− ∂H
∂~q
· ∂ f
∂~p

= C[ f ] . (1.156)

If, as usual, the Hamilton function can be written as H = T + V , with the kinetic
energy T depending on the conjugate momenta ~p only and a potential energy V
depending only on the generalised coordinates ~q, and if further T = ~p 2/(2m),
then we can write

∂ f
∂t

+
∂ f
∂~q
· ~p

m
− ∂ f
∂~p
· ∂V
∂~q

= C[ f ] . (1.157)
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1.4.2 Collision terms

In presence of collisions, the phase-space density changes schematically ac-
cording to

d f
dt

= gain − loss , (1.158)

where the gain and loss terms are due to scattering into and out of the phase-
space element d~w under consideration. Let ψ(~w, δ~w )dδ~wdt be the transition
probability due to scattering by an amount δ~w from ~w to ~w + δ~w within the time
interval dt. Typically, ψ would be quantified by a scattering cross section. Then,
the gain term is

gain =

∫
dδ~wψ(~w − δ~w, δ~w ) f (t, ~w − δ~w ) (1.159)

since the integral quantifies the expected number of particles moving per unit
time from the phase-space coordinates ~w− δ~w to the phase-space coordinates ~w:
It multiplies the number of particles at the original phase-space point with their
transition probability per unit time and integrates over all possible changes δ~w.
Similarly, the loss term is

loss =

∫
dδ~wψ(~w, δ~w ) f (t, ~w ) . (1.160)

Inserting these gain and loss terms (1.159) and (1.160) into (1.158) yields the
so-called master equation

d f (t, ~w )
dt

=

∫
dδ~w

[
ψ(~w − δ~w, δ~w ) f (t, ~w − δ~w ) − ψ(~w, δ~w ) f (t, ~w )

]
,

(1.161)
describing the change of the phase-space density due to the collisions causing
the transition probability ψ in phase space.

1.4.3 Diffusion in phase space: The Fokker-Planck approximation

We study the time evolution of the phase-space density f here under the quite
relevant assumption that the phase-space coordinates of particles change only by
small amounts in individual collisions. Then, the particles diffuse in phase space
and their phase-space density changes gradually in a way that can be described
with two diffusion coefficients. As we shall see in the course of this treatment,
it is sufficient for this approximation if the absolute values of the phase-space
coordinates change only very little in each collision, while the scattering angles
can even be large. Under these circumstances, this diffusion approximation is
most useful to describe all kinds of particle ensembles which either have low
mass or low energy and interact with another particle ensemble of high mass or
high energy. The equation describing how the phase-space density f changes
with time under this approximation is called the Fokker-Planck equation. Its
derivation, and general methods for its solution, are the main subject of the
following treatment.

Specifically, let us assume that conditions are such that it is permissible to
assume that the change ∆~w in the phase-space coordinates is small enough
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for the transition probability and the phase-space density at ~w − ∆~w to be
approximated by Taylor expansions up to second order,

ψ(~w − δ~w, δ~w ) f (t, ~w − δ~w ) ≈ ψ(~w, δ~w ) f (t, ~w ) (1.162)

− ∂

∂wi

[
ψ(~w, δ~w ) f (t, ~w )

]
δwi

+
1
2

∂2

∂wi∂w j

[
ψ(~w, δ~w ) f (t, ~w )

]
δwiδw j .

Inserting this into the master equation (1.161) leads us already to the Fokker-
Planck equation

d f
(
~w
)

dt
= − ∂

∂wi

[
f
(
~w
)

Di
1
(
~w
)]

+
∂2

∂wi∂w j

[
f
(
~w
)

Di j
2
(
~w
)]

, (1.163)

which approximates scattering as a second-order diffusion process in phase
space. The first- and second-order diffusion coefficients are

Di
1
(
~w
)

=

∫
dδ~wψ

(
~w, δ~w

)
δwi ,

Di j
2
(
~w
)

=
1
2

∫
dδ~wψ

(
~w, δ~w

)
δwiδw j . (1.164)

The first-order coefficient Di
1 integrates the change δwi in the phase-space

coordinate wi over the transition probability per unit time and thus quantifies
the mean change of wi per unit time. Similarly, the second-order coefficient
Di j

2 quantifies the variances Dii
2 of the changes in wi, and the covariances Di j

2
of different phase-space coordinates wi and w j for i , j. Thus, the combined
vector with components Di

1 is the mean change per unit time of the position
vector ~w in phase space, while Di j

2 is the covariance matrix of all individual
changes.

?
Verify the Fokker-Planck equation
(1.163) and the expressions (1.164)
for the diffusion coefficients by your
own derivation.

Suppose now that any change in the spatial coordinates is irrelevant, for example
because all relevant particle species are homogeneously distributed in space.
In fact, this assumption is much less restrictive than it might seem. It can
also be satisfied statistically in the sense that although particles may move in
space, the number of particles moving away from a specific point in space is
compensated by an equal number moving there. In other words, what we set out
to consider now is a dynamical spatial equilibrium. Then, we can concentrate
on the d-dimensional momentum subspace of phase space, restrict ~w = ~p and
δ~w = δ~p and consider the phase-space distribution function f as a function
of (t, ~p ) only. The total time derivative of f (t, ~p ) then equals its partial time
derivative, because

∂ f (t, ~p )
∂~q

= 0 and
∂ f (t, ~p )
∂~p

· ~̇p = 0 for ~̇p = −∂H
∂~q

= 0 . (1.165)

Then, the Fokker-Planck equation (1.163) simplifies to a partial differential
equation in time and momentum only,

∂ f (t, ~p )
∂t

= − ∂

∂pi

[
f (t, ~p )Di

1(~p )
]

+
∂2

∂pi∂p j

[
f (t, ~p )Di j

2 (~p )
]

(1.166)

= − ∂

∂pi

[(
Di

1(~p ) − ∂

∂p j
Di j

2 (~p )
)

f (t, ~p ) − Di j
2 (~p )

∂ f (t, ~p )
∂p j

]
.
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This equation manifestly has the form of a continuity equation, where the term
in brackets represents the current density ~jp in momentum space,

∂ f (t, ~p )
∂t

+ ~∇p · ~jp = 0 , (1.167)

jip =

(
Di

1(~p ) − ∂

∂p j
Di j

2 (~p )
)

f (t, ~p ) − Di j
2 (~p )

∂ f (t, ~p )
∂p j

.

At this point, it is important to note that the two diffusion coefficients Di
1 and

Di j
2 are generally not independent. In an equilibrium situation, the momentum

current ~jp must vanish. Setting the components jip = 0 in (1.167) for an
equilibrium phase-space distribution f̄ (t, ~p ) implies that then the coefficient
Di

1 can be expressed by Di j
2 and the derivative of f̄ (t, ~p ) with respect to the

momentum,

Di
1(~p ) =

∂Di j
2 (~p )
∂p j

+ Di j
2 (~p )

∂ ln f̄ (t, ~p )
∂p j

. (1.168)

However, since both coefficients do not depend on the specific form of f , we
can now use them in the more general situation of an arbitrary phase-space
distribution. Inserting the relation (1.168) into (1.167), the derivative of Di j

2
with respect to the momenta cancels, and the momentum current

jip = −Di j
2 (~p ) f (t, ~p )

∂

∂p j

[
ln f (t, ~p ) − ln f̄ (t, ~p )

]
(1.169)

is shown to be driven by the momentum gradient of the ratio between the actual
and the equilibrium phase-space distributions.

Example: Maxwellian momentum distribution

Suppose, for example, that the equilibrium distribution of the particle species
under consideration can be described as a Maxwellian momentum distribution
with a temperature T̄ . Then,

f̄ (t, ~p ) ∝ exp
(
− p2

2mkT̄

)
,

∂ ln f̄ (t, ~p )
∂p j

= − p j

mkT̄
, (1.170)

the components of the momentum current simplify to

jip = −Di j
2 (~p ) f (t, ~p )

[
∂ ln f (t, ~p )

∂p j
+

p j

mkT̄

]
, (1.171)

and the Fokker-Planck equation becomes

∂ f (t, ~p )
∂t

− ∂

∂pi

[
Di j

2 (~p ) f (t, ~p )
(
∂ f (t, ~p )
∂p j

+
p j

mkT̄

)]
= 0 . (1.172)

J

1.4.4 Diffusion in absolute momentum

Quite frequently, the scattering process changes the absolute value of the mo-
mentum by a small amount only, while the scattering angle may be large. Then,
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the diffusion approximation is still valid in terms of the absolute momentum,
but not in the full three-dimensional momentum space any more. In other words,
momentum can then be considered as slowly diffusing between spherical shells
in momentum space, while its direction angles may be vastly redistributed from
one shell to another. Instead of the phase-space density f (t, ~p ), we must then
consider the density f (t, p)p2 of particles in absolute momentum, irrespective
of its direction. The Fokker-Planck approximation then still applies between
momentum shells, and the Fokker-Planck equation becomes

∂
(

f p2
)

∂t
=

∂

∂p

(D1 +
∂D2

∂p

) (
f p2

)
+ D2

∂
(

f p2
)

∂p

 , (1.173)

with the diffusion coefficients

D1(p) =

∫
dδpψ(p, δp)δp , D2(p) =

1
2

∫
dδpψ(p, δp)δp2 . (1.174)

Both coefficients are now one-dimensional. The first-order coefficient D1 is the
mean momentum change per unit time, while the second-order coefficient D2 is
its mean-square.

We can now express the Fokker-Planck equation as a radial diffusion equation
in momentum space,

∂ f
∂t

+
1
p2

∂
(

jp p2
)

∂p
= 0 , jp =

(
D1 +

∂D2

∂p

)
f +

D2

p2

∂
(

f p2
)

∂p
, (1.175)

where now jp is the radial component of the momentum current. Notice that
the operator applied to the momentum current is the divergence in spherical
polar coordinates, so the meaning of the equation has not changed: It remains
a conservation equation, expressing that any change in phase-space density is
caused by a momentum current.

Again, jp must vanish in an equilibrium situation, expressed by an equilibrium
phase-space density f̄ . This requirement establishes the relation

D1 = −
(
2D2

p
+
∂D2

∂p

)
− D2

∂ ln f̄
∂p

(1.176)

between D1 and D2. Inserting this result into the current density in (1.175)
gives, after some straightforward rearrangement,

jp = D2 f
∂

∂p

(
ln f − ln f̄

)
= D2 f

∂

∂p
ln

f
f̄
. (1.177) ?

Convince yourself of the relations
(1.176) and (1.177) under the condi-
tions discussed here.

1.4.5 Calculation of the diffusion coefficient D2

For an actual calculation of the diffusion coefficient D2, we return to its defini-
tion in (1.164) or the more specialised form (1.174) and recall that the physical
meaning of D2 is (one half) the mean-squared momentum change per unit time
of the particle species considered,

D2 =
1
2

〈
δp2

〉
. (1.181)
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Example: Maxwellians with different temperatures

To give an example, let us assume that both the actual and the equilibrium
phase-space distributions, f and f̄ , are Maxwellians characterised by two
different temperatures T and T̄ , respectively. Then,

∂ ln f
∂p

− ∂ ln f̄
∂p

= − p
mkT

(
1 − T

T̄

)
, (1.178)

the momentum current density becomes

jp = −D2
p f

mkT

(
1 − T

T̄

)
, (1.179)

and the Fokker-Planck equation reduces to

∂ f
∂t

=
1

p2mkT

(
1 − T

T̄

)
∂

∂p

(
D2 p3 f

)
. (1.180)

J

To illustrate this, consider a species of heavy particles with mass M embedded
in a sea of light particles with mass m � M. Then, the energy of the heavy
particles is almost unchanged by the collisions with the light particles, while
momentum conservation implies a small change δp in absolute momentum
determined by

δp2 = 2q2(1 − cos θ) (1.182)

per collision, if q and θ are the momentum and the scattering angle of the light
particle. The probability of a light particle with velocity v = q/m scattering off

a heavy particle per unit time into the solid-angle element dΩ is

nv
dσ
dΩ

dΩ =
nq
m

dσ
dΩ

dΩ , (1.183)

where n is the number density of light particles. Thus, the mean-squared
momentum change per unit time of a heavy particle is〈

δp2
〉

=
2n
m

〈∫
q3(1 − cos θ)

dσ
dΩ

dΩ

〉
, (1.184)

where the average has to be taken over the momentum distribution of the light
particles.

?
Can you confirm that the differential
cross section for light point particles
scattered by a hard sphere is given
by (1.185)? Suppose that the heavy particles can be considered as hard spheres with radius

R, while the light particles approximate point masses. Then, in the idealised
situation of light particles bouncing off heavy, hard spheres,

dσ
dΩ

=
R2

4
,

∫
(1 − cos θ)

dσ
dΩ

dΩ =
πR2

2

∫ 1

−1
(1 − cos θ)d(cos θ) = πR2 ,

(1.185)
and the diffusion coefficient D2 becomes

D2 =
1
2

〈
δp2

〉
=
πnR2

m

〈
q3

〉
, (1.186)

where the average over the cubed momentum of the light particles remains.



1.4 Elementary kinetic theory 35

If their velocity distribution is of Maxwellian form with temperature T̄ ,

〈
q3

〉
=

8
√

2√
π

(mkT̄ )3/2 , (1.187)

and the diffusion coefficient finally assumes the form

D2 = 8nR2
[
2πm

(
kT̄

)3
]1/2

(1.188)

which is even independent of the momentum p. This result can now be used
with the Fokker-Planck equation (1.180) to calculate how a non-equilibrium
phase-space distribution f evolves in time towards its equilibrium by collisions
with heavier particles.

Suggested further reading: [1, 2, 3, 4]




