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Preface

This book is not in any sense complete or exhaustive, and it is not meant
to be. Its subject, theoretical astrophysics, is vast and cannot possibly be
comprehensively covered in a single volume.

This book has a rather different purpose. It is intended as a textbook for students
who have a reasonably complete knowledge of the material usually taught
in the introductory courses on theoretical physics: classical mechanics, elec-
trodynamics, quantum mechanics, and thermodynamics. Building upon this
assumed foundation, this book adds material typically not covered by the in-
troductory lectures, but required for research work in theoretical astrophysics.
It may also be useful as a resource for researchers. Arguably the most impor-
tant extensions are radiation processes, hydrodynamics, plasma physics and
magnetohydrodynamics, and stellar dynamics.

This book provides introductions to these four areas. It is structured into four
main chapters and an initial chapter summarising some essential theoretical
concepts which the following chapters build upon.

The chapter on radiation processes begins with the Larmor equation from
electrodynamics and derives Thomson scattering and a general approach to
calculating spectra from it, which is then applied to synchrotron radiation and
bremsstrahlung. Up to this point, electromagnetic radiation is described as a
classical wave that does not exchange momentum with the charges it originates
from or interacts with. The backreaction of radiation on the radiating charge
is discussed then before Compton scattering is introduced, and with it the
photon picture of electromagnetic radiation. The internal structure of radiating
systems such as atoms follows, leading to the calculation of cross sections for
the interaction of quantum-mechanical systems with radiation and of the shapes
of spectral lines. Finally, radiation is described as an ensemble of photons.
Specific intensity, emissivity and opacity, the Planck spectrum and radiation
transport are introduced there.

The chapter on hydrodynamics begins with a derivation of the ideal hydrody-
namical equations from elementary kinetic theory. It is emphasised that these
equations express the (local) conservation of the energy-momentum tensor.
This opens the way into relativistic hydrodynamics as well as towards various
extensions, such as viscous hydrodynamics and magneto-hydrodynamics. The
assumption of an infinitely small mean free path from ideal hydrodynamics is
then relaxed, leading to viscous hydrodynamics. Inviscid and viscous flows
are considered under certain simplifying conditions. The formation of shocks
and the Sedov solution follow before the discussion of several fluid instabilities
concludes the chapter. The discussion in this chapter emphasises the root of
hydrodynamics in the conservation equation for the energy-momentum tensor,
the common origin of non-ideal hydrodynamical effects in particle transport,
the importance of integrated statements such as Kelvin’s theorem, the Bernoulli
equation and the Rankine-Hugoniot conditions, and the general approach to
linear perturbation or stability analysis.

The chapter on plasma physics begins with the introduction of the plasma
parameters and proceeds to the propagation of electromagnetic waves through
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a plasma. Dispersion relations are derived generally for transverse and longi-
tudinal waves, touching the phenomenon of Landau damping, and specified
for thermal plasmas. The equations of magneto-hydrodynamics are introduced
next, emphasising their common ground with hydrodynamics in the vanishing
divergence of an energy-momentum tensor. The generation of magnetic fields is
briefly discussed, followed by ambipolar diffusion as an example for non-ideal
coupling between the plasma charges and the fluid particles. The propagation
of electromagnetic waves through cold, magnetised plasmas is studied next,
and the chapter concludes with a linear stability analysis, revealing the variety
of hydromagnetic and Alfvén modes.

The chapter on stellar dynamics begins with deriving Jeans’ equations in parallel
to the hydrodynamical equations, emphasising the importance of anisotropic
pressure. Stability criteria for stellar-dynamical systems are then derived,
leading to the Jeans and Toomre criteria. Finally, the phenomenon of dynamical
friction is introduced and discussed, ending with Chandrasekhar’s formula for
the friction force.

Preparing for this selection of subjects, the initial chapter briefly summarises
special relativity and relativistic electrodynamics as well as elementary kinetic
theory to lay the foundation for the discussions in the following main chapters.

In all chapters, the attempt was made to trace these four areas of theoretical
astrophysics back to their origins in fundamental concepts of theoretical physics.
Rather than discussing many examples and trying to cover as many astronomical
and astrophysical phenomena as possible, the goal of this book is to reveal the
roots of the common approaches in theoretical astrophysics, the choices and
assumptions made and the methodical similarities appearing throughout. The
book does not aim at explaining the richness of astrophysical phenomena, but
at enabling the reader to understand and apply the rich toolbox of theoretical
astrophysics by her- or himself. In this spirit, the notorious phrases “one can
show” or “as can be shown” do not appear in this book. Every subject discussed
is derived from first principles, which is considerably more important to the
author than completeness.

This book grew from a one-semester course in theoretical astrophysics devel-
oped and regularly taught at the University of Heidelberg. The course comprised
four hours of lecture and a two-hour tutorial per week. The amount of material
collected here is probably at the upper end of what can be covered in a single
term of 15 weeks. If it needs to be pruned, the general idea of the course should
not be given up: to reveal the foundations of theoretical astrophysics including
its important general assumptions, and to identify the common methodical
approaches.

By far the most, if not all of the material summarised and compiled in this
book is not new. Its intention lies in the foundation and the arrangement of
matters, which may help seeing them from a common and unifying perspective.
It is not at all possible to give full reference to the original derivations and
presentations, not to mention any specific research results. This is therefore not
even attempted. Rather, we give a list of more specialised textbooks and refer
to them for further reading on individual subjects.
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Chapter 1

Theoretical Foundations

1.1 Units

1.1.1 Lengths, masses, times, and temperatures

We use Gaussian centimetre-gram-second (cgs) units throughout. Lengths are
measured in cm, masses in grams and time in seconds. The derived units of
force, energy and power are listed in Table 1.1. Temperatures are unvariedly
measured in Kelvin (K).

Table 1.1 The units of force, energy and power are listed here in the cgs system
together with their relations to SI units.

quantity cgs unit alternatives

force mass · acceleration
g cm

s2 dyn 10−5 N

energy mass · velocity2 g cm2

s2 erg 10−7 J

power energy / time
erg
s

10−7 W

The main reason for using these rather than SI units is they allow electromag-
netic relations to be expressed in a much easier way, as we shall now discuss.

1.1.2 Charges and electromagnetic fields

The unit of charge is chosen such that the Coulomb force between two charges
q separated by the distance r is

FCoulomb =
q2

r2 . (1.1)

With this choice, the dielectric constant of the vacuum, ε0, becomes dimension-
less and unity. Electric and magnetic fields are defined to have the same unit.
This is most sensible in view of the fact that they are both related, and can be

1



2 1 Theoretical Foundations

converted into each other, by Lorentz transforms. Their unit is chosen such that
the force caused by an electric field E on a charge q is

Felectric = qE . (1.2)

This implies that charge, electric and magnetic fields must have the units given
in Table 1.2. The squared electric or magnetic field strengths then have the
dimension of an energy density.

?
Confirm the cgs units of charge and
electric or magnetic fields listed in
Tab. 1.2. Table 1.2 This table lists the units of charge, electric and magnetic field in the

Gaussian cgs system, their physical dimensions, and alternative units.

quantity cgs unit alternative

charge force1/2· length
g1/2cm3/2

s
esu

electric or magnetic field force / charge
g1/2

cm1/2 s
Gauss

By definition, the units of charge in the SI and the Gaussian cgs systems are
related by

1 Coulomb = 2.9979 · 109 esu . (1.3)

Electrostatic potential differences, or electrostatic potential energy changes per
unit charge, are measured in Volts in SI units. Consequently, we must have

1 Volt = 1
Joule

Coulomb
=

107 erg
2.9979 · 109 esu

=
1

299.79
g1/2 cm1/2

s
. (1.4)

The energy gained by a unit charge moving through an electrostatic potential
difference of 1 Volt, defined as the electron-Volt, must then be

1 eV = 1.6022 · 10−12 erg . (1.5)
?

Use the Boltzmann constant kB to
convert 1 eV to an equivalent tem-
perature.

1.1.3 Natural constants

The most frequently used natural constants in cgs units are tabulated in Ta-
ble 1.3.

In addition, some units used in astronomy and astrophysics are listed in Ta-
ble 1.4.

Caution Note that the light speed
is exact by definition of the metre. J

1.1.4 Conventions and notation

For the Minkowski metric, we use the signature

η = diag (−1,+1,+1,+1) . (1.6)

We adopt the convention

f̃ (k) = F [
f
]
(k) =

∫
ddk

(2π)d f (x) e−ik·x (1.7)
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Table 1.3 The most frequently used natural constants are tabulated here with
their common symbols and their values in cgs units. The values are taken from the
Particle Data Group (http://pdg.lbl.gov/, last accessed on Nov. 22, 2020).

quantity symbol value in cgs units
light speed c 2.9979 · 1010

elementary charge e 4.8032 · 10−10

electron mass me 9.1094 · 10−28

proton mass mp 1.6726 · 10−24

Boltzmann’s constant kB 1.3806 · 10−16

Newton’s constant G 6.6743 · 10−8

Planck’s constant ~ 1.0546 · 10−27

Table 1.4 Some units common in astronomy and astrophysics are listed here.

unit symbol type value in cgs units
Solar radius R� length 6.9634 · 1010

astronomical unit AU length 1.4960 · 1013

light year ly length 9.4607 · 1017

parsec pc length 3.0857 · 1018

Earth mass M♁ mass 5.9724 · 1027

Jupiter mass MX mass 1.8990 · 1030

Solar mass M� mass 1.9884 · 1033

tropical year y time 3.1557 · 107

sidereal year y time 3.1558 · 107

Solar luminosity L� energy/time 3.8460 · 1033

Jansky Jy specific intensity 10−23
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for the Fourier transform in d dimensions, and

f (x) = F −1(x) =

∫
dd x f̃ (k) eik·x (1.8)

for its inverse. We use the short-hand notation∫
x

:=
∫

dd x and
∫

k
:=

∫
ddk

(2π)d (1.9)

for the integrals over coordinates x ∈ Rd and wave vectors k ∈ Rd.

1.2 Lorentz Invariance

This section summarises the concepts of special relativity and their conse-
quences for the structure of space-time and for the dynamics of a particle.
Its most important results are the relativistic time dilation (1.36) and the
Lorentz contraction (1.40), the addition theorem for velocities (1.42) and the
transformation of angles (1.45), the combination of energy and momentum
into the momentum four vector (1.63) and the relativistic relations (1.66) and
(1.67) between energy, momentum and velocity.

Perhaps it is helpful to begin with the statement that classical physics aims to
quantify the behaviour of physical entities in space with time. Point mechanics,
for example, studies the trajectories of particles with negligible extension. A
trajectory can be quantified by a vector-valued function ~x(t) which assigns a
spatial vector ~x to any instant t from a finite or infinite time interval. Field
theory describes forces as the effect of fields, which are functions of space and
time obeying their own dynamics. Immediately, we are led to the question how
we want to identify points in space and instants in time in a quantifiable manner.

This is achieved by a reference frame or a coordinate system. In Newtonian
physics, space and time were both assumed to be absolute. A rigid reference
frame was assumed to exist which identified each point in space by a triple ~x of
real-valued, spatial coordinates, and by a real number t for the time. Having
formulated the laws of physics in this absolute frame, the immediate further
question arises as to how other frames of reference, or coordinate systems,
could be chosen such that those laws would remain valid without changing their
form. The answer of Newtonian physics was that the laws of physics are the
same in all so-called inertial frames. In slightly different words, the laws of
physics were claimed to be invariant under all transformations leading from
one inertial frame to another.

A clarifying remark should be in order here before we move on. Notice the
perhaps trivial point that not the physical quantities are generally assumed to
be unchanged under transformations from one inertial frame to another, but
the form of the physical laws relating them. For example, Newton’s second
axiom, force is mass times acceleration, is expected to hold in all inertial frames,
irrespective of the specific values of the acceleration and the force. In another
inertial frame, the values of force and acceleration may and generally will be
different, but the statement of the law, force equals mass times acceleration, is
expected to remain valid. Valid physical laws are expected to be invariant in this
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sense. If, in addition, physical quantities can be identified that remain invariant
under transformations from one inertial frame to another, such conserved quan-
tities play an important role in the analysis of specific physical systems under
consideration. It is thus of central importance for any part of theoretical physics
to clearly state which type of transformation should lead from one inertial frame
to another.

In a more mathematical language, transformations between inertial frames
form groups. Admissible physical laws are those which are invariant under
the operation of those groups. The identification of the invariance group of a
physical theory is perhaps the most fundamental step in its foundation.

1.2.1 The Special Lorentz Transform

In Newtonian mechanics, inertial frames are related by Galilei transformations.
If one inertial frame is given, any Galilei transform turns it into another one.
The Galilei transforms form a ten-parameter group of transformations. They
contain shifts of the origin in space and time (four parameters), translations
with constant velocity (three parameters), and rotations in space (further three
parameters, e.g. the Euler angles). Consequences of the Galilei invariance of
Newtonian mechanics are the existence of an absolute time and the Galilean
addition theorem for velocities.

However, the Galilei invariance of Newtonian mechanics leads to contradictions
with experience. The decay of muons sets a prominent example. Myons are
leptons comparable to the electron, but with a mass of 105.6 MeV instead of
0.511 MeV. They decay according to

µ→ e− + ν̄e + νµ (1.10)

into electrons and (anti-) neutrinos with a half-life of τµ = 1.5 · 10−6 s. Ex-
periments show, however, that the lifetime increases if the muon moves in the
laboratory frame with velocities near the speed of light. The electron emitted
in the decay has almost light speed, but never exceeds it even if the muon had
already moved with almost the speed of light. Clearly, the muon seems to live
longer in the laboratory rest frame than in its own rest frame, and the Galilean
theorem for adding velocities does not longer apply.

Einstein’s theory of Special Relativity replaced the Galilei invariance of New-
tonian mechanics by the Lorentz invariance of relativistic physics. Special
Relativity grew from the problem that the speed of light c appears as an absolute
velocity in Maxwell’s vacuum equations of electrodynamics. Einstein radically
solved this problem by elevating the postulate to a principle that the speed of
light c is a universal constant, independent of the state of motion of the light
source relative to the observer. Interestingly, the concepts of absolute space and
time underlying Newtonian physics were thus replaced by the concept of an
absolute, observer-independent maximal velocity.

Consider now two inertial frames, S and S ′, moving relative to each other at
an arbitrary, constant speed (Figure 1.1). Imaginge a flash of light going off.
By the principle of the constant light speed, the wave front of the flash must
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x

t

x′

t′

~v

x

t

x′

t′

~v

Figure 1.1 Left : Two inertial frames are shown moving with constant velocity ~v
relative to each other. They are synchronised such that their origins coincide at
t = 0 = t′. Right : A light signal emerging from a source at the common origin of
both frames, illustrated by the coloured spheres, propagates in the same way in
both frames, despite the relative motion of the two frames.

propagate in the same way in both frames irrespective of their relative velocity
and therefore obey the condition

d~x2 − c2dt2 = d~x ′2 − c2dt′2 . (1.11)

For definiteness and without loss of generality, we now rotate the coordinate
frames S and S ′ such that they move with respect to each other along their
common êz axis, and further set the origin of time such that both frames coincide
at t = 0 = t′. Requiring further that the transformation between S and S ′ be
linear leads directly to the special Lorentz transform

x′3 = γ
(
x3 + βct

)
, ct′ = γ

(
ct + βx3

)
, (1.12)

where β = v/c is the relative velocity in units of the light speed, and the Lorentz
factor

γ :=
(
1 − β2

)−1/2
(1.13)

appears. In the limit of low velocities, β � 1, the Lorentz factor is γ ≈ 1 + β2/2
to second order in β, or γ ≈ 1 to first order. Note that we write the vector
indices in (1.12) as superscripts. This may appear arbitrary here, but has a
deeper mathematical sense that will shortly be explained.

As (1.12) shows, the time t and the spatial coordinates xi cannot be uniquely
or invariantly separated under special Lorentz transforms. They lose their
independent identity and become coupled to each other, depending on the
relative motion of the frames in which they are measured. Instead of the rigid
Newtonian, Euclidean space-time with its uniquely defined, absolute time axis,
we thus need to adopt a four-dimensional space-time with a different structure.
We introduce ct := x0 as a further coordinate and combine the coordinate
quadruples to four-vectors x = (xµ) = (x0, x1, x2, x3)>. This four-dimensional
space with a structure to be clarified below is called Minkowski spaceM = R3+1.

The Lorentz transform connects any two inertial frames in the four-dimensional
Minkowski space. General Lorentz transforms are composed of special Lorentz
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transforms in all spatial directions, the so-called Lorentz boosts, plus the or-
thogonal three-dimensional spatial rotations. Poincaré transforms are general
Lorentz transforms combined with arbitrary translations in space and time. Like
the Galilei transformations, Poincaré transformations have ten parameters: the
three Euler angles for the orthogonal three-dimensional rotations, the four trans-
lations, and one velocity for the Lorentz boosts in all three independent spatial
directions. In relativistic mechanics, the Poincaré transformations replace the
Galilei transformations of Newtonian mechanics.

1.2.2 Minkowski Space

Since Lorentz transforms leave the expression −(x0)2 + ~x 2 invariant by con-
struction, we define the Minkowskian scalar product between two four-vectors
as

〈x, y〉 = −x0y0 + ~x · ~y = η(x, y) , (1.14)

where ~x · ~y is the ordinary scalar product between two vectors in Euclidean
space. The product 〈·, ·〉 is a pseudo-scalar product because it is not positive
semi-definite. Based on this scalar product, the Lorentz group as the invariance
group of relativistic physics, abbreviated by O(3, 1), can now formally be
defined as the set of all linear transforms represented by real-valued, square,
4 × 4 matricesM(4,R) that leave the scalar product (1.14) unchanged,

O(3, 1) = {Λ ∈ M(4,R) : 〈Λx,Λy〉 = 〈x, y〉 ∀ x, y ∈ M} . (1.15)

This clearly repeats as a mathematical statement that Lorentz transforms are
defined as those linear transforms leaving the speed of light invariant.

?
Show that the condition

Λ>ηΛ = η

is equivalent to 〈Λx,Λy〉 = 〈x, y〉.
The object η introduced in (1.14) satisfies the definition of a second-rank tensor,
as it is a bilinear map of two vectors from Minkowski space M into the real
numbers,

η : M ×M→ R , (x, y) 7→ η(x, y) = 〈x, y〉 . (1.16)

This tensor is the metric tensor of Minkowski space, or the Minkowski metric.
Generally, a metric is a second-rank, symmetric tensor which is non-degenerate.
This means that if 〈x, y〉 = 0 for all x ∈ M, then y = 0. Once a Cartesian coordi-
nate basis is introduced for Minkowski space, the metric can be represented by
the diagonal matrix (

ηµν
)

= diag(−1, 1, 1, 1) , (1.17)

which allows us to write the scalar product (1.14) as

〈x, y〉 =
∑
µ,ν

ηµνxµyν . (1.18)

The subscripted indices introduced here are again not arbitrarily set and will be
further illustrated below. By means of the metric, the linear map x∗ defined by

x∗ : M→ R , y 7→ x∗(y) = η(x, y) = 〈x, y〉 (1.19)

can be introduced on Minkowski space. It maps vectors into the real numbers
as shown. The set of all such linear maps forms the dual vector space M∗ to
Minkowski spaceM.
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While vector components are identified by upper indices, dual-vector compo-
nents are written with lower indices. Then, according to

〈x, y〉 =
∑
µ,ν

ηµνxµyν =

4∑
ν=0

 4∑
µ=0

ηµνxµ
 yν , (1.20)

the dual vector x∗ of a four-vector x has the components

xν =

4∑
µ=0

ηµνxµ =
(
−x0, x1, x2, x3

)
. (1.21)

In Euclidean space, the distinction between vectors and dual vectors is irrelevant
because its metric can be represented by the unit matrix. In Minkowski space,
it becomes vitally important because of the minus sign of the time-time (or 0-0)
component in the metric.

We now introduce Einstein’s sum convention in the following form. If an
index appears twice in a product and at different levels (i.e. one sub- and one
superscripted), a sum over the repeated index is implied. Thus, for example,

xµyµ =

3∑
µ=0

xµyµ . (1.22)

This notation simplifies the previous expressions considerably. Written in
components, the scalar product between two vectors x and y simply becomes

〈x, y〉 = xµyµ . (1.23)

The notation of four-vectors and their dual vectors is made consistent by writing
the inverse Minkowski metric η−1 with superscripted indices, since then

xµ = ηµαxα = ηµαηανxν = δ
µ
ν xν . (1.24)

Thus, we must have
ηµαηαν = δ

µ
ν , (1.25)

from which we conclude that the matrix representations of the Minkowski
metric as well as of its inverse can be brought into the diagonal form(

ηµν
)

=
(
ηµν

)
= diag(−1, 1, 1, 1) . (1.26)

In the notation developed so far, the special Lorentz transform (1.12) can be
written as

x′µ = Λ
µ
ν xν with (Λµ

ν ) =


γ 0 0 γβ

0 1 0 0
0 0 1 0
γβ 0 0 γ

 . (1.27)

Since the Lorentz transform is constructed to leave the Minkowski scalar prod-
uct invariant, recall (1.15), we must have

ηαβxαxβ = 〈x, x〉 = 〈x′, x′〉 = ηµνΛ
µ
α xαΛν

β xβ =
(
ηµνΛ

µ
α Λν

β

)
xαxβ , (1.28)
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showing that the Lorentz transform also leaves the Minkowski metric invariant,

ηαβ = ηµνΛ
µ
α Λν

β . (1.29)

This relation replaces the perhaps more familiar orthonormality relation in
Euclidean space. There, orthonormal transformations R need to satisfy the
condition (

R~x
) · (R~y )

= ~x · ~y , (1.30)

which implies the condition R> = R−1 on matrix representations of R.

?
Compare (1.29) with the condition

Λ>ηΛ = η .The Minkowskian orthonormality relation (1.29) implies that dual-vector com-
ponents must transform under Lorentz transformations as

x′µ = Λ
ν
µ xν , (1.31)

which differs from the transformation (1.27) of vector components. Quantities
transforming like vector or dual-vector components under Lorentz transforms
are called Lorentz contravariant or covariant, respectively. Quantities unchanged
by Lorentz transforms are Lorentz invariant. Vectors are consequently some-
times addressed as contravariant vectors, dual vectors as covariant vectors,
which is a terminology which we avoid here because it hides the more funda-
mental mathematical distinction between vectors and dual vectors (which is
also decisively important elsewhere, e.g. in quantum mechanics).

Since the coordinate time becomes largely arbitrary in Special Relativity as it
loses any invariant meaning, it needs to be replaced by an invariant measure of
time. The only Lorentz-invariant quantity that can be defined to characterise
the separation between two space-time points xµ and xµ + dxµ is the so-called
line element of the Minkowski metric (1.14),

ds2 = ηµνdxµdxν . (1.32)

This line element is interpreted as the so-called proper time dτ by the identifica-
tion

ds2 = −c2dτ2 . (1.33)

This definition is meaningful since the proper time equals the time measured
by an observer in his or her own rest frame. In that frame, an observer arbi-
trarily placed at the spatial coordinate origin has the Minkowski coordinates
(x0, 0, 0, 0)>. Two subsequent events experienced by that observer at instants of
coordinate time separated by dx0 in the rest frame have the invariant distance

c2dτ2 =
(
dx0

)2
= c2dt2 , (1.34)

which shows that the proper time agrees with the coordinate time in any ob-
server’s rest frame.

1.2.3 Some Properties of the Minkowski World

We briefly summarise some essential conclusions from the Lorentz covariance
of the Minkowski world (see also Figure 1.2). First, let two events happen in
the unprimed system S at the same location ~x = 0, but with a time difference
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Figure 1.2 Lines of constant t′ (dark red) and x′ (light red) are shown in the
unprimed system S for β = 0.25 (left) and β = 0.5 (right). The lines are inclined
with an angle arctan(β) relative to the unprimed axes.

δt or δx0 = cδt. These events have the four-vectors x1 = (0, 0, 0, 0)> and x2 =

(δx0, 0, 0, 0)>. By the special Lorentz transform (1.27), they are transformed
into the events

x′1 = (0, 0, 0, 0)> , x′2 =
(
γδx0, 0, 0, βγδx0

)>
. (1.35)

Thus, in the primed system S ′, they are separated by the larger time interval

δx′ 0 = γδx0 or δt′ = c−1δx′ 0 = γδt . (1.36)

This is the relativistic time dilation: Moving clocks go slow.

Next, we consider a unit rule oriented in the direction of the relative motion of
the two frames and resting in the unprimed system S . Its end points, measured
at an arbitrary time ct = x0 in S , are marked by the four-vectors x1 = (x0

1, 0, 0, 0)
and x2 = (x0

2, 0, 0, 1). Now, an observer in S ′ measures its end points. It is
important that he does so at one fixed instant of his coordinate time, which
we arbitrarily and without loss of generality set to be x′ 0 = 0. By (1.27), this
requires

0 = x′ 0 = γx0 + βγx3 or x0 = −βx3 . (1.37)

For the two end points of our unit rule, this simultaneity condition implies that

x0
1 = 0 and x0

2 = −β (1.38)

since x3
1 = 0 and x3

2 = 1 by construction. The unit rule’s end points x1,2 appear
at

x′1 =
(
γx0

1, 0, 0, βγx0
1

)>
, x′2 =

(
γx0

2 + βγ, 0, 0, βγx0
2 + γ

)>
(1.39)

in the primed observer’s rest frame S ′. Inserting (1.38) here gives

x′ 31 = 0 and x′ 32 =
(
1 − β2

)
γ = γ−1 . (1.40)

Thus, in the primed system S ′, the unit rule turns out to have the length x′ 32 −
x′ 31 = γ−1, which is smaller than its unit length in the rest frame. This is the
relativistic length contraction: Moving rods are shorter.
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Let us now consider a particle moving with velocity ~u = (ux, uy, uz)> in the un-
primed system. Its four vector in S , x = (x0, uxt, uyt, uzt)> = x0(1, ux/c, uy/c, uz/c)>,
is transformed into

x′ = x0

(
γ + βγ

uz

c
,

ux

c
,

uy
c
, βγ + γ

uz

c

)>
. (1.41)

The velocity components of the particle in the primed system S ′ are then found
to be

u′x,y = c
x′1,2

x′0
=

ux,y

γ(1 + βux,y/c)
, u′z = c

x′3

x′0
=

v + uz

1 + vuz/c2 . (1.42)

The last equation is the relativistic law for the addition of velocities. While the
velocity components perpendicular to the relative motion of the two frames S
and S ′ are reduced by the Lorentz factor γ, the velocity component parallel to
the motion adds to the relative velocity of the two frames in such a way that the
sum of the two velocities uz and v never exceeds c.

Let the particle now fly with the speed of light into a direction enclosing the
angle θ with the êz axis along which the two frames move relative to each
other. For simplicity, but without loss of generality, we further rotate both
coordinate frames about their common êz axis such that the particle moves in
the x-z coordinate plane. Then,

ux = c sin θ , uy = 0 , uz = c cos θ , (1.43)

in the unprimed system, and

u′x = c sin θ , u′y = 0 , u′z =
v + c cos θ
1 + β cos θ

(1.44)

in the primed system. Since the absolute velocity must also remain |~u′| = c in
the primed frame, the direction of motion in S ′ is

cos θ′ =
u′z
c

=
β + cos θ

1 + β cos θ
. (1.45)

This is the relativistic aberration of light: Light rays propagating perpendicularly
to êz in S enclose an angle θ′ = arccos β with the ê′z axis in S ′. For non-
relativistic velocities, β � 1 and cos θ′ ≈ β + cos θ to first order in β.

?
Confirm the non-relativistic limit of
the relation (1.45).

Consequently, the solid-angle element spanned by light rays also changes due to
the relative motion of S ′ relative to S . As the velocity components perpendicular
to the direction of motion are unchanged, so is the azimuthal angle, φ′ = φ and
dφ′ = dφ. From the aberration formula (1.45), we have

d cos θ′ =
d cos θ

1 + β cos θ
− (β + cos θ)βd cos θ

(1 + β cos θ)2 =
d cos θ

γ2(1 + β cos θ)2 , (1.46)

which implies that the solid-angle element spanned by a light bundle transforms
as

dΩ′ = dφ′d cos θ′ =
dφd cos θ

γ2(1 + β cos θ)2 =
dΩ

γ2(1 + β cos θ)2 . (1.47)

This is relativistic beaming: Isotropic radiation in the unprimed system S
attains a highly anisotropic angular distribution in S ′, pointing strongly into the
forward direction (Figures 1.3 and 1.4).
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Figure 1.3 Illustration of the relativistic deformation of the solid-angle element
dΩ′/dΩ for the three different velocities β = 0.2, 0.4, 0.6 as indicated. The curves
illustrate how isotropic radiation emitted by a point source resting in the unprimed
system S would appear focussed into the direction of motion in the primed system
S ′.

1.2.4 Relativistic Dynamics

Since the coordinate time has no invariant meaning any more in relativity, the
definition of velocity must be changed. The four-velocity is introduced as the
derivative of a position four-vector with respect to the invariant proper time τ,

uµ =
dxµ

dτ
. (1.48)

By definition of the proper time in (1.32),

dτ = c−1
√
−ds2 = c−1

√
−dxµdxµ = c−1

√
c2dt2 − d~x 2 = dt

√
1 − β2

= γ−1dt . (1.49)

Accordingly, the components of the four-velocity are

uµ = γ
(
c,~v

)>
= cγ

(
1, ~β

)>
, (1.50)

hence its (Minkowski) square is

u2 = 〈u, u〉 = uµuµ = −c2γ2
(
1 − β2

)
= −c2 , (1.51)

which is obviously and by construction invariant. Since dτ is also invariant, uµ

transforms like the four-vector xµ under Lorentz transformations, and is thus
also a four-vector.

Similarly, the four-momentum of a particle with mass m is defined as

pµ = muµ = γmc
(
1, ~β

)
. (1.52)
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Figure 1.4 The relativistic deformation of the solid angle is shown here in a
pseudo-three-dimensional representation. The blue sphere around a source at rest
illustrates isotropy. When the source is moving, the sphere surrounding it in its rest
frame appears strongly distorted into its forward direction.

Up to second order in β, the zero (time) component of the four-momentum is

p0 = γmc ≈ mc
(
1 +

β2

2

)
= c−1

(
mc2 +

m
2
v2

)
. (1.53)

Here, the non-relativistic kinetic energy mv2/2 appears together with the rest
energy mc2.

In analogy to classical mechanics, we now search for the action S of a free,
relativistic particle, i.e. a particle moving relativistically in absence of external
forces. The action must be Lorentz invariant since it must not depend on the
arbitrary state of motion of any observer. Therefore, it must only depend on
Lorentz scalars characterising a free particle. For a free particle, the only such
scalar is the proper time τ, scaled with a constant α to be determined later,

S = α

∫ b

a
dτ , (1.54)

where a and b mark the fixed four-dimensional start and end points of the
particle’s trajectory. The action must have the dimension [energy]·[time]. Since
τ has the dimension [time], the constant α must be a constant energy, which we
shall determine later.

Writing the action as a function of the coordinate time t, we find

S = α

∫ tb

ta
dt

√
1 − β2 , (1.55)

from which we can identify the Lagrange function

L
(
~x,~v, t

)
= α

√
1 − β2 (1.56)

for the free relativistic particle. For non-relativistic motion, β � 1, this must
reproduce the Lagrange function of a free particle in Newtonian mechanics,

α

√
1 − β2 ≈ α

(
1 − β

2

2

)
= α − αv

2

c2 . (1.57)
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Ignoring the irrelevant constant α left as a first term on the right-hand side, the
second term shows that α = −mc2 must be chosen to satisfy the limit of non-
relativistic mechanics. Accordingly, the action of the free relativistic particle
is

S = −mc2
∫ b

a
dτ , (1.58)

and its Lagrange function is

L = −mc2
√

1 − β2 . (1.59)

The Euler-Lagrange equation requires

d
dt
∂L
∂~v

=
d
dt

γmc2
~β

c

 = mc
d
dt

(
γ~β

)
= 0 , (1.60)

which implies ~̇β = 0 = ~̇v: The free particle moves on a straight line, as expected.

The momentum conjugate to the three-dimensional position vector ~x is

~p =
∂L
∂~v

=
m~v√
1 − β2

= γm~v . (1.61)

The particle’s Hamilton function follows from the Legendre transform

H = ~v · ~p − L = γmv2 + mc2
√

1 − β2 = γmc2
(
β2 +

1
γ2

)
= γmc2 . (1.62)

This is to be interpreted as the energy E of the particle. Taking the results (1.61)
and (1.62) together and comparing them with the momentum four-vector shows
that we can write the latter in the form

pµ =
(
E/c, ~p

)> . (1.63)

This identifies the momentum four-vector with the energy-momentum vector of
a relativistic particle. Its Minkowski square is

〈p, p〉 = pµpµ = −E2

c2 + ~p2 , (1.64)

while the equivalent definition pµ = muµ implies

〈p, p〉 = m2〈u, u〉 = −m2c2 . (1.65)

Together, (1.64) and (1.65) form the relativistic energy-momentum relation

E2 = c2~p 2 + m2c4 . (1.66)

Combining (1.61) and (1.62) finally gives the very useful relation

~p =
E
c2 ~v =

E
c
~β . (1.67)

Let us conclude this section with a remark on energy, momentum and their
conservation in relativity. Energy and momentum are conserved if the Lagrange-
or Hamilton functions of a system are invariant under translations in time and
space, respectively. In relativity, time and space lose their independent existence.
Time intervals and spatial distances can at least partially be transformed into
each other, depending on the observer’s state of motion relative to the system
considered. Therefore, separate energy-momentum conservation cannot retain
an invariant meaning in relativistic mechanics, and must be combined to the
joint energy-momentum conservation.
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Problems

1. Recall the mathematical definitions of a group, a field, a vector space, a
scalar product, a dual vector space, and a tensor.

2. Write down the transformations of time t → t′ and position ~x→ ~x′ under
Galilei transformations.

3. Which of the following quantities are Lorentz invariant?

~x 2 , xµxµ , xµxν , ηµν , ds2 ,
(
dx0

)2
, γ , dτ2 (1.68)

4. Compute the following expressions:

∂αxµ , ∂αxµ , ∂α〈x, x〉 = ∂α
(
xµxµ

)
. (1.69)

5. Light rays are described by their wave vector kµ = (ω/c,~k), where ~k is
the three-dimensional wave vector pointing into the propagation direction
of the light ray and satisfying the vacuum dispersion relation ω = ck with
the frequency ω.

(a) Compute the (Lorentz-invariant) scalar product of the wave vector
kµ and an arbitrary four-velocity uµ. Explain why the frequency
measured by an observer moving with four-velocity uµ is

ωobs = −〈u, k〉 = −uµkµ . (1.70)

(b) Comparing two observers, one at rest and one moving with respect
to the first with velocity ~v, derive the relativistic Doppler relation

ω′

ω
=

1 − ~n · ~β√
1 − β2

, (1.71)

where ~β = ~v/c and ~n = ~k/k.

(c) The four-momentum of a particle is pµ = muµ, where the four-
velocity

uµ =
dxµ

dτ
(1.72)

is the derivative of the coordinates xµ with respect to the proper
time τ. Starting from the relativistic Hamilton function

H =
1

2m
pµpµ , (1.73)

of a free particle, derive the equations of motion and show that its
Lagrange function is

L =
m
2

uµuµ . (1.74)

6. Beginning with the defining condition

Λ>ηΛ = η with
( −1 0

0 1

)
(1.75)

for the Lorentz transform in two dimensions,
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(a) argue why an angle ψ must exist such that

Λ(ψ) =

(
coshψ sinhψ
sinhψ coshψ

)
. (1.76)

(b) Define β = tanhψ and show that coshψ = γ and sinhψ = βγ.
(c) Show that Λ(ψ1)Λ(ψ2) = Λ(ψ1 + ψ2). Use this result to derive the

relativistic law for adding velocities.

1.3 Electromagnetism

This section summarises the foundations and some important results of
classical electrodynamics. The theory is motivated as the only Lorentz in-
variant, linear theory for six field components that satisfies Coulomb’s force
law. Maxwell’s equations are derived in covariant form from the appropriate
action and solved by means of the retarded Greens function. The general
formalism for the energy-momentum tensor of a field theory is introduced
and applied to the electromagnetic field. From the Liénard-Wiechert po-
tentials, Larmor’s formula is derived in relativistic form, and the covariant
expression for the Lorentz force is derived from the action. The main re-
sults are Maxwell’s equations themselves, most compactly expressed in
Lorenz gauge by the wave equation (1.100), the energy-momentum ten-
sor (1.110) for the electromagnetic field, the Liénard-Wiechert potentials
(1.117), the relativistic Larmor formula (1.138), its solid-angle integrated
version (1.141) and its non-relativistic approximation (1.143), and finally the
relativistic expression (1.147) for the Lorentz force.

1.3.1 Field Tensor and Sources

Electromagnetism is a classical field theory with six degrees of freedom, namely
the three components each of the electric and magnetic fields ~E and ~B. Fields
are functions of space and time. Since special relativity teaches us that space
and time are not independent, any field theory must explicitly be constructed to
agree with the space-time structure of special relativity. The electromagnetic
field must thus be expressed as a four-vector or a tensor field. Obviously, a
four vector is not sufficient to describe six degrees of freedom. The simplest
object available is a rank-2 tensor, which offers 16 independent components in
its most general form. A symmetric rank-2 tensor in four dimensions still has
ten independent components, while an antisymmetric rank-2 tensor has exactly
the required six degrees of freedom. The simplest possibility to describe six
degrees of freedom with a Lorentz-covariant object in four dimensions is thus
provided by an antisymmetric field tensor F of rank two, whose components
must satisfy

Fµν = −Fνµ , Fµν = −Fνµ . (1.77)

The antisymmetry is most conveniently ensured expressing the components of
F as derivatives of a four-potential A with components

Aµ =

(
Φ
~A

)
, (1.78)
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where Φ is the ordinary scalar potential and ~A is the three-dimensional vector
potential. The components of the rank-(2, 0) field tensor are then written in the
manifestly antisymmetric form

Fµν = ∂µAν − ∂νAµ . (1.79)

They can be conveniently summarised as

(
Fµν) =

(
0 ~E>

−~E B
)

(1.80)

where the matrix
Bi j = εi jaBa (1.81)

is formed from the components of the magnetic field. The fields themselves

Caution As usual, εi jk is the to-
tally antisymmetric Levi-Civita sym-
bol, defined such that εi jk = 0 if any
two of its indices are equal and εi jk

is the signature of the permutation
of the indices (i jk). J

are thus given by
~E = −1

c
~̇A − ~∇Φ , ~B = ~∇ × ~A . (1.82)

Given our signature (−,+,+,+) of the Minkowski metric, the associated rank-
(0, 2) tensor has the components

(Fµν) =

(
0 −~E>
~E B

)
. (1.83)

?
Convince yourself that (1.80) and
(1.83) are correct.The source of the electromagnetic field is the four-current density j which has

the components

( jµ) =

(
ρc
~j

)
, (1.84)

where ρ is the charge density and ~j is the three-dimensional current density.
Charge conservation is expressed by the vanishing four-divergence of the four-
current,

∂µ jµ =
∂ρ

∂t
+ ~∇ · ~j = 0 . (1.85)

1.3.2 Lorentz transform of the electromagnetic field

Changing from one inertial frame to another moving with a velocity~v = c~β with
respect to the original frame, the field tensor is Lorentz transformed according
to

F′µν = Λ
µ
α Λν

β Fαβ . (1.86)

Orienting both coordinate frames such that their êz axes coincide with the
direction of relative motion, the special Lorentz transform is represented by the
matrix given in (1.26), and (1.86) gives the following transformation rules for
the electric and magnetic field components:

?
Confirm the transformation equa-
tions (1.87) for the electric- and
magnetic-field componentsE′x = γ(Ex + βBy) , E′y = γ(Ey − βBx) , E′z = Ez ,

B′x = γ(Bx − βEy) , B′y = γ(By + βEx) , B′z = Bz . (1.87)

While the field components in the direction of motion remain unchanged, the
transverse components are enhanced by the Lorentz factor γ. In particular, a
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purely electric or magnetic field in one frame obtains a magnetic or electric
component in the other, moving frame, repectively. It is, however, not possible
to transform a purely electric field into a purely magnetic field or vice versa.
This is easily understood because the Lorentz transform must keep all Lorentz
invariants unchanged that can be formed from the field tensor. These invariants
can be written as

FµνFµν = 2
(
~B2 − ~E2

)
, (∗F)µνFµν = −4~E · ~B , (1.88)

where ∗F is the (Hodge-) dual field tensor. Any Lorentz transform must thus

Caution The Hodge dual field
tensor is obtained from the field ten-
sor by replacing ~E → ~B and ~B →
−~E,

(∗Fµν) =

(
0 ~B>

−~B −E
)

with Ei j = εi jaEa. J

conserve (~E2 − ~B2) and ~E · ~B. Starting with ~B = 0 in one inertial frame first
of all demands that ~E′ and ~B′ must remain perpendicular to each other in any
inertial frame. By the invariance of (~E2− ~B2), a complete conversion of a purely
electric to a purely magnetic field would require

~E2 = −~B′2 , (1.89)

which is only possible in the trivial case ~E = 0 = ~B′ because ~E2 and ~B′ 2 are
positive definite otherwise.

?
Can you confirm Eqs. (1.88)?

One remark on the transformation formula (1.86) may be in order to avoid
confusion. In Euclidean space, a transformation R from one coordinate frame
to another changes the matrix representation of a tensor T according to

T ′ = RTR−1 = RTR> (1.90)

if R is orthogonal, R−1 = R>. Although the matrix representation (1.26) of the
Lorentz transform does not satisfy this relation, the Lorentz transform is still
orthogonal in the sense that it leaves (Minkowski) scalar products invariant, just
as orthogonal transformations in Euclidean space leave the Euclidean scalar
product unchanged; see also the discussion of this issue in Sect. 1.1.2 above.
For this reason, (1.86) remains valid for Lorentz transformations.

1.3.3 Maxwell’s Equations

The dynamical equations of a field theory are the Euler-Lagrange equations
applied to a Lagrange density which, for a linear theory like electrodynamics,
must satisfy three conditions: It must be Lorentz invariant, it must contain at
most quadratic terms in the field quantities to ensure a linear theory, and it must
reproduce the Coulomb force law in the case of electrodynamics. The only
Lagrangian that satisfies these criteria is

L =
1

16π
FµνFµν − 1

c
jµAµ , (1.91)

where the constants must be chosen such as to reproduce the measured coupling
strength of the electromagnetic field to matter. The otherwise perfectly legiti-
mate term AµAµ is excluded because it would give the electromagnetic field an
effective mass and thus violate the Coulomb force law.

Since the field tensor depends on Aµ only through derivatives, it is invariant
under the gauge transformation

Aµ → Aµ + ∂µχ , (1.92)
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where χ is an arbitrary function of all four coordinates xµ. At first sight, the
Lagrangian (1.91) appears to violate gauge invariance, but Gauss’ law applied
to the action

S =

∫
d4xL (1.93)

shows that charge conservation (1.85) ensures gauge invariance.

Maxwell’s equations are now the Euler-Lagrange equations

∂ν
∂L

∂(∂νAµ)
− ∂L
∂Aµ

= 0 (1.94)

of the Lagrangian (1.91). They turn out to be

∂νFµν =
4π
c

jµ , (1.95)

which are four inhomogeneous equations. Since the field tensor is antisymmet-
ric, it identically satisfies the equation

∂[αFβγ] = 0 , (1.96)

which represents the homogeneous Maxwell equations. For α = 0, (β, γ) =

(1, 2), (1, 3) and (2, 3), the homogeneous equations (1.96) give

~̇B + c~∇ × ~E = 0 , (1.97)

while we find
~∇ · ~B = 0 (1.98)

for α = 1, (β, γ) = (2, 3). Setting µ = 0 and µ = i, the inhomogeneous equations
(1.95) give

~∇ · ~E = 4πρ , c~∇ × ~B − ~̇E = 4π~j , (1.99)

respectively.

With the definition (1.79) of the field tensor in terms of the four-potential and
with the Lorenz gauge condition ∂µAµ = 0, the inhomogeneous equations (1.95)
can be cast into the form

2Aµ = −4π
c

jµ , (1.100)

where 2 = −∂2
0 + ~∇2 is the d’Alembert operator. The particular solution of this

inhomogeneous wave equation is given by the convolution of the source with
the retarded Greens function

G(t − t′, ~x − ~x ′) =
1∣∣∣~x − ~x ′∣∣∣δD

t − t′ −
∣∣∣~x − ~x ′∣∣∣

c

 , (1.101)

i.e. by

Aµ(t, ~x) =
1
c

∫
d3x′

∫
dt′G

(
t − t′, ~x − ~x ′) jµ

(
t′, ~x ′

)
. (1.102)

The Greens function (1.101) has an intuitive meaning (Figure 1.5). Its first
factor, proportional to the inverse distance between the observer and the source,
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world line

x

t

Figure 1.5 Illustration of the geometrical meaning of the retarded Green’s function:
All signals received from the observer on the red world line at a given instant of
time must originate from the backward light cone ending at that time.

expresses Coulomb’s force law, which is an immediate consequence of photons
being massless. If photons had a mass, the Greens function would have a
Yukawa shape with an exponential cut-off. The second factor, the delta function,
shows that only such sources can influence the potential at the observer whose
world lines intersect with the observer’s backward light cone.

Since the Greens function is defined as

2G
(
t − t′, ~x − ~x′) = −4πδD

(
t − t′, ~x − ~x′) , (1.103)

it represents any component of the four-potential created by a point source on
the backward light cone of the observer. The convolution (1.102) assembles the
complete four-potential by superposition of all contributing sources. This is
possible only because electromagnetism is a linear field theory.

1.3.4 Energy-Momentum Conservation

A field theory with a Lagrangian L(q, ∂νq) for a single field q and its derivatives
∂νq has the energy-momentum tensor

T µ
ν =

∂L
∂(∂µq)

∂νq − Lδµν , (1.104)

which simply corresponds to the Legendre transformation leading from the La-
grange to the Hamilton function in classical mechanics. Should the expression
(1.104) turn out to be asymmetric, it needs to be symmetrised to ensure the
symmetry of the energy-momentum tensor. For the electromagnetic field, any
Aγ can take the role of q, thus

T µ
ν =

∂L
∂(∂µAγ)

∂νAγ − Lδµν . (1.105)

With the Lagrange density of the free electromagnetic field,

L = − 1
16π

FµνFµν , (1.106)
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this implies the energy-momentum tensor

T µ
ν =

1
4π

(
FµλFνλ − 1

4
FαβFαβδ

µ
ν

)
(1.107)

of the electromagnetic field. From the representations (1.80) and (1.83) of the
field tensor, we find first

FµλFνλ =

 −~E2 −
(
~E × ~B

)>
~E × ~B −EiE j + δi j~B2 − BiB j

 (1.108)

and confirm
FαβFαβ = 2

(
~B2 − ~E2

)
. (1.109)

Thus, the energy-momentum tensor can be written as

T µ
ν =

1
4π

 −(~E2 + ~B2)/2
(
~E × ~B

)>
−~E × ~B 0

 +

(
0 0
0 T̄i j

)
, (1.110)

where

T̄i j =
1

4π

[(
1
2
~E2δi j − EiE j

)
+

(
1
2
~B2δi j − BiB j

)]
(1.111)

are thew components of Maxwell’s stress tensor, whose magnetic part will
become important in magnetohydrodynamics. The energy density of the elec-
tromagnetic field is

ε = T00 =
~E2 + ~B2

8π
. (1.112)

?
Carry out all calculations leading to
the results (1.110) and (1.111) for
the energy-momentum tensor of the
electromagnetic field.

The energy-momentum tensor satisfies the conservation equation

∂νT µν = 0 (1.113)

which, for µ = 0, returns the continuity equation

∂ε

∂t
+ ~∇ · ~S = 0 (1.114)

for the energy density, where the Poynting vector

~S =
c

4π
~E × ~B (1.115)

represents the energy-current density of the electromagnetic field.

1.3.5 Liénard-Wiechert Potentials and the Larmor Formula

A particle with charge q on a trajectory ~r0(t) has the current density

jµ = q
(

c
~v

)
δD

[
~r − ~r0(t)

]
. (1.116)

When inserted into the convolution (1.102) with the retarded Greens function,
this yields the Liénard-Wiechert potentials

Φ(~r) =
q

R
(
1 − ê · ~β

) , ~A(~r) =
q~β

R
(
1 − ê · ~β

) = Φ~β , (1.117)
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where the right-hand sides have to be evaluated at the retarded time

t′ = t − R
c
. (1.118)

The vector ~R ≡ ~r − ~r0(t′) points from the retarded particle position to the
observer, R = |~R|, and ê is the unit vector in ~R direction,

ê =
~R
R
. (1.119)?

Can you confirm expressions (1.117)
for the Liénard-Wiechert potentials
of a point charge? The fields ~E and ~B are obtained as the usual derivatives of Φ and ~A, but it must

be taken into account that the potentials are expressed in retarded coordinates,
while we need the derivatives with respect to the observer’s coordinates. The
spatial derivatives of Φ are

∂iΦ = − q(
R − ~R · ~β

)2

(
∂iR − β j∂iR j − R j∂iβ j

)
. (1.120)

While the first two terms decrease ∝ R−2, the third decreases ∝ R−1. Aiming at
the fields far away from any source, we retain only the latter, thus

(∂iΦ)far =
qR j∂iβ j(

R − ~R · ~β
)2 =

q
(
ê · ~̇β

)
∂it′

R
(
1 − ê · ~β

)2 . (1.121)

The remaining spatial derivative of the retarded time is

∂it′ = −∂iR
c

= −R j

R
∂iR j = −e j

(
δi j

c
− β j∂it′

)
= −ei

c
+

(
ê · ~β

)
∂it′ . (1.122)

This equation gives
∂it′ = − ei

c
(
1 − ê · ~β

) , (1.123)

which implies with (1.121)

(~∇Φ)far = −
q
(
ê · ~̇β

)
ê

Rc
(
1 − ê · ~β

)3 (1.124)

for the gradient of Φ in the far-field. The time derivative of ~A is

(∂t ~A)far = Φ∂t~β + ~β∂tΦ =
q~̇β∂tt′

R
(
1 − ê · ~β

) +

q~β
(
ê · ~̇β

)
∂tt′

R
(
1 − ê · ~β

)2 (1.125)

if we again drop all terms with a steeper R dependence than R−1 to isolate the
far-field. Now, the time derivative of t′ is given by

∂tt′ = 1 − ∂tR
c

= 1 − R j

Rc
∂tR j = 1 + ê · ~β∂tt′ , (1.126)

thus
∂tt′ =

1

1 − ê · ~β
. (1.127)
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The far-field time derivative of ~A then turns into(
∂t ~A

)
far

=
q

R
(
1 − ê · ~β

)3

[(
1 − ê · ~β

)
~̇β + ~β

(
ê · ~̇β

)]
. (1.128)

From this, together with (1.124), and using the identity ~a × (~b × ~c) = (~a · ~c)~b −
(~a · ~b)~c twice, we find the electric field far from the source,

~Efar =
q

Rc
(
1 − ê · ~β

)3 ê ×
[(

ê − ~β
)
× ~̇β

]
. (1.129)

The magnetic field is

~B = ~∇ × ~A = Φ~∇ × ~β − ~β × ~∇Φ . (1.130)

Taking the curl of the velocity ~β, we must be aware that ~β depends on position
through the retarded time t′. In components, we have(

~∇ × ~β
)
i
= εi jk∂ jβk = εi jkβ̇k∂ jt′ . (1.131)

With the help of (1.123), we then find

~∇ × ~β = − ê × ~̇β
c
(
1 − ê · ~β

) , (1.132)

which, together with (1.124), allows us to write

~Bfar = − q

Rc
(
1 − ê · ~β

)3 ê ×
[
~̇β + ê ×

(
~β × ~̇β

)]
. (1.133) ?

Convince yourself by your own cal-
culation that expressions (1.129) and
(1.133) for the electric and magnetic
fields far from the source are correct.

Comparing to (1.129), it is straightforward to confirm that

~Bfar = ê × ~Efar . (1.134)

Using this result, the Poynting vector far away from the source is

~S =
q2

4πR2c
(
1 − ê · ~β

)6

∣∣∣∣∣ê × [(
ê − ~β

)
× ~̇β

]∣∣∣∣∣2 ê . (1.135)

This quantifies the energy received per unit area per unit time by the observer.
We now need to distinguish between a time interval dt measured by the observer
and the corresponding interval dt′ of the retarded time. The latter is the time
interval during which the source needs to emit for the observer to see its
radiation for the time interval dt. Since, according to (1.127), the retarded time
interval dt′ is related to the time interval dt measured by the observer through

dt =
(
1 − ê · ~β

)
dt′ , (1.136)

the energy emitted per the observer’s unit time dt into the solid angle element
dΩ is

dE = ~S · êR2dΩdt =
q2

4πc
(
1 − ê · ~β

)5

∣∣∣∣∣ê × [(
ê − ~β

)
× ~̇β

]∣∣∣∣∣2 dΩdt′ , (1.137)
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Figure 1.6 The radiation power according to the relativistic Larmor formula is
illustrated for a charge accelerated parallel (left) and perpendicular (right) to its rela-
tivistic velocity. Three curves are given for three arbitrary values of the acceleration.
Notice the different scales of the two plots!

and thus the power emitted per unit solid angle and per unit retarded time dt′ is

dP
dΩ

=
q2

4πc
(
1 − ê · ~β

)5

∣∣∣∣∣ê × [(
ê − ~β

)
× ~̇β

]∣∣∣∣∣2 . (1.138)

This is the relativistic Larmor formula which describes the power radiated by a
source per unit solid angle (Figures 1.6 and 1.7).

The total emitted power is the solid-angle integral of (1.138). This calculation
is not difficult to carry out, but lengthy. Perhaps the most straightforward way
begins by expanding the double vector product using the identity

~a ×
(
~b × ~c

)
=

(
~a · ~c )~b − (

~a · ~b
)
~c , (1.139)

followed by squaring the result. Then, it is useful to introduce coordinates such
that the velocity ~β points into the êz direction, ~β = βêz, the acceleration ~̇β falls
into the x-z plane, ~̇β = β̇(sinαêx + cosαêz), and

ê =

 cos φ sin θ
sin φ sin θ

cos θ

 . (1.140)

Then, the φ and θ integrations can be carried out in this order, giving the result

P =
2e2

3c
γ6

[
β̇2 −

(
~β × ~̇β

)2
]
. (1.141)?

Can you confirm that integrating the
Larmor formula (1.138) over the
solid angle results in (1.141)? The factor γ6 is most remarkable: A relativistically moving charge with a high

Lorentz factor radiates with an enormous power. For non-relativistically moving
charges, equations (1.138) and (1.141) simplify to

dP
dΩ

=
q2

4πc

∣∣∣∣∣ê × (
ê × ~̇β

)∣∣∣∣∣2 =
q2

4πc

∣∣∣∣∣~̇β − (
~̇β · ê

)
ê
∣∣∣∣∣2 =

q2

4πc
β̇2
⊥ , (1.142)
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Figure 1.7 Three-dimensional illustrations of the radiation power of two acceler-
ated charges with β = 0.5. A charge accelerated perpendicular to its direction of
motion has its emission peaked strongly into the forward direction of its motion (top
panel), while the radiation of a charge accelerated parallel to its direction of motion
is emitted into a collar surrounding its trajectory (bottom panel).

where ~̇β⊥ is the acceleration perpendicular to ê, and

P =
2q2

3c
β̇2 . (1.143)

1.3.6 The Lorentz Force

The action for a relativistic particle with mass m and charge q in an electromag-
netic field with vector potential Aµ is

S = −mc2
∫

dτ +
q
c

∫
Aµdxµ . (1.144)

This is the simplest Lorentz-invariant expression that can be formed from the
only Lorentz-invariant quantity of a free particle, i.e. its proper time τ, the four
potential Aµ and the coordinates xµ of the particle trajectory. Variation of the
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action (1.144) with respect to the particle trajectory under a fixed four-potential
Aµ and equating the result to zero leads to the equation of motion

m
duµ

dτ
=

q
c

Fµ
ν uν . (1.145)

With u0 = γc, ui = γvi and dτ = γ−1dt, the 0-component of this equation means

d
dt

(
γmc2

)
= q~E ·~v , (1.146)

showing that the work done by the electric field changes the energy γmc2 of the
particle. The spatial components give

m
d
(
γ~v

)
dt

= q~E +
q
c
~v × ~B . (1.147)

For non-relativistic motion, γ = 1, and (1.147) reproduces the common equation
of motion under the Lorentz force.

?
Derive the equation of motion
(1.145) as the Euler-Lagrange equa-
tion of the action (1.144).

Problems

1. Starting from the Lorentz transform (1.86) of the electromagnetic field
tensor, expressly derive the Lorentz transform (1.87) of the field compo-
nents.

2. Show by explicit calculation that Maxwell’s equation in three-dimensional
form follow from their relativistic forms (1.95) and (1.96).

3. Convince yourself that the components of the energy-momentum tensor
(1.110) have the appropriate physical units.

4. From the invariants (1.88) of the electromagnetic field tensor, derive the
following statements:

(a) If ~E and ~B have the same amplitude |~E| = |~B| in one inertial frame,
then also in all other inertial frames.

(b) If ~E and ~B are orthogonal in one inertial frame, then also in all other
inertial frames.

5. Apply the Larmor formula to the classical picture of an electron in a
hydrogen atom.

(a) Decide whether the non-relativistic approximation of the Larmor
formula can be applied.

(b) Estimate the classical lifetime of a hydrogen atom.

6. Derive the electromagnetic field of a point charge q uniformly moving
with the velocity ~v0.
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(a) Calculate the Liénard-Wiechert potentials (1.117) for a point charge
moving with constant velocity along a straight line and compute
the electromagnetic fields from them. Hint: Since the velocity
is constant, we never need the retarded time itself, but only the
separation R between the charge and any point ~x at the retarded
time. Introducing the vector ~ω = ~x −~v0t helps greatly.

(b) Find the fields by a suitable Lorentz transform and compare the two
results.

1.4 Elementary kinetic theory

This section serves a dual purpose. The discussion of the Boltzmann equa-
tion and the BBGKY hierarchy prepares the derivation of the hydrodynamical
equations later in this book. The Fokker-Planck equation derived thereafter
from a diffusion approximation of the collision terms occurs under a variety of
circumstances in astrophysics, from radiation transport to stellar dynamics.
The main results are the Boltzmann equation (1.156), the master equation
(1.161), the Fokker-Planck equation in its original form (1.163), its form
(1.172) with one of the diffusion coefficients eliminated by equilibrium con-
siderations, and its form (1.180) for small changes in absolute momentum.

1.4.1 The BBGKY hierarchy and the Boltzmann equation

Kinetic theory describes how ensembles of particles change in time, in ab-
sence or in presence of mutual collisions. In classical mechanics, generalised
coordinates qi are assigned to the degrees of freedom that the system under
consideration has. The number of degrees of freedom d depends on the number
of components of the system and their mutual relations to each other. If the
system consists of N independent point particles in three-dimensional space,
d = 3N. If those particles are linked to form a solid body, d = 6, because only
three degrees of translational and three degrees of rotational freedom remain.
By Newton’s second law, two initial conditions must be given for each degree
of freedom, which can be chosen to be the generalised coordinates qi and the
associated velocities, q̇i, at some initial time.

If the system can be described by a Lagrange function L(qi, q̇i, t), the canonically
conjugated momenta

pi =
∂L(qi, q̇i, t)

∂q̇i
(1.148)

can be substituted for the velocities q̇i by the Legendre transform

H(qi, pi, t) =

d∑
i=1

q̇i pi − L
[
qi, q̇i(pi), t

]
, (1.149)

leading to the Hamilton function H(qi, pi, t). The equations of motion for all
degrees of freedom are then Hamilton’s equations,

q̇i =
∂H(qi, pi, t)

∂pi
, ṗi = −∂H(qi, pi, t)

∂qi
. (1.150)
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The physical state of such a system is fully characterised by the d generalised
coordinates ~q = (q1, . . . , qd) and their d canonically conjugated momenta
~p = (p1, . . . , pd). The generalised coordinates ~q span the configuration space
of the system. Together with their conjugate momenta, they span the 2d-
dimensional phase space.

It is by no means unique how the 2d phase-space coordinates are to be divided
into generalised coordinates and their conjugate momenta. Canonical transfor-
mations applied to phase space leave Hamilton’s equations invariant, but can
turn coordinates into momenta and vice versa.

The classical physical state of the system is given by the system’s location in
the 2d-dimensional phase space. Statistical mechanics is not interested in the
phase-space coordinates of all particles in an ensemble. Rather, it divides phase
space into cells of small, but finite size, sums the number of particles in each
cell and studies the time evolution of this number instead of the time evolution
of each individual pair (qi, pi) of phase-space coordinates. We thus introduce a
distribution function f (d)(t, ~q, ~p ) such that the probability for finding the system
in a small phase-space cell around to the phase-space point (~q, ~p ) at time t is

dP(d) (t, ~q, ~p )
= f (d) (t, ~q, ~p )

ddq dd p . (1.151)

For systems with very many degrees of freedom, the full phase-space distribu-
tion function f (d) becomes utterly unmanageable, apart from the fact that the
complete knowledge of the evolution of all d degrees of freedom is then neither
desired nor necessary. Rather, we are then interested in the reduced phase-space
distribution function f (k), obtained by integrating f (d) over d − k coordinates
and momenta,

f (k)(t, q1, . . . , qk, p1, . . . pk) =

∫
dqk+1 . . . dqd

∫
dpk+1 . . . dpd f (d)(t, ~q, ~p ) .

(1.152)

By Liouville’s theorem and Hamilton’s equations, the time evolution of the full
phase-space distribution function f (d) is determined by Liouville’s equation

∂ f (d)

∂t
+ q̇i

∂ f (d)

∂qi
+ ṗ j

∂ f (d)

∂p j
=
∂ f (d)

∂t
+
∂H
∂pi

∂ f (d)

∂qi
− ∂H
∂q j

∂ f (d)

∂p j
= 0 . (1.153)

Searching for an evolution equation for any of the reduced phase-space dis-
tribution functions f (k), we have to integrate Liouville’s equation over d − k
degrees of freedom and sort terms accordingly. It then appears that the evolution
of the reduced distribution function f (k) depends on the reduced distribution
function at the next higher level, f (k+1). This establishes the so-called BBGKY
hierarchy of equations of motion for the reduced distribution functions, where
the acronym stands for the authors Born, Bogoliubov, Green, Kirkwood and
Yvon.

To see what the BBGKY hierarchy means, let us begin with the reduced phase-
space distribution f (1) for a single degree of freedom. It will depend on the
distribution function f (2) for two degrees of freedom, which expresses the
notion that individual degrees of freedom do not evolve in isolation, but in
correlation with others. In an ensemble of particles, the motion of a single
particle is determined by two-body correlations with other particles, which in
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turn are affected by three-body correlations, and so forth. Clearly, the BBGKY
hierarchy needs to be terminated somewhere, or closed, for us to make any
progress. This closure is typically set by ignoring any correlations higher than
a certain order.

We are particularly interested in the evolution of the distribution function for
single particles. Let us therefore imagine that we have an ensemble of N
point particles with d = 3N degrees of freedom. We then integrate out all
3N − 3 = 3(N − 1) degrees of freedom belonging to N − 1 of the N particles
and arrive at an evolution equation for the one-particle distribution function.
According to the BBGKY hierarchy, this evolution equation will contain two-
particle correlations. Closure can now be achieved by assuming that any two
particles are statistically uncorrelated. The joint probability for finding a pair
of particles at two positions in phase space is then simply the product of the
probabilities for finding one of the particles at one position and the other at the
other position. The two-particle distribution function can then be written as a
product of one-particle distribution functions.

This closure condition means that any two particles affect each other’s motion
exclusively by direct two-body collisions. They move independently until they
collide, and continue moving independently after the collision. This is possible
if the interaction potential between any two particles is short-ranged compared
to the mean inter-particle distance.

Following these considerations, we introduce a one-particle distribution function
f (t, ~q, ~p ) by integrating f (d) over all but those degrees of freedom that belong
to a single particle. For an ensemble of point particles in three-dimensional
space, f (t, ~q, ~p ) is then defined on an effective, six-dimensional phase space.
Moreover, we normalize the distribution f (t, ~q, ~p ) such that

f (t, ~q, ~p ) d3q d3 p = dN (1.154)

is the number of particles expected to be found within the infinitesimal phase-
space volume dΓ = d3qd3 p around the phase-space position (~q, ~p ). For this
one-particle phase-space distribution function f (t, ~q, ~p ), Liouville’s equation
reduces to Boltzmann’s equation,

∂ f
∂t

+ ~̇q · ∂ f
∂~q

+ ~̇p · ∂ f
∂~p

= C[ f ] , (1.155)

where the term C[ f ] is called collision term: According to our closure condition
for the BBGKY hierarchy, particle interactions are determined by direct particle
collisions only and thus by the one-particle distribution function itself. The
collision term must then be a functional of f . For a Hamiltonian system with
Hamilton function H = H(t, ~q, ~p ), Boltzmann’s equation reads

∂ f
∂t

+
∂H
∂~p
· ∂ f
∂~q
− ∂H
∂~q
· ∂ f
∂~p

= C[ f ] . (1.156)

If, as usual, the Hamilton function can be written as H = T + V , with the kinetic
energy T depending on the conjugate momenta ~p only and a potential energy V
depending only on the generalised coordinates ~q, and if further T = ~p 2/(2m),
then we can write

∂ f
∂t

+
∂ f
∂~q
· ~p

m
− ∂ f
∂~p
· ∂V
∂~q

= C[ f ] . (1.157)
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1.4.2 Collision terms

In presence of collisions, the phase-space density changes schematically ac-
cording to

d f
dt

= gain − loss , (1.158)

where the gain and loss terms are due to scattering into and out of the phase-
space element d~w under consideration. Let ψ(~w, δ~w )dδ~wdt be the transition
probability due to scattering by an amount δ~w from ~w to ~w + δ~w within the time
interval dt. Typically, ψ would be quantified by a scattering cross section. Then,
the gain term is

gain =

∫
dδ~wψ(~w − δ~w, δ~w ) f (t, ~w − δ~w ) (1.159)

since the integral quantifies the expected number of particles moving per unit
time from the phase-space coordinates ~w− δ~w to the phase-space coordinates ~w:
It multiplies the number of particles at the original phase-space point with their
transition probability per unit time and integrates over all possible changes δ~w.
Similarly, the loss term is

loss =

∫
dδ~wψ(~w, δ~w ) f (t, ~w ) . (1.160)

Inserting these gain and loss terms (1.159) and (1.160) into (1.158) yields the
so-called master equation

d f (t, ~w )
dt

=

∫
dδ~w

[
ψ(~w − δ~w, δ~w ) f (t, ~w − δ~w ) − ψ(~w, δ~w ) f (t, ~w )

]
,

(1.161)
describing the change of the phase-space density due to the collisions causing
the transition probability ψ in phase space.

1.4.3 Diffusion in phase space: The Fokker-Planck approximation

We study the time evolution of the phase-space density f here under the quite
relevant assumption that the phase-space coordinates of particles change only by
small amounts in individual collisions. Then, the particles diffuse in phase space
and their phase-space density changes gradually in a way that can be described
with two diffusion coefficients. As we shall see in the course of this treatment,
it is sufficient for this approximation if the absolute values of the phase-space
coordinates change only very little in each collision, while the scattering angles
can even be large. Under these circumstances, this diffusion approximation is
most useful to describe all kinds of particle ensembles which either have low
mass or low energy and interact with another particle ensemble of high mass or
high energy. The equation describing how the phase-space density f changes
with time under this approximation is called the Fokker-Planck equation. Its
derivation, and general methods for its solution, are the main subject of the
following treatment.

Specifically, let us assume that conditions are such that it is permissible to
assume that the change ∆~w in the phase-space coordinates is small enough
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for the transition probability and the phase-space density at ~w − ∆~w to be
approximated by Taylor expansions up to second order,

ψ(~w − δ~w, δ~w ) f (t, ~w − δ~w ) ≈ ψ(~w, δ~w ) f (t, ~w ) (1.162)

− ∂

∂wi

[
ψ(~w, δ~w ) f (t, ~w )

]
δwi

+
1
2

∂2

∂wi∂w j

[
ψ(~w, δ~w ) f (t, ~w )

]
δwiδw j .

Inserting this into the master equation (1.161) leads us already to the Fokker-
Planck equation

d f
(
~w
)

dt
= − ∂

∂wi

[
f
(
~w
)

Di
1
(
~w
)]

+
∂2

∂wi∂w j

[
f
(
~w
)

Di j
2
(
~w
)]

, (1.163)

which approximates scattering as a second-order diffusion process in phase
space. The first- and second-order diffusion coefficients are

Di
1
(
~w
)

=

∫
dδ~wψ

(
~w, δ~w

)
δwi ,

Di j
2
(
~w
)

=
1
2

∫
dδ~wψ

(
~w, δ~w

)
δwiδw j . (1.164)

The first-order coefficient Di
1 integrates the change δwi in the phase-space

coordinate wi over the transition probability per unit time and thus quantifies
the mean change of wi per unit time. Similarly, the second-order coefficient
Di j

2 quantifies the variances Dii
2 of the changes in wi, and the covariances Di j

2
of different phase-space coordinates wi and w j for i , j. Thus, the combined
vector with components Di

1 is the mean change per unit time of the position
vector ~w in phase space, while Di j

2 is the covariance matrix of all individual
changes.

?
Verify the Fokker-Planck equation
(1.163) and the expressions (1.164)
for the diffusion coefficients by your
own derivation.

Suppose now that any change in the spatial coordinates is irrelevant, for example
because all relevant particle species are homogeneously distributed in space.
In fact, this assumption is much less restrictive than it might seem. It can
also be satisfied statistically in the sense that although particles may move in
space, the number of particles moving away from a specific point in space is
compensated by an equal number moving there. In other words, what we set out
to consider now is a dynamical spatial equilibrium. Then, we can concentrate
on the d-dimensional momentum subspace of phase space, restrict ~w = ~p and
δ~w = δ~p and consider the phase-space distribution function f as a function
of (t, ~p ) only. The total time derivative of f (t, ~p ) then equals its partial time
derivative, because

∂ f (t, ~p )
∂~q

= 0 and
∂ f (t, ~p )
∂~p

· ~̇p = 0 for ~̇p = −∂H
∂~q

= 0 . (1.165)

Then, the Fokker-Planck equation (1.163) simplifies to a partial differential
equation in time and momentum only,

∂ f (t, ~p )
∂t

= − ∂

∂pi

[
f (t, ~p )Di

1(~p )
]

+
∂2

∂pi∂p j

[
f (t, ~p )Di j

2 (~p )
]

(1.166)

= − ∂

∂pi

[(
Di

1(~p ) − ∂

∂p j
Di j

2 (~p )
)

f (t, ~p ) − Di j
2 (~p )

∂ f (t, ~p )
∂p j

]
.
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This equation manifestly has the form of a continuity equation, where the term
in brackets represents the current density ~jp in momentum space,

∂ f (t, ~p )
∂t

+ ~∇p · ~jp = 0 , (1.167)

jip =

(
Di

1(~p ) − ∂

∂p j
Di j

2 (~p )
)

f (t, ~p ) − Di j
2 (~p )

∂ f (t, ~p )
∂p j

.

At this point, it is important to note that the two diffusion coefficients Di
1 and

Di j
2 are generally not independent. In an equilibrium situation, the momentum

current ~jp must vanish. Setting the components jip = 0 in (1.167) for an
equilibrium phase-space distribution f̄ (t, ~p ) implies that then the coefficient
Di

1 can be expressed by Di j
2 and the derivative of f̄ (t, ~p ) with respect to the

momentum,

Di
1(~p ) =

∂Di j
2 (~p )
∂p j

+ Di j
2 (~p )

∂ ln f̄ (t, ~p )
∂p j

. (1.168)

However, since both coefficients do not depend on the specific form of f , we
can now use them in the more general situation of an arbitrary phase-space
distribution. Inserting the relation (1.168) into (1.167), the derivative of Di j

2
with respect to the momenta cancels, and the momentum current

jip = −Di j
2 (~p ) f (t, ~p )

∂

∂p j

[
ln f (t, ~p ) − ln f̄ (t, ~p )

]
(1.169)

is shown to be driven by the momentum gradient of the ratio between the actual
and the equilibrium phase-space distributions.

Example: Maxwellian momentum distribution

Suppose, for example, that the equilibrium distribution of the particle species
under consideration can be described as a Maxwellian momentum distribution
with a temperature T̄ . Then,

f̄ (t, ~p ) ∝ exp
(
− p2

2mkT̄

)
,

∂ ln f̄ (t, ~p )
∂p j

= − p j

mkT̄
, (1.170)

the components of the momentum current simplify to

jip = −Di j
2 (~p ) f (t, ~p )

[
∂ ln f (t, ~p )

∂p j
+

p j

mkT̄

]
, (1.171)

and the Fokker-Planck equation becomes

∂ f (t, ~p )
∂t

− ∂

∂pi

[
Di j

2 (~p ) f (t, ~p )
(
∂ f (t, ~p )
∂p j

+
p j

mkT̄

)]
= 0 . (1.172)

J

1.4.4 Diffusion in absolute momentum

Quite frequently, the scattering process changes the absolute value of the mo-
mentum by a small amount only, while the scattering angle may be large. Then,
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the diffusion approximation is still valid in terms of the absolute momentum,
but not in the full three-dimensional momentum space any more. In other words,
momentum can then be considered as slowly diffusing between spherical shells
in momentum space, while its direction angles may be vastly redistributed from
one shell to another. Instead of the phase-space density f (t, ~p ), we must then
consider the density f (t, p)p2 of particles in absolute momentum, irrespective
of its direction. The Fokker-Planck approximation then still applies between
momentum shells, and the Fokker-Planck equation becomes

∂
(

f p2
)

∂t
=

∂

∂p

(D1 +
∂D2

∂p

) (
f p2

)
+ D2

∂
(

f p2
)

∂p

 , (1.173)

with the diffusion coefficients

D1(p) =

∫
dδpψ(p, δp)δp , D2(p) =

1
2

∫
dδpψ(p, δp)δp2 . (1.174)

Both coefficients are now one-dimensional. The first-order coefficient D1 is the
mean momentum change per unit time, while the second-order coefficient D2 is
its mean-square.

We can now express the Fokker-Planck equation as a radial diffusion equation
in momentum space,

∂ f
∂t

+
1
p2

∂
(

jp p2
)

∂p
= 0 , jp =

(
D1 +

∂D2

∂p

)
f +

D2

p2

∂
(

f p2
)

∂p
, (1.175)

where now jp is the radial component of the momentum current. Notice that
the operator applied to the momentum current is the divergence in spherical
polar coordinates, so the meaning of the equation has not changed: It remains
a conservation equation, expressing that any change in phase-space density is
caused by a momentum current.

Again, jp must vanish in an equilibrium situation, expressed by an equilibrium
phase-space density f̄ . This requirement establishes the relation

D1 = −
(
2D2

p
+
∂D2

∂p

)
− D2

∂ ln f̄
∂p

(1.176)

between D1 and D2. Inserting this result into the current density in (1.175)
gives, after some straightforward rearrangement,

jp = D2 f
∂

∂p

(
ln f − ln f̄

)
= D2 f

∂

∂p
ln

f
f̄
. (1.177) ?

Convince yourself of the relations
(1.176) and (1.177) under the condi-
tions discussed here.

1.4.5 Calculation of the diffusion coefficient D2

For an actual calculation of the diffusion coefficient D2, we return to its defini-
tion in (1.164) or the more specialised form (1.174) and recall that the physical
meaning of D2 is (one half) the mean-squared momentum change per unit time
of the particle species considered,

D2 =
1
2

〈
δp2

〉
. (1.181)
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Example: Maxwellians with different temperatures

To give an example, let us assume that both the actual and the equilibrium
phase-space distributions, f and f̄ , are Maxwellians characterised by two
different temperatures T and T̄ , respectively. Then,

∂ ln f
∂p

− ∂ ln f̄
∂p

= − p
mkT

(
1 − T

T̄

)
, (1.178)

the momentum current density becomes

jp = −D2
p f

mkT

(
1 − T

T̄

)
, (1.179)

and the Fokker-Planck equation reduces to

∂ f
∂t

=
1

p2mkT

(
1 − T

T̄

)
∂

∂p

(
D2 p3 f

)
. (1.180)

J

To illustrate this, consider a species of heavy particles with mass M embedded
in a sea of light particles with mass m � M. Then, the energy of the heavy
particles is almost unchanged by the collisions with the light particles, while
momentum conservation implies a small change δp in absolute momentum
determined by

δp2 = 2q2(1 − cos θ) (1.182)

per collision, if q and θ are the momentum and the scattering angle of the light
particle. The probability of a light particle with velocity v = q/m scattering off

a heavy particle per unit time into the solid-angle element dΩ is

nv
dσ
dΩ

dΩ =
nq
m

dσ
dΩ

dΩ , (1.183)

where n is the number density of light particles. Thus, the mean-squared
momentum change per unit time of a heavy particle is〈

δp2
〉

=
2n
m

〈∫
q3(1 − cos θ)

dσ
dΩ

dΩ

〉
, (1.184)

where the average has to be taken over the momentum distribution of the light
particles.

?
Can you confirm that the differential
cross section for light point particles
scattered by a hard sphere is given
by (1.185)? Suppose that the heavy particles can be considered as hard spheres with radius

R, while the light particles approximate point masses. Then, in the idealised
situation of light particles bouncing off heavy, hard spheres,

dσ
dΩ

=
R2

4
,

∫
(1 − cos θ)

dσ
dΩ

dΩ =
πR2

2

∫ 1

−1
(1 − cos θ)d(cos θ) = πR2 ,

(1.185)
and the diffusion coefficient D2 becomes

D2 =
1
2

〈
δp2

〉
=
πnR2

m

〈
q3

〉
, (1.186)

where the average over the cubed momentum of the light particles remains.
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If their velocity distribution is of Maxwellian form with temperature T̄ ,

〈
q3

〉
=

8
√

2√
π

(mkT̄ )3/2 , (1.187)

and the diffusion coefficient finally assumes the form

D2 = 8nR2
[
2πm

(
kT̄

)3
]1/2

(1.188)

which is even independent of the momentum p. This result can now be used
with the Fokker-Planck equation (1.180) to calculate how a non-equilibrium
phase-space distribution f evolves in time towards its equilibrium by collisions
with heavier particles.

Suggested further reading: [1, 2, 3, 4]





Chapter 2

Radiation Processes

This chapter deals with radiation processes. These are defined as processes
by which electromagnetic radiation is either scattered, emitted or absorbed
by matter. In the first five sections, radiation will be treated as a classical
electromagnetic wave. We shall begin with the very illustrative case of Thomson
scattering, then give a general description of spectra, proceed to synchrotron
radiation and bremsstrahlung and finally consider the drag that a charged particle
experiences as it moves through a radiation field. Up to that point, our main
theoretical instrument will be Larmor’s formula, either in its fully relativistic
form (1.138) or in its non-relativistic approximation (1.142), which quantifies
the radiation power of a charge moving with a velocity ~β and accelerated by
~̇β. Then, we shall leave the classical picture of electromagnetic waves and
consider quantum properties of radiation. The theory of Compton scattering
treats electromagnetic radiation as a stream of photons. Emission of radiation
by quantum systems will be discussed next, treating their interaction with
electromagnetic radiation at a semi-classical, perturbative level, i.e. without
quantisation of the electromagnetic field. This will lead us to the calculation of
radiative transition probabilities and finally to the shape of spectral lines.

2.1 Thomson scattering

Thomson scattering describes perhaps the simplest case of interaction be-
tween an electromagnetic wave and a point charge: The wave accelerates
the charge transversally to its propagation direction. Due to its accelerated
motion, the charge radiates according to the non-relativistic Larmor formula.
The emitted radiation power, divided by the flux density of the incoming radia-
tion, is the Thomson cross section. Its differential, polarisation-dependent or
polarisation-averaged forms (2.13) and (2.14) as well as the total Thomson
cross section (2.15) are the main results of this section.

Let us begin with a monochromatic, polarised, plane electromagnetic wave
hitting an electron at rest. By the Lorentz force, it will accelerate the electron
to move harmonically. Because of this accelerated motion, the electron will
radiate according to Larmor’s formula, as we have seen in Sect. 1.3.5. We ask

37
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now how the energy radiated by the electron relates to the energy transported
by the incoming wave.

For definiteness, we introduce a coordinate frame such that the infalling electro-
magnetic wave propagates into the êz direction. The ~E and ~B vectors must then
fall into the x-y plane because electromagnetic waves in vacuum are transversal.
The polarisation angle will be fixed below. We place the electron at rest into the
origin of the coordinate frame.

?
Why are electromagnetic waves in
vacuum transversal? Can you con-
struct situations in which longitudi-
nal electromagnetic waves occur?
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Figure 2.1 The spatial radiation pattern of a non-relativistic charge accelerated
along the x axis is shown here. (The x axis points horizontally towards the bottom
right).

y

z

x

to observer

ϑ

α

Figure 2.2 Choice of the coordinate system for the treatment of Thomson scat-
tering in the text.

The electron experiences the Lorentz force

me~̈x = −e~E − e
c
~v × ~B = −e

(
~E + ~β × ~B

)
. (2.1)

For the incoming wave, |~B| = |~E|. If the electron moves non-relativistically,
|~v| � c, the magnetic contribution to the Lorentz force can be neglected since
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the ~E and ~B fields of an electromagnetic wave in vacuum have equal magnitude.
The equation of motion for the electron then reduces to

~̈x = c~̇β = − e
me

~E . (2.2)

The non-relativistic limit of the Larmor formula (1.138) is

dP
dΩ

=
e2

4πc

∣∣∣∣ê × ~̇β ∣∣∣∣2 . (2.3)

It gives the energy radiated per unit time into the solid-angle element dΩ

around the vector ê pointing from the charge to the observer (Figure 2.1). Since
the electron’s motion is non-relativistic, retardation effects can be neglected.
Inserting the acceleration by the Lorentz force (2.2) with (2.3) gives

dP
dΩ

=
e4

4πm2
ec3

∣∣∣∣ê × ~E ∣∣∣∣2 . (2.4)

We rotate the coordinate frame (Figure 2.2) such that the observer lies in the
x-z plane,

ê =

 sin θ
0

cos θ

 , (2.5)

and introduce the polarisation angle α of the incoming ~E field as the angle
enclosed by the ~E vector with the êx axis,

~E = E

 cosα
sinα

0

 . (2.6)

With this choice, we find

ê × ~E = E

 − sinα cos θ
cosα cos θ
sinα sin θ

 , (2.7)

and the radiated power per solid angle given by (2.4) turns into

dP
dΩ

=
e4E2

4πm2
ec3

(
1 − sin2 θ cos2 α

)
. (2.8)

The infalling energy current density is quantified by the Poynting vector of the
incoming wave,

~S =
c

4π

∣∣∣∣~E ∣∣∣∣2 êz . (2.9)

This is the energy per unit area and unit time impinging on the electron. The
ratio between the energy radiated per unit time and unit solid angle and the
energy current density,

1

|~S |
dP
dΩ

=
dσ
dΩ

=
e4

m2
ec4

(
1 − sin2 θ cos2 α

)
, (2.10)

has the dimension of an area. It is the differential Thomson cross section for
polarised light (Figure 2.3a).
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Figure 2.3 These bodies illustrate the polarised and the unpolarised Thomson
cross sections for electromagnetic waves propagating along the positive x direction.
Top panel: The directional dependence of the polarised Thomson cross section
on the scattering angle is shown here, with the polarisation angle being the angle
enclosed with the z axis (i.e. the polar angle). Bottom panel: The unpolarised
Thomson cross section is forward-backward symmetric.

The prefactor e4/m2
ec4 has an interesting and intuitive meaning. Suppose we

want to explain the entire rest-energy of the electron by the electrostatic energy
of the charge e distributed over a sphere of radius re. We would then require

mec2 =
e2

re
(2.11)

and find the classical electron radius

re =
e2

mec2 ≈ 2.81 · 10−13 cm . (2.12)

For ions composed of N nucleons and having a charge number Z, this classical
radius is at least approximately Z2/(1800 N) times smaller because of their
much higher mass. The Thomson cross section of ions is therefore generally
negligibly small compared to that of the electrons. Electromagnetic radiation
flowing through, say, a hydrogen plasma is scattered by the electrons, which
then interact mainly by Coulomb collisions with the ions.
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The classical electron radius brings the differential, polarised Thomson cross
section (2.10) into the simple, intuitive form

dσ
dΩ

= r2
e

(
1 − sin2 θ cos2 α

)
. (2.13) ?

Before moving on, verify (2.13),
then average over polarisation an-
gles and integrate over the solid an-
gle.

For unpolarised light, we need to average (2.13) over all polarisation angles
α. This average leads to the unpolarised, differential Thomson cross section
(Figure 2.3b)

〈
dσ
dΩ

〉
α

=
1

2π

∫ 2π

0

dσ
dΩ

dα =
r2

e

2

(
2 − sin2 θ

)
=

r2
e

2

(
1 + cos2 θ

)
. (2.14)

If we finally integrate over all directions into which the radiation is scattered,
we find the total Thomson cross section

σT =

∫
dΩ

〈
dσ
dΩ

〉
α

= πr2
e

∫ 1

−1
d(cos θ)

(
1 + cos2 θ

)
=

8π
3

r2
e ≈ 6.64 · 10−25 cm2 . (2.15)

This can be interpreted as the area that a single, non-relativistic electron puts in
the way of incoming, unpolarised radiation.

Problems

1. Work out the mean molecular mass for a mixture of neutral, atomic
hydrogen and helium as a function of the hydrogen mass fraction X.

2. Consider an electron at the origin of the coordinate system, illuminated
by two unpolarised electromagnetic wave bundles propagating along the
−y and −z axes with different energy current densities S y and S z.

(a) Find the radiation power radiated into the x direction.

(b) Is the scattered radiation polarised?

2.2 Spectra

This brief section discusses how electromagnetic spectra of accelerated
charges can be computed. The starting point is Larmor’s equation in its
relativistic or non-relativistic forms, giving the radiation power. The total
energy radiated away is the time integral over the power which, by Parseval’s
equation for Fourier-conjugate functions, can be converted to a frequency
integral. Its integrand is the energy per unit frequency, i.e. the spectrum. This
allows us to derive the fully relativistic expression (2.36) for the spectrum.
The substantially simplified versions (2.39) and (2.42) for non-relativistic
charges can be directly derived from the non-relativistic Larmor equation.
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Example: Eddington Luminosity

Let us immediately apply the Thomson scattering cross section to the follow-
ing situation. Suppose ionised gas surrounds a hot, spherically-symmetric,
radiating body of mass M. The radiation carries the momentum current density

~S
c

=
1

4π

∣∣∣∣~E2
∣∣∣∣ ê , (2.16)

given by the components of Maxwell’s stress-energy tensor. Since this is the
momentum flowing per unit time through unit area, it corresponds to a force
per unit area, or a pressure exerted on an ideally absorbing wall.
The total energy emitted by the star per unit time is its luminosity L. Exploiting
the spherical symmetry, we have

L =

∫
~S · d~a = 4πR2 · c

4π

∣∣∣∣~E(R)
∣∣∣∣2 , (2.17)

where ~E(R) is the electric field strength at radius R. According to (2.16), the
radiation pressure there is expressed by L after eliminating the electric field ~E,

~S
c

=
L

4πcR2 ê . (2.18)

Each electron in the surrounding plasma has a Thomson-scattering cross
section of σT and thus experiences the force

~FR =
~S
c
· σT =

L
4πR2c

σTê (2.19)

by the radiation pressure. Recall that the force on the ions in the plasma
is lower by a factor of ≈ Z2/(1800 N) if the ions have the charge Ze and
are composed of N nucleons. This radiation-pressure force acting radially
outward is counter-acted by the gravitational force of the mass M of the central
body,

~FG = −GMm
R2 ê . (2.20)

Both forces compensate each other if the luminosity L satisfies

L
4πR2c

σT =
GMm

R2 , (2.21)

i.e. if the luminosity reaches the Eddington limit

L = LEdd =
4πGMm
σT

c . (2.22)

Inserting a solar mass for M and a proton mass for m here results in

LEdd = 1.26 · 1038 erg
s

= 3.28 · 104 L� (2.23)

(see Tabs. 1.3 and 1.4). J
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Example: Eddington Luminosity (continued)

Note that we have deliberately not specified the particle mass m in (2.20)
and the following equations to be the electron mass. Consider a hydrogen
plasma consisting of an equal mixture of electrons and protons. By (2.12),
the Thomson cross section of a proton is about 18002 ≈ 3.2 · 106 times
smaller than that of an electron. However, while essentially only the electrons
feel the radiation pressure, they are tighly coupled by Coulomb interactions
to the protons. The radiation-pressure force thus needs to compensate the
gravitational force felt by the electrons and the protons together. The particle
mass m inserted in (2.22) should therefore be the total mass per electron rather
than the electron mass alone. For a fully ionised hydrogen plasma, we can
approximate m by the proton mass mp. J

The energy received by an observer from a radiating electron, flowing into the
solid angle dΩ, is

dE
dΩ

=

∫
dt

dP
dΩ

, (2.24)

where dP/dΩ is given by the Larmor formula (1.138). Often, we are interested
in the radiation spectrum, i.e. in the distribution of the energy over frequency
rather than time. Realising that the time t and the frequency ω are Fourier
conjugates, this is most easily found using Plancherel’s theorem,∫ ∞

−∞
dt | f (t)|2 =

∫ ∞

−∞
dω
2π

∣∣∣ f̂ (ω)
∣∣∣2 , (2.25)

which specialises Parseval’s equation for continuous Fourier transforms. It
relates the integral over a function to that over its Fourier transform. The
negative frequencies ω in (2.25) may appear strange here. Nonetheless, they
obtain a well-defined meaning because we require that f (t) be real. Then, its
Fourier transform f̂ (ω) must satisfy the relation f̂ (−ω) = f̂ ∗(ω).

Applying Plancherel’s theorem to (2.24) and inserting the Larmor formula
(1.138), we find

dE
dΩ

=
e2

4πc

∫ ∞

−∞
dt

∣∣∣∣∣∣∣∣∣∣
ê ×

[(
ê − ~β

)
× ~̇β

]
(
1 − ê · ~β

)3

∣∣∣∣∣∣∣∣∣∣
2

=
e2

4πc

∫ ∞

−∞
dω
2π

∣∣∣ f̂ (ω)
∣∣∣2

=

∫ ∞

−∞
dω

d2E
dΩdω

, (2.26)

where f̂ (ω) is now specified to be the Fourier transform of the function

f (t) =

ê ×
[(

ê − ~β
)
× ~̇β

]
(
1 − ê · ~β

)3 (2.27)

that can directly be read off the Larmor formula (1.138). The spectrum is then
given by the absolute square of f̂ (ω),

d2E
dΩdω

=
e2

8π2c

∣∣∣ f̂ (ω)
∣∣∣2 . (2.28)
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The Fourier transform

f̂ (ω) =

∫ ∞

−∞
dt

ê ×
[(

ê − ~β
)
× ~̇β

]
(
1 − ê · ~β

)3 e−iωt (2.29)

simplifies considerably realising that the integrand needs to be evaluated at the
retarded time t′ = t − R/c, where R is the distance from the observer to the
electron at the retarded time. Taking into account that the differential dt′ of the
retarded time is related to dt by (1.136), we can first cancel one factor (1− ê · ~β )
from the denominator and write

f̂ (ω) =

∫ ∞

−∞
dt′

ê ×
[(

ê − ~β
)
× ~̇β

]
(
1 − ê · ~β

)2 e−iω(t′+R/c) . (2.30)

Furthermore, a short calculation shows that the integrand can be written as a
total derivative with respect to the retarded time t′,

ê ×
[(

ê − ~β
)
× ~̇β

]
(
1 − ê · ~β

)2 =
d

dt′

 ê ×
(
ê × ~β

)(
1 − ê · ~β

)  . (2.31)
?

Verify (2.31) by your own calcula-
tion. This leaves us with

f̂ (ω) =

∫ ∞

−∞
dt′

d
dt′

 ê ×
(
ê × ~β

)(
1 − ê · ~β

)  e−iω(t′+R/c) , (2.32)

which calls for partial integration. Before we get to that, however, we decom-
pose the distance vector ~R from the radiating electron to the observer into the
distance vector ~x from the center of the orbit to the electron and the distance
vector ~r from the center of the orbit to the observer,

~R = ~r − ~x . (2.33)

The idea behind this decomposition is that the motion of the radiating charge is
confined to a distant source, and thus to a volume which is far away and small
compared to its distance from the observer. The retarded distance R is then ê · ~R,
and its derivative with respect to the retarded time is

d
dt′

R
c

= −ê · ~β ; (2.34)

compare (1.126). Assuming that the emission in the distant past and in the far
future can be neglected, we can ignore the boundary terms appearing in the
partial integration of (2.32). Taking (2.34) into account, the partial integration
gives

f̂ (ω) = −
∫ ∞

−∞
dt′

 ê ×
(
ê × ~β

)(
1 − ê · ~β

)  d
dt′

e−iω(t′+R/c)

= iω
∫ ∞

−∞
dt′

[
ê ×

(
ê × ~β

)]
e−iω(t′−ê·~x/c) , (2.35)
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where we have ignored the constant phase factor eiωê·~r. It is irrelevant because
we later need to take the absolute value of f̂ (ω) anyway.

It is worth noting again that we have made a single approximation in the
preceding calculation which is perfectly legitimate in typical astrophysical
situations: We have assumed that the radiating electron is confined to a distant
volume that is small compared to its distance from the observer. This has
allowed us to derive a general prescription for calculating radiation spectra,
expressed by (2.29) with f̂ (ω) given by the Fourier transform (2.35),

d2E
dΩdω

=
e2

8π2c

∣∣∣ f̂ (ω)
∣∣∣2 =

e2ω2

8π2c

∣∣∣∣∣∫ ∞

−∞
dt′

[
ê ×

(
ê × ~β

)]
e−iω(t′−ê·~x/c)

∣∣∣∣∣2 ,

(2.36)
understanding that the integrand has to be evaluated at the retarded time t′ and
that ~x = ~x(t′) describes the electron’s orbit about a fixed reference point within
the volume it is confined to. We can now apply this general result to different
circumstances relevant in astrophysics.

The calculation simplifies considerably for non-relativistically moving charges.
Then, relativistic beaming is irrelevant, retardation effects can be ignored, and
terms of higher than linear order in β and β̇ can be neglected. We can then begin
with the direction-integrated, non-relativistic Larmor formula following from
(1.141) by setting γ = 1 and dropping the fourth-order term in β. Then,

E =

∫ ∞

−∞
P dt =

2e2

3c3

∫ ∞

−∞

∣∣∣~a(t)
∣∣∣2 dt , (2.37)

where ~a = ~̈x is the acceleration experienced by the charge. Employing
Plancherel’s theorem (2.25) once more, we can continue writing (2.37) as

E =
2e2

3c3

∫ ∞

−∞
dω
2π

∣∣∣∣~̂a(ω)
∣∣∣∣2 =

∫ ∞

−∞
dω

dE
dω

, (2.38)

which yields the non-relativistic, direction-integrated spectrum

dE
dω

=
e2

3πc3

∣∣∣∣~̂a(ω)
∣∣∣∣2 . (2.39)

The Fourier transform ~̂a of the acceleration can easily be expressed by the
Fourier transform of the orbit itself. Since

~a = ~̈x =
d2

dt2

∫ ∞

−∞
dω
2π

~̂x(ω) e−iωt = −
∫ ∞

−∞
dω
2π

ω2~̂x(ω) e−iωt , (2.40)

the Fourier transform of ~̂a is

~̂a = −ω2~̂x(ω) , (2.41)

which allows us to calculate the spectrum directly from

dE
dω

=
e2ω4

3πc3

∣∣∣∣~̂x(ω)
∣∣∣∣2 . (2.42)
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Example: Electron on a circular orbit

A quite simple example is an electron orbiting on a circle of radius r with an
angular frequency ω0. Since its orbit is given by

~x(t) = r

 cosω0t
sinω0t

0

 , x1(t) + ix2(t) = reiω0t , (2.43)

the Fourier transform of x1 and x2 together is

x̂1(ω) + ix̂2(ω) = r
∫ ∞

−∞
ei(ω0−ω)t dt = 2πr δD(ω0 − ω) . (2.44)

Its spectrum is thus a single, sharp line emitting the energy∫ ∞

−∞
dω

dE
dω

=
4π
3

e2r2ω4
0

c3 . (2.45)

J

Example: Electron under constant acceleration

For another illustrative example, suppose an electron is accelerated with
constant acceleration ~a during a finite time interval −τ/2 ≤ t ≤ τ/2. The
Fourier transform of this acceleration is

~̂a(ω) = ~a
∫ τ/2

−τ/2
e−iωtdt = − i~a

ω

(
eiωτ/2 − e−iωτ/2

)
=

2~a
ω

sin
ωτ

2
, (2.46)

which we can insert directly into (2.39) to find the spectrum

dE
dω

=
4e2~a 2

3πc3ω2 sin2 ωτ

2
. (2.47)

J
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Problems

1. Verify equation (2.31).

2. Let the Fourier transform of a function f (x) and the inverse transform of
its Fourier conjugate f̂ (k) be defined by

f̂ (k) =

∫ ∞

−∞
dx f (x)eikx , f (x) =

∫ ∞

−∞
dk
2π

f̂ (k)e−ikx . (2.48)

Prove the following identities:

(a)
f̂ ∗(−k) = f̂ (k) (2.49)

for real functions, f (x) ∈ R.

(b)
f̂ ∗ g = f̂ ĝ (2.50)

if

( f ∗ g)(x) :=
∫ ∞

−∞
dy f (x − y)g(y) (2.51)

is the convolution of the two functions f and g.

(c) ∫ ∞

−∞
dk
2π

f̂ (k)ĝ∗(k) =

∫ ∞

−∞
dx f (x)g∗(x) (2.52)

(Parseval’s equation).

(d) ∫ ∞

−∞
dk
2π
| f̂ (k)|2 =

∫ ∞

−∞
dx | f (x)|2 . (2.53)

3. Consider an electron whose one-dimensional trajectory x(t) satisfies the
differential equation of a damped harmonic oscillator,

ẍ + 2γẋ + ω2
0x = 0 . (2.54)

(a) What is the oscillator frequency ω if ω0 is the system’s eigenfre-
quency? Hint: Try the ansatz x(t) ∝ e±iωt. What does a complex
frequency mean physically?

(b) Show that the solution of the differential equation is given by

x(t) =
v0

ω̄
e−γt sin ω̄t with ω̄ =

√
ω2

0 − γ2 . (2.55)

if ω0 > γ and the initial conditions are x(t = 0) = 0 and ẋ(t = 0) =

v0.

(c) Calculate the Fourier transform x̂(ω). Assume that x(t) = 0 for
t < 0.

(d) Calculate the spectrum dE/dω of the moving electron.

(e) What does the spectrum look like if both ω � ω0 and ω � γ?
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2.3 Synchrotron radiation

In this section, the power and the spectrum radiated by a relativistic charge
gyrating in a magnetic field are calculated. This is entirely an application of
Larmor’s equation from classical electrodynamics and the general formulae
for calculating spectra derived in the preceding section. We shall first
consider the trajectory of the electron, then discuss relativistic beaming and
its effects, and proceed directly to the synchrotron power in (2.68) and the
synchrotron spectrum in (2.86). The main assumptions are that the emitting
charge is confined to a volume whose dimensions are small compared to its
distance from the observer and that the source is ultra-relativistic. Besides
the shape of the synchrotron spectrum, an important result of the discussion
is that relativistic beaming allows the observer to see the signal only during
a very short time per orbit, which substantially broadens the spectrum since
frequency and time are Fourier conjugates.

2.3.1 Larmor frequency and relativistic focussing

Consider now an electron moving relativistically in a homogeneous magnetic
field. Without electric field, ~E = 0, the Lorentz force (1.146) causes the
acceleration

d
(
γ~v

)
dt

= − e
mc
~v × ~B . (2.56)

Since this purely magnetic Lorentz force is perpendicular to the velocity, it
cannot change the electron’s energy, thus γ = const. Let us rotate the coordinate
frame such that ~B is aligned with the z axis, hence ~B = Bêz. Then,

d(γvz)
dt

= γv̇z = 0 (2.57)

while
v̇x = − eB

γmc
vy , v̇y =

eB
γmc

vx . (2.58)

Taking a second time derivative of either of the two equations (2.58) and
combining it with the respective other equation gives

v̈i +

(
eB
γmc

)2

vi = 0 , i = x, y . (2.59)

This is the equation of a harmonic oscillator with the Larmor frequency

ωL =
eB
γmc

= 17.6 Hz γ−1
(

B
µG

) (me

m

)
. (2.60)

In a constant magnetic field, the electron therefore describes a circular orbit
with cyclic frequency ωL in the plane perpendicular to ~B, while it moves with
constant velocity along ~B (Figure 2.4). If it has vz , 0 initially, it orbits on a
helix with constant radius and pitch angle.

Let us now assume for simplicity that vz = 0 so that the electron moves on
a circle in the plane perpendicular to ~B (Figure 2.5). Alternatively, we can
transform into a reference frame co-moving with the mean motion of the
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~B

Figure 2.4 The trajectory of a charge in a locally constant magnetic field ~B is a
helix.

electron. On a circular orbit, the acceleration is perpendicular to the velocity,
~β ⊥ ~̇β or ~β · ~̇β = 0. Since the electron is supposed to move relativistically, β ≈ 1,
and we can approximate

1 − β =
1 − β2

1 + β
≈ 1

2γ2 , β ≈ 1 − 1
2γ2 . (2.61)

?
Why is it appropriate and consistent
to approximate 1 + β ≈ in (2.61)?Introducing the angle θ between ê and ~β by β cos θ = ê · ~β, we see that the factor

(1 − ê · ~β )−1 = (1 − β cos θ)−1 in the Larmor formula (1.138) is very large. In
the direction of the motion, θ = 0,(

1 − ê · ~β
)−1

= (1 − β)−1 ≈ 2γ2 , (2.62)

and the factor (1 − β cos θ)−1 drops to half its maximum within a narrow angle.
Requiring

1

1 − ê · ~β
&

1
2(1 − β)

, (2.63)

we find the condition

cos θ ≈ 1 − θ
2

2
& 2 − 1

β
, (2.64)

from which we can read off

θ .

√
2
(
1
β
− 1

)
≈

√
2(1 − β) ≈ 1

γ
. (2.65)

The energy radiated by the electron is thus confined to a very narrow beam
with opening angle . γ−1. This will allow us to introduce several well-justified
approximations as we go along.
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2.3.2 Synchrotron power

y

z

x

to observer θ

Figure 2.5 Illustration of how the coordinate frame is chosen for the calculation
of the synchrotron power and the synchrotron spectrum carried out in the text.

Let us first introduce a coordinate frame oriented such that the electron’s orbit
falls into the x-y plane, while the observer is in the x-z plane. Furthermore,
we shift the coordinate origin into the centre of the circular orbit and choose
the zero point of the retarded time t′ such that the electron moves into the êx

direction at t′ = 0. Then, we can write

ê =

 sin θ
0

cos θ

 , ~x = x

 sinϕ
cosϕ

0

 ,
~β = β

 cosϕ
− sinϕ

0

 , ~̇β = βϕ̇

 − sinϕ
− cosϕ

0

 , (2.66)

where x is the radius of the orbit and the dimension-less velocity is β = xϕ̇/c =

xωL/c.

The total synchrotron power follows directly from the integrated Larmor for-
mula (1.141). Since ~β ⊥ ~̇β in the case of synchrotron radiation, we first obtain

P =
2e2

3c
γ6

[
β̇2 −

(
~β × ~̇β

)2
]

=
2e2

3c
γ6β̇2

(
1 − β2

)
=

2e2

3c
γ4β̇2 . (2.67)

Since β̇ = βϕ̇ ≈ ωL, we can further simplify

P =
2e2

3c
γ4ω2

L =
2e2

3c
γ4

(
eB
γmc

)2

=
8π
3

r2
e cγ2 B2

4π
= cγ2σTUB , (2.68)

where UB = B2/4π is the energy density in the magnetic field that can be read
off Maxwell’s energy-momentum tensor, see (1.112), and σT is the Thomson
cross section, derived in the non-relativistic regime. As we shall see later, this
is a very intuitive expression for the total synchrotron power.
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2.3.3 Synchrotron spectrum

We now turn to the evaluation of the spectrum (2.36) under the given circum-
stances. Expanding first the double vector product in (2.36), we find

ê ×
(
ê × ~β

)
=

(
ê · ~β

)
ê − ~β = β

 − cosϕ cos2 θ

sinϕ
cosϕ sin θ cos θ

 . (2.69)

This vector must be perpendicular to the line-of-sight, whose direction is given
by ê. We can thus expand it into two basis vectors perpendicular to ê, which we
choose to be êy and

ê⊥ = ê × êy =

 − cos θ
0

sin θ

 . (2.70)

In this basis,
ê ×

(
ê × ~β

)
= β cosϕ cos θê⊥ + β sinϕêy . (2.71)

The phase ψ of the exponential in (2.36) is

ω

(
t′ − ê · ~x

c

)
=: ψ = ω

(
t′ − x sin θ sinϕ

c

)
. (2.72)

We can now make use of the fact that the radiation of the relativistically moving
electron is strongly focussed into its forward direction, since the opening angle
of the radiation cone is approximately confined to [−γ−1, γ−1], as we have
discussed before. This implies that our observer will see the radiation only
when |ϕ| . γ−1 and |θ − π/2| . γ−1. Since γ � 1, the angle θ is close to π/2.
We introduce its complement θ ≡ π/2 − θ � 1 and approximate

sin θ = sin
(
π

2
− θ

)
= cos θ ≈ 1 +

θ2

2
, cos θ = cos

(
π

2
− θ

)
= sin θ ≈ θ .

(2.73)

The expansion in ϕ is effectively an expansion in t′, for ϕ = ωLt′. We shall see
later that we need to carry it to order t′3, hence

sinϕ ≈ ωLt′
1 − ω2

Lt′2

6

 , cosϕ ≈ 1 − ω
2
Lt′2

2
. (2.74)

We thus have

ê ×
(
ê × ~β

)
≈ βθê⊥ + βωLt′êy ≈ θê⊥ + ωLt′êy , (2.75)

and the Fourier phase becomes

ψ ≈ ωt′
1 − β 1 − ω2

Lt′2

6

 (1 − θ2

2

) ≈ ωt′

2

 1
γ2 + θ2 +

ω2
Lt′2

3

 (2.76)

where we have used the relations

β =
xωL

c
, 1 − β =

1
2γ2 , β ≈ 1 . (2.77)
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To further simplify the expression for the Fourier phase, we pull the factor
(γ−2 + θ2) out of the parenthesis in (2.76) to find first

ψ ≈ ωt′

2

(
1
γ2 + θ2

) (
1 +

τ2

3

)
(2.78)

with the new dimension-less time variable

τ :=
ωLt′√
γ−2 + θ2

. (2.79)

Defining further the dimension-less frequency

ξ :=
ω

3ωL

(
1
γ2 + θ2

)3/2

, (2.80)

we can write the phase as

ψ =
3ξτ
2

(
1 +

τ2

3

)
. (2.81)

?
Verify the approximate expression
(2.81) for the phase function ψ. Combining expression (2.75) for the double vector product, inserting the Fourier

phase ψ from (2.78) and transforming the integration variable from t′ to τ as

defined in (2.79), we find that we can split the function ~̂f (ω) introduced in
(2.35) as

~̂f (ω) = f̂⊥(ω)ê⊥ + f̂‖(ω)êy , (2.82)

where the perpendicular and parallel Fourier amplitudes are

f̂⊥(ω) = −i
ω

ωL
θ

(
1
γ2 + θ2

)1/2 ∫ ∞

−∞
dτ e−iψ ,

f̂‖(ω) = −i
ω

ωL

(
1
γ2 + θ2

) ∫ ∞

−∞
τdτ e−iψ . (2.83)

The remaining integrals are Bessel functions of fractional order,∫ ∞

−∞
dτ e−iψ =

2√
3

K1/3(ξ) ,
∫ ∞

−∞
τdτ e−iψ = − 2i√

3
K2/3(ξ) . (2.84)

Putting these results together, we can express (2.36) as

d2E
dΩdω

=
e2

4πc

[∣∣∣ f̂⊥(ω)
∣∣∣2 +

∣∣∣ f̂‖(ω)
∣∣∣2] , (2.85)

or, introducing the preceding results for the functions f⊥ and f‖,

d2E
dΩdω

=
e2ω2

3πcω2
L

(
1
γ2 + θ2

)2 [
θ2

γ−2 + θ2 K2
1/3(ξ) + K2

2/3(ξ)
]
. (2.86)

This is the synchrotron spectrum (Figure 2.6).

To obtain further insight into the shape of the spectrum, let us shift the observer
into the orbital plane of the electron. Since the radiation is focussed into a
narrow cone with |θ| . γ−1, this is not a strong simplification. We first realise



2.3 Synchrotron radiation 53

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10

(ω/ωc)
2/3

(ω/ωc)
-1exp(-2ω/ωc)

(ω
/ω
c)
2 K
2/
32
(ω
/ω
c)

ω/ωc

Figure 2.6 The shape of the synchrotron spectrum is shown in arbiratry units as
a function of the scaled frequency ξ = ω/ωc. The polar angle was set to θ = π/2,
i.e. this is the spectral shape in the orbital plane of the electron. The Lorentz factor
is irrelevant here since it only affects the amplitude, not the shape of the spectrum.

that the intensity of the radiation component polarised perpendicular to the elec-
tron’s orbit vanishes since f̂⊥(ω) = 0. In the orbital plane, synchrotron radiation
is thus completely linearly polarised in the orbital plane, or perpendicular to the
guiding magnetic field. Then, with θ = 0, (2.86) simplifies to

d2E
dΩdω

=
3
π

e2γ2

c

(
ω

ωc

)2

K2
2/3

(
ω

ωc

)
, ωc = 3ωLγ

3 (2.87)

where we have introduced the cutoff frequency

ωc = 3ωLγ
3 =

3γ2eB
mc

. (2.88)

The Bessel function K2/3(ξ) follows a falling power law for ξ � 1 and drops
approximately exponentially for ξ � 1,

K2/3(ξ) ≈


1
2

Γ

(
2
3

) (
ξ

2

)−2/3
(ξ � 1)

√
π√
2ξ

e−ξ (ξ � 1)
. (2.89)

For small ξ, the synchrotron spectrum is thus a power law in frequency,

d2E
dΩdω

≈ 3 · 24/3

4π
Γ2

(
2
3

)
e2γ2

c

(
ω

ωc

)2/3

(2.90)

Since γ � 1, the frequency range covered by this power-law behaviour is
very wide. Only far above the Larmor frequency, the spectrum is cut off

exponentially near the cutoff frequency ωc. This is a direct consequence of the
narrow radiation cone: During each orbit of the electron, its radiation is only
received by the observer in a very short time interval. The Fourier transform of
this time interval, however, corresponds to a wide frequency range, similar to
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the uncertainty principle in quantum mechanics. For frequencies near or above
the cutoff frequency, the spectrum is approximated by

d2E
dΩdω

≈ 3
2

e2γ2

c

(
ω

ωc

)
exp

(
−2

ω

ωc

)
. (2.91)

Problems

1. Due to the Lorentz force, a non-relativistic electron moving with a veloc-
ity v through the magnetic field ~B experiences the acceleration

ẍ = − e
mc

(
~v × ~B

)
. (2.92)

(a) What is the average amount of energy per unit time and volume,
d2E/(dtdV), radiated away by an isotropic electron distribution with
number density ne?

(b) Assume now further that the electrons are in thermal equilibrium.
In this case, the probability for an electron to have the velocity
v = |~v | is given by the Maxwell-Boltzmann distribution

p(v)dv =

√
2
π

(
me

kBT

)3/2

v2 exp
(
− mev

2

2kBT

)
, (2.93)

where T is the temperature of the electron gas, kB is Boltzmann’s
constant and me the electron mass. Calculate d2E/(dtdV) as a
function of the electron temperature T and the magnetic field ~B.
Hint: You can use that∫ ∞

0
dx x4e−ax2

=
3
√
π

8
a−5/2 . (2.94)

2. The synchrotron spectrum in the orbital plane of a single electron with
Larmor frequency ωL is

d2E
dωdΩ

=
3e2γ2

πc

(
ω

ωc

)2

K2
2/3

(
ω

ωc

)
, (2.95)

where ωc = 3ωLγ
3 and K2/3(x) is the modified Bessel function of order

2/3 of the second kind.

(a) In stochastic particle-acceleration processes, the accelerated elec-
trons typically follow an energy distribution of the power-law form

dN
dE

dE = AE−αdE , (2.96)

where A is a normalisation constant. Calculate the spectrum for
such a population of electrons. Hint: Express the energy E by γ
and and use∫ ∞

0
dx xa K2

2/3(bx2) = b−(a+1)/2

√
πΓ

(
3a−5

12

)
Γ
(

3a+11
12

)
Γ
(

a+1
4

)
8Γ

(
a+3

4

) ,

(2.97)
valid for a > 5/3.

(b) Draw the expected spectrum schematically in a double-logarithmic
plot.
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2.4 Bremsstrahlung

This section is concerned with a conceptually simple, but mathematically
involved problem: Electrons scattering off ions follow hyperbolic orbits, are
accelerated accordingly and emit free-free radiation or bremsstrahlung.
A thermal ensemble of such electrons emits a spectrum characterised
by an exponential cut-off, reflecting the Boltzmann factor of their energy
distribution. The mathematical difficulty arises because, as we have seen in
our general derivation of electromagnetic spectra, the hyperbolic electron
orbits appears in the phase of a Fourier transform. This gives rise to Hankel
functions of continuous order, which are difficult to handle. The main results
of this section are the bremsstrahlung spectrum (2.118) of a single electron,
the mean bremsstrahlung spectrum (2.122) after integrating over electron
impact parameters, and the bremsstrahlung emissivity (2.131) obtained after
integrating over a thermal electron population.

2.4.1 Orbit of an electron scattering off an ion

As we have seen before in (2.42), the spectrum of a non-relativistically moving
charge is determined by the Fourier transform of its orbit ~x(t). Classically, an
electron coming from infinity, scattering off an ion with charge Ze and leaving
to infinity describes a hyperbolic orbit, much like a comet in the Solar System
(Figure 2.7). We borrow the description of the orbit from the treatment of Ke-
pler’s problem in classical mechanics. By angular-momentum conservation, the
orbit will be confined to a plane, in which we introduce plane polar coordinates
(r, ϕ).

y

z

x

ion

electron

Figure 2.7 On the origin of bremsstrahlung: An electron is accelerated by the
Coulomb force of an ion. It performs a hyperbolic orbit around the ion.

The (positive) energy of the electron is

E =
m
2

ṙ2 +
l2

2mr2 −
Ze2

r
, (2.98)

where l is the conserved angular momentum. The solution of Kepler’s problem
tells us that this equation is solved by the conical sections (Figure 2.8), described
in polar coordinates by

r(ϕ) =
p

1 + ε cosϕ
, (2.99)
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with the orbital parameter p and the numerical eccentricity ε expressing the
angular momentum and the energy,

p =
l2

Ze2m
, ε2 = 1 +

2Ep
Ze2 . (2.100)

Since e2 must have the dimension erg cm in the Gaussian cgs system, it is quite
easy to convince oneself that p is a length and ε is dimension-less. We further
introduce the length scale a by

p = a(ε2 − 1) . (2.101)

For a bound elliptical orbit, a is the semi-major axis. Combining (2.101) with
the second equation (2.100), we can express the energy by the orbital parameter
a as

E =
Ze2

2a
. (2.102)

?
If needed, recapitulate the derivation
of equation (2.99) for Kepler orbits,
and the conditions for it to be valid.

ϕ

θ

p

Figure 2.8 Hyperbolic orbit of an unbound particle in an attractive field of force.

We now replace the polar angle ϕ by the so-called eccentric anomaly ψ. For an
unbound orbit, ψ is implicitly defined by

r(ψ) = a(ε coshψ − 1) , (2.103)

which, together with (2.99) and (2.101) implies

cosϕ =
ε − coshψ
ε coshψ − 1

. (2.104)

Now, we eliminate the squared angular momentum l2 between (2.100) and
(2.98), insert the expression (2.102) for the energy into the resulting equation
and solve it for ṙ2,

ṙ2 =
2
m

[
Ze2

2a
+

Ze2

r
− Ze2a(ε2 − 1)

2r2

]
=

2Ze2

mr2

[
r2

2a
+ r − a(ε2 − 1)

2

]
.

(2.105)
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Next, we use (2.103) to introduce the eccentric anomaly into the following
terms,

ṙ = aε sinhψψ̇ ,
r2

2a
+ r − a(ε2 − 1)

2
=

aε2

2
sinh2 ψ . (2.106)

These finally allow us to bring (2.105) into the form

ψ̇2 =
Ze2

ma3(ε coshψ − 1)2 . (2.107)

Separating the variables ψ and t, we can express the time needed by the particle
to get from ψ = 0 to ψ as

t =

∫ t

0
dt′ =

√
ma3

Ze2

∫ ψ

0
dψ′(ε coshψ′ − 1) = τ(ε sinhψ − ψ) , (2.108)

where the time scale τ was introduced. Equation (2.108) is Kepler’s equation
for a hyperbolic orbit.

Caution Note that Kepler’s equa-
tion is transcendental and can thus
only be solved numerically. J

Since the energy E must be the kinetic energy of the electron at infinite distance
from the ion, we can eliminate a from (2.102),

m
2
v2
∞ = E =

Ze2

2a
⇒ a =

Ze2

mv2∞
. (2.109)

In terms of v∞, the time scale τ is thus given by

τ =

√
ma3

Ze2 =
Ze2

mv3∞
=

a
v∞

. (2.110)

2.4.2 Fourier transform of the orbit

By means of Kepler’s equation (2.108), we can now substitute the time t by the
eccentric anomaly ψ in the Fourier transform of the electron’s orbit. First, we
combine (2.103) and (2.104) to write the Cartesian coordinates

x(ψ) = r cos φ = a(ε − coshψ) ,

y(ψ) =
√

r2 − x2 = a
√
ε2 − 1 sinhψ . (2.111)

Moreover, we have from (2.108)

dt = τ(ε coshψ − 1)dψ , eiωt = eiωτ(ε sinhψ−ψ) . (2.112)

It is now convenient to compute the Fourier transform of the velocity, ~̂v = −iω~̂x,
instead of the Fourier transform of the orbit, ~̂x. We thus write

x̂(ω) = − ˆ̇x
iω

∫ ∞

−∞
dt ẋ e−iωt =

i
ω

∫ ∞

−∞
dt

dx
dψ

ψ̇ e−iωt

=
i
ω

∫ ∞

−∞
dψ

dx
dψ

e−iωt(ψ) , (2.113)
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and likewise for ŷ(ω). With (2.111), this gives

x̂(ω) = − ia
ω

∫ ∞

−∞
dψ sinhψ e−iωτ(ε sinhψ−ψ) ,

ŷ(ω) =
ia
√
ε2 − 1
ω

∫ ∞

−∞
dψ coshψ e−iωτ(ε sinhψ−ψ) . (2.114)

These integrals can be expressed by the Hankel function of the first kind of
order ν, H(1)

ν (x), and its derivative, H(1)′
ν (x). In terms of these, we have

x̂(ω) =
πa
ω

H(1)′
iν (iνε) , ŷ(ω) = −πa

√
ε2 − 1
ωε

H(1)
iν (iνε) , (2.115)

where the order ν = ωτ. With (2.42), we thus find the bremsstrahlung spectrum

dE
dω

=
2π2a2e2ω2

3c3

{[
H(1)′

iν (iνε)
]2 −

(
1 − 1

ε2

) [
H(1)

iν (iνε)
]2
}

(2.116)

for a single electron moving on a hyperbolic orbit with eccentricity ε. The sign
in front of the second term in brackets is negative because H(1)

iν (iνε) is purely
imaginary, while its derivative H(1)′

iν (iνε) is real. Before we can continue, we
need to integrate (2.116) over a realistic distribution of the eccentricity ε.

Caution The Hankel function of
the first kind is the complex linear
combination

H(1)
ν (x) = Jν(x) + iYν(x)

of the Bessel functions Jν and Yν
of the first and second kinds. Both
solve Bessel’s differential equation

x2 d2 f
dx2 + x

d f
dx

+
(
x2 − ν2

)
f = 0 .

J

The following relation between Bessel functions and their derivatives comes to
help, which also applies to the Hankel functions,

z
[
Z′2p (z) −

(
1 − p2

z2

)
Z2

p(z)
]

=
d
dz

(
zZp(z)Z′p(z)

)
. (2.117)

Setting z = iνε and p = iν, this allows us to write (2.116) as

dE
dω

= −i
2π2a2e2ω

3τεc3

d
dε

[
εH(1)

iν (iνε)H(1)′
iν (iνε)

]
, (2.118)

where we have used that the order ν = ωτ. The prefactor −i is necessary
because the Hankel function H(1)

iν (iνε) is imaginary.

2.4.3 Integration over impact parameters

The numerical eccentricity ε of an particle’s orbit is determined by its angular
momentum l, which is in turn controlled by the orbit’s impact parameter b.
This is defined as the closest distance of the scattering centre from the straight
line which would be the electron’s unperturbed trajectory. Combining the two
equations (2.100) with E = mv2∞/2, we find

ε2 = 1 +
v2∞l2

Z2e4 (2.119)

for the squared numerical eccentricity. Then, using the expression l = bmv∞
for the angular momentum and replacing the constants occurring by means of
(2.109), the simple result is

ε2 = 1 +
b2

a2 . (2.120)
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We now take the spectrum (2.118) produced by a single electron and multiply it
with the number of scattering events between electrons and ions per unit time
and unit volume. Let ni and ne be the number densities of ions and electrons,
respectively, and v∞ the velocity of the electrons relative to the ions. Consider
a single ion and surround it by a cylindrical shell of radius b, width db, and
height v∞dt. Then, all

ne · (2πbdb) · (v∞dt) = 2πnev∞a2 εdε dt (2.121)

electrons contained in this shell will scatter off the ion within the time interval
dt. Multiplying this number with ni, we find the total number of scatterings
between ions and electrons with relative velocity v∞ and impact parameter
within [b, b + db] per unit time and unit volume. Further multiplying this
number with the spectrum (2.118), and integrating over all impact parameters b
or eccentricities ε, then gives the spectrum emitted by such electrons per unit
time and volume,

d3E
dωdtdV

= i
4π3Z2e6nine

3m2c3v∞

(
Ze2ω

mv3∞

)
H(1)

iν (iν)H(1)′
iν (iν) . (2.122)

For arriving at this expression, we have used (2.109) and (2.110) to substitute a
and τ and regrouped terms for later convenience.

The Hankel functions and their derivatives need to be numerically evaluated,
but we can insert their asymptotic forms for small and large arguments. These
are

ν � 1 : H(1)
iν (iν) ≈ 2

iπ
ln

(
2
γν

)
, H(1)′

iν (iν) ≈ 2
πν

(2.123)

ν � 1 : H(1)
iν (iν) ≈ − i

π
√

3

(
6
ν

)1/3

Γ(1/3) , H(1)′
iν (iν) ≈ 1

π
√

3

(
6
ν

)2/3

Γ(2/3) .

Now, with the further help of

Γ(x)Γ(1 − x) =
π

sin πx
, Γ(1/3)Γ(2/3) =

π

sin(π/3)
=

2π√
3
, (2.124)

we find the low- and high-frequency approximations

d3E
dωdtdV

=
16πZ2e6nine

3m2c3v∞


ln

(
2
γ

mv3∞
Ze2ω

)
ω � τ−1

π√
3

ω � τ−1
. (2.125)

Recall from (2.110) that τ = av−1∞

2.4.4 Average over electron velocities, thermal bremsstrahlung

The dependence of the spectrum on ω is mild for low ω, and absent for high
ω, which is a very interesting result: The energy emitted per unit frequency



60 2 Radiation Processes

is (almost) independent of the frequency. These asymptotic results motivate
writing the complete spectrum of non-relativistic bremsstrahlung in the form

d3E
dωdtdV

= j(ω) =
16π2Z2e6nine

3
√

3m2c3

gff(v∞, ω)
v∞

, (2.126)

introducing the so-called Gaunt factor gff(v∞, ω). In the high-frequency limit,
gff tends to unity, as (2.125) shows, and depends generally only weakly on v∞
and ω. It is thus reasonable to introduce a velocity-averaged Gaunt factor by〈

gff(v∞, ω)
v∞

〉
= ḡff(ω)

〈
1
v∞

〉
(2.127)

and average the reciprocal velocity over some velocity distribution.
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Figure 2.9 Thermal bremsstrahlung without and with line emission, for plasma
temperatures of 1 keV and 5 keV. The spectra were produced with the xspec
software package using a Raymond-Smith plasma model.

If the electrons scattering off the ions form a thermal population, their velocity
distribution is Maxwellian,

p(v∞)dv∞ = 4π
(

m
2πkBT

)3/2

v2
∞ exp

(
− mv2∞

2kBT

)
dv∞ . (2.128)

For emitting at least a single photon of frequency ω or energy ~ω, an electron
has to satisfy

mv2∞
2
≥ ~ω ⇒ v∞ ≥ vmin =

√
2~ω
m

. (2.129)

The average of v−1∞ then turns out to be〈
1
v∞

〉
= 4π

(
m

2πkBT

)3/2 ∫ ∞

vmin

v∞dv∞ exp
(
− mv2∞

2kBT

)
=

√
2m
πkBT

exp
(
− ~ω

kBT

)
. (2.130)
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Combined with (2.126), this finally gives the emissivity of non-relativistic,
thermal bremsstrahlung (Figure 2.9)

j(ω) =
16π2

3
√

3

Z2e6nine

m2c3 ḡff(ω)

√
2m
πkBT

exp
(
− ~ω

kBT

)
. (2.131)

The Gaunt factor is typically tabulated, but for many astrophysical applications,
ḡff(ω) ≈ 1 is a sufficient approximation.

Problems

1. A simplified derivation of the bremsstrahlung emissivity begins with
Born’s approximation, asserting that the electron’s acceleration can be
evaluated along a straight, undeflected orbit.

(a) Evaluate the electron’s acceleration by an ion along a straight line.

(b) Fourier transform the acceleration and calculate the approximate
bremsstrahlung spectrum.

(c) Carry out the integration over impact parameters. Which problem
occurs?

2.5 Radiation damping

Remarkably, electrodynamics is incomplete in the following sense: Consider
an electron moving in a homogeneous magnetic field in the absence of
electric fields. The Lorentz force then causes the electron to move on
a spiral orbit without changing the electron’s energy. At that level, the
prediction of electrodynamics would be that the electron keeps moving in
this way forever. However, the motion along the spiral is an accelerated
motion, which implies that the electron loses energy by radiation. This loss of
energy is not contained in the equation of motion for the electron. The back-
reaction of the radiation emitted by an accelerated charge on the motion
of that same charge has to be described separately. This is a fundamental
limit of electrodynamics: As a linear theory, it cannot encompass this kind
of back-reaction. In this section, the backreaction of the radiation on the
radiating charge itself is derived. The loss of energy by the charge due to
the radiation can be described by an effective force, the radiation-damping
force, the expression (2.139) for which will be the first main result. As an
important application, the energy transfer from a charge moving through a
sea of radiation to that radiation field itself is developed next, which leads to
the very intuitive result (2.163) for the transferred power.
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2.5.1 Damping force

The loss of energy by radiation can be described as the action of an effective
damping force ~Frad acting on the electron. The energy radiated away within a
certain time interval −τ/2 ≤ t ≤ τ/2,

E =

∫ τ/2

−τ/2
dt P(t) , (2.132)

P being the radiative power, must then equal the work exerted by this radiation-
damping force on the electron during the same time,∫ τ/2

−τ/2
dt P(t) = −

∫
~Frad · d~s . (2.133)

The solid-angle integrated Larmor formula (1.141) shows that the power ra-
diated by an accelerated electron is homogeneous of degree k = 2 in the
acceleration β̇, that is, if the acceleration is scaled by a dimension-less factor
a, the power changes by a factor a2. Generally, a function f (x) is called ho-
mogeneous of degree k if f (ax) = ak f (x) for a ∈ R. The Larmor power thus
satisfies Euler’s theorem for homogeneous functions: If f (~x ) is a homogeneous
function of degree k in ~x, then its derivative satisfies

~x · d f (~x )
d~x

= k f (~x ) . (2.134)?
Can you prove Euler’s theorem
(2.134) for homogeneous functions?
Otherwise, look it up. When applied to the radiation power, Euler’s theorem thus says

~̇β · ∂
∂~̇β

P
(
~̇β
)

= 2P
(
~̇β
)
. (2.135)

We use this statement to express the power in (2.133) by its derivative and
obtain

−
∫

~Frad · d~s =
1
2

∫
dt ~̇β · ∂

∂~̇β
P

(
~̇β
)

= −1
2

∫
dt ~β · d

dt
∂

∂~̇β
P

(
~̇β
)

(2.136)

by partial integration, omitting the boundary terms. This is generally no sub-
stantial restriction because we can typically choose the integration boundaries
wide enough for the radiation power to vanish at both of them. Now, since
~βdt = d~s/c, we can identify the expression

~Frad =
1
2c

d
dt

∂

∂~̇β
P

(
~̇β
)

(2.137)

with the radiation-damping force. In the non-relativistic limit (1.142),

P =
2e2

3c
~̇β 2 ,

∂

∂~̇β
P

(
~̇β
)

=
4e2

3c
~̇β , (2.138)

whence the radiation-damping force turns out to be

~Frad =
2e2

3c2
~̈β (2.139)
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Example: Scattering off bound electrons

We will now directly apply this result to an electron on a bound harmonic
orbit with an angular frequency ω0. Let the electron be externally driven by
an incoming electromagnetic wave with frequency ω. This wave exerts the
electric Lorentz force

~FL = −e
c
~E0 eiωt (2.140)

on the electron. We assume that the electron moves non-relativistically such
that we can ignore the magnetic part of the Lorentz force. Including radiation
damping with a damping constant γ to be determined shortly, the equation of
motion

~̈x + γ~̇x + ω2
0~x = − e

m
~E0 eiωt (2.141)

describes a harmonically driven and damped harmonic oscillator. Its particular
solution is immediately found to read

~x = − e
m

~E0 eiωt

ω2
0 − ω2 − iωγ

(2.142)

after an initial settling phase during which a possible oscillation with the
eigenfrequency ω0 of the bound orbit decays exponentially. We thus have

~̈β = −ω2~β , (2.143)

allowing us to write the radiation-damping force as

~Frad = −2e2ω2

3c2
~β (2.144)

and to identify the damping constant

γ = γ0ω
2 with γ0 =

2
3

e2

mc3 =
2
3

re

c
, (2.145)

where re is the classical electron radius introduced in (2.12). According to
(2.142), the electron’s acceleration is

~̇β = −ω2 ~x
c

=
e

mc

~E0 eiωt ω2

ω2
0 − ω2 − iγ0ω3

, (2.146)

which we can now insert into the non-relativistic, integrated Larmor equation
(1.142) to find

P =
2e2

3c

∣∣∣∣ ~̇β ∣∣∣∣2 =
2e4

3m2c3
~E 2

0
ω4(

ω2 − ω2
0

)2
+ γ2

0ω
6
. (2.147)

The incoming energy current density is given by the amplitude of the Poynt-
ing vector |~S | = c~E 2

0 /(4π), and thus the cross section for scattering off a
harmonically bound charge becomes

σ =
P∣∣∣∣~S ∣∣∣∣ = σT

ω4(
ω2 − ω2

0

)2
+ γ2

0ω
6

(2.148)

with the typical resonance behaviour near ω = ω0 (Figure 2.10). J
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Figure 2.10 Illustration of the cross section for scattering of electromagnetic
radiation off a harmonically bound electron. Left : The cross section (2.148) is
shown (in units of the Thomson cross section σT) for two values of the damping
constant. Right : The same curves, now plotted double-logarithmically, reveal the
ω4 scaling for low frequencies, i.e. the regime of Rayleigh scattering.

in this limit. Since ~β = ~̇x/c, this involves a third time derivative of the electron’s
orbit. This is one of the rare cases of a third-order time derivative in physics.

Some limiting cases of the general cross section (2.148) for scattering off bound
electrons are of particular interest. First, in the high-frequency limit ω � ω0
and ω � γ−1

0 , the driving force oscillates so fast that radiation damping is
strong. The cross section (2.148) then falls off like ω−2,

σ ≈ σT

γ2
0ω

2
. (2.149)

Notice, however, that the electron will be unbound if the incoming radiation
has too high frequency, and then its cross section will turn into the Thomson
cross section, σ ≈ σT.

?
Verify the combined results (2.152)
and (2.153) and confirm that the
Lorentz profile is normalised to
unity. In the opposite limit, when ω � ω0 and ω � γ−1

0 , we find the limit of Rayleigh
scattering,

σ ≈ σT

(
ω

ω0

)4

, (2.150)

with the scattering cross section depending on the fourth power of the frequency.
For ω ≈ ω0 and weak damping, ω0 � γ−1

0 , we approximate

ω2 − ω2
0 = (ω − ω0)(ω + ω0) ≈ 2ω0(ω − ω0) (2.151)

in (2.148) and find

σ ≈ π

2
σT

γ0
φΓ (ω − ω0) , Γ := γ0ω

2
0 , (2.152)

where the function φΓ(ω − ω0) is the so-called Lorentz profile,

φΓ(ω − ω0) =
1
π

Γ/2
(ω − ω0)2 + (Γ/2)2

(2.153)

shown in Fig. 2.11. The Lorentz profile will recur several times in later Sections.
It is normalised to unity.
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Figure 2.11 Near the resonance, the scattering cross section is reasonably
approximated by the Lorentz profile.

2.5.2 Transfer of energy from a moving charge to a radiation field

Consider now an electron moving with possibly relativistic speed ~β through an
isotropic radiation field, whose electric and magnetic field components satisfy〈

~E
〉

= 0 =
〈
~B
〉
, (2.154)

where the average is taken over time intervals long compared to typical oscilla-
tion period 2πω−1 of the radiation field. Now we transform to the rest frame
of the electron. The electron experiences the field components ~E′, ~B′ given by
the Lorentz transform (1.87). They accelerate the electron through the electric
Lorentz force

~̈x ′ =
1
m
~F′L =

e
m
~E′ (2.155)

since the magnetic part of the Lorentz force vanishes in the electron’s rest frame,
where ~v ′ = 0. We can now calculate the power radiated by the accelerated
electron with the non-relativistic Larmor formula, for which we need to evaluate〈∣∣∣~̈x ′∣∣∣2〉 =

e2

m2

〈∣∣∣∣~E′∣∣∣∣2〉 (2.156)

in the electron’s rest frame. Here, we can directly insert the Lorentz transform
of the fields from (1.87) and carry out the average. Doing so, we have to take
into account that the electromagnetic field in its rest frame is randomly oriented
and has an energy density U. This allows us to use

〈
E2

i

〉
=

〈
~E 2

〉
3

=
4π
3

U =
〈
B2

j

〉
(2.157)

for the squares of the electric and magnetic field components and〈
EiB j

〉
= 0 (2.158)

for any combination of i and j. These relations enable us to write〈∣∣∣~̈x ′∣∣∣2〉 = 4πγ2U
e2

m2

(
2
3

+
1

3γ2 +
2
3
β2

)
= 4πγ2U

e2

m2

(
1 +

β2

3

)
(2.159)
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and thus

Pem = γ2U
8πe4

3m2c3

(
1 +

β2

3

)
= cUσTγ

2
(
1 +

β2

3

)
(2.160)

for the power radiated by the electron in its rest frame. However, since the
power is

P =
dE
dt

(2.161)

and both the energy E and the time t transform like the zero components of
four-vectors, the power is invariant under Lorentz transforms. Therefore, the
result (2.160) also holds in the rest frame of the radiation field. On the other
hand, the power absorbed by the electron is given by the Poynting vector times
the cross section,

Pabs =
∣∣∣∣~S ∣∣∣∣σT =

c
4π

~E 2σT = cUσT . (2.162)

The net power transferred by the electron to the radiation field is thus

P = Pem − Pabs = cUσT

[
γ2

(
1 +

β2

3

)
− 1

]
=

4
3
β2γ2cUσT . (2.163)

?
Carrying out the description follow-
ing (2.156), verify the expressions
(2.159) and (2.160) by your own cal-
culation.

We can now proceed to calculate the back-reaction on the electron by its transfer
of energy to the radiation field. Clearly, the loss of kinetic energy of the electron
must equal the negative radiation power (2.163),

dE
dt

= mc2 dγ
dt

= −4
3
β2γ2cUσT = −4

3

(
γ2 − 1

)
cUσT . (2.164)

Separating the variables γ and t and integrating over time gives∫ 0

γ

dx
x2 − 1

= − t
τ

with τ :=
3mc

4UσT
. (2.165)?

Explain the integral boundaries on
the left-hand side of (2.165). Noticing that

1
x2 − 1

=
1
2

(
1

x − 1
− 1

x + 1

)
, (2.166)

we can readily carry this integral out, finding
1
2

ln
γ − 1
γ + 1

= − t
τ
. (2.167)

This equation can now easily be solved for γ or β, giving the essentially expo-
nential decrease

β(t) =
2 exp(−t/τ)

1 + exp(−2t/τ)
(2.168)

of the electron’s velocity with time. This result shows that relativistic electrons,
or charges in general, lose energy on a characteristic time scale

τ =
3mc

4UσT
(2.169)

when interacting with a radiation field. As the expression shows, the time
scale is given by the rest-mass energy of the electron, divided by the energy
of the radiation field flowing per unit time through the Thomson cross section.
Similarly, the characteristic path length for a relativistic electron to lose its
energy in a radiation field is

λ = cτ =
3mc2

4UσT
. (2.170)
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Problems

1. Derive the solution (2.145) of the equation of motion (2.143).

2. Calculate the time scale (2.169) for an electron travelling through the
Cosmic Microwave Background.

3. The velocity of an electron in a homogeneous magnetic field changes due
to the Lorentz force according to

d
(
γ~v

)
dt

=
e

mec

(
~v × ~B

)
(2.171)

(a) Set up the equations of motion for the individual components of ~x
in the field ~B = Bêz.

(b) How does the equation of motion change if the radiation damping
force

~Frad =
2e2

3c3

...
~x (2.172)

is also taken into account? Assume that the energy loss per orbit is
small, i.e. the damping force can be evaluated using the undamped
solution from (a). Under which circumstances is the former assump-
tion valid?

(c) Solve the differential equations for the components xi with the
boundary conditions ~x(t = 0) = (x0, 0, 0)> and ~v(t = 0) = (0, v0, 0)>.
Draw the solution schematically.

2.6 Compton scattering

This section introduces the photon picture for electromagnetic radiation.
So far, incoming electromagnetic waves could only accelerate charges
perpendicular to their direction of motion, which implies that they could
not transfer momentum to the charges. With the discussion of radiation
damping in the preceding section, we have seen how charges experience
an effective force against their direction of motion due to the radiation they
emit. In the discussion of Compton scattering, the incoming radiation is
described as a stream of photons transfering both energy and momentum
to the charges they scatter off from. The main result derived here is the
mean energy loss per photon per collision (2.183). We then proceed to
calculating the energy gained by a moving charge from a sea of radiation by
Compton scattering and combine it with the loss due to radiation damping
to find the total rate (2.193) of energy transfer between the charge and
the photons. Compton scattering is then combined with the Fokker-Planck
approach to work out photon diffusion in phase space due to scattering with
electrons. The main result there is the approximation (2.220) to the so-called
Kompaneets equation which neglects effects from quantum statistics, but is
nonetheless appropriate for many astrophysical circumstances.
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2.6.1 Energy change in the scattering process

So far, we have studied how charges radiate when they are accelerated under
several kinds of circumstances. We have seen in the last section how a charge
can transfer energy to a radiation field by radiation damping.

Recall the physical situation we had in mind: A charge, say an electron, moving
through an isotropic sea of radiation keeps being accelerated by the randomly
oriented electromagnetic fields of the radiation sea. Due to this acceleration,
the charge radiates away part of its kinetic energy and thus transfers energy to
the radiation field.

Let us now consider the reverse question: Suppose we have an electron at rest
and a radiation field streaming past it. Does the radiation field transfer any
energy to the charge? In the classical picture of radiation being composed of
electromagnetic waves, the charge is accelerated by the Lorentz force of the
randomly superposed electromagnetic waves constituting the radiation field.
The magnetic part of the Lorentz force can never change the charge’s energy
since it acts perpendicular to the charge’s velocity.

Since electromagnetic waves in vacuum are transversal, the electric part of
the Lorentz force cannot act in the streaming direction of the radiation in
the charge’s rest frame. Driven by the electric Lorentz force of the radiation,
the charge will thus oscillate perpendicular to the streaming direction. If the
radiation is unpolarised, the electric field experienced by the charge will be
randomly superposed of waves with arbitrary orientations and random phases.
Does this mean that there is no net energy transfer from the radiation field to
the charge?

At this point, it is necessary to change to the photon picture and describe
radiation as a stream of particles, each carrying a four-momentum

k µ =
ω

c

(
1
ê

)
, (2.173)

where ê is the direction of motion. The total energy-momentum four-vector of
the electron, p µ, and the photon ~k µ is conserved, and thus (Figure 2.12)

p µ + ~k µ = p′µ + ~k′µ , (2.174)

where primes denote quantities after scattering. Recall the result (1.63) from
relativistic dynamics, showing that the four-momentum of the electron has the
components

p µ =

(
E/c
~p

)
= γm

(
c
~v

)
(2.175)

and the Minkowski square given by (1.65), 〈p, p〉 = −m2c2, which implies the
relativistic energy-momentum relation (1.66),

E2 = c2~p 2 + m2c4 . (2.176)

We first leave the electron momentum ~p arbitrary and later transform into the
frame in which the electron is initially at rest. The µ = 0 component of (2.174)
gives

E + ~ω = E′ + ~ω′ , (2.177)
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while its spatial components give

c~p + ~ωê = c~p ′ + ~ω′ê′ . (2.178)

Squaring (2.178), using the relativistic energy-momentum relation (2.176) and
eliminating ~p ′ through (2.178) yields

E′2 = E2 + 2~c~p · (ωê − ω′ê′) + ~2 (
ωê − ω′ê′)2 . (2.179)

Next, we use (2.177) to eliminate E′ and find after brief rearranging

E
(
ω − ω′) = ~ωω′(1 − cos θ) + c~p · (ωê − ω′ê′) , (2.180)

where the scattering angle θ of the photon was introduced by cos θ = ê · ê′.
?

Convince yourself of the result
(2.180) by your own calculation.

θ

photon

electron

Figure 2.12 Sketch of the kinematics of a Compton-scattering event. The total
incoming four-momentum is conserved.

Let us now transform into the rest frame of the electron before the scattering
event. There, we can set ~p = 0 and E = mc2 in (2.180). The remaining equation
is quickly solved for the frequency of the photon after scattering,

ω′

ω
=

1
1 + ε(1 − cos θ)

, (2.181)

where ε = ~ω/E0 is the energy ratio between the photon energy and the elec-
tron’s rest-energy. Averaging this last result over angles, taking the unpolarised
Thomson cross section (2.14) into account, we find the mean relative frequency
or energy change per photon,

〈∆Eγ〉
Eγ

=
〈ω′〉
ω
− 1 =

1
σT

r2
e

2

∫ (
1 + cos2 θ

)
sin θ dθ dφ

1 + ε(1 − cos θ)
− 1

=
πr2

e

σT

∫ 1

−1

(
1 + µ2

)
dµ

1 + ε(1 − µ)
− 1

=
πr2

e

σT

ln(1 + 2ε)
(
2ε2 + 2ε + 1

)
− 2ε(1 + ε)

ε3 − 1 . (2.182)

Notice that no approximation has so far been made in the rest frame of the
electron prior to scattering. Now, we introduce the often appropriate limiting
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case of photons whose energy is much below the rest energy of the electron,
ε � 1. Then, by Taylor-expanding the ε-dependent first term in (2.182) to
second order, we find the energy change per photon per Compton-scattering
event

〈∆Eγ〉
Eγ

≈ 8πr2
e

3σT
(1 − ε) − 1 = −ε = − ~ω

mc2 . (2.183)

This is our first important result: The relative energy loss of a photon scattering
off an electron is given by the ratio of the photon energy and the rest energy of
the electron.

?
Show that the result (2.182) is cor-
rect and that second-order Taylor ap-
proximation in ε leads to (2.183).

2.6.2 Net energy transfer

We now have two competing effects. An electron moving through a sea of
radiation is accelerated by the Lorentz force of the electromagnetic radiation
field, hence it radiates and transfers the power given by (2.163) to the radiation
field. At the same time, photons transfer part of their energy through Compton
collisions back to the electrons. For comparing both effects, we first transform
our previous result (2.163) from an energy loss per electron per unit time to an
energy increase per photon per unit time.

When we studied the energy transfer from a moving charge to an isotropic radi-
ation field, we saw that the power transferred from the electron is proportional
to the energy density U of the radiation field. Let now Uω be the specific energy
density of the radiation field contributed by photons with frequency ω. We must
then satisfy the normalisation condition

U =

∫
Uωdω . (2.184)

According to (2.163), a single electron increases the energy in such photons by
the amount

dE+
ω

dt
=

4
3
β2γ2cUωσT (2.185)

per unit time. Let the number density of electrons with velocity β be ne(β), and
the total number density of all electrons be

ne =

∫ ∞

0
dβ ne(β) . (2.186)

Then, the electrons contained in a unit of volume increase the energy density in
photons with frequency ω by the amount

dU+
ω

dt
=

4
3

ne(β)β2γ2cUωσT (2.187)

per unit time, irrespective of the photon frequency. Since the spatial number
density of photons of frequency ω is

nγ(ω) =
Uω

~ω
, (2.188)

the sought energy gained per photon per unit time from the electrons with
velocity β is

dE+
γ

dt
=

dU+
ω

dt
n−1
γ (ω) =

4
3
β2γ2ne(β)c~ωσT . (2.189)
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To find the total energy gain of the photons due to the complete electron
population with number density ne, we need to integrate over the velocity β, see
(2.186). Define the average of β2γ2 by〈

β2γ2
〉

= n−1
e

∫ ∞

0
dβ β2γ2ne(β) , (2.190)

then the energy gain per photon and unit time due to electrons of all velocities
is

dE+
γ

dt
=

4
3

〈
β2γ2

〉
nec~ωσT . (2.191)

Similarly, the number of Compton collisions that a photon experiences with
electrons of total number density ne is cneσT. According to (2.183), the energy
change per photon per unit time is

dE−γ
dt

= −cneσT
(~ω)2

mc2 . (2.192)

Now we can compare the energy gained per photon per unit time, expressed by
(2.191), with the energy loss (2.192) per photon per unit time. The total energy
change per photon per unit time is the sum of gain and loss,

dEγ

dt
=

dE+
γ

dt
+

dE−γ
dt

= cneσT~ω

(
4
3

〈
β2γ2

〉
− ~ω

mc2

)
. (2.193)

2.6.3 The Kompaneets equation

An illustrative combination of the Fokker-Planck approach and Compton scat-
tering leads to an evolution equation for the phase-space density of photons
passing through a hot electron gas. This is most useful in the context of the
Cosmic Microwave Background (CMB). The CMB decouples from the quickly
recombining cosmic plasma when its temperature falls to ≈ 3000 K, corre-
sponding to a thermal energy of ≈ 0.3 eV. After that, the CMB photons are
redshifted by a factor of ≈ 100 . . . 1000 before they propagate through plasma
inside galaxies or galaxy clusters. They have thus typical thermal energies in
the meV range or further below. The electron energies even in relatively cool
plasmas are typically higher by factors & 106, but still well non-relativistic. In
such circumstances, it is appropriate to study Compton scattering under the
approximations

~ω

c
� pe � mc , (2.201)

where pe is the electron momentum.

Let us return with these approximations to the exact equation (2.180) for the
frequency change of the scattered photon and stay in the laboratory frame, thus
leave ~pe , 0. Due to our approximations, we can then neglect the first term on
the right-hand side of (2.180) and write

ω − ω′ ≈ c~pe · (ωê − ω′ê′)
mc2 . (2.202)
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Example: Thermal equlibrium between electrons and photons

For a specific example, suppose now that the electrons have a thermal velocity
distribution with a temperature Te such that kTe � mc2. The electrons are
then non-relativistic, allowing us to set γ ≈ 1. By the equipartition theorem,
for systems in thermal equilibrium, their mean-squared velocity must be〈

β2
〉

=
3kTe

mc2 ≈
〈
β2γ2

〉
. (2.194)

For averaging the energy gain (2.191) over all photon frequencies, we need to
adopt a photon spectrum and calculate the mean energy 〈~ω〉 as well as the
mean squared energy 〈(~ω)2〉. Suppose that the photons have a Planck spec-
trum with temperature Tγ. In terms of the dimension-less energy parameter

x :=
~ω

kTγ
, (2.195)

the number of photon states in an infinitesimally thin spherical shell with
radius x and width dx is

nx(Tγ)dx =
1
π2

(
kTγ
~c

)3 x2dx
exp(x) − 1

(2.196)

according to the Bose-Einstein occupation number in (2.392). By means of
the integral ∫ ∞

0

xndx
exp(x) − 1

= n!ζ(n + 1) , (2.197)

the moments of the photon-energy distribution can be calculated to be

〈~ω〉 = kTγ
3ζ(4)
ζ(3)

, 〈(~ω)2〉 = (kTγ)2 12ζ(5)
ζ(3)

. (2.198)

When inserted into (2.193) together with the mean-squared velocity (2.194)
of the electrons, they give the mean energy gain per photon per unit time due
to thermal electrons,〈

dEγ

dt

〉
=

12ζ(4)
ζ(3)

cneσT
(kTγ)(kTe)

mc2

(
1 − ζ(5)Tγ

ζ(4)Te

)
. (2.199)

This is a highly intriguing result: The energy transfer between thermal popula-
tions of electrons and photons should vanish if the temperature of the electrons
was slightly higher than that of the photons,

Te

Tγ
=
ζ(5)
ζ(4)

, (2.200)

even if the ratio between the temperatures is near unity? This could imply
one of two conclusions: Either, finite energy transfer from the photons to
the electrons would remain in thermal equilibrium between the two species,
defined to occur at equal temperatures, or the net energy transfer would cease
if the two species were slightly out of thermal equilibrium? J
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Example: Thermal equlibrium between electrons and photons (con-
tinued)

Needless to say, a perpetuum mobile could be constructed if either one of these
conclusions would be correct, but a perpetuum mobile is forbidden by the
second law of thermodynamics. Therefore, the result (2.199) cannot be quite
right. The error sneaked in when, in (2.196), we assumed a Bose-Einstein
distribution for the photons with vanishing chemical potential, µ = 0. The
conclusion from (2.199), combined with the second law of thermodynamics,
is therefore much more interesting: If a photon and an electron population
coexist in thermal equilibrium, the photons must acquire a finite chemical
potential. Then, they cannot maintain their Planck spectrum any longer,
but must obtain a spectrum that is slightly deformed by the finite chemical
potential. J

The energy change of the photon will thus also be small, and we can proceed to
approximate

~pe · (ωê − ω′ê′) ≈ ω~pe · (ê − ê′
)

= ωpe
∣∣∣ê − ê′

∣∣∣ cos θ , (2.203)

where we have introduced the angle θ between the electron momentum ~pe and
the vector (ê − ê′). Since the modulus of the difference vector (ê − ê′) is∣∣∣ê − ê′

∣∣∣ =
√

2 − 2 cos θ , (2.204)

we can write (2.202) as

δω ≈ −ωpe

mc
cos θ

√
2 − 2 cos θ . (2.205)

This is a typical case suggesting a treatment with the Fokker-Planck approach.
The change of the phase-space density f (ω) of the photons with time is then
described by the radial Fokker-Planck equation (1.175)

∂ f
∂t

+
1
p2

∂
(

jp p2
)

∂p
= 0 , (2.206)

where p is the photon momentum. The current density of the radial photon
momentum is given by (1.177),

jp = D2 f
∂

∂p

(
ln f − ln f̄

)
. (2.207)

To be specific, the distributions f and f̄ are the actual and the equilibrium phase-
space distributions of the photons. In thermal equilibrium with the electrons, the
photons would attain a Bose-Einstein distribution with the appropriate chemical
potential and the temperature of the electrons, Te, which is many orders of
magnitude larger than the actual photon temperature. For this reason, the term
involving f̄ in (2.207) can be neglected altogether in our application, allowing
us to approximate simply

jp ≈ D2
∂ f
∂p

. (2.208)
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This leaves the Fokker-Planck equation (2.206) in the simple form

∂ f
∂t

+
1
p2

∂

∂p

(
D2 p2 ∂ f

∂p

)
= 0 . (2.209)

Next, we need to work out the diffusion coefficient D2. As we have emphasised
in Sect. 1.4.4, its physical meaning is one half of the mean-squared momentum
change per unit time of the population of scattered particles, i.e. of the photons
in the present case. From the frequency change per scattering (2.205), we find
the mean-squared momentum change

D2 =
1
2

〈
δp2

〉
=

1
2
~2

c2

〈
δω2

〉
=

(
~ω

mc2

)2 〈
p2

e cos2 θ
〉

nec
∫

dΩ
dσ
dΩ

(1 − cos θ) . (2.210)

By the equipartition theorem, an electron population in thermal equilibrium
must have the mean-squared momentum〈

p2
e

〉
= 2m

3
2

kTe = 3mkTe , (2.211)

while the mean-squared cos θ gives a factor of 1/3. For the differential cross
section, we use the unpolarised Thomson cross section (2.14),

dσ
dΩ

=
r2

e

2

(
1 + cos2 θ

)
. (2.212)

The solid-angle integral in (2.210) then simply gives the total Thomson cross
section

σT =
8π
3

r2
e . (2.213)

Taking all factors together, we obtain

D2 =

(
~ω

mc2

)2

mcneσTkTe =
p2

mc
neσTkTe . (2.214)

Putting this result back into the Fokker-Planck equation (2.209), we find

∂ f
∂t

+ cneσT
kTe

mc2

1
p2

∂

∂p

(
p4 ∂ f
∂p

)
= 0 . (2.215)

Let us finally replace the time by the so-called Compton parameter y, defined
by

dy =
kTe

mc2 cneσTdt . (2.216)

This has an intuitive physical meaning: The first factor is the relative energy
change of a photon with energy kT by Compton scattering; cf. (2.183). The
second factor is the probability for a photon experiencing a Compton-scattering
event within the time interval dt. Thus, the differential Compton-y parameter
quantifies the mean relative energy change of a photon within the time interval
dt. It allows us to bring the Fokker-Planck-equation into the form

∂ f
∂y

+
1
p2

∂

∂p

(
p4 ∂ f
∂p

)
= 0 . (2.217)
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This is not exactly the so-called Kompaneets equation, which is often derived
and used in this context. However, it is the appropriate limit of the Kompaneets
equation, which reveals its origin from the much more general approach of
Fokker-Planck theory.

Let us now insert the Bose-Einstein distribution for the photons with vanishing
chemical potential,

f =
1

ex − 1
with x :=

cp
kT

(2.218)

into the Kompaneets equation (2.217). Since p appears to fourth order in the
numerator as well as the denominator in the second term of (2.217), we can
replace p by x directly. Further, we use

f ′ = − f 2ex and f ′′ = − f ex (
f + 2 f ′

)
. (2.219)

After brief rearrangement, this turns the Kompaneets equation into

∂ f
∂y

=
xex

(ex − 1)2

(
x

ex + 1
ex − 1

− 4
)
. (2.220)

?
The complete Kompaneets equation
reads

∂ f
∂y

+
1
p2

∂

∂p

[
p4

(
∂ f
∂p

+ f + f 2
)]

= 0 .

Where could the additional terms
arise from, and why is (2.217) an
appropriate limit for our purposes?
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Figure 2.13 The relative change ∆Iω/Bω,0 of the intensity of a black-body spec-
trum due to Compton scattering is shown as a function of the dimension-less
frequency x = ~ω/(kBT ). The intensity is lowered at frequencies below x = 3.83
and increased above.

Aiming at astrophysical applications, we are not quite done yet. Notice that
(2.220) describes the change of the phase-space density (or the occupation num-
ber) of the photons with the Compton-y parameter as they propagate through
a plasma. As we shall show below, the intensity is related to the occupation
number by (2.396). To obtain the change of intensity with the Compton-y
parameter instead, we need to multiply the Kompaneets equation (2.220) by a
factor Bω,0x3, with amplitude Bω,0 of the Planck spectrum defined in (2.401).
Thus, we find after integration over y

∆Iω = Bω,0
x4ex

(ex − 1)2

(
x

ex + 1
ex − 1

− 4
)
y =: Bω,0g(x)y . (2.221)
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This intensity change (Figure 2.13) has an intuitive origin: By Compton scat-
tering, photons are neither created nor destroyed, but only re-distributed in
frequency. Based on our initial assumption (2.201), we have studied the effect
of high-energy electrons scattering low-energy photons. By the inverse Comp-
ton effect, the electrons scatter way more photons from low to high energy rather
than the other way. The net effect is thus a depletion of photons relative to the
Planck spectrum at low frequencies, and an enhancement at high frequencies.
The division between low and high frequencies is set by the root of the function
g(x) defined in (2.221), which is numerically found to be at x0 = 3.83. For
the Planck spectrum of the CMB, we shall see in (2.414) that the frequency
characteristic for its temperature is

νCMB =
kBTCMB

h
= 56.8 GHz , (2.222)

which allows to convert x0 to the frequency

ν0 = x0
kBTCMB

h
= 217.5 GHz . (2.223)

Any hot plasma between us and the CMB will therefore reduce the specific
CMB intensity below 217.5 GHz, and enhance it above.

Perhaps the most prominent example of huge bodies of hot plasma on the way
between the CMB and us are galaxy clusters whose plasma has temperatures
of 1 keV . kBT . 10 keV and radii of order R ≈ 1 Mpc ≈ 3.1 · 1024 cm. Their
electron number densities are typically ne ≈ 10−2 cm−3. A crude estimate for
their Compton-y parameter is

y ≈ kBT
mec2σTneR ≈ 10−4 . (2.224)

Galaxy clusters thus have a very specific spectral signature against the CMB:
They cast shadows on the CMB below 217.5 GHz and appear as sources above.
The amplitude of the shadows and the sources are of order a milli-Kelvin.
This thermal Sunyaev-Zel’dovich effect has turned into an important means for
discovering and probing galaxy clusters.

Problems

1. Carry out the steps leading from (2.178) to (2.180).

2. Electrons passing through a plasma lose energy also by Coulomb scat-
tering, i.e. by their interaction with ions through the Coulomb force.
A detailed treatment of the Coulomb scattering process shows that the
relative energy loss in a single Coulomb-scattering event is

∆E
E

= 4
me

mi
, (2.225)

irrespective of the impact parameter.

(a) Derive the ratio between the remaining energy of an electron and
its initial energy after n Coulomb collisions.
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(b) Approximating me � mi, how many collisions are needed for the
electron to lose half its initial energy?

3. The differential cross section for photons with energy ~ω that are scattered
off free electrons is given by the Klein-Nishina formula

dσ
dΩ

=
r2

e

2
F2(ω, θ)

[
F(ω, θ) +

1
F(ω, θ)

− 1 + cos2 θ

]
, (2.226)

where re is the classical electron radius and

F(ω, θ) =

[
1 +

~ω

mec2 (1 − cos θ)
]−1

. (2.227)

(a) What is the ratio ~ω/mec2 for visible light? How does the Klein-
Nishina formula simplify in this case? Is the solution familiar to
you?

(b) Assume that an electron is hit by a γ photon with ~ω = mec2.
Calculate the total cross section

σKN =

∫
dΩ

dσ
dΩ

(2.228)

and compare it to the classical Thomson cross section σT.

4. Consider a photon with frequency ω scattered by a resting electron under
the angle θ. By the scattering process, its frequency changes to ω′ < ω.
One can transform into the barycentre system, defined by ~ptot = 0 before
and after the scattering, by applying a proper Lorentz boost

(Λµ
ν ) =


γ 0 0 βγ

0 1 0 0
0 0 1 0
βγ 0 0 γ

 (2.229)

to the four-momentum (p µ) = (E/c, ~p)T , assuming that the incoming
photon moves along the negative z-direction.

(a) Calculate the energies and momenta of both the electron and the
photon in the barycentre system as a function of β.

(b) Determine the velocity β as a function of ω and the electron mass
me.

(c) Express the scattering angle θ∗ in the barycentre system as a func-
tion of the scattering angle θ in the rest frame of the electron, ω and
me.

2.7 Radiative Quantum Transitions

This section deals with the interaction of electromagnetic radiation with
quantum systems such as atoms or ions. We first derive the interaction
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Hamiltonian (2.262) by a semi-classical approach treating the electromag-
netic field as a classical rather than a quantum field. Next, we relate the
amplitude of the interaction Hamiltonian to the intensity of the incoming radi-
ation, enabling us to express the quantum-mechanical transition probability
(2.270) by the intensity and the transition matrix element between the initial
and the final state. We then introduce the dipole approximation and simplify
the transition probability (2.291) accordingly. Cross sections for quantum
transitions are defined, and expressions for bound-bound and bound-free
transitions are given in (2.291) and (2.291).

2.7.1 Transition probability

Up to this point, we have treated electromagnetic radiation either as composed
of classical electromagnetic waves, as in Thomson scattering and our treatment
of continuous emission spectra, or as a stream of photons, as in Compton
scattering. From both points of view, the particles interacting with the radiation
had no internal structure. Effects of radiation on their internal structure, or
radiative processes caused by transitions between internal configurations, were
neglected so far.

We now proceed to see how electromagnetic radiation can cause transitions
between quantum states, e.g. in atoms, but also between bound and free electron
states. We begin by recalling a result from time-depedent perturbation theory in
quantum mechanics.

Suppose the Hamiltonian Ĥ of a quantum-mechanical system can be decom-
posed into a time-independent part Ĥ(0) and a time-dependent perturbation
Ĥ(1)(t),

Ĥ(t) = Ĥ(0) + Ĥ(1)(t) . (2.230)

Let the time-dependent eigenstates of the unperturbed Hamiltonian Ĥ(0) with
eigenvalue En be

|n(t)〉 = |n〉e−iEnt/~ , (2.231)

where the state vector |n〉 does not depend on time. We expand the eigenstates
|ψn(t)〉 of the complete Hamiltonian Ĥ(t) into eigenstates of the unperturbed
Hamiltonian,

|ψn(t)〉 =
∑

k

cnk|n(t)〉 , (2.232)

and demand that they solve Schrödinger’s equation,

i~|ψn(t)〉 =
[
Ĥ(0) + Ĥ(1)(t)

]
|ψn(t)〉 . (2.233)

?
Carry out all steps leading from
Schrödinger’s equation (2.233) to
the evolution equation (2.235) your-
self.

In a first step, this leads to

i~
(
ċnk − cnk

iEk

~

)
|n(t)〉 =

∑
k

cnk
[
Ek + Ĥ(1)(t)

]
|n(t)〉 (2.234)

since the |n〉(t) are eigenstates of the unperturbed Hamiltonian Ĥ(0). Now, we
multiply by 〈m | and use the orthonormality of the unperturbed eigenstates to
arrive at

ċnm = − i
~

∑
k

cnk 〈m |Ĥ(1)(t)|k〉 eiωmnt , (2.235)
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where
ωmn =

Em − En

~
(2.236)

is the frequency associated with the difference between the energy eigenvalues
of the unperturbed states |n〉 and |m〉.
The evolution equation (2.235) for the expansion coefficients cnm is exact, but
in general difficult to solve. To proceed, we assume that the system is in the
eigenstate |n〉 of the unperturbed Hamiltonian when the perturbation sets in at
t = 0, thus cnk = δnk, and that the coefficients cnk with k , n remain small even
while the perturbation is acting. Then, (2.235) simplifies to

ċnm = − i
~
〈m |Ĥ(1)(t)|n〉 eiωmnt (2.237)

and can immediately be integrated once the time dependence of the perturbation
Hamiltonian Ĥ(1)(t) is given.

In our context, perturbations by electromagnetic radiation are most important.
We can decompose them into monochromatic waves with frequency ω and thus
write the perturbation Hamiltonian as

Ĥ(1)(t) = V̂ eiωt θ(t) (2.238)

with an operator V̂ representing the constant amplitude of the wave. The step
function θ(t) expresses that the perturbation is supposed to begin at t = 0.
Inserting expression (2.238) into (2.237) and integrating leads us to

cnm = − i
~
〈m |V̂ |n〉

∫ t

0
dt′ ei(ωmn−ω)t′

= − Vmn

~(ωmn − ω)

[
ei(ωmn−ω)t − 1

]
(2.239)

with the transition-matrix element

Vmn := 〈m |V̂ |n〉 (2.240)

of the amplitude V̂ of the perturbation Hamiltonian.

The absolute square of cnm is the transition probability into state |m〉. Dividing
this probability by t gives the transition rate Γ. Using

1 − cos x = 2 sin2 x
2
, (2.241)

we find directly from (2.239) the transition rate

Γ =
|Vnm|2t
~2

[
sin(ωmn − ω)t/2

(ωmn − ω)t/2

]2

. (2.242) ?
Can you confirm the expression
(2.242) for the transition rate Γ?
How could you prove (2.243)?If we can furthermore take the limit t → ∞, i.e. if the perturbation acts for a

time long compared to the time the system takes for the transition from the state
|n〉 to the state |m〉, we can use

lim
a→∞ a

(
sin ax

ax

)2

= πδD(x) (2.243)

with a = t/2 to bring the transition rate into the form

Γ =
2π|Vmn|2
~2 δD (ωmn − ω) . (2.244)
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2.7.2 Perturbing Hamiltonian

Since we are interested in radiative transitions, we need to know the perturbation
Hamiltonian belonging to an incident electromagnetic wave. We have seen in
(1.59) that the Lagrange function of a free relativistic particle is

L = −mc2
√

1 − β2 . (2.245)

If the particle has an electromagnetic charge q, it couples to an electromagnetic
field. With the four-potential Aµ of the field and the four-velocity uµ of the
particle, the Lagrange function is extended by a coupling term

L =

(
−mc2 +

q
c

Aµuµ
) √

1 − β2 . (2.246)?
Determine the equations of motion
from the Lagrange function (2.246).
Which force term do you expect? Since the four-potential and the four-velocity have the components

Aµ =

(
Φ
~A

)
, uµ = γ

(
c
~v

)
, (2.247)

this Lagrange function can be written as

L = −mc2
√

1 − β2 − qΦ +
q
c
~A ·~v . (2.248)

The momentum conjugate to the velocity ~v is

∂L
∂~v

= ~P = γm~v +
q
c
~A = ~p +

q
c
~A , (2.249)

where ~p = γm~v is the momentum of the free particle. The Legendre transform

H = ~P ·~v − L (2.250)

then turns the Lagrange- into the Hamilton function of a charged particle in an
electromagnetic field,

H =
1

2m

(
~P − q

c
~A
)2

+ qΦ + mc2 . (2.251)

According to the correspondence principle, we shall interpret this Hamilton
function as a Hamilton operator. In particular, this implies that ~P will have to
be replaced by the momentum operator P̂,

~P→ P̂ = −i~~∇ . (2.252)

Remaining in quantum mechanics, avoiding the step into quantum electrody-
namics, the electromagnetic field components Aµ will be treated as classical
fields rather than field operators. Yet, they depend on spatial coordinates ~x.
These need to be interpreted as position operators, which do not commute
with the momentum operator P̂. Thus, we also write the vector potential as an
operator Â, understanding that this merely reflects that spatial coordinates xi in
the vector potential need to be replaced by position operators x̂i. Expanding the
square in (2.251), we thus need to distinguish between

P̂ · Â and Â · P̂ . (2.253)
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However, we have not employed the gauge freedom of electrodynamics yet.
Choosing the Coulomb gauge,

~∇ · ~A = 0 , (2.254)

we can pull the momentum operator P̂ past the vector-potential operator Â. In
addition to and without conflict with the Coulomb gauge, we can further gauge
Φ away, Φ̂ = 0, and obtain the Hamilton operator

Ĥ =
P̂ 2

2m
+ mc2 − e

mc
Â · P̂ +

e2

2mc2 Â 2 . (2.255)

The first two terms reproduce the Hamiltonian Ĥ(0) of an unperturbed, free
particle, if P̂ is interpreted as the momentum operator in absence of the electro-
magnetic field.

Let us now compare the two final terms in (2.255) containing the vector potential.
Their ratio η can be estimated by

η ≈ e
2c

A
P
, (2.256)

with typical values A and P of the vector potential and the momentum. In
Coulomb gauge with Φ = 0, the electric field is

~E = −1
c
∂~A
∂t

. (2.257)

If we decompose ~A into plane waves and consider a single mode with frequency
ω,

~E = − iω
c
~A = −ik ~A = −2πi

λ
~A , (2.258)

where we have used the dispersion relation k = ω/c for electromagnetic waves
in vacuum. Thus,

A ≈ λE
2π

. (2.259)

The momentum of the electron in a hydrogen atom is

P ≈ αmc , where α =
e2

~c
=

1
137.04

(2.260)

is the fine-structure constant. Combining all terms, we estimate

η ≈ 1
4πα

λeE
mc2 . (2.261)

The numerator of the second factor is the work done on the electron by a single
wave of the incident electromagnetic field. This is compared to the electron’s
rest energy! Unless the electromagnetic field is so intense that it can deposit
a sizeable fraction of the electron’s rest energy on the electron by a single
wave, we can safely ignore the term quadratic in ~A in (2.255). Our perturbing
Hamiltonian is thus

Ĥ(1)(t) =
e

mc
Â · P̂ = −i

~e
mc

Â · ~∇ . (2.262)
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Figure 2.14 Illustration of an incoming electromagnetic wave causing a transition
between two quantum states.

2.7.3 Decomposition of the electromagnetic field

Let us now decompose the incident electromagnetic field (cf. Figure 2.14) into
plane waves,

~A(~x, t) = A0 ê ei
(
~k·~x−ωt

)
, (2.263)

where A0 is a scalar, time-independent amplitude and ê is the polarisation
direction. Coulomb gauge immediately implies transversality, ê · ~k = 0. We
know that this decomposition into plane waves is possible because the vector
potential of electromagnetic waves in vacuum must satisfy the d’Alembert
equation 2~A = 0, what plane waves do if only they obey the dispersion relation
k = ω/c.

With (2.244), these plane electromagnetic waves in the perturbing Hamiltonian
(2.262) give the transition rate

Γ =
e2

m2c2 |A0|2
∣∣∣∣〈m |ei~k·~xê · ~∇|n〉

∣∣∣∣2 δD (ωmn − ω) . (2.264)

We can now relate the absolute square |A0|2 of the vector-potential amplitude
to the intensity of the incoming light. The energy flux density carried by the
electromagnetic wave is expressed by its Poynting vector,

~S =
c

4π
~E × ~B =

c
4π

~E 2êk , (2.265)

where êk is a unit vector pointing into the direction of the wave vector ~k. The
mean energy flowing past the quantum-mechanical system per unit area and
unit time is thus 〈∣∣∣∣~S ∣∣∣∣〉 =

1
T

∫ T/2

−T/2
dt

∣∣∣∣~S ∣∣∣∣ =
c

4πT

∫ T/2

−T/2
dt ~E 2 . (2.266)

In the limit of very long times, the time integral can be transformed to a
frequency integral by Plancherel’s theorem (2.25), which brings (2.266) into
the form 〈∣∣∣∣~S ∣∣∣∣〉 =

c
4πT

∫ ∞

−∞
dω
2π

∣∣∣∣ ~̂E ∣∣∣∣2 . (2.267)
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The specific intensity, i.e. the energy per unit area, time and frequency, is thus

Iω =
c

8π2T

∣∣∣∣ ~̂E ∣∣∣∣2 . (2.268)

We can now use (2.258) to continue writing

Iω =
c

8π2T
ω2

c2 |A0|2 (2.269)

and return to the transition rate (2.264) with this result. This gives

Γ =
8π2e2

m2c
IωT
ω2

∣∣∣∣〈m |ei~k·~xê · ~∇|n〉
∣∣∣∣2 δD (ωmn − ω) (2.270)

for the transition rate between the states |n〉 and |m〉, given the specific intensity
Iω acting on the system for time T .

2.7.4 Dipole approximation

Before we evaluate the transition matrix element occuring in (2.270), we can
apply a further approximation. Expand the phase factor exp(i~k · ~x ) into a Taylor
series,

ei~k·~x ≈ 1 + i~k · ~x − 1
2

(
~k · ~x

)2
+ . . . . (2.271)

Already the first-order term, ~k · ~r, is very much smaller than unity, as the
following estimate shows. By the dispersion relation, the wave number k of the
electromagnetic wave must be

k =
ωmn

c
=

Em − En

~c
, (2.272)

while |~x | = x must be of the order of the Bohr radius a0,

x ≈ a0 =
~2

me2 = 5.2918 · 10−9 cm . (2.273)

Caution Notice that the Bohr ra-
dius can be expressed by the clas-
sical electron radius (2.12) and the
fine-structure constant α as

a0 =
~2

me2 =
e2

mc2

~2c2

e4 =
re

α2 .

We shall use this relation in (2.300)
below. J

Thus, their product can be estimated to be

~k · ~x ≈ kx ≈ ~

me2c
(Em − En) =

Em − En

αmc2 , (2.274)

where we have identified the fine-structure constant α, see (2.260). As long as
the energy difference between the transitions is very small compared to the rest-
energy of the electron, it is thus very well justified to replace the phase factor by
unity. Consider transitions in the hydrogen atom as an example. The ionisation
energy of hydrogen is 13.6 eV, while αmc2 ≈ (511/137) keV ≈ 3.7 · 103 eV. In
this case, kx ≈ 3.7 · 10−3. We are then left to evaluate the matrix element

〈m |ê · ~∇|n〉 =
i
~
〈m |ê · p̂|n〉 (2.275)

Since |n〉 and |m〉 are eigenstates of the unperturbed Hamiltonian, it is most use-
ful to replace the momentum operator p̂ by means of the following commutation
relation, [

x̂, p̂ 2
]

= p̂x
[
x̂, p̂x

]
+

[
x̂, p̂x

]
p̂x = 2i~p̂x . (2.276)
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It allows us to write [
x̂, Ĥ

]
=

i~
m

p̂ , (2.277)

which turns the transition matrix element (2.275) into

〈m |ê · ~∇|n〉 = −mωmn

~
〈m |ê · x̂|n〉 = −mωmn

e~
〈m |ê · d̂|n〉 , (2.278)

where the dipole operator d̂ = ex̂ was introduced. For this reason, the approxi-
mation exp(i~k · ~x ) ≈ 1 is called the dipole approximation.

?
Verify the relations (2.276) and
(2.277).

If the dipole matrix element 〈m |ê · d̂|n〉 vanishes, we need to proceed to the next
order in the Taylor expansion of the phase factor, arriving at the level of the
so-called quadrupole transitions. The rate (2.270) for dipole transitions has now
assumed the form

Γ =
8π2IωT

c~2

∣∣∣〈m |ê · d̂|n〉∣∣∣2 δD (ωmn − ω) . (2.279)

Finally, for the frequent case of unpolarised radiation, the mean-squared projec-
tion of d̂ on ê gives a factor of 1/3, and we arrive at

Γ =
8π2IωT

3c~2

∣∣∣∣~dmn

∣∣∣∣2 δD (ωmn − ω) , (2.280)

where the dipole matrix element ~dmn = 〈m |d̂|n〉 was defined.

2.7.5 Cross sections

We would like to convert the expression (2.280) for the rate of transitions
between the states |n〉 and |m〉 into an expression for the transition cross sec-
tion. We shall consider two cases; transitions between two bound states and
transitions between a bound and a free state.

Let us begin with transitions between two bound states, which we assume for
simplicity to be non-degenerate. Thus, the initial and the final states can be
occupied by a single electron each. The two states differ by the discrete energy
Em − En, which has to be supplied or carried away by a photon with energy
~ωmn = |Em − En|. To be specific, we choose to consider the absorption of pho-
tons, thus Em > En. Of the incoming specific intensity Iω, only those photons
can be absorbed whose frequency precisely equals ωmn. This is expressed by
the product IωδD(ωmn − ω) in the transition probability (2.280). Notice that
the frequency integral over the Dirac delta function must be dimension-less,
so the delta function must have the dimension [frequency]−1. The number of
incoming photons at the frequency ω during the time T per area is

IωT
~ω

. (2.281)

Dividing (2.280) by this number gives the desired absorption cross section

σmn =
8π2

3c~
ωmn

∣∣∣∣~dmn

∣∣∣∣2 δD (ωmn − ω) , (2.282)
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with the Dirac delta function expressing that the transition is assumed for now
to be needle-sharp in frequency. Conventionally, the dimension-less quantity

fmn :=
2mωmn

3~e2

∣∣∣∣~dmn

∣∣∣∣2 (2.283)

is called the oscillator strength of the transition from the state |n〉 to the state
|m〉. Identifying it in (2.282) allows us to write the cross section in the simple
form

σmn =
4π2e2

mc
fmn δD (ωmn − ω) = 4π2rec fmn δD (ωmn − ω) , (2.284)

where the classical electron radius re = 2.81 · 10−13 cm was introduced from
(2.12).

?
Is the oscillator strength (2.283) re-
ally dimension-less, as claimed?

In realistic situations, as we shall see below, the absorption cross section does
not have the needle-sharp delta profile adopted here, but a broader one. If this
profile is described by a function φ(ωmn − ω) which is normalised to unity, the
cross section reads

σmn =
4π2e2

mc
fmn φ (ωmn − ω) = 4π2rec fmn φ (ωmn − ω) . (2.285)

As we shall see shortly, there is a characteristic line profile function, called the
Voigt profile.

For bound-free transitions, we can proceed in an analogous way as for bound-
bound transitions, except that we have to take the number of available free
electron states into account. We arrive at the bound-free absorption cross
section σbf if we multiply the transition rate (2.270) by the number of final
electron states and divide, as before, by the number of photons incoming per
unit area per unit time. The number of final electron states in an infinitesimally
thin momentum shell in phase space is

4πp2
f dpf

(2π~)3 V =
p2

f dpf

2π2~3 V =
k2

f dkf

2π2 V (2.286)

if the shell has the width dpf = ~dkf in the final electron momentum. Energy
conservation implies that the energy of an incoming photon, ~ω, must come up
for the binding energy E1 of the electron plus the energy of the free electron
after ionisation,

~ω =
p2

f

2m
+ E1 =

~2k2
f

2m
+ E1 . (2.287)

This allows us to relate the width dkf of the shell of electron momenta to the
width dω in photon frequency,

~dω =
~2kf dkf

m
⇒ kfdkf =

m dω
~

. (2.288)

The number of final electron states can thus be expressed by

k2
f dkf

2π2 V =
kfm dω
2π2~

V , (2.289)
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and the number of photons with frequency within [ω,ω + dω] incoming during
the time T per unit area is given by

IωT
~ω

dω . (2.290)

Multiplying the transition rate (2.270) with the number of electron states (2.289)
and dividing by the number (2.290) of incoming photons gives the cross section

σbf =
4e2kf

mc
V
ω

∣∣∣∣〈 f |ei~k·~xê · ~∇|b〉
∣∣∣∣2 (2.291)

between the bound state |b〉 and the free state | f 〉, where the transition matrix
elements still needs to be worked out.

2.7.6 Photoionisation cross section

To give one specific and simple example for the calculation of a bound-free
cross section, we consider the photoionisation of the hydrogen atom from its
ground state. In the position representation, the bound and free electron states
are given by the wave functions

ψb(~x ) = 〈x |b〉 =
(
πa3

0

)−1/2
e−r/a0 ,

ψf(~x ) = 〈x | f 〉 = V−1/2ei~kf ·~x , (2.292)

where the final electron state is assumed to be confined to the volume V .

?
Can you confirm that the wave func-
tions (2.292) correctly represent the
states of an electron bound in the
ground state of a hydrogen atom,
and a free electron, respectively?
Are they properly normalised?

If the energy difference between the final and initial electron states is small
compared to the rest-energy of the electron, i.e. as long as the electron remains
non-relativistic, we can evaluate the transition matrix element in dipole approx-
imation. We thus set exp(i~k · ~x ) ≈ 1 in (2.291) and use the Hermitian property
of the momentum operator to exchange the final and the initial states,∣∣∣∣〈 f |ê · ~∇|b〉∣∣∣∣2 =

∣∣∣∣〈b |ê · ~∇| f 〉∗∣∣∣∣2 =
∣∣∣∣〈b |ê · ~∇| f 〉∣∣∣∣2 . (2.293)

Inserting the initial and final wave functions, the matrix element is now easily
evaluated,

〈b |ê · ~∇| f 〉 =
(
πa3

0V
)−1/2

∫
d3x e−r/a0 ê · ~∇ei~kf ·~x

=
(
πa3

0V
)−1/2

iê · ~kf

∫
d3x e−r/a0+i~kf ·~x . (2.294)

The remaining integral is quickly worked out in polar coordinates,∫
d3x e−r/a0+i~kf ·~x = 2π

∫ ∞

0
r2dr e−r/a0

∫ 1

−1
d cos θ eikfr cos θ

= 4π
∫ ∞

0
r2dr e−r/a0

sin(kfr)
kfr

=
8πa3

0(
1 + k2

f a2
0

)2 ≈
8π

k4
f a0

, (2.295)
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where the final approximation is allowed if the energy of the final state is much
larger than that of the initial state.

Putting the last results back into the bound-free cross section (2.291), we obtain

σbf =
256π

3
e2

mcω
1

(a0kf)5 =
256π

3
α~

mω
1

(a0kf)5 , (2.296)

where we have averaged over all polarisation directions to replace(
ê · ~kf

)2
=

1
3

k2
f . (2.297)

?
Can we really integrate the radius
to infinity in (2.295)? What is the
crucial approximation behind doing
so? Carry out the final radial integral
in (2.295) yourself.

Our previous approximation that the energy of the final state largely exceeds
that of the initial state allows us to ignore the binding energy E1 in (2.287) and
to substitute

kf =

√
2mω
~

(2.298)

and bring the photoionisation cross section into the form

σbf =
64π

3
√

2

α

a5
0

(
~

mω

)7/2

. (2.299)

Rearranging the constants, inserting the Bohr radius (2.273) in the form

a0 =
re

α2 (2.300)

with the classical electron radius (2.12) as well as the Rydberg energy

Ry =
me4

2~2 =
α2mc2

2
= 13.6 eV , (2.301)

we can bring the expression for the bound-free cross section into the more
intuitive form

σbf =

(
4
α

)3

σT

(
Ry
~ω

)7/2

= 1.09 · 10−16 cm2
(

Ry
~ω

)7/2

(2.302)

containing the Thomson cross section (2.15). It should be kept in mind, however,
that this equation is only valid for photon energies much larger than the Rydberg
energy, ~ω � Ry.

Problems

1. The cross section for a transition between an initial state |n〉 and a final
state |m〉 was derived as

σmn =
4π
3c~

ωmn

∣∣∣∣~dmn

∣∣∣∣2 δD (ωmn − ω) , (2.303)

where ~dmn = 〈m |ex̂|n〉 is the dipole matrix element andωmn = (Em−En)/~
is the frequency corresponding to the energy difference between the
states |m〉 and |n〉. The delta distribution assures that only those photons
contribute to the cross section that have the correct frequency.
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(a) Consider the one-dimensional harmonic oscillator with energy lev-
els En = ~ω(n + 1/2) and corresponding wave functions

ψn(x) =

(mω
π~

)1/4 1√
2nn!

Hn

(√
mω
~

x
)

exp
(
−mω

2~
x2

)
(2.304)

with the Hermite polynomials

Hn(x) = (−1)nex2 dn

dxn e−x2
. (2.305)

Calculate the cross section σ10 for the transition from the ground
state (n = 0) to the first excited state (n = 1). Hint: It may be
helpful to use∫ ∞

−∞
dx x2e−αx2

= −
∫ ∞

−∞
dx

∂

∂α
e−αx2

. (2.306)

(b) Consider now an infinitely deep potential well of length L with
energy levels

En =
n2π2~2

2mL2 (2.307)

with n ∈ N and wave functions

ψn(x) =


√

2
L cos

(
nπ
L x

)
if n is odd√

2
L sin

(
nπ
L x

)
if n is even

, (2.308)

with x ∈ [−L/2, L/2]. What is the cross section σ21 for the transi-
tion from the ground state (n = 1) to the first excited state (n = 2)?
Compare the factor in front of the delta distribution with that for
the harmonic oscillator.

2.8 Shapes of Spectral Lines

In this section, three different statements on spectral lines are derived and
applied. First, it is shown that spontaneous transitions between quantum
states broaden spectral lines emitted by electromagnetic transitions between
these states from the needle-sharp profile expected for ideally sharp tran-
sitions to a Lorentz profile whose width is determined by the spontaneous
transition rate. The first main result is the Lorentzian profile function (2.318).
Collisions between emitting quantum systems are shown to have the same
effect, with the spontaneous transition rate replaced by the collision rate.
Second, the Doppler broadening by the motion of the emitting quantum sys-
tems leads to the Gaussian line profile (2.330) if the motion is thermal. Third,
the combined effects of spontaneous or collisional transitions and Doppler
broadening are shown to create the Voigt line profile (2.337). This combined
line profile is then used to determine how the equivalent widths of spectral
lines change with the number of absorbers, leading to the curve-of-growth
described by (2.352).
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2.8.1 Natural line width

Consider now two states of a quantum-mechanical system, for simplicity called
|m〉 and |n〉, which are separated by the energy difference En − Em > 0. If the
system is in the upper state |n〉, it has a finite probability to decay spontaneously
to the lower state |m〉. The state |n〉 thus has a finite lifetime, which causes an
uncertainty in its energy En. The transition energy between the two states |m〉
and |n〉 will thus be distributed around its precise value En − Em. We shall now
work out the shape of this distribution.

?
Why would an excited state sponta-
neously decay into a less energetic
state?We begin with the evolution equation (2.235) for the expansion coefficients

cnm perturbed state |ψ(t)〉 in terms of the eigenstates |k〉 of an unperturbed
Hamiltonian,

ċnm = − i
~

∑
k

cnk〈m |Ĥ(1)(t)|k〉 eiωmnt (2.309)

and assume a radiative perturbation Hamiltonian Ĥ(1)(t) with periodic time
dependence as in (2.238),

Ĥ(1)(t) = V̂ e−iωt θ(t) , (2.310)

with a time-independent operator V̂ .

Let us now restrict our attention to a radiative transition between any two
states |n〉 and |m〉. Their energies Em and En are supposed to satisfy Em > En,
respectively. Initially, we assume the system to be in the state |n〉, which could
be its ground state, and thus begin the evolution with cnn = 1 and cnk = 0 for
k , n. Restricting our general result (2.309) to this simplified two-state system,
the coefficient cnm evolves in time according to

ċnm = − i
~
〈m |V̂ |n〉 ei(ωmn−ω)t . (2.311)

Strictly speaking, cnn is also time dependent, so we would have to solve a
system of coupled differential equations for cnn and cnm. In a first step of what
could turn into an iterative approach, we now assume that the ground state
remains populated as the transitions are going on, hence cnn = 1 for all times.
This is justified if the transition probability from |n〉 to |m〉 is small. Should this
be unreasonable in the situation considered, a first solution for cnm(t) can then
be inserted into the evolution equation for cnn to determine a correction, and so
forth.

Taking, however, cnn = 1 for now, we can immediately solve (2.311) by direct
integration, enforcing the initial condition cnm = 0 at t = 0. This gives

cmn(t) = − 〈m |V̂ |n〉
~(ωmn − ω)

[
ei(ωnm−ω)t − 1

]
, (2.312)

as in (2.239).

However, this result has the problem that it was derived ignoring that the excited
state |m〉 can decay spontaneously. Very much like radioactive decay, we can
phenomenologically model such a spontaneous decay by the introducing a
contribution

ċnm → ċnm − Γ

2
cnm (2.313)
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into the differential equation (2.311), where the spontaneous decay rate Γ/2
was inserted with a factor of 1/2 that will be convenient later. After this ad-hoc
modification, cnm is supposed to evolve according to

ċnm = − i
~
〈m |V̂ |n〉 ei(ωmn−ω)t − Γ

2
cnm . (2.314)

After bringing this additional term Γcnm/2 to the left-hand side and multiplying
the equation with eΓt/2, we see that we can write

∂t
(
cnmeΓt/2

)
= − i
~
〈m |V̂ |n〉 e[i(ωmn−ω)+Γ/2]t . (2.315)

Again, we can directly integrate this equation with the same initial condition as
before, cnm = 0 at t = 0. This gives

cnm(t) =
〈m |V̂ |n〉
~

e−Γt/2 − ei(ωmn−ω)t

(ω − ωmn) + iΓ/2
. (2.316)

After a sufficiently long initial time t � Γ−1, the exponential term in the
numerator dies off. Then, the absolute square of cnm, which gives the probability
for finding the system in state |m〉, becomes time-independent and reads

|cnm|2 =

∣∣∣〈m |V̂ |n〉∣∣∣2
~2

1
(ω − ωmn)2 + Γ2/4

. (2.317)

The dependence of the transition probability on frequency is thus described by
the Lorentz profile function

φΓ(ω − ω12) =
1
π

Γ/2
(ω − ω12)2 + Γ2/4

(2.318)

first encountered in (2.153). Recall that the prefactor in (2.318) is chosen such
that φΓ integrates to unity.

2.8.2 Collisional broadening

When a quantum-mechanical system interacts with another in a collision, its
phase is randomly changed, or reset. We model this process by assuming that
there is a random phase shift δφ in each collision, which we choose to be drawn
from the interval [−π, π]. The probability distribution of δφ within this interval
is supposed to be flat such that all phase shifts within [−π, π] are equally likely.

We cannot know the phase shift after a single collision. However, the average
phase factor after a single collision must vanish,〈

eiδφ
〉

= 0 , (2.319)

because of the flat distribution of δφ ∈ [−π, π]. If more than one collision occurs,
the mean phase factor will still vanish: The phase shift after N collisions will
have a flat distribution over the interval [−Nπ,Nπ], hence the average phase
factor will vanish also if an arbitrary number of collisions has occured.

The number of collisions within a given time t can be modelled as a Poisson
process. Let Γc be the collision rate. Then the expected number of collisions
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within the time t is Γct, and the probability for k collisions to occur during that
time is given by the Poisson distribution,

pk =
(Γct)k

k!
e−Γct . (2.320)

Since the phase factor after time t is zero if any collision has happened, the
mean phase factor will be 〈

eiδφ
〉

= p0 = e−Γct . (2.321)

Since the probability for the system to be in state |2〉 is given by |cnm|2, this
corresponds to modifying the evolution equation for cnm by a term

ċnm = −Γc

2
cnm . (2.322)

A comparison to the treatment of the natural line width above, see (2.314) and
(2.315), shows that the only change to the previous solution (2.316) for the
transition probability |cnm|2 is that the decay rate Γ for spontaneous transitions
is replaced by the sum of the spontaneous and the collisional decay rates,

Γ→ Γ + Γc . (2.323)

The shape of the line profile function (2.318) will thus remain unchanged,
only its width will be enhanced by an amount determined by the sum of the
spontaneous and the collisional decay rates.

2.8.3 Doppler broadening of spectral lines

A further broadening mechanism is caused by the Doppler effect. If the emitting
quantum-mechanical systems, e.g. atoms or molecules, move along the line-of-
sight with the velocity v‖, we observe the frequency

ω = ω0

(
1 +

v‖
c

)
(2.324)

instead of the emitted frequency ω0. This is the non-relativistic approxima-
tion to the Doppler effect, which we can safely use for atoms or molecules
moving thermally. In the thermal case, the emitters can further be expected to
have a Maxwellian velocity distribution with a width σv determined by their
temperature. The equipartition theorem demands

m
2
σ2
v =

kT
2

⇒ σ2
v =

kT
m

. (2.325)
?

If the velocity distribution of the
emitting atoms and molecules would
follow a power law, what would the
line profile look like?

The single velocity component v‖ then has a Gaussian distribution, and the
observed line profile is then given by∫ ∞

−∞

dv‖√
2πσ2

v

δD

[
ω − ω0

(
1 +

v‖
c

)]
exp

− (
v‖ − v̄)2

2σ2
v

 , (2.326)

where v̄ is the mean velocity of the emitting system. Using the identity

δD(ax) =
1
a
δD(x) , (2.327)
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for the Dirac delta function, the Gaussian line profile proportional to

exp

− 1
2σ2

v

(
ω − ω0

ω0
c − v̄

)2 = exp

− c2

2σ2
v

(
ω − ω̄
ω0

)2 (2.328)

emerges. Here, we have defined the centre frequency

ω̄ ≡ ω0

(
1 +

v̄

c

)
, (2.329)

i.e. the average frequency of the line emission, shifted by the Doppler effect
due to the mean motion of the emitting or absorbing medium. The line-profile
function φ(ω−ω0) for thermally moving atoms is thus the (normalised) Gaussian

φ(ω − ω0) =
c

ω0
√

2πσ2
v

exp

− c2

2σ2
v

(
ω − ω̄
ω0

)2 . (2.330)

2.8.4 The Voigt profile

In presence of all three line-broadening effects, i.e. spontaneous, collisional and
Doppler broadening, the line profile is a convolution of the Lorentz profile for
the line broadened by spontaneous and collisional decays with the Gaussian
velocity distribution taking account of the Doppler effect. The combined line
profile is thus determined by the integral

1√
2πσv

∫ ∞

−∞
dv‖ φ

[
ω − ω12

(
1 +

v‖
c

)]
exp

− v2
‖

2σ2
v

 , (2.331)

which can be brought into a standard form by a sequence of substitutions. First,
we introduce a velocity scale v0 and a dimension-less velocity q by

v0 ≡
√

2σv and q ≡ v‖√
2σv

=
v‖
v0

(2.332)

to bring the Gaussian factor in (2.331) into the form

dv‖√
2πσv

exp

− v2
‖

2σ2
v

 =
dq√
π

e−q2
. (2.333)

The Lorentz profile (2.318), with the centre frequency shifted by the Doppler
effect, reads

φΓ

[
ω − ω12

(
1 +

v‖
c

)]
=

1
π

Γ/2[
ω − ω12

(
1 +

v‖
c

)]2
+ Γ2/4

. (2.334)

The further substitutions of a centred, normalised frequency u and a normalised
collision rate a, defined by

u ≡ ω − ω12

ω12

c
v0

and a ≡ Γ

2ω12

c
v0
, (2.335)

bring this profile into the form

φ(u) =
c

πω12v0

a
(u − q)2 + a2 . (2.336)
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The result of the convolution (2.331) thus reads

φ(u) =
ac

π
√
πω12v0

∫ ∞

−∞
dq

e−q2

(u − q)2 + a2 , (2.337)

which is the so-called the Voigt profile (Figure 2.15). Near its centre, this line
profile has a Gaussian shape, while its wings retain the Lorentzian shape.
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Figure 2.15 The Gauss, the Lorentz and the Voigt profiles are shown for σ = 1
and Γ = 1 in arbitrary units. The left and right panels are distinguished only by the
linear and logarithmic scaling of the ordinate. The right panel illustrates in particular
the broad, Lorentzian wings of the Voigt profile.

2.8.5 Equivalent widths and curves-of-growth

Two concepts have been found useful describing the information contained in
observed spectral lines, namely their equivalent width and their curve-of-growth.
The equivalent width quantifies the area under a spectral line. If I0 is the local
specific intensity of the spectral continuum, that is the continuum intensity in
the vicinity of the line, the equivalent width is defined as

W ≡
∫

I0 − I(ω)
I0

dω , (2.338)

where I(ω) is the specific intensity within the line. Thus, the equivalent width
of an absorption line is a measure for the total intensity removed from the
spectrum. An analogous definition can be given for the equivalent width of
emission lines, which then quantifies the total intensity added to the spectrum.
The optical depth within the line is given by the number density of absorbers n,
the geometrical extent L of the absorbing medium and the frequency-dependent
cross section σ(ω),

τ = n Lσ(ω) , (2.339)

where the specific dependence of σ(ω) on the frequency may be given by
(2.279) in dipole approximation. The specific intensity within the line is then
lowered compared to the specific continuum intensity I0 by

I(ω) = I0 e−τ(ω) , (2.340)
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and thus the equivalent width is the integral

W =

∫
dω

[
1 − e−τ(ω)

]
(2.341)

across the line.

?
Why would the specific intensity fall
off exponentially with the optical
depth, as in (2.340)? Since the cross section is proportional to the profile function φ(ω), (2.341) can

equally well be written as

W =

∫
dω

[
1 − e−Cφ(ω)

]
. (2.342)

As shown in (2.280), the frequency-independent constant C inserted here is
C = 2πnLrec f12 for a dipole transition between levels 2 and 1 with oscillator
strength f12. For low optical depth, τ � 1, the exponential function in (2.341)
or (2.342) can be replaced by its first-order Taylor expansion. This results in

W =

∫
dω n Lσ(ω) = 2πnLrec f12 (2.343)

because the profile function is defined to be normalised such that its integral
over frequency ω gives unity. Thus, for low optical depth, we introduce the
column density N = nL and have

W ∝ N , (2.344)

i.e. the equivalent width is simply growing linearly with the column density of
absorbers along the line-of-sight from the observer.

In the opposite, optically thick case τ � 1, the line profile can be approxi-
mated by a sudden drop from the continuum level I0 to zero intensity within
a frequency range of width 2∆, and a sudden rise back to the continuum level.
The spectral line is thus simply described as a rectangular stripe cut from the
spectrum. By definition of the equivalent width,

W ≈ 2∆ (2.345)

in this case. We now need to distinguish whether τ ≈ 1 is reached only in the
core or already in the wings of the spectral-line profile. We first consider the
case of an optically thick core, but optically thin wings. If the line is Doppler-
broadened, as most lines are, the line profile has a Gaussian core, and we can
approximate the optical depth as

τ = NLσ(ω) = 2πNL
rec2 f12√

2πσv
exp

(
−c2(ω − ω12)2

2σ2
v

)
(2.346)

with a thermal velocity dispersion σv given by (2.325). We now determine the
half-width ∆ = ω − ω12 by setting τ = 1 in (2.346) and solving for ∆,

exp
(
−c2∆2

2σ2
v

)
!
=

σv

π
√

2πNLrec2 f12
. (2.347)

Thus, the width ∆ and therefore also the equivalent width scale with N like

∆ ∝
√

ln N , W ∝
√

ln N . (2.348)
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i.e. they depend only very weakly on the number N of absorbers.

If, however, τ ≈ 1 is reached already in the Lorentzian wings of the line,
we adopt the Lorentz profile (2.318) instead of the Voigt profile and further
simplify the Lorentz profile by assuming a damping rate Γ small compared to
the frequency difference to the line centre, Γ � ω − ω12. Then,

φΓ(ω) ≈ Γ

2π(ω − ω12)2 , (2.349)

and the optical depth becomes

τ = NLσ(ω) ≈ πNLrec f12
Γ

(ω − ω12)2 . (2.350)

As above, we find the width ∆ from this equation by setting τ = 1 in (2.350)
and solving for ∆ = ω − ω12. This reveals that in this case of very high optical
depth, ∆ and the equivalent width W scale with the number N of absorbers like

∆ ∝
√

N , W ∝
√

N . (2.351)

0.1

1

10

1e+02

1e+03

0.1 1 10 1e+02 1e+03 1e+04

eq
ui

va
le

nt
 w

id
th

 W
(N

)

Nσ0

σ = 1, Γ = 0.01
σ = 1, Γ = 0.1
σ = 1, Γ = 1.0

Figure 2.16 Curves-of-growth as a function of Nσ0 for three different line profiles
with the same Gaussian broadening, σ = 1, but different values for the damping Γ.

Summarising, the curve-of-growth W(N) behaves as

W(N) ∝


N small N√
ln N intermediate N√
N large N

. (2.352)

For determining the number N of absorbers, lines with different oscillator
strengths f are required because then the spectral lines fall into different sections
of the curve-of-growth W(N) for the same N. This may prove difficult when
some lines fall into the flat section of W(N) where W(N) ∝ √ln N.
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Problems

1. Besides their natural line width, emission lines with transition frequency
ω0 are broadened due to collisions of the emitting atoms and their ther-
mal velocities. The collisional broadening leads to a line shape that is
described by a Lorentz profile

φΓc(ω − ω12) =
1
π

Γc/2
(ω − ω12)2 + Γ2

c/4
, (2.353)

where Γc = σ〈nv〉 is the collision rate, σ is the cross section for collisions,
n is the number density of atoms, v their velocity and 〈·〉 indicates the
thermal average. The Doppler broadening leads to the Gaussian profile
function

φD =
c√

2πω0σv
exp

− c2

2σ2
v

(
ω − ω0

ω0

)2 , (2.354)

where σv is the velocity dispersion.

(a) Estimate the line width for Doppler broadening from the full width
at half maximum (FWHM) ∆ωD, defined by φD(ω0 ± ∆ωD/2) =

φD(ω0)/2, as a function of temperature T .

(b) Estimate the line width ∆ωc due to collisions from the FWHM of
φc(ω) as a function of T . Assume that σ is set by the Bohr radius
a0 and that the density does not depend on temperature.

(c) How can the results from (a) and (b) be combined to determine the
density of an emitting medium?

(d) Calculate the ratio ∆ωc/∆ωD for the Hα line (6563 Å) emitted from
a cloud of atomic hydrogen with n = 16 cm−3.

2.9 Radiation Quantities

In our treatment of radiation processes, we began with the classical picture
of electromagnetic waves and their emission by accelerated charges. We
added the photon picture when it became necessary for the treatment of
momentum exchange between electromagnetic radiation and charges, and
discussed quantum transitions caused by radiation. We shall proceed to
discuss in this section the propagation and the transport of radiation, treating
radiation in close analogy to a fluid. The main results are the definition of the
specific intensity Iω in (2.360), the angular moments (2.370) of the intensity
and the demonstration that the quantity Iω/ω3 is relativistically invariant.

2.9.1 Specific Intensity

Let us therefore consider radiation again as a stream of particles which carry
energy and momentum. In order to characterise the flow of radiation, we
imagine setting up a small screen of differential area d~A and arbitrary orientation.
Our first question is: What amount of energy is streaming per time interval dt
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into a direction enclosing the angle θ with the normal to the screen into the
solid angle element dΩ and within the frequency interval dω?

We begin with the occupation number of photon states. Let nα~p be the spatial
number density of photons with momentum ~p and the polarisation state α
(α = 1, 2). The energy-momentum four-vector of a photon with energy ~ω is

p µ = ~kµ =
~ω

c

(
1
ê

)
, (2.355)

with the unit vector ê pointing into the direction of light propagation. Since
photons are massless particles, the wave four-vector and hence also the four-
momentum are null vectors, 〈k, k〉 = 0 = 〈p, p〉. Therefore,

E = cp with ~p =
~ω

c
ê , p =

~ω

c
. (2.356)

?
Compare (2.355) with the disper-
sion relation for electromagnetic
waves, and (2.356) with the relativis-
tic energy-momentum relation.

A volume element dΓ = d3xd3 p of phase space is divided in cells of size
(2π~)3 to account for Heisenberg’s uncertainty principle: If the position of a
particle is confined to dx in one spatial direction, its momentum in the same
direction cannot be confined to better than dxdp = 2π~. The number of cells
per phase-space volume element dΓ is thus

d3xd3 p
(2π~)3 = dV

p2dpdΩ

(2π~)3 = dV
ω2dωdΩ

(2πc)3 , (2.357)

where we have expressed the momentum by the frequency ω in the last step.

y

z

x

~e

Figure 2.17 Illustration of photons streaming through an inclined area element.

The amount of energy carried by photons with momentum ~p through the in-
finitesimal screen d~A (Figure 2.17) is now given by the number of available
phase space cells from (2.357), times the number of photons per phase-space
cell with polarisation state α and momentum ~p, times the energy E = cp = ~ω

per photon, times the volume dV = cdt d~A · ê covered by the screen relative to
the stream of photons. Thus, we find

dE =
ω2dωdΩ

(2πc)3

2∑
α=1

nα~p ~ω dA cos θ cdt , (2.358)
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where θ is the angle between d~A and ~p. The energy flowing through the screen
per unit screen area dA, unit time dt and unit frequency dω into the unit solid
angle dΩ defines the specific intensity Iω of the radiation by the assignment

dE
dtdωdAdΩ

=

2∑
α=1

nα~p
~ω3

(2π)3c2 cos θ ≡ Iω cos θ . (2.359)

For unpolarised light, n1~p = n2~p, so the sum in (2.359) merely gives a factor of
two. Then, the specific intensity is related to the occupation number and the
frequency by

Iω =
2~ω3

(2π)3c2 nα~p =
~ω3

4π3c2 nα~p . (2.360)

Two powers of ω in the numerator are due to the volume element in phase space,
the additional factor ~ω is the photon energy.

2.9.2 Moments of the intensity

Let us approach the intensity from a different point of view. For an electromag-
netic wave in vacuum, the Poynting vector is

~S =
c

4π
~E 2k̂ = cUk̂ , (2.361)

where U is the energy density. It is the energy current density in electromagnetic
radiation, i.e. the electromagnetic energy flowing per unit time through unit
area. Dividing by the solid angle 4π of the sphere, we find the intensity

I =
cU
4π

=
1

4π

∣∣∣∣~S ∣∣∣∣ (2.362)

and its relation to the absolute magnitude of the Poynting vector. The first
equation (2.362) shows that the integral of I/c over the solid angle is the energy
density, ∫

dΩ
I
c

= U . (2.363)

According to the second equation (2.362), we can write the Poynting vector as
~S = 4πIk̂. Its integral over a sphere with arbitrary (small) radius R,∫

~S · d~A = 4π
∫

dΩ Ik̂ · êr R2 = 4πR2
∫

dΩ I cos θ (2.364)

must be the energy flowing per unit time through the sphere. Dividing by the
surface area of the sphere, we find the total energy current density

F =

∫
dΩ I cos θ (2.365)

averaged over the complete solid angle.

Maxwell’s stress-energy tensor T̄ , whose components are given in (1.111),
express the momentum current density. Multiplied with an oriented area element
d~A, we find the force d ~F = T̄d~A exerted per area dA by the momentum current
density since the momentum current density times an area is the momentum per
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unit time, hence the force. Without loss of generality, we choose d~A = dAêz for
an area element in the x-y plane. Since the magnetic contribution to T̄ equals
the electric contribution, we write

d ~F = T̄d~A =
1

2π

 ~E 2

2
13 − ~E ⊗ ~E

 dAêz =
1

2π

 ~E 2

2
êz − E3 ~E

 dA . (2.366)

It is easily seen that dF1,2 = 0: There is no net force on the area element in its
own plane, as expected. For dF3, we rather have the force per unit area, or the
radiation pressure,

Prad =
dF3

dA
=

1
2π

 ~E 2

2
− E2

3

 . (2.367)

Averaging over the solid angle, using 〈~E 2〉 = 3〈E2
3〉 for a locally isotropic

radiation field, writing E3 = E cos θ, and replacing ~E 2 = 4πU, we can conclude

Prad =
1

4π

∫
dΩ U cos2 θ =

1
4π

∫
dΩ U cos2 θ =

U
3
. (2.368)

On the one hand, this confirms the well-known result valid for all relativistic
boson gases that their pressure equals a third of their energy density. On the
other hand, we can substitute the intensity I from (2.362) in the first equation
(2.368) to see that the radiation pressure is the second angular moment of I/c,

Prad =

∫
dΩ

I
c

cos2 θ . (2.369)

We have thus established the relations∫
dΩ

I
c

= U , F =

∫
dΩ I cos θ , Prad =

∫
dΩ

I
c

cos2 θ (2.370)

between the energy density U, the integrated energy current density F and
the radiation pressure Prad with the three lowest-order angular moments of
the intensity. They will turn out to be important shortly in our discussion of
radiation transport.

2.9.3 Relativistic invariance of Iω/ω3

Suppose now that the screen d~A is fixed at the origin of an unprimed coordinate
frame such that it points into the êz direction. Let it be observed from another,
primed, frame moving with velocity v into the common êz direction of the
two frames. For simplicity, clocks are supposed to be synchronised such that
t = 0 = t′ when the two frames coincide. An experimentalist resting in the
unprimed frame finds by counting that

dN = dΓ n~p = 2
p2dpdΩ

(2π~)3 n~p dA c cos θ dt (2.371)

photons have passed the screen after a time interval dt. A fellow experimentalist
resting in the primed frame counts

dN′ = 2
p′2dp′dΩ′

(2π~)3 n′
~p′ dA′ (c cos θ′ − v) dt′ (2.372)
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photons in the time interval dt′ measured on his clock. If the two experimental-
ists agree to synchronise the durations of their measurements by

dt′ = γdt (2.373)

to account for the relativistic time dilation, they must count the same number of
photons, dN = dN′. In order to see what this implies for the occupation numbers
n~p in the unprimed and n′

~p′ in the primed frame, we need to Lorentz transform
the absolute value p of the photon momentum, the solid-angle element dΩ and
the direction cosine cos θ. The area elements are unchanged, dA = dA′, for they
are perpendicular to the direction of the relative motion of the two frames.

We have seen in (1.45) and (1.47) that angles and solid angles change like

cos θ′ =
β + cos θ

1 + β cos θ
and dΩ′ =

dΩ

γ2 (1 + β cos θ)2 (2.374)

under Lorentz transforms. The absolute value of the momentum is p = E/c, as
shown in (2.356), and thus transforms like the zero component of a four-vector,

p′ = p′0 = γ
(
p0 + βp3

)
= γ (p + β cos θp) = pγ(1 + β cos θ) . (2.375)

We now insert the primed quantities into (2.372) to find

dN′ = 2
p2dpdΩ

(2π~)3

[
γ(1 + β cos θ)

]3

γ2(1 + β cos θ)2 n′p′ dA c
(
β + cos θ

1 + β cos θ
− β

)
γdt

= 2
p2dpdΩ

(2π~)3 γ2(1 + β cos θ) n′p′ dA c cos θ
1 − β2

1 + β cos θ
dt

= 2
p2dpdΩ

(2π~)3 n′p′ dA c cos θ dt (2.376)

for the number of photons counted by the experimentalist resting in the primed
frame. This agrees with dN from (2.371) if, and only if, the occupation numbers
transform as n~p = n′

~p′ . With (2.360), this implies the important result that the
specific intensity divided by ω3 is invariant,

Iω
ω3 =

I′ω
ω′3

. (2.377)

2.10 The Planck spectrum and Einstein coefficients

In this section, the Planck spectrum is derived from first principles, i.e. from
the grand-canonical partition sum of a photon gas in thermal equilibrium
with a heat bath of given temperature. The first main result is the specific
intensity (2.396) as a function of frequency at given temperature of ther-
mal (black-body) radiation. Then, the Einstein coefficients for absorption,
stimulated and spontaneous transition are introduced. The relations (2.425)
between them required by the Planck spectrum are derived, showing that
spontaneous transitions are necessary and that the rates of stimulated
emission and absorption must be equal.
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Example: The dipole of the Cosmic Microwave Background

To give an example, let us study an instructive consequence of the relativistic
invariance of Iω/ω3. In its rest frame, the Cosmic Microwave Background
(CMB) is an isotropic radiation field with a Planck spectrum. The occupation
number is thus given by

np =

[
exp

(
~ω

kTCMB

)
− 1

]−1

, (2.378)

where TCMB is the CMB temperature. The energy of a photon measured by
an observer moving with a four-velocity u with respect to the rest frame of
the radiation is the (negative) projection of the photon’s four-momentum on
the four-velocity,

E = −〈p, u〉 . (2.379)

This is quickly verified for an observer at rest in the rest frame of the radiation,
who has uµ = (c, 0)T there. With pµ from (2.355), the projection (2.379) is

− 〈p, u〉 = −p µuµ = ~ω (2.380)

for this observer, as it should be. An observer moving instead with u′ =

γ(c,~v)T = γc(1, ~β)T relative to the rest frame of the radiation, however, mea-
sures the photon energy

E′ = −〈p, u′〉 = ~ωγ
(
1 − ~β · ê

)
= Eγ

(
1 − ~β · ê

)
. (2.381)

This is the relativistic Doppler shift: The moving observer measures a relative
energy change of

E′ − E
E

= γ(1 − β cos θ) (2.382)

compared to the observer at rest. For θ = 0, this result simplifies to

E′ − E
E

=
1 − β√
1 − β2

=

√
1 − β
1 + β

≈ 1 − β , (2.383)

where the approximation in the final step is valid for β � 1.
Returning to the CMB, the moving observer sees the occupation number

n′p′ =

[
exp

(
~ω′

kT ′CMB

)
− 1

]−1

=

[
exp

(
~ωγ(1 − β cos θ)

kT ′CMB

)
− 1

]−1

, (2.384)

which must be the same as np from (2.378). This can only be achieved if the
moving observer sees a direction-dependent temperature

T ′CMB = TCMBγ(1 − β cos θ) ≈ TCMB

(
1 − v

c
cos θ

)
, (2.385)

where the approximation is again valid for non-relativistic motion, v � c.
The motion of the Earth relative to the rest frame of the CMB thus imprints
a dipolar pattern on the measured CMB temperature (Figure 2.18). With
β ≈ 10−3 and TCMB ≈ 3 K, the amplitude of this temperature dipole is of
milli-Kelvin order. J
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Figure 2.18 The gray-scale image shows the dipole of the Cosmic Microwave
Background, measured by the Wilkinson Microwave Anisotropy Probe. In red, the
emission from the Galactic disk is shown. (Provided by the WMAP Science Team)

2.10.1 The Planck spectrum

We begin by recalling some general results from statistical physics. Suppose we
have an ensemble of quantum states whose occupation is in equilibrium with a
heat bath of temperature T . For convenience, we shall express the temperature
by the inverse thermal energy β below, β = (kBT )−1. Let these states be labelled
by an abstract index α which may be composed of various quantum numbers,
as appropriate for the system at hand. The energies of these quantum states are
called εα, and the quantum states are occupied nα times. If the total number

N =
∑
α

nα (2.386)

of occupied states is unspecified, the ensemble has the grand-canonical partition
sum

ZGC =

∞∑
N=0

e βµN
∑
{nα}

exp

−β∑
α

εαnα

 , (2.387)

where the summation over {nα} is meant to indicate that the set {nα} must obey
condition (2.386). The chemical potential µ is the energy required to change
the occupation number by unity. With (2.386), the partition sum (2.387) can be
written

ZGC =

∞∑
N=0

∑
{nα}

exp

−β∑
α

(εα − µ)nα

 =
∑
nα

exp

−β∑
α

(εα − µ)nα

 ,
(2.388)

where the decisive last step was possible because the sum over nα, constrained
by the fixed total occupation number N and followed by a sum over all pos-
sible values of N, amounts to an unconstrained sum over nα. The sum in the
exponential translates to a product, and we find

ZGC =
∏
α

Zα , Zα =
∑
nα

e−β(εα−µ)nα . (2.389)
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For Fermi-Dirac systems, nα ∈ {0, 1}, while nα ∈ [0,∞) for Bose-Einstein
systems. Thus,

ZFD
α = 1 + e−β(εα−µ) , ZBE

α =
1

1 − e−β(εα−µ) , (2.390)

where we have carried out a geometrical series for the Bose-Einstein case. The
mean occupation numbers are

n̄α =
1

Zα

∑
α

nαe−β(εα−µ)nα =
1
β

∂

∂µ
ln Zα . (2.391)

Applying this to (2.390), we find

n̄FD
α =

1
e β(εα−µ) + 1

, n̄BE
α =

1
e β(εα−µ) − 1

. (2.392)

For a free photon gas, µ = 0 because photons can spontaneously be created or
destroyed. If we label photon energies εα by their momentum, εα = cp. The
energy density contained per unit photon momentum in the photon gas is then

dUp = 2 · 4πp2dp
(2π~)3 · cp · n̄BE

p =
c

π2~3

p3dp
e βcp − 1

, (2.393)

where the factor of two accounts for the two polarisation states of each photon.
Substituting the momentum p by the frequency ω through

E = ~ω = cp , (2.394)

we find the spectral energy density

dUω

dω
=
~

π2c3

ω3

e β~ω − 1
. (2.395)

Multiplying with c/(4π) according to the definition of the specific intensity in
(2.360), we find the Planck spectrum

Iω =
c

4π
dUω

dω
=: Bω(T ) =

~

4π3c2

ω3

e β~ω − 1
. (2.396)

This is often expressed in terms of the frequency ν = ω/(2π), for which we
obtain

Bν(T ) =
c

4π
dUν

dν
=

2h
c2

ν3

e βhν − 1
. (2.397)

The Planck spectrum has the characteristic frequency

ω0 =
kBT
~

, ν0 =
kBT

h
=
ω0

2π
, (2.398)

which can conveniently be used to introduce the dimension-less frequency

x :=
ω

ω0
=
ν

ν0
, (2.399)

in terms of which the Planck spectrum becomes (Figure 2.19)

Bω =
(kBT )3

4π3(~c)2

x3

ex − 1
, Bν =

2(kBT )3

(hc)2

x3

ex − 1
. (2.400)
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The prefactors of Bω and Bν in (2.400) evaluate to

Bω,0 :=
(kBT )3

4π3(~c)2 = 2.12 · 10−17 erg
cm2 s Hz sr

(T
K

)3
, Bν,0 = 2πBω,0 .

(2.401)
The corresponding spectral energy density is

4π
c

Bω,0 = 8.88 · 10−27 erg
cm3 Hz

(T
K

)3
. (2.402)
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Figure 2.19 This figure shows the function x3/(ex − 1) describing the frequency
dependence of the Planck spectrum. The vertical line marks the location of the
maximum at xmax ≈ 2.82.

?
How would you solve an equation
like (2.403)? Remind yourself of
the Newton-Raphson method. Test
how quickly the method converges
starting with x0 = 3 or x0 = 5. What
happens if you start with x0 ≤ 2?

The maximum of the Planck spectrum is located where

d
dx

x3

ex − 1
= 0 ⇒ (3 − x)ex = 3 , (2.403)

which is a transcendental equation solved by xmax ≈ 2.82. With the help of
(2.403), we have

x3
max

exmax − 1
= x2

max(3 − xmax) ≈ 1.43 (2.404)

there, hence the maximum amplitude of the Planck spectrum is approximately
1.43 Bω,0.

For high frequencies, x � 1, the exponential in the denominator of (2.400)
dominates, and the Planck spectrum can be approximated by Wien’s law,

Bω ≈ Bω,0 x3e−x , (2.405)

while it turns into the Rayleigh-Jeans law for low frequencies, x � 1. Then,
ex − 1 ≈ x, which allows the approximation

Bω ≈ Bω,0 x2 (2.406)

of the spectrum. The Rayleigh-Jeans law is often used to define a radiation
temperature Trad by requiring

2ν2

c2 kBTrad
!
= Iν . (2.407)
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Obviously, this agrees well with the thermodynamic temperature if x � 1 or
hν � 2.82 kBT and Iν = Bν, but the deviation may become considerable for
higher frequencies.

The total energy density contained in the photon ensemble is

U(T ) =

∫ ∞

0

dUω

dω
dω =

(kBT )4

π2(~c)3

∫ ∞

0

x3dx
ex − 1

. (2.408)

The remaining integral is best carried out after expanding the integrand into a
geometrical series,∫ ∞

0

x3dx
ex − 1

=

∫ ∞

0

e−xx3dx
1 − e−x =

∫ ∞

0
x3dx e−x

∞∑
j=0

e− jx =

∞∑
j=1

∫ ∞

0
x3dx e− jx .

(2.409)
Each individual integral in (2.409) gives∫ ∞

0
x3dx e− jx =

Γ(4)
j4

. (2.410)

Returning with this result to the energy density in (2.408), we find

U(T ) =
Γ(4)
π2

(kBT )4

(~c)3

∞∑
j=1

1
j4

=
Γ(4)ζ(4)
π2

(kBT )4

(~c)3 =
π2

15
(kBT )4

(~c)3 =: aT 4 ,

(2.411)
where ζ(4) = π4/90 and Γ(4) = 3! = 6 were used in the step next to the last.
Finally, the derived constant

a :=
π2

15
k4

B

(~c)3 = 7.57 · 10−15 erg4

cm3 K4 (2.412)

was introduced, which is sometimes called the Stefan-Boltzmann constant.
Using the same approach, we find that the number density of the photons is
given by

nγ(T ) =

∫ ∞

0
dω

dUω

dω
1
~ω

=
(kBT )3

π2(~c)3

∫ ∞

0

x2dx
ex − 1

=
2ζ(3)
π2

(kBT )3

(~c)3 , (2.413)

with ζ(3) ≈ 1.202.

?
Carry out the integration (2.410)
yourself, and confirm the result
(2.413).

2.10.2 Transition Balance and the Einstein coefficients

Suppose now that we have an ensemble of simplified atoms with just two
energy levels E1 and E2 > E1 which are supposed to be in equilibrium with an
ambient radiation field characterised by a temperature T . We consider the mean
transition rates in an emission- and absorption process between the photons of
the radiation field and transitions between the two energy levels.

Besides absorption and spontaneous emission, we will have to take stimulated
emission into account, which is a consequence of the Bose character of the
photons. If a quantum state is already occupied by photons, an increase in the
occupation number is more likely.



106 2 Radiation Processes

-1e+02

0

1e+02

2e+02

3e+02

4e+02

2 4 6 8 10 12 14 16 18 20 22

M
Jy

 / 
sr

frequency in cm-1

400-σ error bars
2.725 K Planck curve

Figure 2.20 Spectrum of the Cosmic Microwave Background measured by the
FIRAS instrument on-board the COBE satellite [5].

Example: The spectrum of the Cosmic Microwave Background

The best measured Planck spectrum that we know of is the spectrum of
the cosmic microwave background (Figure 2.20). The CMB temperature of
TCMB = 2.726 K sets the characteristic frequency

ω0,CMB =
kBTCMB

~
= 356.88 · 109 s−1 , ν0,CMB =

ω0,CMB

2π
= 56.80 GHz

(2.414)
and the frequency of the maximum specific intensity is

νmax,CMB =
ωmax,CMB

2π
= 160.18 GHz . (2.415)

There, the specific intensity and the spectral energy density are

Bνmax,CMB = 1.90 · 10−16 erg
cm2 s Hz sr

,

Uνmax,CMB = 7.98 · 10−26 erg
cm3 Hz

. (2.416)

The total energy density in the CMB is

U = 4.17 · 10−13 erg
cm3 , (2.417)

which is contributed by
nγ ≈ 410 cm−3 (2.418)

photons per cubic centimetre. J

The rates of absorption and of stimulated emission, B12 and B21, respectively,
will be proportional to the specific intensity Iω,

(absorption rate) ∝ IωB12 and (stimulated emission rate) ∝ IωB21 ,

(2.419)
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while the rate of spontaneous emission, A21, will not depend on Iω,

(spontaneous emission rate) ∝ A21 . (2.420)

The rate coefficients A and B are called Einstein coefficients.

A21, spontaneous emission

IωB21, stimulated emission

IωB12, absorption

Figure 2.21 Illustration of radiative transitions between two quantum levels and
the Einstein coefficients.

Now, let N1 and N2 be the mean occupation numbers of states with the energies
E1 and E2. Equilibrium between transitions (Figure 2.21) will require as many
transitions per unit time from E1 to E2 as from E2 to E1,

N1IωB12 = N2 [A21 + IωB21] . (2.421)

Solving for Iω, we see that this can be satisfied if the specific intensity is

Iω =
N2A21

N1B12 − N2B21
. (2.422)

Since we assume thermal equilibrium, the occupation numbers N2 and N1 must
also be related by a Boltzmann factor,

N2

N1
= e−β(E2−E1) = e−β~ω . (2.423)

Inserting this into (2.422), we find

Iω =
A21e−β~ω

B12 − B21e−β~ω
=

A21

B12e β~ω − B21
. (2.424)

We can bring this into agreement with Planck’s spectrum derived from quantum
statistics (2.396) if, and only if, the rate coefficients satisfy Einstein’s relations,

B12 = B21 and A21 =
~ω3

4π3c2 B21 . (2.425)

This is a very interesting result, obtained by Einstein long before quantum
statistics was established. It shows that without stimulated emission B21 = 0,
the Planck spectrum cannot be obtained, and the microscopic rates of absorption
and stimulated emission, B12 and B21 must be equal.
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Problems

1. Consider an ensemble of Hydrogen atoms of temperature T . Besides
the ground state, a fraction of atoms is thermally excited so that their
electrons occupy higher energy levels.

(a) Calculate the fraction n j/n1 of Hydrogen atoms in the excited state
j relative to the ground state for j = 2, 3.

(b) Calculate the relative intensity of the Lyman-β (3→ 1) and Lyman-
α (2 → 1) lines for a cloud of atomic hydrogen with T = 100 K.
The oscillator strengths and the wavelengths are fβ = 0.0791, fα =

0.4162 and λα = 1216 Å, λβ = 1026 Å, respectively.

2. For an ensemble of atoms with temperature T in thermal equilibrium
with a radiation field, the rates for spontaneous emission A21, induced
emission B21 and absorption B12 between the energy levels 1 and 2 satisfy

N1IωB12 = N2(A21 + IωB21) , (2.426)

where Iω is the specific intensity of the radiation field and N1,2 are the
numbers of atoms in the first and the second energy levels, respectively.
We can use the former equation to deduce the Lyman-α cross section σα.

(a) Show that the rate equation can be written as

3A21n(ωα) =

∫
dωσα(ω)

ω2

π2c2 n(ω) , (2.427)

where n(ω) = [exp(ω/kBT ) − 1]−1 is the occupation number and
ωα the circular frequency of the Lyman-α transition. The transition
rate B12 is written in terms of the cross section σα.

(b) The cross section can be written as σα = Cφ(ω − ωα) with the
line profile function φ and a constant C. Determine C. Use A21 =

6.25 · 108 s−1 and λα given before. You may assume that the profile
function is very narrow, i.e. it can be approximated by a Dirac delta
function.

2.11 Absorption and Emission

This section begins with the definition of macroscopic coefficients for the
spontaneous emission and absorption of radiation, leading to the net absorp-
tion coefficient, the opacity and the emissivity. The derivation of Kirchhoff’s
law (2.436) follows, which relates these quantities to the specific intensity.
We then set up the radiation-transport equation and solve it under simplifying
assumptions, leading to the solution (2.445). The section concludes with a
discussion of continuous rather than discrete transitions.
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2.11.1 Absorption coefficients and emissivity

We now want to describe how the energy transported by light is changed as the
light propagates through an absorbing and emitting medium. The absorption
coefficient αω is defined in terms of the energy absorbed per unit volume, time
and frequency from the solid angle d2Ω,

αωIω =

(
dE

dVdtdωd2Ω

)
abs

. (2.428)

Since the stimulated emission is also proportional to Iω, an analogous definition
applies for what is called the induced emission coefficient,

αind
ω Iω =

(
dE

dVdtdωd2Ω

)
ind

. (2.429)

To further account for the spontaneous emission, we define the emissivity

jω =

(
dE

dVdtdωd2Ω

)
spn

, (2.430)

which is the energy emitted spontaneously per unit volume, time and frequency
into the solid-angle element d2Ω. Effectively, the net absorption is the difference
between absorption and stimulated emission,

αnet
ω = αω − αind

ω . (2.431)

Since the dimension of the specific intensity Iω is

energy
time · area · frequency · solid angle

, (2.432)

αω must obviously have the dimension (length)−1. The inverse absorption
coefficient α−1

ω thus characterises a length, which can be identified with the
mean free path for a photon of frequency ω.

Let now σω be the cross section of an atom, molecule or other particle for
the absorption of light of frequency ω. The number density of such absorbing
particles be n, and their mass density be ρ. Then, the absorption must be due to
the combined cross sections of these particles,

αω = nσω =: ρκ . (2.433)

The quantity κ introduced in the last step, characterising the absorption by
unit mass of the medium, is called opacity. Its physical dimension must be an
absorption cross section per unit mass, thus an area per unit mass,

[κ] =
cm2

g
. (2.434)

If the absorbing and emitting material is in equilibrium with the radiation field
passing through it, the emitted and absorbed amounts of energy must equal,
hence

jω + αind
ω Iω = αωIω (2.435)
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or, by the definition (2.431) of the net absorption coefficient, the ratio between
emissivity and net absorption coefficient must equal the specific intensity Iω,

Iω =
jω
αnet
ω

, (2.436)

which is Kirchhoff’s law. At the same time, we have the relation (2.421) between
the specific intensity and the Einstein coefficients, which must themselves be
related by Einstein’s relations (2.425). Combining these results, we find the
relation

jω
αnet
ω

=
~ω3

4π3c2

(
N1

N2
− 1

)−1

(2.437)

between the occupation numbers N1 and N2 of two energy levels contributing
to the radiation balance on one side, and the emissivity and the net absorption
coefficient on the other. Thus, if the occupation numbers are known, the
emission and absorption properties in equilibrium can be calculated, and vice
versa. In particular, in thermal equilibrium between radiation and matter, the
specific intensity must be given by the Planck spectrum, Iω = Bω, hence

αnet
ω =

jω
Bω

. (2.438)

2.11.2 Radiation Transport in a Simple Case

Let us now consider an emitting and absorbing medium in which scattering
can be ignored. The medium be characterised by its emissivity jω and a net
absorption coefficient αnet

ω . A light bundle passing through it has its intensity
changed per unit path length by an amount

dIω = jω dl︸︷︷︸
emission

−αnet
ω Iω dl︸   ︷︷   ︸

absorption

, (2.439)

from which we obtain the equation of radiation transport in its simplest case,

dIω
dl

= jω − αnet
ω Iω . (2.440)

The homogeneous equation (2.440) is readily solved. Setting jω = 0 for the
moment,

dIω
dl

= −αnet
ω Iω ⇒ d ln Iω = −αnet

ω dl , (2.441)

thus

Iω(l) = Iω,0 exp
(
−

∫ l

0
αnet
ω (l′)dl′

)
, (2.442)

with an integration constant Iω,0 set by the incoming specific intensity.
?

Why does scattering have to be ig-
nored for (2.440) to hold?

The inhomogeneous equation (2.440) can now be solved by a standard tech-
nique called the variation of constants. We extend the definition of the former
integration constant Iω,0 to allow its dependence on the light path, Iω,0 = Iω,0(l),
and find

jω − αnet
ω Iω

!
=

dIω
dl

=
[
I′ω,0(l) − Iω,0(l)αnet

ω

]
exp

(
−

∫ l

0
αnet
ω (l′)dl′

)
, (2.443)



2.11 Absorption and Emission 111

Figure 2.22 Illustration of radiation transport. While the incoming radiation is
damped by the absorption, the spontaneous and the stimulated emission of the
medium increase the intensity.

which, with (2.442), implies

jω(l) = I′ω,0(l) exp
(
−

∫ l

0
αnet
ω (l′)dl′

)
. (2.444)

By separation of variables, this differential equation for Iω,0(l) has the solution

Iω,0(l) =

∫
dl

[
jω(l) exp

(∫ l

0
αnet
ω (l′)dl′

)]
+ C (2.445)

with another integration constant C set by boundary conditions.

Example: Constant emission and absorption

If αnet
ω and jω are constant along the light path, the inner integral in (2.445) is

simply ∫ l

0
αnet
ω dl = αnet

ω l , (2.446)

while the outer integration gives

Iω,0(l) =
jω
αnet
ω

eα
net
ω l + C . (2.447)

By (2.442), the specific intensity then develops according to (Figure 2.22)

Iω(l) =
jω
αnet
ω

−Ce−α
net
ω l (2.448)

along the path length of the light bundle. If, for example, the specific intensity
satisfies the boundary condition Iω = 0 at l = 0, it changes as a function of
path length like

Iω(l) =
jω
αnet
ω

(
1 − e−α

net
ω l

)
. (2.449)

J
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Example: Radiation transport in the limiting cases of optically thick
media
Interesting limiting cases of radiation transport are those of optically thin
or thick media. Optically thin means that the mean free path of photons is
large compared to the overall length L of the light path through the medium,
αnet
ω L � 1, while optically thick means the opposite, αnet

ω L � 1. In the
optically thin case, we can expand 1 − e−x ≈ x to first order and approximate

Iω(L) ≈ jω
αnet
ω

αnet
ω L ≈ jωL . (2.450)

The specific intensity is then simply the emissivity times the total path length.
In the optically thick case, the exponential in (2.449) tends to zero, and

Iω(L) ≈ jω
αnet
ω

. (2.451)

This closes the loop: If the radiation is in thermal equilibrium with the optically
thick medium through which it propagates, we can complete (2.451) with
(2.438) to find

Iω ≈ Bω . (2.452)

This shows that radiation in thermal equilibrium with an optically thick
medium leaves the medium with a Planck spectrum. J

Example: Radiation transport in the limiting case of optically thin
media
As a further illustrative example, let us now consider optically thin, thermal
emission of radio waves. As we have seen, an optically thin medium satisfies
αnet
ω L � 1 and Iω = jωL, while thermal equilibrium requires Iω ≈ Bω.

Combining these conditions, we find

Bω ≈ Iω ≈ jωL = αnet
ω LBω � Bω . (2.453)

This evidently contradictory conclusion demonstrates that the two assump-
tions, thermal equilibrium and optically-thin radiation, are in manifest conflict
with each other: Radiation cannot attain thermal equilibrium with an optically
thin medium. J
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Example: Planck spectrum shining through gas

For yet another instructive example, consider gas at temperature T1 in thermal
equilibrium with radiation having a Planck spectrum with temperature T0
before it enters the gas. In the gas, Kirchhoff’s law (2.436) demands

jω = αnet
ω Bω(T1) (2.454)

because of the thermal equilibrium. For simplicity, we assume that T1 and
αnet
ω are constant. In the present situation, (2.445) implies

Iω,0(l) = Bω(T0) + Bω(T1)αnet
ω

∫ l

0
dl′eα

net
ω l′

= Bω(T0) + Bω(T1)
(
eα

net
ω l − 1

)
. (2.455)

Then, the specific intensity (2.442) is given by

Iω(l) = Bω(T0)e−α
net
ω l + Bω(T1)

(
1 − e−α

net
ω l

)
, (2.456)

which is a weighed average between the two Planck spectra for temperatures
T0 and T1. As the radiation propagates into the gas, its original Planck
spectrum is gradually being replaced by the Planck spectrum determined by
the gas temperature. J

2.11.3 Emission and Absorption in the Continuum Case

In the case of transitions between discrete energy levels, the emitted energy is
determined by the number of transitions times the energy released per transition,

N2A21︸︷︷︸
(transition number)

· ~ω12︸︷︷︸
(energy per transition)

= δE . (2.457)

The emissivity, defined as the energy emitted per unit time and unit volume into
a unit solid angle, is thus related to the transition number by

jω =
N2A21~ω12

4π
→ N2A21~ω

4π
δD(ω − ω12) , (2.458)

if N2 is taken to be the occupation number of quantum states per unit volume.
The Dirac delta function is introduced here for modeling a needle-sharp line
transition. We generalise this last expression by replacing it with a more detailed
or realistic line profile function φ(ω),

jω =
N2A21~ω

4π
φ(ω) , (2.459)

which quantifies the transition probability as a function of frequency. By a
completely analogous procedure for the absorption coefficient, we find

αω =
N1B12

4π
~ωφ(ω) . (2.460) ?

Beginning with the definition of the
Einstein coefficients, deduce (2.460)
yourself.Now, we consider an electron of energy E which emits the energy

dE
dωdt

≡ P(ω, E) (2.461)
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per unit time and unit frequency. Let further f (~p ) be the momentum distribution
of the electrons, then the number of electrons with energies between E and
E + dE is

n(E) dE = f (~p )
d3 p
dE

dE = 4πp2 dp
dE

f (~p ) dE (2.462)

if we assume the electron distribution to be isotropic in momentum space. Since
each electron emits the energy

dE = P(ω, E) dωdt , (2.463)

we obtain the emissivity

jω =
1

4π

∫ ∞

0
n(E)P(ω, E) dE =

∫ ∞

0
p2 f (p)

dp
dE

P(ω, E) dE . (2.464)

By the relation (2.458) between the emissivity and the Einstein coefficient A21,
we have for a single transition described by the continuous line profile function
φ(ω)

P(ω, E2) = ~ω

∫ E2

0
A21φ(ω) dE1 , (2.465)

since electrons with the energy E2 can emit through transitions to all possible
states with E1 < E2. Using now Einstein’s relation (2.424) between A21 and
B21, we find

P(ω, E2) = ~ω
~ω3

4π3c2

∫ E2

0
B21φ(ω) dE1 . (2.466)

Similarly, the net absorption coefficient is

αω =
~ω

4π

∫
dE1

∫
dE2

 n(E1)B12︸    ︷︷    ︸
(absorption)

− n(E2)B21︸    ︷︷    ︸
(stimulated emission)

 φ(ω) .

(2.467)
Exchanging the order of integrations and inserting (2.466) into the second term,
that term can be rewritten as

~ω

4π

∫
dE2n(E2)

∫
dE1 B21φ(ω) =

π2c2

~ω3

∫
dE2 n(E2)P(ω, E2) . (2.468)

By the same procedure and using E2 = E1+~ω, the first term can be transformed
into

~ω

4π

∫
dE2n(E1 − ~ω)

∫
dE1 B12φ(ω) =

π2c2

~ω3

∫
dE2 n(E2 − ~ω)P(ω, E2) .

(2.469)
We thus obtain the absorption coefficient

αω =
π2c2

~ω3

∫
dE [n(E − ~ω) − n(E)] P(ω, E) . (2.470)

In thermal equilibrium with a heat bath of temperature T and far from de-
generacy, the electron number density must be proportional to a Boltzmann
factor,

n(E) ∝ exp
(
− E

kBT

)
, (2.471)
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thus the difference of the electron number densities at different energies is

n(E − ~ω) − n(E) = n(E)
[
exp

(
~ω

kBT

)
− 1

]
. (2.472)

Inserting to (2.470) with this expression, we find

αω =
π2c2

~ω3

(
e~ω/kBT − 1

) ∫
dE n(E) P(ν, E) . (2.473)

The remaining integral is 4π jω, as (2.464) shows, allowing us to write

αω = jω
4π3c2

~ω3

(
e~ω/kBT − 1

)
. (2.474)

A glance at (2.396) finally reveals that the factor multiplying the emissivity is
the inverse Planck spectrum Bω(T ). We can thus reduce (2.474) to the relation

αω =
jω

Bω(T )
(2.475)

between absorption and emission, just as in the discrete case.

2.11.4 Energy transport through absorbing media

It is useful to re-write the transport equation (2.440) for radiation in spherical
polar coordinates. To do so, we write the total differential dIω of the specific
intensity as

dIω = ∂rIωdr + ∂θIωdθ (2.476)

and use the relations

dr = cos θdl , dθ = −sin θ
r

dl (2.477)

between the coordinate differentials dr, dθ and the path length dl. The radiation-
transport equation then reads

∂rIω cos θ − ∂θIω sin θ
r

= −αnet
ω Iω + jω . (2.478)

We now integrate over frequencies ω, introduce the averaged net absorption
coefficient ᾱnet defined by ∫ ∞

0
dωαnet

ω Iω = ᾱnetI (2.479)

and find
∂rI cos θ − ∂θI sin θ

r
= −ᾱnetI + j . (2.480)

Next, we multiply this equation by cos θ/c and integrate over the complete
solid angle dΩ = sin θdθdϕ. Due to the isotropy of the emissivity j, the second
term on the right-hand side then vanishes altogether. The second term on the
left-hand side is partially integrated to shift the derivative with respect to θ away
from the intensity I. This results in

∂r

∫
I
c

cos θ2 dΩ +
1
r

∫
I
c
∂θ

(
sin2 θ cos θ

)
dθdϕ = −ᾱnet

∫
I
c

cos θ dΩ .

(2.481)
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We have seen earlier in (2.370) that the angular moments of the intensity are
related to the energy density U, the energy current density F and the radiation
pressure Prad. Furthermore, the integral in the second term on the left-hand side
of (2.481) is∫

I
c
∂θ

(
sin2 θ cos θ

)
dθdϕ =

∫
I
c

(
3 cos2 θ − 1

)
dΩ = 3Prad − U = 0 ,

(2.482)
leaving (2.481) in the simple form c∂rP = −ᾱnetF or, with the opacity κ defined
in (2.433),

F = − c
ρκ
∂rP . (2.483)

The energy current density F is determined by the gradient of the radiation
pressure. Since the radiation pressure P is a third of the energy density U,
which is in turn given by U = aT 4 according to (2.411), we can write the result
(2.483) in the very intuitive form

F = −4acT 3

3ρκ
∂rT , (2.484)

which clearly says that the radiative energy current density through an absorbing
medium is driven by the temperature gradient, and inhibited by the opacity κ.

Problems

1. The change of the specific intensity Iω in matter per unit length is given
by the radiation transport equation

dIω
dl

= jω − αnet
ω Iω , (2.485)

where jω is the emissivity and αnet
ω is the net absorption coefficient. As-

sume that radio waves travel through a medium which has a temperature
profile T (l) = T0 exp(−l/λ), where T0 is the temperature at the surface
and λ is a typical length scale for the temperature gradient.

(a) Let αnet
ω be constant throughout the medium, and the radiation be

in local thermal equilibrium with the medium. Solve the radiation
transport equation under the condition that the incoming specific
intensity at l = 0 is Iω,in and ~ω � kBT .

(b) Assume that the incoming spectrum is given by a power law, Iω,in =

I0 (ω/ω0)−ν, which can be seen in many astrophysical phenomena.
Determine the spectrum of the radiation once it has travelled by a
distance L ∼ λ with (αnet

ω )−1 � L. What happens to the shape of
the spectrum?

Suggested further reading: [2, 6, 7, 8, 9]



Chapter 3

Hydrodynamics

3.1 The equations of ideal hydrodynamics

In this section, the equations of ideal hydrodynamics are derived under the
central assumption that the mean-free path for the particles of a fluid is
infinitely small compared to all other relevant length scales. Starting point
of the derivation is the Boltzmann equation from kinetic theory, moments
of which are formed in a relativistically invariant way to show that the ideal
hydrodynamical equations can be expressed as four-divergences of the
matter-current density and of the energy-momentum tensor. The corre-
sponding equations (3.33) are the first main result. These relativistically
invariant or covariant equations are then reformulated in three-dimensional
form, leading to the set of three equations (3.61) for ideal hydrodynamics:
One each for the conservation of mass, momentum, and energy.

3.1.1 Particle current density and energy-momentum tensor

Even though the one-particle phase-space distribution function f (~x, ~p, t) is
defined such that its integral over momentum space,∫

d3 p f
(
t, ~x, ~p

)
= n

(
t, ~x

)
(3.1)

is the spatial number density of particles, it is useful for more general con-
siderations to derive an integral measure in momentum space that allows the
construction of relativistically invariant or covariant quantities. In order to do so,
let us expand the six-dimensional phase space to an eight-dimensional, extended
phase space by adding time and energy as dimensions. This extended phase
space is then spanned by the position and momentum four-vectors, (x µ, p µ),
instead by their three-dimensional analogs, (~x, ~p ). We denote the phase-space
density in this extended phase space by f̃ (x µ, p µ).

Since the four components of the energy-momentum four-vector p µ are related
by the relativistic energy-momentum relation (1.66), real particles must be
confined to a subspace of the extended phase space identified by the condition(

p0
)2

= ~p 2 + m2c2 , (3.2)

117
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and the condition that their total energy be positive semi-definite, p0 ≥ 0. At a
fixed time ct = x0, we must thus be able to return to the phase-space distribution
function f (t, ~x, ~p ) by integrating∫

dp0 f̃
(
x µ, p µ

)
δD

[(
p0

)2 − ~p 2 − m2c2
]

Θ
(
p0

)
= f

(
t, ~x, ~p

)
, (3.3)

where the Heaviside step function Θ(p0) ensures that the energy is non-negative.

Caution The delta distribution in
(3.3) ensures that the particle sys-
tem is on the hypersurface in four-
dimensional momentum space de-
fined by the energy-momentum rela-
tion (3.2). In quantum field theory,
this hypersurface is called the energy
shell, and the delta distribution en-
sures that the system is “on shell”.
J

We now use property

δD
[
g(x)

]
=

∑
i

1
|g′(xi)|δD(xi) (3.4)

of the Dirac delta distribution, where the sum extends over all roots xi of g(x)
in the relevant domain. In the case of (3.3), g(x) represents the relativistic
energy-momentum relation. It has two roots in total, one of them positive,
hence

δD

[(
p0

)2 − ~p 2 − m2c2
]

=
1

2p0 δD
(
p0 − p0

E

)
, (3.5)

where p0
E on the right-hand side is related to the particle energy by cp0

E = E.
Returning with this result to the integral in (3.3), we see that we can write∫

d4 p f̃
(
x µ, p µ

)
δD

[(
p0

)2 − ~p 2 − m2c2
]

Θ
(
p0

)
=

c
2

∫
d3 p
E

f̃
(
x µ, p0 = p0

E , ~p
)
. (3.6)

A further integration over d4x must return the total number of particles,

N =

∫
d4xd4 p f̃

(
x µ, p µ

)
δD

[(
p0

)2 − ~p 2 − m2c2
]

Θ
(
p0

)
= c

∫
d4x

∫
d3 p
2E

f̃
(
x µ, p0 = p0

E , ~p
)

(3.7)

which must be Lorentz invariant. The four-dimensional volume elements d4x
and d4 p are both relativistically invariant because Lorentz transforms have unit
determinant. Since the Dirac-delta distribution and the Heaviside step function
in (3.7) are manifestly Lorentz invariant, we conclude that the distribution
function f̃ in the extended phase-space must be Lorentz invariant as well. The
second equality in (3.7) then shows that d3 p/E is a Lorentz-invariant integral
measure for integrations over three-dimensional momentum space. The one-
particle distribution function f̃ (x µ, p µ) in extended phase space, constrained by
the condition p0 = p0

E = E/c, can be identified with the distribution function
f (t, ~x, ~p ) in ordinary phase space, which is therefore also a Lorentz invariant.

Armed with this important insight, we now define two Lorentz-covariant quan-
tities, a four-vector

Jα
(
t, ~x

)
:= c

∫
d3 p
E

f
(
t, ~x, ~p

)
pα (3.8)

and a rank-2 tensor

Tαβ (t, ~x )
:= c2

∫
d3 p
E

f
(
t, ~x, ~p

)
pαpβ . (3.9)
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With p0 = E/c and the further relations pi = γmvi = Evi/c2, we can write the
components of Jα as

J0 (
t, ~x

)
= n

(
t, ~x

)
, Ji =

1
c

∫
d3 p f

(
t, ~x, ~p

)
ẋi =

n
(
t, ~x

) 〈
ẋi
〉

c
, (3.10)

where we have used in the final step that arbitrary properties Q of the system
considered can be averaged over momenta by the operation

〈Q〉 (t, ~x )
=

∫
d3 p Q f

(
t, ~x, ~p

)∫
d3 p f

(
t, ~x, ~p

) =

∫
d3 p Q f

(
t, ~x, ~p

)
n
(
t, ~x

) . (3.11)

The quantity 〈ẋi〉 introduced in (3.10) above is therefore the i component of the
velocity averaged over all particles near position ~x at time t. We denote this
mean velocity by

~v = ~v
(
t, ~x

)
=

〈
~̇x
〉 (

t, ~x
)

(3.12)

and write the four-vector Jα as

Jα =
n
(
t, ~x

)
c

(
c
~v

)
. (3.13)

It characterises the particle current density.

Turning now to the tensor components Tαβ, we find by using p0 = E/c = γmc
and pi = γmẋi that

T 00 = mc2
∫

d3 p f
(
t, ~x, ~p

)
γ = mn

(
t, ~x

)
c2 〈γ〉 = ρ

(
t, ~x

)
c2〈γ〉 , (3.14)

where the mass density ρ
(
t, ~x

)
= mn

(
t, ~x

)
was identified, further

T 0i = ρ
(
t, ~x

)
c
〈
γẋi

〉
and T i j = ρ

(
t, ~x

) 〈
γẋi ẋ j

〉
. (3.15)

Their meaning becomes perhaps most evident in the non-relativistic limit. Then,
we can Taylor-expand the Lorentz factor γ to lowest order,

γ ≈ 1 +
β2

2
, 〈γ〉 ≈ 1 +

1
2c2

〈
~̇x 2

〉
, (3.16)

and the time-time element T 00 turns into

T 00 ≈ ρc2 +
ρ

2

〈
~̇x 2

〉
, (3.17)

which is the sum of the rest-mass and the kinetic energy densities of the particle
ensemble near position ~x at time t. In this way, the tensor Tαβ turns out to be
the energy-momentum tensor of the ensemble.

To third order in v/c, we can approximate the time-space components of the
energy-momentum tensor by

T 0i ≈ ρcvi +
ρ

2c

〈
~̇x 2 ẋi

〉
, T i j ≈ ρ

〈
ẋi ẋ j

〉
. (3.18)

The first term in T 0i is the rest-energy current density, while the expression

ρ

2

〈
~̇x 2 ẋi

〉
=: qi (3.19)

in the second term is the mean flow of kinetic energy.
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3.1.2 Collisional invariants and the fluid approximation

We now return to the Boltzmann equation (1.155) and exclude external, macro-
scopic forces for now. This allows us to set ~̇p = 0 and write

∂t f
(
t, ~x, ~p

)
+ ~̇x · ~∇ f

(
t, ~x, ~p

)
= C[ f ] . (3.20)

Our next concern is the collision term on the right-hand side, which is yet
unspecified.

p

t

x

Figure 3.1 Illustration of Liouville’s theorem: Trajectories of classical particles are
not lost in phase space.

Recall how Boltzmann’s equation was derived earlier from Liouville’s equation
(cf. Figure 3.1). We closed the BBGKY hierarchy by the assumption that the
two-particle distribution function could be factorised into one-particle contri-
butions. In other words, collisions between fluid particles were restricted to
two-body collisions of otherwise independent particles. We can make sub-
stantial progress now by limiting our consideration to collisional invariants.
These are defined to be quantities whose sum is conserved in each of these
two-body collisions. If the particles can be treated as unstructured, solid bodies
without internal degrees of freedom, then the particle number, their total energy
and momentum can be considered conserved. Summing over many particles
undergoing many collisions, none of these collisional invariants can be changed.
We can thus expect that the integrals∫

d3 pC[ f ] and
∫

d3 pC[ f ]p µ (3.21)

must vanish if their integration domains in momentum-space are chosen such
that many collisions are contained. To make this possible is the essential
motivation for the basic assumption underlying hydrodynamics.

A fluid in the sense of hydrodynamics is an ensemble of many particles whose
mean-free path λ is very short compared to all other relevant length scales.
Let the overall scale of the system be L, and the scale on which the system’s
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Figure 3.2 Illustration of the fundamental assumption of hydrodynamics: Collec-
tions of particles can be treated as a fluid if their mean-free path λ is very much
smaller than the typical scale l on which macroscopic properties change, which is
in turn much smaller than the overall scale L of the system.

macroscopic physical properties are to be determined be l. Then, for the system
to be a fluid, it must be possible to establish the hierarchy of scales

λ � l � L . (3.22)

A swimming pool sets a good example (see also Figure 3.2). For the overall
scale, we can take the smallest of its three dimensions length, width and depth,
which will be of the order of a metre. If we want to describe the flow of the
water in the pool, we need to know its physical properties, such as its local flow
velocity, on a length scale of perhaps a millimetre. Under normal conditions,
a cubic millimetre of water will weigh 10−3 g. Since the mass of a single
water molecule is 18 atomic mass units or 3 · 10−23 g, there are ∼ 3 · 1019

water molecules in each cubic millimetre, with a mean inter-particle separation
of ∼ 3 · 10−8 cm. The mean-free path is certainly smaller than this, so the
hydrodynamical conditions are clearly satisfied very comfortably.

Given this fundamental assumption underlying hydrodynamics, we may safely
assert that even a small spatial subvolume of the fluid will contain very many
particles. They undergo frequent two-body collisions, in each of which five
collisional invariants are conserved: the total particle number, the energy and the
momentum. Any individual two-particle collision may or may not change the
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number of particles in a given phase-space cell. Averaging over an increasing
number of collisions, however, the net change in the number of particles,
their energies and momenta will decrease since all of these quantities must
be conserved. The fundamental assumption of hydrodynamics assures that an
average over very many collisions is possible even if the volume is small over
which the average is extended.

We can thus conclude that, by the assumption (3.22) defining a fluid, the five
integrals ∫

d3 pC[ f ] and
∫

d3 pC[ f ]p µ (3.23)

over the collision term all vanish.

We now return to the force-free Boltzmann equation (3.20) and take its lowest-
order moments by carrying out the integrals given in (3.23). The lowest-order
moment is

∂tn
(
t, ~x

)
+

∫
d3 p ~̇x · ~∇ f (t, ~x, ~p ) = 0 . (3.24)

Since ~v and ~x are independent, the spatial gradient applied to f (t, ~x, ~p ) can be
pulled out of the integral, giving

∂tn
(
t, ~x

)
+ ~∇ ·

∫
d3 p ~̇x f

(
t, ~x, ~p

)
= 0 . (3.25)

Comparing this equation with (3.10), we see that we can rewrite it in terms of
the four-vector Jα for the particle current density in the very simple, manifestly
covariant and Lorentz-invariant form

∂αJα = 0 . (3.26)

Next, we form the higher order moments of the force-free Boltzmann equation.
This means that we multiply it with p µ and integrate over d3 p. Beginning with
p0, we first find

∂t

∫
d3 p f

(
t, ~x, ~p

)
p0 + ∂i

∫
d3 p f

(
t, ~x, ~p

)
ẋi p0 = 0 . (3.27)

Recalling p0 = E/c and ẋi = pic2/E, further using ∂t = c∂0, we can bring this
equation into the form

c2∂0

∫
d3 p
E

f
(
t, ~x, ~p

)
p0 p0 + c2∂i

∫
d3 p
E

f
(
t, ~x, ~p

)
p0 pi = 0 . (3.28)

Here, we can identify the time-time and time-space components of the energy-
momentum tensor defined in (3.9) and bring (3.28) into the covariant form

∂µT 0µ = 0 . (3.29)

Finally, we multiply the force-free Boltzmann equation with p j to obtain

∂t

∫
d3 p f

(
t, ~x, ~p

)
p j + ∂i

∫
d3 p f

(
t, ~x, ~p

)
ẋi p j = 0 . (3.30)
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Again, we insert a factor 1 = cp0/E into the first term and use ẋi = pic2/E in
the second to write this equation as

c2∂0

∫
d3 p
E

f
(
t, ~x, ~p

)
p0 p j + c2∂i

∫
d3 p
E

f
(
t, ~x, ~p

)
pi p j = 0 , (3.31)

which can be summarised as

∂µT jµ = 0 . (3.32)

We thus arrive at the very important and intuitive result that, under the funda-
mental assumption of hydrodynamics, the zeroth- and first-order moments of
the force-free Boltzmann equation can be written as

∂µJµ = 0 , ∂µT µν = 0 , (3.33)

with the four-vector Jµ of the particle-current density and the energy-momentum
tensor T µν of the particle ensemble. These five equations express the conserva-
tion of particles, energy and momentum and can already be seen as one form of
the hydrodynamical equations.

Recall the assumptions their derivation was based upon. Besides the funda-
mental assumption (3.22) of hydrodynamics, we made use of five collisional
invariants to argue that the momentum-space integrals over the collision term
C[ f ] should vanish. These were the total particle number, their energies and
momenta. If any of these assumptions is violated, the conservation equations
(3.33) cannot hold any longer. For example, the particle number may change in
collisions if particles combine to form molecules. The (kinetic) energy need
not be conserved if internal degrees of freedom in the particles can be excited
in collisions. Under such circumstances, one needs to return to the collisional
Boltzmann equation and work out the collision term explicitly.

The manifestly Lorentz-covariant equations (3.33) can easily be ported into
General Relativity. We simply need to replace the partial by covariant deriva-
tives,

∇µJµ = 0 , ∇µT µν = 0 (3.34)

to find the fundamental equations of generally-relativistic hydrodynamics.

3.1.3 The equations of ideal hydrodynamics

We now insert the specific expressions (3.13) for the components of the particle-
current density Jα as well as the non-relativistic approximations (3.17) and
(3.18) for the components of the energy-momentum tensor T µν into the gen-
eral conservation equations (3.33). For the particle-current density, we find
immediately

∂tn
(
t, ~x

)
+ ~∇ · [n (

t, ~x
)
~v
]

= 0 . (3.35)

Multiplying with the particle mass m turns the number density n
(
t, ~x

)
into the

mass density ρ(t, ~x ), which then satisfies the equation

∂tρ + ~∇ · (ρ~v ) = 0 . (3.36)



124 3 Hydrodynamics

This is the continuity equation, or the equation for mass conservation: The local
density ρ changes with time by the divergence of the matter current density ρ~v.

In the conservation equation ∂µT µν = 0, the time component, ν = 0, selects the
energy-conservation equation, while momentum conservation is expressed by
its spatial components, ν = i. With the non-relativistic approximations for T 00

and T 0i and T i j derived in (3.17) and (3.18), we find

c−1∂t

(
ρc2 +

ρ

2

〈
~̇x 2

〉)
+ ~∇ ·

(
ρc~v +

~q
c

)
= 0 (3.37)

for the conservation of the energy density, and

c−1∂t

(
ρc~v +

~q
c

)
+ ~∇ ·

(
ρ
〈
~̇x ⊗ ~̇x

〉)
= 0 (3.38)

for momentum conservation. Recall that the vector ~q is the current density of
the kinetic energy, defined in (3.19). We can re-arrange the energy-conservation
equation (3.37) to read

c
[
∂tρ + ~∇ · (ρ~v )] + c−1

[
∂t

(
ρ

2

〈
~̇x 2

〉)
+ ~∇ · ~q

]
= 0 . (3.39)

By the continuity equation (3.36), the first term in brackets vanishes, which
expresses the fact that mass conservation implies the conservation of rest-mass
energy. The energy-conservation equation is thus simplified to

∂t

(
ρ

2

〈
~̇x 2

〉)
+ ~∇ · ~q = 0 . (3.40)

Comparing terms in the momentum-conservation equation (3.38), we see that
the current density of the kinetic energy ~q is smaller by a factor of order v2/c2

compared to the current density ρc2~v of the rest-energy density. We can thus
safely neglect it in our non-relativistic approximation and write momentum
conservation as

∂t
(
ρvi

)
+ ~∇ ·

(
ρ
〈
~̇x ⊗ ~̇x

〉)
= 0 . (3.41)

Having arrived at this point, we split up the microscopic velocities ~̇x into the
mean macroscopic velocity ~v of the fluid flow and a random velocity ~u about
the mean,

~̇x = ~v + ~u . (3.42)

As ~v has been defined as the average over ~̇x, the average of ~u must vanish by
definition. The average over the squared microscopic velocity is therefore〈

~̇x 2
〉

= ~v 2 +
〈
~u 2

〉
, (3.43)

which allows us to split up the kinetic energy density into a macroscopic part
ρv2/2 and a microscopic or internal part ρ〈u2〉/2. If this internal kinetic energy
density is of thermal origin, we can identify it with the thermal energy density

ε =
ρ

2

〈
u2

〉
=

3
2

nkBT . (3.44)

The kinetic-energy current density ~q has been introduced as the average

~q =
ρ

2

〈
~̇x 2~̇x

〉
(3.45)
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in (3.19). Splitting the microscopic velocities as in (3.42), we can write〈
~̇x 2~̇x

〉
=

〈(
v2 + 2~v · ~u + u2

) (
~v + ~u

)〉
= v2~v +

〈
u2

〉
~v + 2

〈
~u ⊗ ~u 〉

~v (3.46)

because all terms must vanish in which components of ~u appear linearly. Thus,
the kinetic-energy current density is

~q =
ρ

2

(
v2 +

〈
u2

〉)
~v + ρ

〈
~u ⊗ ~u 〉

~v =

(
ρ

2
v2 + ε

)
~v + ρ

〈
~u ⊗ ~u 〉

~v . (3.47)

The first two terms are the current densities of the macroscopic and the internal
kinetic energies, and the meaning of the third term remains to be clarified.

We finally study the stress-energy tensor T̄ with elements T i j,

T̄ = ρ
〈
~̇x ⊗ ~̇x

〉
= ρ

〈(
~v + ~u

) ⊗ (
~v + ~u

)〉
= ρ

(
~v ⊗~v +

〈
~u ⊗ ~u 〉)

, (3.48)

where we have used once more that all terms linear in ~u must average to zero.
The average 〈~u ⊗ ~u 〉 appears again. In the rest frame of the macroscopic fluid
flow, ~v = 0. The trace of the stress-energy tensor is then three times the pressure
of the fluid,

ρTr
〈
~u ⊗ ~u 〉

= ρ
〈
u2

〉
= 3P . (3.49)

If the fluid is microscopically isotropic, the random velocity components ui

must be independent, hence 〈uiu j〉 = 0 for i , j and

ρ
〈
uiui

〉
=
ρ

3
Tr

〈
~u ⊗ ~u 〉

= P . (3.50)

Combining these arguments, we can write

~q =

(
ρ

2
v2 + ε + P

)
~v and T̄ = ρ~v ⊗~v + P13 . (3.51)

With these results, we can now bring the momentum-conservation equation
(3.41) into the form

∂t
(
ρ~v

)
+ ~∇ · (ρ~v ⊗~v ) + ~∇P = 0 . (3.52)

Once more, we can re-group terms suitably to identify and remove the two
terms representing mass conservation,[
∂tρ + ~∇ · (ρ~v )]~v+ρ [

∂t~v +
(
~v · ~∇

)
~v
]
+~∇P = ρ

(
∂t +~v · ~∇

)
~v+~∇P = 0 . (3.53)

Momentum conservation is thus expressed by Euler’s equation

ρ
(
∂t +~v · ~∇

)
~v + ~∇P = 0 . (3.54)

The differential operator in parentheses is the total time derivative,

∂t +~v · ~∇ = ∂t +
∂~x
∂t
· ∂
∂~x

=
d
dt
. (3.55)

Equation (3.54) thus simply states that ideal fluids are accelerated by pressure
gradients,

ρ
d~v
dt

= −~∇P , (3.56)
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in absence of external, macroscopic forces.

We finally turn to the energy-conservation equation (3.40). With our results
(3.43) and (3.51), it becomes

∂t

(
ρ

2
v2 + ε

)
+ ~∇ ·

[(
ρ

2
v2 + ε + P

)
~v
]

= 0 . (3.57)

Expanding the derivatives and re-grouping terms, we can identify those terms
here that must vanish due to mass conservation and momentum conservation,

v2

2

[
∂tρ + ~∇ · (ρ~v )] +

ρ

2

(
∂t +~v · ~∇

)
v2 + ∂tε + ~∇ · [(ε + P)~v

]
= 0 . (3.58)

By mass conservation, the first term in brackets vanishes. By momentum
conservation, the second term in parentheses is

ρ

2

(
∂t +~v · ~∇

)
v2 = ρ~v ·

(
∂t +~v · ~∇

)
~v = −~v · ~∇P = −~∇ · (P~v ) + P~∇ ·~v . (3.59)

With this identification, the energy-conservation equation shrinks to

∂tε + ~∇ · (ε~v ) + P~∇ ·~v = 0 . (3.60)

Again, this has a very intuitive interpretation: The internal energy density
changes locally not only by the current density ε~v, but also by the pressure-
volume work P~∇ ·~v that the fluid has to exert against its surroundings. If the
velocity field is divergent, ~∇ ·~v > 0, the fluid expands, and part of its internal
energy must be used for working against the pressure of its surroundings.
Conversely, if ~∇ ·~v < 0, the velocity field is convergent, the fluid is compressed,
and its surroundings increase its internal energy by pressure-volume work.

Summarising, our final set of equations for ideal hydrodynamics reads

∂tρ + ~∇ · (ρ~v ) = 0 ,

∂t~v +
(
~v · ~∇

)
~v +

~∇P
ρ

= 0 ,

∂tε + ~∇ · (ε~v ) + P~∇ ·~v = 0 . (3.61)

They express mass, momentum, and energy conservation in a very intuitive
way. They are five equations for the mass density ρ, the internal energy density
ε, the pressure P, and the velocity ~v, which are six quantities in total. The set
(3.61) of equations thus needs to be complemented by an equation of state that
relates the pressure to the density, P = P(ρ). The second equation, describing
momentum conservation, is often called Euler’s equation.

With a slight rearrangement in the energy-conservation equation, we can identify
the total time derivative of the energy density,

dε
dt

+ (ε + P)~∇ ·~v = 0 . (3.62)

From the point of view of thermodynamics, this is quite intuitive since the
sum of the internal energy density ε and the pressure P is the enthalpy per unit
volume, or the enthalpy density h,

h = ε + P . (3.63)
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Energy conservation can thus also be expressed by

dε
dt

+ h~∇ ·~v = 0 , (3.64)

which is the first law of thermodynamics at given pressure.

If external, macroscopic forces are present, such as the gravitational force, the
momentum-conservation equation must be augmented by the corresponding
force densities. Let Φ be the Newtonian gravitational potential, its negative
gradient −~∇Φ is the gravitational force per unit mass. It can be added to the
right-hand side of the momentum-conservation equation to yield

∂t~v +
(
~v · ~∇

)
~v +

~∇P
ρ

= −~∇Φ . (3.65)

It is sometimes useful to write the complete set of equations (3.61) in terms of
total time derivatives. It then reads

dρ
dt

+ ρ~∇ ·~v = 0 ,
d~v
dt

+
~∇P
ρ

= −~∇Φ ,
dε
dt

+ h~∇ ·~v = 0 . (3.66)

Problems

1. The energy-momentum tensor is defined as

T µν ≡ c2
∫

d3 p
E(p)

p µpν f (~x, ~p, t) , (3.67)

where (p µ) = (E/c, ~p )T is the four-momentum, E the energy, and
f (~x, ~p, t) the one-particle phase-space density distribution. While the
energy density is ε = T 00, the pressure is given by one third of the
stress-energy tensor’s trace, hence P = (1/3)

∑3
i=1 T ii.

(a) Determine T µν for a single particle of mass m with trajectory ~x0(t)
and momentum ~p0(t). Compare to the energy momentum tensor of
an ideal fluid.

(b) Determine T µν for a photon of frequency ω with trajectory ~x0(t).

(c) How is the energy density related to the pressure in the two cases
discussed?

2. The hydrodynamical equations describing mass conservation, momentum
conservation, and energy conservation for an ideal fluid are

∂tρ + ~∇ · (ρ~v ) = 0 , (3.68)

∂t~v +
(
~v · ~∇

)
~v = −

~∇P
ρ

, (3.69)

∂tε + ~∇ · (ε~v ) = −P~∇ ·~v . (3.70)

respectively.
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(a) Show using equation (3.70) that an isothermal ideal fluid, i.e. a
fluid with constant temperature T (x, t) = T0, is also incompressible,
~∇ ·~v = 0.

(b) Show that for a spherically symmetric and isothermal flow of an
ideal gas, equations (3.68) through (3.70) simplify to

∂tρ + v∂rρ = 0 , ∂tv − 2v2

r
= −c2

s∂r ln ρ , (3.71)

where cs ≡ kBT0/m is a characteristic thermal speed.

3.2 Relativistic Hydrodynamics

This section is a detour from the main track of this book in so far as General
Relativity is otherwise avoided. Yet, it is an irresistible temptation to show
how generally-relativistic, ideal hydrodynamics emerges simply if the partial
derivatives in the covariant conservation equations (3.33) are replaced by
covariant derivatives, and Poisson’s equation by (the appropriate limit of)
Einstein’s field equation. The first main result are the relativistic versions
(3.81) and (3.82) of the continuity and Euler equations. In the limit of weak
gravitational fields, the relativistic generalisations (3.95) of these equations
are derived. Together with the gravitational field equation in the same limit,
the final set of hydrodynamical equations is given by (3.106). Perturbative
analysis then yields the linear, second-order evolution equation (3.116) for
the fluid density.

3.2.1 Hydrodynamic Equations

We shall now derive the ideal hydrodynamic equations from the generally-
relativistic equation of local energy conservation. We do this for one specific
reason. In the preceding section, we have derived the equations of ideal hy-
drodynamics by taking appropriate moments of the Boltzmann equation. In
that derivation, it has become clear how ideal hydrodynamics builds upon the
fluid approximation, and how viscosity and other transport processes such as
heat conduction arise if the ideal-fluid approximation is gradually released. Yet,
that derivation does not easily allow incorporating the main repercussions of
General Relativity in hydrodynamics, which arise because pressure has inertia
and contributes as a source to the gravitational field. Therefore, we give this
relativistic derivation of the hydrodynamical equations here, borrowing from
the differential-geometric formalism of General Relativity without detailed
explanation, and contrasting the generally-relativistic hydrodynamic equations
at the end with their Newtonian analoga. Our main motivation is that sometimes
fluids occur in astrophysics which either move relativistically or whose pressure
is comparable to their energy density. In both cases, the classical Newtonian
hydrodynamical equations are suspect, and their relativistic counterparts should
be used instead.

Readers unfamiliar with general relativity might wish to skip the following
subsections, returning when the equations of relativistic hydrodynamics will be
summarised and compared to the Newtonian equations.
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We begin with the equation of local energy-momentum conservation,

∇νT µν = 0 , (3.72)

which states that the covariant four-divergence of the energy-momentum tensor
T has to vanish. This is an immediate consequence of Einstein’s field equations.
By the second contracted Bianchi identity, the covariant divergence of the
Einstein tensor G vanishes identically, so the covariant divergence of the energy-
momentum tensor needs to vanish as well.

At this level, we only need to specify that the covariant derivative ∇ is a bi-linear
map of (tangent) vectors (x, y) ∈ T M to a manifold M into the real numbers,

∇ : T M × T M → R , (x, y) 7→ ∇xy , (3.73)

satisfying the Leibniz (product) rule,

∇x( f y) = d f (x)y + f∇xy , (3.74)

with functions f .

Caution The connection conven-
tionally used in general relativity
is specified by two further condi-
tions: it is supposed to be symmetric
(torsion-free) and metric-compatible
(∇g = 0). J

In a coordinate basis of tangent space, the covariant derivatives are uniquely
represented by the Christoffel symbols. More generally, in an arbitrary basis
{eµ} of tangent space, the covariant derivative is defined by the connection
1-forms,

∇xeµ = ωνµ (x)eν . (3.75)

We now choose to insert the energy-momentum tensor of an ideal fluid,

T =
(
ρc2 + p

)
u ⊗ u − pg , (3.76)

which is spanned by the only two tensors available in relativistically flowing
ideal fluid, namely the tensor product of the four-velocity u with itself and the
metric tensor g. The local fluid properties are given by the density ρ and the
pressure p measured by the observer flowing with the four-velocity u. Writing
the energy-momentum tensor as in (3.76) implies that the four-velocity u must
be dimension-less, and thus be measured in units of the light speed c. The
components of the energy-momentum tensor T , without specifying the basis
vectors yet, are

T µν =
(
ρc2 + p

)
uµuν − pgµν . (3.77)

Inserting these into the local conservation equation (3.72) gives

uµ∇u
(
ρc2 + p

)
+ uµ

(
ρc2 + p

)
∇ · u +

(
ρc2 + p

)
∇uuµ + ∇µp = 0 (3.78)

if we specify the covariant derivative ∇ as usual to be metric, requiring ∇g = 0.

We now project equation (3.78) first on the local time direction by contracting
it with the (dual) four-velocity uµ, and then on the three-space perpendicular to
the four-velocity. By their construction, these projections will yield the time and
space components of the local conservation equation (3.72), which generalise
the continuity and Euler equations.

By definition of the proper time τ, the four-velocity must be normalised by

〈u, u〉 = uµuµ = −1 . (3.79)
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In particular, this normalisation condition implies that

0 = ∇u
(
uµuµ

)
= 2uµ∇uuµ . (3.80)

Taking (3.79) and (3.80) into account, contracting (3.78) with uµ gives the
relativistic continuity equation

∇u
(
ρc2

)
+

(
ρc2 + p

)
∇ · u = 0 , (3.81)

while its spatial projection by contraction with the projection tensor παµ =

gαµ + uαuµ yields the relativistic Euler equation(
ρc2 + p

)
∇uuα + ∇αp + uα∇u p = 0 . (3.82)

It can easily be seen that παµ is a projection tensor perpendicular to the four
velocity since it maps the four-velocity to zero,

παµuµ =
(
gαµ + uαuµ

)
uµ = uα − uα = 0 . (3.83)

Equations (3.81) and (3.82) form the basis for the following calculations. What
do they mean?

?
Projection tensors π (or, more gener-
ally, projections) need to be idempo-
tent, i.e. they need to satisfy π2 = π.
Why is this so? Show that π =

g+ u⊗ u is indeed idempotent. Writ-
ten in terms of tensor components,
show that παβπβµ = παµ.

The continuity equation (3.81) begins with the covariant derivative of ρc2 in
the direction of the local four-velocity. This generalises the time derivative
of the matter density ρ in the continuity equation in three ways. First, the
derivative with respect to the coordinate time t is replaced by a derivative with
respect to proper time; second, the partial derivative is replaced by a covariant
derivative; and third, the matter density is replaced by the energy density ρc2.
The second term in the continuity equation generalises the divergence of the
velocity field to the four-divergence of the four-velocity, multiplied with the
energy density plus the pressure rather than the density alone: The relativistic
continuity equation automatically contains the contribution of pressure-volume
work to energy conservation.

The Euler equation starts with the four-acceleration, i.e. the covariant derivative
of the four-velocity into the direction of the local four velocity itself. The
prefactor (ρc2 + p) shows the inertia of pressure. The second term is the
pressure gradient, while the third term adds a proper time derivative of the
pressure times the flow velocity.

3.2.2 Hydrodynamics in a Weak Gravitational Field

We now proceed to specialise the generally-relativistic continuity and Euler
equations, (3.81) and (3.82), to weak gravitational fields. In any metric theory
of gravity, in the weak-field limit, the line element can be expressed by means
of the two Bardeen potentials φ, ψ as

ds2 = − (1 + 2φ) c2dt2 + (1 + 2ψ) d~x 2 . (3.84)

Both potentials are given in units of c2, thus dimension-less, and they are
assumed to be small, φ, ψ � 1. For simplicity, we further take the potentials to
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be time-independent, φ̇ = 0 = ψ̇. The line element (3.84) suggests introducing
the dual basis

θ0 = (1 + φ)cdt , θi = (1 + ψ)dxi (3.85)

and its orthonormal basis

e0 = (1 − φ)c−1∂t , ei = (1 − ψ)∂i . (3.86)

By this choice of the (dual) basis, the components of the metric become
Minkowskian, gµν = diag(−1, 1, 1, 1). By means of Cartan’s first structure
equation, the dual basis {θ µ} implies the connection forms

ω0
i = φiθ

0 , ωi
j = ψ jθ

i − ψiθ
j . (3.87)

Now, in a coordinate basis, the four-velocity is

u = ũµ∂µ =
dxµ

dτ
∂µ . (3.88)

From the line element (3.84), we can read off the proper-time element

dτ =
[
(1 + 2φ) − (1 + 2ψ)~β 2

]1/2
cdt ≈

1 + φ −
~β 2

2

 cdt , (3.89)

valid to first and relevant order in φ and ~β 2. Here, as usual, ~β = ~v/c = ~̇x/c, and
the dot abbreviates the derivative with respect to the coordinate time. Thus, to
the same order in φ and β, the four-velocity is

u =

1 − φ +
~β 2

2

 dxµ

cdt
∂µ =

1 − φ +
~β 2

2

 (∂0 + βi∂i
)

(3.90)

in the coordinate basis. Its components in the basis {eµ} introduced in (3.85) are
then determined by uµ = θ µ(u) or, again to first order in φ and ~v 2,

u0 = 1 +
β2

2
, ui = βi . (3.91)

Using now the expressions

∇µ f = eµ f , ∇u f = uµ∇µ f =

(
1 − φ +

β2

2

)
c−1 ḟ + βi∂i f (3.92)

for arbitrary scalar functions f and

∇vuµ = duµ(v) + uνωµν (v) (3.93)

for the component µ of the covariant derivative of a vector u into the direction
v, we can finally bring the hydrodynamic equations (3.81) and (3.82) into the
form (

1 − φ +
β2

2

)
ρ̇c +

(
~β · ~∇

)
ρc2 +

(
ρc2 + p

) [
~∇ · ~β + c−1∂t

(
β2

2

)]
= 0 ,

(
ρc2 + p

)
∂t

(
β2

2

)
+ β2 ṗ + c~β · ~∇p = 0 ,(

ρc2 + p
) [

c−1~̇β +
(
~β · ~∇

)
~β + ~∇φ

]
+ (1 − ψ)~∇p + c−1 ṗ~β + ~β

(
~β · ~∇

)
p = 0 .

(3.94)
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In these equations, ~∇ with a vector arrow is now specialised to be the ordinary
gradient operator in three-dimensional, Euclidean space. The second of these
equations, which is the time component of the Euler equation, shows that the
term ~β · ~∇p is of order β2, thus ψ~∇p is of order β3 ≈ 0 because the potential ψ
is itself of order β2. The continuity equation, to linear order in β, and the Euler
equation, to quadratic order in v, are thus

ρ̇c +
(
~β · ~∇

)
ρc2 +

(
ρc2 + p

)
~∇ · ~β = 0 ,(

ρc2 + p
) [

c−1~̇β +
(
~β · ~∇

)
~β + ~∇φ

]
+ ~∇p + c−1 ṗ~β = 0 . (3.95)

Notice that, reassuringly, all terms in both these equations have the dimension
[energy density]/[length].

3.2.3 Gravitational Field Equation

To linear order in φ and ψ, the curvature 2-forms implied by the connection
1-forms (3.79) through Cartan’s second structure equation are

Ω0
i = φi jθ

j ∧ θ0 , Ωi
j = ψ jkθ

k ∧ θi − ψikθ
k ∧ θ j . (3.96)

From them, the components of the Ricci tensor can be found via

Rµν = Ωα
µ (eα, eν) . (3.97)

With (3.96), they are

R00 = ~∇2φ , R0i = 0 , Ri j = −(φ + ψ)i j − δi j~∇2ψ . (3.98)

The Ricci scalar is
R = Rµµ = −2~∇2 (φ + 2ψ) , (3.99)

and thus the components of the Einstein tensor become

G00 = −2~∇2ψ , G0i = 0 , Gi j = −(φ + ψ)i j + δi j~∇2(φ + ψ) . (3.100)

?
Beginning from the components
(3.98) of the Ricci tensor, confirm
by your own calculation that the
Einstein tensor has the components
(3.100).

With (3.100), the time-time component of the field equations gives

− ~∇2ψ =
4πG
c4

[
ρc2 + β2

(
ρc2 + p

)]
, (3.101)

while the spatial trace of the field equations yields

~∇2(φ + ψ) =
4πG
c4

[
3p + β2

(
ρc2 + p

)]
. (3.102)

The sum of the latter two equations gives the generalised Poisson equation

~∇2φ =
4πG
c4

[
ρc2 + 3p + 2β2

(
ρc2 + p

)]
. (3.103)

The trace of the field equations is

~∇2φ + 2~∇2ψ =
4πG
c4

(
3p − ρc2

)
, (3.104)

and their off-diagonal components require

− (φ + ψ)i j =
8πG
c4

(
ρc2 + p

)
βiβ j . (3.105)
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3.2.4 The Combined Set of Equations

Thus, to lowest relevant order in φ, ψ and β2 = v2/c2, the combined hydrody-
namic and gravitational equations are

ρ̇ +
(
~v · ~∇

)
ρ +

(
ρ +

p
c2

)
~∇ ·~v = 0 ,

~̇v +
(
~v · ~∇

)
~v = −~∇Φ −

~∇p + ṗ~v/c2

ρ + p/c2 ,

~∇2Φ = 4πG
(
ρ +

3p
c2

)
. (3.106)

They generalise the Newtonian hydrodynamic equations

ρ̇ +
(
~v · ~∇

)
ρ + ρ~∇ ·~v = 0 ,

~̇v +
(
~v · ~∇

)
~v = −~∇Φ −

~∇p
ρ

,

~∇2Φ = 4πGρ , (3.107)

where Φ = c2φ is the Newtonian gravitational potential in physical units.
Comparing (3.106) and (3.107), one clearly sees the pressure-volume work in
the continuity equation, the inertia of the mass-density equivalent p/c2 of the
pressure in the Euler equation and the contribution of 3p/c2 to the source of the
gravitational field. Notice also the additional force term ∝ ṗ~v/c2 in the Euler
equation.

3.2.5 Perturbative Analysis

Let us now continue with a perturbative analysis of the set of equations (3.106).
As usual, we assume that a smooth background solution is already given,
which is indicated by a subscript 0. We thus have a set of fields (ρ0, p0,~v0, φ0)
which separately satisfy Eqs. (3.106). They are perturbed by small deviations
(δρ, δp, δ~v, δφ). The equations will be linearised in these perturbations, mean-
ing that terms will be dropped that are of quadratic or higher order in the
perturbations.

We transform into a coordinate system comoving with the unperturbed flow,
which allows us to set ~v0 = 0. We assume that the perturbations are small
compared to the overall length scale of the unperturbed solution, hence gradients
of the background solution can be neglected. Finally, we assume that the fluid
has a polytropic equation of state,

p = p̄
(
ρ

ρ̄

)γ
, (3.108)

where (ρ̄, p̄) are arbitrary reference values for the density and the pressure and
γ is the adiabatic index of the fluid. Since the squared sound speed is

c2
s =

∂p
∂ρ

(3.109)
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at constant entropy, the pressure fluctuations can be written as δp = c2
sδρ. We

express the density fluctuation by the dimension-less density contrast

δ =
δρ

ρ0
, δρ = ρ0δ , (3.110)

which allows to write the pressure fluctuation as

δp = c2
sρ0δ . (3.111)

Substituting ρ = ρ0 + δρ = ρ0(1 + δ) and ~v = ~v0 + δ~v = δ~v into the continuity
equation gives, to lowest order in the perturbations,

ρ̇0 = 0 , (3.112)

and to first order

δ̇ +

(
1 +

p0

ρ0c2

)
~∇ · δ~v = 0 . (3.113)

By the polytropic equation-of-state, (3.112) also implies ṗ0 = 0. Then, to
first order in the perturbations, Euler’s equation and the generalised Poisson
equation are reduced to

δ~̇v = −~∇δΦ − c2
s
~∇δ

1 +
p0
ρ0c2

,

~∇2δΦ = 4πGρ0δ

(
1 +

3c2
s

c2

)
. (3.114)

Taking the time derivative of the continuity equation (3.113) and the divergence
of the Euler equation from (3.114) transforms these equations into

δ̈ +

(
1 +

p0

ρ0c2

)
~∇ · δ~̇v = 0 ,

~∇ · δ~̇v = −~∇2δΦ − c2
s
~∇2δ

1 +
p0
ρ0c2

. (3.115)

Eliminating the divergence of the peculiar acceleration, ~∇ · δ~̇v, between these
equations and inserting the generalised Poisson equation from (3.114) then
leads to the evolution equation

δ̈ − 4πGρ0δ

(
1 +

3c2
s

c2

) (
1 +

p0

ρ0c2

)
− c2

s
~∇2δ = 0 (3.116)

for the density contrast δ. In the non-relativistic limit, when the sound speed
cs is small compared to the light speed c and the pressure p0 is negligible
compared to the rest-energy density ρ0c2, this linear evolution equation for the
density contrast shrinks to

δ̈ − 4πGρ0δ − c2
s
~∇2δ = 0 . (3.117)
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Example: Without gravity

Some special cases should now be instructive and illustrate why we went
through this analysis here. Let us first ignore gravity completely. Then, the
second term in (3.116) disappears altogether because it originates from gravity
alone. Ignoring gravity can formally be expressed by setting the Newtonian
gravitational constant to zero, G = 0, and thus suppress all gravitational
coupling. Then, the density fluctuations δ are found to obey the wave equation

2δ = 0 , (3.118)

where the sound speed cs appears as the characteristic velocity in the
d’Alembert operator. The density contrast then undergoes ordinary sound
waves. J

Example: With gravity on a non-relativistic background

If gravity is switched back on, but the background remains non-relativistic,
Eq. (3.116) simplifies to

δ̈ − 4πGρ0δ − c2
s
~∇2δ = 0 . (3.119)

If we expand δ into plane waves, the Laplacian is replaced by the negative
square of the wave number k, and δ obeys

δ̈ −
(
4πGρ0 − c2

s k2
)
δ = 0 . (3.120)

This is an ordinary oscillator equation, with

c2
s k2 − 4πGρ0 = ω2 (3.121)

taking the role of the squared frequency. If ω2 > 0, i.e. if k is larger than the
so-called Jeans wave number

kJ =

(
4πGρ0

c2
s

)1/2

, (3.122)

the solutions oscillate like sound waves, satisfying the dispersion relation

ω = cs

√
k2 − k2

J . (3.123)

Otherwise, if k is smaller than the Jeans wave number, there is an exponentially
growing and an exponentially decaying mode of the density fluctuations. J
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Example: With gravity on a relativistic background

If, finally, the background fluid is relativistic, we have the full equation

δ̈ −
[
4πGρ0

(
1 +

3c2
s

c2

) (
1 +

p0

ρ0c2

)
− c2

s k2
]
δ = 0 (3.124)

for plane waves of wave number k. Suppose, for example, we have a plasma
tightly coupled to a dominating photon gas like in the early universe. Then,
the fluid is relativistic, p0 ≈ ρ0c2/3 and c2

s ≈ c2/3, and(
1 +

3c2
s

c2

) (
1 +

p0

ρ0c2

)
≈ 8

3
. (3.125)

The Jeans wave number then changes to

kJ =

(
32πGρ0

3c2
s

)1/2

=

(
32πGρ0

c2

)1/2

, (3.126)

which is typically much smaller than for a non-relativistic fluid. Acoustically
oscillating perturbations are thus possible in a much wider range of scales in a
relativistic than in a non-relativistic fluid, and growth or decay of perturbations
is possible only for very large perturbations. J

3.3 Viscous hydrodynamics

So far, we have considered ideal fluids, whose particles have a negligibly
small mean free path. In this section, we shall loosen this approximation
and allow a very small, but finite mean free path. The fluid particles can
now move relative to the mean flow and transport fluid properties by small
distances, in particular mass, momentum and energy. The transport of
momentum causes friction and energy dissipation, the transport of energy
gives rise to heat conduction. The first important result is the diffusive exten-
sion of the energy-momentum tensor (3.143) which can then be introduced
into the conservation equation to derive the Navier-Stokes equation (3.148)
and the energy-conservation equation (3.155) containing heat flow and
dissipation. Finally, we introduce gravitational forces into the equations of
viscous hydrodynamics and derive the tensor virial theorem (3.189).

3.3.1 Diffusion of particles, momentum and internal energy

Previously, we have assumed that our fluid is ideal, that is, that the mean-
free path λ is negligibly small. We have used this implicitly when we set
the momentum-space integrals over the collision term to zero. If we cannot
neglect the mean-free path any more, we must take into account that particles
may move over small, but non-vanishing distances and thereby carry their
physical properties with them. In that way, transport phenomena occur over
small distance scales.
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Let us begin with a simple example. Suppose there is a homogeneous ideal
fluid, into which we place a screen of the small cross-sectional area dA. For
definiteness, we set up a coordinate system such that the screen is perpendicular
to one of the coordinate axes, say the x axis, which it may intersect at the
coordinate origin. This screen and the coordinate system may flow with the
mean fluid velocity.

Particles will move by random motion from one side of the screen to the other.
Let n(0) be their mean number density at the location of the screen, and the
screen be small enough for us to neglect any change of the number density
across the screen. If the particle number density behind the screen is the same
as in front of the screen, the same number of particles will cross the screen per
unit time in the positive as in the negative x direction, and the net number of
particles flowing through the screen will be zero.

Now let us gradually relax this stationary situation by imagining a number-
density gradient along the x direction (cf. Fig. 3.3). Then, there will be fewer
particles behind than before the screen, and even though their random velocities
in the ±x directions will be the same, more particles will flow down than up
the gradient. Let ū be a characteristic velocity of the particles. Since their
random velocities ~u will average to zero, ū could be set to the root mean-square
velocity, ū = 〈~u2〉1/2. How exactly ū and 〈~u2〉1/2 relate depends on the velocity
distribution of the particles, which is however irrelevant for our purposes.

Figure 3.3 Particle diffusion: If there are more particles on one side of the
imagined screen than on the other, such as there are more blue than red particles
in this example, particles will effectively diffuse from the denser region to the less
dense.

Then if the particle velocities are randomly oriented, the velocity in the x direc-
tion, perpendicular to the screen, will be of order ū/

√
3. Since approximately



138 3 Hydrodynamics

half of the particles will move into the positive x direction, the number of
particles N moving through the screen in either direction per unit time is

dN
dt
≈ − ū

2
√

3
dA [n(x + λ) − n(x − λ)] , (3.127)

where λ is the mean free path of the particles. If λ is finite, but small, we can
replace the difference in particle number densities by a derivative to find the
particle current density

jp =
dN

dAdt
≈ − ūλ√

3

∂n
∂x

. (3.128)

In three dimensions, the derivative with respect to x is replaced by the gradient,

~jp = − ūλ√
3
~∇n . (3.129)

Gradients in particle number densities drive particle diffusion. Inserting this
current together with the particle number density into the continuity equation
for the particles gives Fick’s (second) law for diffusive particle transport,

∂tn + ~∇ · ~jp = 0 ⇒ ∂tn = ~∇ ·
(
D~∇n

)
, D =

ūλ√
3
. (3.130)

Recall that the expression given here for the diffusion coefficient D has been
heuristically derived. More precise definitions can be given if the probability
distribution of the random velocities is known.

Let us now apply the same approach to momentum and energy transport. Con-
sider how particles transport a velocity component vi diffusively into the x
direction. If vi changes with x, the velocity component vi of the particles diffus-
ing towards the positive x direction differs from the vi that the particles transport
towards the negative x direction. By essentially the same argument that led to
(3.127), we find the current density component ( jv)i

x of vi

( jv)i
x = −nūλ√

3

∂vi

∂x
. (3.131)?

Derive (3.131) in a way similar to
the derivation of (3.128). The diffusive transport of the velocity component vi into the spatial direction x j

can accordingly be described by the rank-2 tensor

( jv)i
j = −nūλ√

3

∂vi

∂x j . (3.132)

This suggests that the stress-energy tensor T̄d describing diffusive momentum
transport should be proportional to the tensor of spatial velocity derivatives,

T̄d ∝ −
(
~∇ ⊗~v

)>
, (3.133)

with a proportionality constant giving the right-hand side the appropriate di-
mension of a momentum current density.

Energy transport by diffusion is easily completed. Completely analogously to
the previous derivations, we find the diffusive current density of the internal
energy

~qε = −nūλ√
3
~∇ε . (3.134)
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We can express the gradient of the internal energy by a temperature gradient
and obtain

~qε = −nūλ√
3

dε
dT

~∇T = −nūλcv√
3
~∇T = −κ~∇T . (3.135)

For the second equality, we have inserted the heat capacity cv at constant
volume, and the last equality defines the heat conductivity κ.

The diffusive stress-energy tensor requires further consideration. While the
velocity-gradient tensor ~∇ ⊗ ~v may be asymmetric, the stress-energy tensor
should be symmetric. This suggests to assume that the diffusive stress-energy
tensor should be set proportional to the symmetric part of ~∇ ⊗~v, or

T̄d ∝ −
[(
~∇ ⊗~v

)
−

(
~∇ ⊗~v

)>]
. (3.136)

This is reasonable also because of the following consideration. If a system of
particles rotates like a solid body of angular velocity ~ω, i.e. with the velocity
field

~v = ~ω × ~r , v j = ε
j
kl ω

kxl , (3.137)

no momentum transport should occur. The derivatives of the velocity compo-
nents (3.137) are

∂iv
j = ∂i

(
ε

j
kl ω

kxl
)

= ε
j
kl ω

kδl
i = ε

j
ki ω

k , (3.138)

which is manifestly antisymmetric because of the antisymmetry of the Levi-
Civita symbol. Excluding momentum-transport effects in systems rotating
like solid bodies thus also argues for setting the diffusive stress-energy tensor
proportional to the symmetrised velocity-gradient tensor.

?
Explain the factor of 2/3 in the trace-
free part (3.141) of the velocity-
gradient tensor.It is further often convenient to distinguish between divergent or convergent

flows, for which
~∇ ·~v = ∂iv

i = Tr
(
~∇ ⊗~v

)
, 0 , (3.139)

and so-called shear flows, for which the trace vanishes,

Tr
(
~∇ ⊗~v

)
= 0 . (3.140)

We thus split up the symmetrised velocity-gradient tensor into a trace-free part(
~∇ ⊗~v

)
+

(
~∇ ⊗~v

)>
+

2
3
~∇ ·~v13 (3.141)

and a diagonal part carrying the trace,

~∇ ·~v13 , (3.142)

and assemble the diffusive stress-energy tensor from these two contributions
separately,

T̄d = −η
[(
~∇ ⊗~v

)
+

(
~∇ ⊗~v

)> − 2
3
~∇ ·~v13

]
− ζ~∇ ·~v13 . (3.143)

The two constants η and ζ introduced here represent the viscosity of the fluid.
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The components of the stress-energy tensor must have the dimension of a
momentum current density, hence[

T i j
d

]
=

g cm
s

1
cm2 s

=
g

cm s2 . (3.144)

Since the velocity gradient components have the dimension s−1, the viscosity
constants must have the dimension

[η] =
g

cm s
= [ζ] . (3.145)

3.3.2 The equations of viscous hydrodynamics

The diffusion of fluid particles cannot affect mass conservation, so the continuity
equation (3.36) for the mass density must remain unchanged. However, the
preceding considerations of diffusive particle, energy and momentum transport
have shown that we have to augment the stress-energy tensor of an ideal fluid
by the diffusive stress-energy tensor,

T̄ → T̄ + T̄d . (3.146)

Since momentum conservation is expressed by the spatial components ∂µT µi =

0 of the conservation equation ∂µT µν = 0, the additional, diffusive part of the
stress-energy tensor creates the further terms

~∇ · T̄d = −η
[
~∇2~v + ~∇

(
~∇ ·~v

)
− 2

3
~∇

(
~∇ ·~v

)]
− ζ~∇

(
~∇ ·~v

)
= −η~∇2~v −

(
ζ +

η

3

)
~∇

(
~∇ ·~v

)
(3.147)

in the momentum-conservation equation (3.54). With those terms, it turns into
the Navier-Stokes equation

ρ
(
∂t +~v · ~∇

)
~v + ~∇P = η~∇2~v +

(
ζ +

η

3

)
~∇

(
~∇ ·~v

)
. (3.148)

?
Compare the Navier-Stokes equa-
tion (3.148) to the Euler equation
(3.54) and discuss (with yourself or
somebody else) the physical mean-
ing of the difference between the
two.

In the energy-conservation equation, we must first of all take the diffusive
transport of the internal energy into account, thus

~q→ ~q + ~qε = ~q − κ~∇T (3.149)

needs to be substituted in (3.40). However, this is not all, since the diffusive
momentum-current density corresponds to a force per unit area, or a pressure.
This force, times the flow velocity, is the internal work carried out per unit time
by the diffusing particles on the fluid itself; in other words, it is the energy per
unit time dissipated by friction. The current density of this friction work is the
flow velocity times the force per unit area,

~qfr = −T̄d~v , (3.150)

which must also be added to the energy current density ~q. Thus,

~q→ ~q − κ~∇T − T̄d~v (3.151)
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must be replaced in (3.40). Deriving the final form for the energy-conservation
equation, we must finally recall that the momentum-conservation equation has
also changed. We used it before to bring the energy-conservation equation into
the form (3.60), subtracting the momentum-conservation equation, multiplied
with the flow velocity, from the energy-conservation equation. We thus have
to subtract a further term (~∇ · T̄d) · ~v from the energy-conservation equation.
Summing up, the right-hand side of the energy-conservation equation must now
be replaced by the terms

~∇ ·
(
κ~∇T + T̄d~v

)
−

(
~∇ · T̄d

)
·~v = ~∇ ·

(
κ~∇T

)
+ Tr

[
T̄>d

(
~∇ ⊗~v

)]
. (3.152)

Since the diffusive stress-energy tensor is symmetric, any antisymmetric part of
the velocity-gradient tensor ~∇ ⊗~v would be cancelled in its contraction with T̄d,
hence we can just as well write

Tr
[
T̄>d

(
~∇ ⊗~v

)]
= Tr

(
T̄>d Dv

)
, (3.153)

where Dv abbreviates the symmetrised velocity-gradient tensor,

Dv :=
1
2

[(
~∇ ⊗~v

)
+

(
~∇ ⊗~v

)>]
. (3.154)

The energy-conservation equation for a viscous fluid then reads

∂tε + ~∇ · (ε~v ) + P~∇ ·~v = ~∇ ·
(
κ~∇T

)
+ Tr

(
T̄>d Dv

)
. (3.155)

This intuitive equation shows that temperature gradients cause diffusive heat
transport, and viscosity creates heat by friction. Together with the unchanged
continuity equation (3.36) for the density ρ, the Navier-Stokes equation (3.148)
and the energy-conservation equation (3.155) are the fundamental equations for
viscous hydrodynamics.

3.3.3 Entropy

It is instructive to translate the energy-conservation equation (3.155) to an
equation explicitly containing the fluid entropy. For doing so, we introduce the
internal energy and the entropy per unit mass, ε̃ and s̃, respectively, by defining

ε = ε̃ρ , s = s̃ρ , (3.156)

This enables us to bring the left-hand side of (3.155) into the form

∂tε + ~∇ · (ε~v ) + P~∇ ·~v = ∂t(ε̃ρ) + ~∇ · (ε̃ρ~v ) + P~∇ ·~v . (3.157)

Subtracting the continuity equation leaves us with

∂tε + ~∇ · (ε~v ) + P~∇ ·~v = ρ
(
∂t +~v · ~∇

)
ε̃ + P~∇ ·~v = ρ

dε̃
dt

+ P~∇ ·~v . (3.158)

The volume per unit mass, Ṽ , is the reciprocal density, Ṽ = ρ−1, hence

dṼ
dt

= −ρ−2 dρ
dt

= −ρ−2
(
∂t +~v · ~∇

)
ρ = ρ−1~∇ ·~v , (3.159)
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where we have used the continuity equation once more in the final step. Solving
for the velocity divergence,

~∇ ·~v = ρ
dṼ
dt

, (3.160)

we can write (3.158) as

∂tε + ~∇ · (ε~v ) + P~∇ ·~v = ρ

(
dε̃
dt

+ P
dṼ
dt

)
. (3.161)?

What is the physical meaning of the
expression ρTds̃? By the first law of thermodynamics, Tds̃ = dε̃ + PdṼ , we can finally identify

∂tε + ~∇ · (ε~v ) + P~∇ ·~v = ρT
ds̃
dt

(3.162)

and write the energy-conservation equation (3.155) as an equation for the total
time derivative of the specific entropy,

ρT
ds̃
dt

= ~∇ ·
(
κ~∇T

)
+ Tr

(
T̄>d Dv

)
. (3.163)

This shows explicitly how heat conduction and viscous friction change the
entropy. In absence of transport processes, κ = 0 = η = ζ, the specific entropy
is conserved. In particular, flows of ideal fluids are isentropic.

3.3.4 Fluids in a gravitational field

From a consistent, generally-relativistic point of view, fluids in a gravitational
field should be treated starting from the covariant, local energy-momentum
conservation laws (3.33). The covariant derivative would then automatically
take care of gravitational forces. Here, in our non-relativistic, Newtonian
approach, we have to add gravitational fields by hand to the fluid equations. We
shall do so by deriving the energy-momentum tensor of the free gravitational
field, whose space-space components can then be added to the stress-energy
tensor T i j of the fluid.

In a specially-relativistic theory for a scalar field φ characterised by a Lagrange
density L(φ, ∂µφ), the energy-momentum tensor T µ

ν of the field is given by the
Legendre transform

T µ
ν = ∂νφ

∂L
∂(∂µφ)

− δµνL ; (3.164)

cf. (1.104) and the explanation given there. The Lagrange density

L =
1

8πG
∂µφ∂

µφ + φρ (3.165)

serves our purposes because its Euler-Lagrange equation,

∂µ
∂L

∂(∂µφ)
− ∂L
∂φ

= 0 , (3.166)

reproduces Poisson’s equation if the potential φ does not change very rapidly
with time,

− ∂0∂
0φ = c−2∂2

t φ � ∂i∂
iφ . (3.167)
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Then, we can approximate the d’Alembert by the Laplace operator and find the
familiar field equation

~∇2φ = 4πGρ (3.168)

relating the potential to the density, i.e. the Poisson equation.

We thus take
Lfree =

1
8πG

∂µφ∂
µφ (3.169)

as the Lagrange density of the free, Newtonian gravitational field and find the
energy-momentum tensor(

T µ
ν

)
grav

=
1

4πG

(
∂νφ∂

µφ − 1
2
δ
µ
ν∂αφ∂

αφ

)
(3.170)

for it. Its stress-energy tensor is then

T̄grav =
1

4πG

[
~∇φ ⊗ ~∇φ − 1

2

(
~∇φ

)2
13

]
, (3.171)

again neglecting the time derivative of φ compared to its spatial derivatives. This
gravitational stress-energy tensor must now be introduced into the equations for
momentum and energy conservation.

The momentum-conservation equation must be augmented by the divergence of
T̄grav,

~∇ · T̄grav =
1

4πG

(
~∇2φ

)
~∇φ = ρ~∇φ , (3.172)

where the Poisson equation (3.168) was used in the last step. With this additional
specific force term, the Navier-Stokes equation becomes

ρ
(
∂t +~v · ~∇

)
~v + ~∇P = −ρ~∇Φ + η~∇2~v +

(
ζ +

η

3

)
~∇

(
~∇ ·~v

)
. (3.173)

Caution Of course, we could
have guessed the additional
gravitational-force term −ρ~∇Φ in
the Navier-Stokes immediately
since it simply expresses the
gravitational-force density. Return-
ing to the stress-energy tensor of
the gravitational field and taking its
divergence emphasises the common
origin of all force terms in the Euler
or Navier-Stokes equations. J

In most applications, the stress-energy tensor for the free gravitational field
is integrated over the entire volume of a body. If the boundary surface of the
integration volume is chosen large enough, we can use Gauss’ law to add or
subtract arbitrary divergences from T̄grav without changing the volume integral
over it. This allows us to modify the expression for the stress-energy tensor to
bring it into more familiar forms that can more easily be interpreted. We shall
use the sign ' here to express that two expressions for T i j

grav differ only by a
divergence.

Let us begin with the expression (3.171) and write

T̄grav =
~∇φ ⊗ ~∇φ

4πG
− 13

8πG
~∇ ·

(
φ~∇φ

)
+
13

2
φρ

'
~∇φ ⊗ ~∇φ

4πG
+
13

2
φρ . (3.174)

The trace of the final expression is

Tr T̄grav =
1

4πG

(
~∇φ

)2
+

3
2
φρ =

1
4πG

~∇ ·
(
φ~∇φ

)
− ρφ +

3
2
ρφ

' 1
2
ρφ . (3.175)
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If we rather begin with the expression ~x ⊗ T̄ for an arbitrary, not necessarily
gravitational stress-energy tensor, we can write

− ~x ⊗
(
~∇ · T̄

)
= −~∇ ·

(
~x ⊗ T̄

)
+ T̄ ' T̄ . (3.176)

Applying this result to the gravitational stress-energy tensor, and identifying its
divergence (3.172), we find

T̄grav ' −ρ~x ⊗ ~∇φ . (3.177)

This leads to Chandrasekhar’s expression for the gravitational potential energy,
which is often used in stellar dynamics,∫

d3x T̄grav =: U = −
∫

d3x ρ~x ⊗ ~∇φ . (3.178)

From our previous result (3.175), we can further infer that the volume integral
over the trace of T̄grav is∫

d3x Tr T̄grav = Tr U =
1
2

∫
d3x ρφ . (3.179)

Comparing (3.178) and (3.179), we find the useful equality

1
2

∫
d3x ρφ = −

∫
d3x ρ~x · ~∇φ . (3.180)

3.3.5 The tensor virial theorem

We can now derive an important generalisation of the virial theorem from
classical mechanics, which is typically derived there for point particles on
bounded orbits. We begin with the inertial tensor of a body, defined by

I =

∫
d3x ρ~x ⊗ ~x . (3.181)

Integrating over a fixed volume, the position vectors ~x do not depend on time.
The total time derivative of I is

dI
dt

=
(
∂t +~v · ~∇

) ∫
d3x ρ~x ⊗ ~x =

∫
d3x (∂tρ)~x ⊗ ~x (3.182)

because the volume integral does not depend on ~x. The continuity equation
allows us to continue∫

d3x (∂tρ)~x ⊗ ~x = −
∫

d3x ~∇ · (ρ~v ) ~x ⊗ ~x
= −

∫
d3x ~∇ · (ρ~x ⊗ ~x ⊗~v ) +

∫
d3x ρ

(
~x ⊗~v +~v ⊗ ~x )

=

∫
d3x ρ

(
~x ⊗~v +~v ⊗ ~x )

. (3.183)?
Can you confirm the calculation
shown in (3.183)? The second absolute time derivative of the inertial tensor is thus

d2I
dt2 =

∫
d3x

[
∂t

(
ρ~v

) ⊗ ~x + ~x ⊗ ∂t
(
ρ~v

)]
. (3.184)
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Now, we use (3.176) and take advantage of momentum conservation, ∂0T 0i +

∂ jT i j = 0, to replace the divergence of the stress-energy tensor by the time
derivative of the energy-current density T 0 j = ρcv j,

T i j ' xi∂0T 0 j = xi∂t
(
ρv j

)
. (3.185)

Symmetrising this expression,

T̄ =
1
2

[
~x ⊗ ∂t

(
ρ~v

)
+ ∂t

(
ρ~v

) ⊗ ~x ]
, (3.186)

and inserting the result into (3.184), we can finally write

1
2

d2I
dt2 =

∫
d3x T̄ . (3.187)

For a perfect fluid in a gravitational field, the stress-energy tensor reads

T̄ = ρ~v ⊗~v + P13 + T̄grav . (3.188)

We integrate this over the complete volume of the fluid, use (3.178) and find

1
2

d2I
dt2 =

∫
d3x ρ~v ⊗~v + 13

∫
d3x P + U . (3.189)

This is the tensor virial theorem for a pefect fluid in its most general form. If
the system is stable, the left-hand side vanishes, and a relation between the
kinetic-energy tensor

K =
1
2

∫
d3x ρ~v ⊗~v , (3.190)

the potential-energy tensor U i j and the volume-integrated pressure remains,

2K = −13

∫
d3x P − U . (3.191)

3.3.6 Transformation to cylindrical or spherical coordinates

It is convenient in many applications of hydrodynamics to use coordinates other
than Cartesian ones, in particular when systems with axial or spherical symmetry
are to be studied. Then, of course, the spatial differential operators need to be
transformed accordingly, but there is one more aspect of the transformation that
needs to be taken into accout.

In cylindrical coordinates (r, ϕ, z), the basis vectors expressed in Cartesian
coordinates are

êr =

 cosϕ
sinϕ

0

 , êϕ =

 − sinϕ
cosϕ

0

 , êz =

 0
0
1

 . (3.204)

Since the position vector is ~x = rêr + zêz, the velocity is

~v = ṙêr + r ˙̂er + żêz = ṙêr + rϕ̇êϕ + żêz , (3.205)
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Example: Virial theorem applied to a homogeneous sphere

To illustrate the power of the virial theorem to find out about the equilibrium
state of a perfect fluid in a gravitational field, suppose we have a homogeneous
sphere of density ρ, mass M and radius R which is macroscopically at rest,
vi = 0. The kinetic energy tensor vanishes, Ki j = 0. The fluid is assumed to
have an ideal equation of state,

P =
ρ

m
kBT , (3.192)

with a constant temperature throughout. Then,∫
d3x P =

M
m

kBT . (3.193)

By (3.179), the trace of the potential-energy tensor is

Tr U =
1
2

∫
d3x ρφ = −4πGρ

2

∫ R

0

M(r)
r

r2dr = −3G
10

(
4π
3

)2

ρ2R5

= − 3
10

GM2

R
. (3.194)

The trace of the tensor virial theorem (3.191) thus implies the relation

kBT
m

=
1

10
GM

R
(3.195)

between the mass, the radius and the temperature of the sphere in equilibrium.
Its so-called virial radius is

R =
1

10
GMm
kBT

. (3.196)

Suppose now that the sphere is rotating slowly like a solid body. The rotation
needs to be slow to ensure that the body can still be assumed to be spherical.
With a constant angular velocity ~ω, the velocity field is

~v = ~ω × ~r , ~v 2 = ω2r2 sin2 θ (3.197)

if we arrange the z axis of the coordinate system to be parallel to the angular
velocity ~ω and θ is the usual polar angle. The trace of the kinetic-energy tensor
(3.190) is

Tr K =
2π
2
ρω2

∫ R

0
r4dr

∫ π

0
sin2 θ sin θdθ

=
π

5
ρω2R5

∫ 1

−1

(
1 − µ2

)
dµ

=
M
5
ω2R2 . (3.198)

The trace of the tensor virial theorem (3.191) now gives the cubic equation

2
5
ω2R3 +

3
m

kBTR − 3GM
10

= 0 . (3.199)

J
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Example: Virial theorem applied to a slowly rotating, fIn shomoge-
neous sphere

For a slowly rotating sphere, R will deviate little from the virial radius (3.196)
of the sphere at rest, which we now call R0 to write

R = R0 + δR = R0

(
1 +

δR
R0

)
. (3.200)

To lowest order in the small quantities ω2 and δR, (3.200) can be approximated
by

2
5
ω2R3

0 +
3
m

kBTR0

(
1 +

δR
R0

)
− 3GM

10
= 0 . (3.201)

With R0 from (3.196), we can further simplify this equation to

δR = −4
3
ω2R4

0

GM
. (3.202)

Therefore, if the temperature of the fluid in the rotating sphere is the same as
in the non-rotating sphere, its virial radius is reduced because the centrifugal
force partly stabilises the body against gravity, allowing the body to be smaller.
We can even set T = 0 in (3.199) and find

R =

(
3GM
4ω2

)1/3

(3.203)

for the radius of a stable, self-gravitating, rotating sphere. J
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where ˙̂er = ϕ̇êϕ was inserted. We read off the velocity components

vr = ṙ , vϕ = rϕ̇ , vz = ż (3.206)

and write the acceleration as

~a = v̇rêr + v̇ϕêϕ + v̇zêz + vr ˙̂er + vϕ ˙̂eϕ . (3.207)

Since the time derivatives of the unit vectors êr and êϕ are

˙̂er =
vϕ

r
êϕ , ˙̂eϕ = −vϕ

r
êr , (3.208)

we can immediately identify the acceleration components

ar = v̇r −
v2
ϕ

r
, aϕ = v̇ϕ +

vrvϕ

r
, az = v̇z . (3.209)

Therefore, the components of the acceleration cannot simply be written as
time derivatives of the velocity, but acquire additional terms. The expressions
(3.209) imply that, in cylinder coordinates, the components in (r, ϕ, z) direction
of the total time derivative on the left-hand side of Euler’s equation needs to be
augmented as

dtvr → dtvr −
v2
ϕ

r
, dtvϕ → dtvϕ +

vrvϕ

r
, dtvz → dtvz . (3.210)?

Convince yourself by your own cal-
culation of the expressions (3.208)
and (3.213) for the time derivatives
of the unit vectors.

In much the same way, we proceed for spherical polar coordinates (r, θ, ϕ), for
which the basis vectors are

êr =

 sin θ cosϕ
sin θ sinϕ

cos θ

 , êθ =

 cos θ cosϕ
cos θ sinϕ
− sin θ

 , êϕ =

 − sinϕ
cosϕ

0

 . (3.211)

Since ˙̂er = θ̇êθ + ϕ̇ sin θêϕ, the components of the velocity ~v = ṙêr + r ˙̂er are

vr = ṙ , vθ = rθ̇ , vϕ = rϕ̇ sin θ . (3.212)

We can thus write the time-derivatives of the unit vectors as

˙̂er =
vθ
r

êθ +
vϕ

r
êϕ , ˙̂eθ = −vθ

r
êr +

vϕ

r
cot θêϕ ,

˙̂eϕ = −vϕ
r

(êr + cot θêθ) (3.213)

and immediately identify the components

ar = v̇r −
v2
θ + v2

ϕ

r
, aθ = v̇θ +

vrvθ
r
− v

2
ϕ

r
cot θ ,

aϕ = v̇ϕ +
vrvϕ

r
+
vθvϕ

r
cot θ (3.214)

of the acceleration.
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In spherical coordinates, then, the left-hand side of Euler’s equation needs to be
transformed as

dtvr → dtvr −
v2
θ + v2

ϕ

r

dtvθ → dtvθ +
vrvθ

r
− v

2
ϕ

r
cot θ

dtvϕ → dtvϕ +
vrvϕ

r
+
vθvϕ

r
cot θ . (3.215)

The total time derivatives in the transformations (3.210) and (3.215) remain
formally unchanged,

dtvi =
(
∂t +~v · ~∇

)
vi , (3.216)

but the gradient operator ~∇ needs to be expressed in the respective coordinate
basis.

Example: Hydrodynamic equations in cylinder coordinates

To give one specific example, we express the continuity and Euler equations
for ideal hydrodynamics in cylinder coordinates (r, ϕ, z). Since the gradient
and the divergence are

~∇ f = êr∂r +
êϕ
r
∂ϕ + êz∂z and ~∇ · ~f =

1
r
∂r(r fr) +

1
r
∂ϕ fϕ + ∂z fz , (3.217)

the continuity equation transforms to

∂tρ +
1
r
∂r(rρvr) +

1
r
∂ϕ(ρvϕ) + ∂z(ρvz) = 0 , (3.218)

while the components of Euler’s equation turn into

∂tvr +
(
~v · ~∇

)
vr −

v2
ϕ

r
= −∂r

(
P
ρ

+ φ

)
,

∂tvϕ +
(
~v · ~∇

)
vϕ +

vrvϕ

r
= −1

r
∂ϕ

(
P
ρ

+ φ

)
,

∂tvz +
(
~v · ~∇

)
vz = −∂z

(
P
ρ

+ φ

)
, (3.219)

with the representation of ~∇ to be taken from (3.217). J

Problems

1. Young stars often form in the centre of a thin accretion disk whose height
is much smaller than its radius. If the mass of the central object M is
much larger than the disk’s mass, the gas particles move on approximately
Keplerian orbits which are almost circular.

(a) What is the velocity v of a gas particle as a function of the radius r?
Determine also the divergence of the velocity field.
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(b) Calculate the components of the velocity tensor

vi j =
1
2

(
∂ jvi − ∂iv j

)
(3.220)

for the Keplerian disk.

3.4 Flows under specific circumstances

In this section, the hydrodynamical equations are applied to a variety of
different flows. We begin with a perturbative analysis to derive the equation
(3.226) for sound waves, identifying the expression (3.228) for the sound
speed. Following the introduction of polytropic equations of state, we dis-
cuss hydrostatic equilibrium configurations and derive the Lane-Emden
equation (3.259). Vorticity and circulation are defined next in the derivation
of Kelvin’s circulation theorem (3.280). Then, we demonstrate Bernoulli’s
law (3.286) for stationary flows by integration of Euler’s equation and apply
it to Bondi’s problem of spherical accretion, leading to the relations (3.308)
between velocity and radius in polytropic or isothermal flows. Next, we
extend Bernoulli’s law to non-stationary, but irrotational flows in (3.315).
Viscous flows are briefly discussed at the end of the section. We begin with
the diffusion of vorticity (3.317), define the Reynolds number (3.321) and
conclude with viscous flow through a pipe, leading to the Hagen-Poiseulle
law (3.329).

3.4.1 Sound waves

We begin with an ideal fluid for which we assume that a solution of the hydro-
dynamical equations is already given. This solution may consist of functions ρ0,
~v0 and P0, with the subscript 0 indicating that these functions are considered as
a fixed, given, so-called background solution. We transform into the rest frame
of this background solution and can thus assume ~v0 = 0. Then, we perturb this
solution by small amounts δρ, δ~v and δP, insert the perturbed solution

ρ = ρ0 + δρ , ~v = δ~v , P = P0 + δP (3.221)

into the continuity- and Euler equations and keep only terms up to first order in
the perturbations. This procedure, which is typical for a perturbative analysis,
results in

∂t(ρ0 + δρ) + ~∇ · (ρ0δ~v
)

= 0 , ∂tδ~v +
~∇(P0 + δP)
ρ0 + δρ

= 0 . (3.222)

Typically, the background solution is smooth on the length scale of the pertur-
bations. If we may assume this, we can neglect gradients of ρ0 and P0 as well
as ∂tρ0 and continue writing

∂tδρ + ρ0~∇ · δ~v = 0 , ∂tδ~v +
~∇δP
ρ0

= 0 . (3.223)
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We further relate the gradient of the pressure perturbation to the gradient of the
density perturbation by

~∇δP =
∂P
∂ρ
~∇δρ =: c2

s
~∇δρ , (3.224)

introducing the abbreviation c2
s for the partial derivative of the pressure with

respect to the density. Equations (3.223) then become

∂tδρ + ρ0~∇ · δ~v = 0 , ρ0∂tδ~v + c2
s
~∇δρ = 0 . (3.225)

Taking a further time derivative of the first equation and the divergence of the
second equation allows us to eliminate the velocity perturbation altogether and
express the density perturbation as

∂2
t δρ − c2

s
~∇2δρ = 0 . (3.226)

This is a d’Alembert equation for the density contrast,

2δρ = 0 , (3.227)

in which cs appears as the characteristic velocity. The solutions of (3.227) are
linear density waves, accompanied by waves in the velocity perturbation. Such
waves are sound waves, and

cs =

(
∂P
∂ρ

)1/2

(3.228)

is the sound speed. The derivative in (3.228) has to be taken at constant entropy.

?
Why would the sound speed (3.228)
have to be determined at constant en-
tropy? Is this necessarily so? What
assumption may enter here?The solutions of the d’Alembert equation can be expanded into plane, mono-

“chromatic” waves. Let

δρ = aei
(
~k·~x−ωt

)
, δ~v = ~bei

(
~k·~x−ωt

)
(3.229)

be such waves with wave vector ~k and frequency ω for the density and velocity
perturbations. Inserting them into the d’Alembert equation gives the dispersion
relation

k2 =
ω2

c2
s

(3.230)

familiar from electrodynamics, but with the sound speed in place of the light
speed. The second equation (3.225), however, gives

ωρ0~b = c2
s a~k . (3.231)

The amplitude ~b of the velocity perturbation is thus oriented with the wave
vector ~k, showing that δ~v is longitudinal.

3.4.2 Polytropic equation of state

We have noticed earlier that the equations of hydrodynamics are a set of five
equations (one each for the conservation of the mass density, its internal energy
and each of its momentum components) for six quantities, namely the density,



152 3 Hydrodynamics

the pressure, the internal energy or temperature of the fluid and its macroscopic
velocity. One equation is missing. Typically, an equation of state is chosen for
this purpose, that is an equation relating the pressure to the other fluid properties,
such as the density and the temperature.

In astrophysics, it is frequently appropriate to assume the so-called polytropic
relation between pressure and density,

P(ρ) = P0

(
ρ

ρ0

)γ
, (3.232)

which can be derived for any fluid under adiabatic conditions. To see this,
consider the first law of thermodynamics, δQ = dE + PdV . If no heat is
exchanged, δQ = 0, and

dE = cvdT = −PdV . (3.233)

The enthalpy is obtained from the internal energy by the Legendre transform

H = E + PV , dH = dE + PdV + VdP . (3.234)

Under adiabatic conditions, therefore,

dH = cpdT = VdP . (3.235)

?
Why are infinitesimal changes of
the internal energy and the enthalpy
given by dE = cvdT and dH = cpdT ,
respectively, with cv and cp being the
heat capacities at constant volume or
pressure?

If we now divide (3.235) by (3.233), the temperature differential dT cancels,
and we find

cp

cv
= γ = −V

P
dP
dV

, (3.236)

where γ is defined to be the adiabatic index. Separating variables leads immedi-
ately to

dP
P

= −γ dV
V

, (3.237)

or P ∝ V−γ ∝ ργ, which is already the polytropic relation (3.232). Notice in
particular that we have nowhere used the assumption of an ideal gas. The entire
derivation is based on the adiabatic condition that the fluid does not exchange
heat with its environment. If we can additionally treat the fluid as an ideal gas,
we have PV ∝ T and conclude

PVγ = (PV)Vγ−1 ∝ TVγ−1 = const. (3.238)

For an ideal gas, the polytropic relation (3.232) thus implies

T = T0

(
ρ

ρ0

)γ−1

. (3.239)

The sound speed in a polytropic fluid is easily derived. We have to take the
derivative of the pressure with respect to the density at constant entropy, but the
polytropic relation has already been derived assuming that entropy is constant.
It is therefore justified to write

c2
s =

∂P
∂ρ

= γ
P
ρ

= c2
s0

(
ρ

ρ0

)γ−1

. (3.240)
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For the enthalpy, we begin from (3.235) to derive the enthalpy per unit mass, h̃.
Since the volume per unit mass is simply ρ−1, we must have

h̃ =

∫
dP
ρ

=
γ

γ − 1
P
ρ

=
c2

s

γ − 1
. (3.241)

The relations (3.240) and (3.241) are frequently used and often very convenient
in discussions of astrophysical fluid flows.

Let us briefly remark on entropy here before continuing with the discussion of
hydrodynamical flows under specific circumstances. The first law of thermody-
namics states

TdS = dE + PdV = cvdT + PdV = cvdT + d(PV) − VdP , (3.242)

where cv is again the heat capacity at constant volume. Dividing by T , using
the equation of state PV = NkBT for an ideal gas and the relation

cp − cv = NkB (3.243)

between the heat capacities cp and cv at constant pressure and constant volume,
respectively, we transform (3.242) into

dS = cp
dT
T
− (cp − cv)

dP
P

. (3.244)

Recalling the adiabatic index γ = cp/cv, we have

dS = cv

[
γ

dT
T
− (γ − 1)

dP
P

]
, (3.245)

from which we can infer the derivatives(
∂S
∂T

)
P

= γ
cv

T
and

(
∂S
∂P

)
T

= −(γ − 1)
cv

P
(3.246)

for the entropy with respect to T at constant P, and vice versa. We shall need
these relations in the derivation of the convective instability below.

Caution Recall the Maxwell rela-
tion (

∂S
∂P

)
T

= −
(
∂V
∂T

)
P

which, when evaluated for an ideal
gas, results in(

∂S
∂P

)
T

= −NkB

P
= −cp − cv

P
.

J

From the ideal gas equation written in the form

T =
PV
NkB

=
P
ρ

m̄
kB

(3.247)

with the mean particle mass m̄, we immediately infer that

dT
T

=
dP
P
− dρ
ρ
, (3.248)

and insert this expression into (3.244) to find

dS = cv
dP
P
− cp

dρ
ρ
. (3.249)

The derivatives of the entropy with respect to P at constant ρ and vice versa are
thus (

∂S
∂P

)
ρ

=
cv

P
and

(
∂S
∂ρ

)
P

= −cp

ρ
. (3.250)
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We shall return to these relations in the discussion of the thermal instability.

Finally, it is instructive to conclude from (3.249) that the entropy as a function
of pressure and density is

S (P, ρ) = cv ln
[

P
P0

(
ρ0

ρ

)γ]
. (3.251)

For a polytropic gas with P ∝ ργ, the entropy is manifestly constant, as it should
be by construction.

3.4.3 Hydrostatic equilibrium

We begin our study of hydrodynamical flows under specific, generally simplify-
ing conditions with a fluid in hydrostatic equilibrium. In a static situation, the
flow velocity vanishes, ~v = 0, and the Navier-Stokes equation (3.148) shrinks to

~∇P = −ρ~∇Φ . (3.252)

Taking the curl of this equation, we immediately see that

~∇ρ × ~∇Φ = 0 (3.253)

because the curl of a gradient vanishes identically. The gradients of the gravita-
tional potential and of the density must therefore be parallel to each other, which
means that the equipotential surfaces, i.e. the surfaces of constant potential,
must also be the surfaces of constant density. In hydrostatic equilibrium, the
shape of the fluid body thus adapts to the shape of the gravitational potential.

Taking the divergence of the hydrostatic equation, we can use Poisson’s equation
to write

~∇ ·
~∇P
ρ

 = −4πGρ . (3.254)

Once an equation of state is chosen for the fluid, i.e. a relation between the
pressure P and the density ρ, this equation determines the configuration of the
fluid density in its own gravitational field. Let us suppose that the pressure satis-
fies the polytropic relation, and restrict the discussion to spherically-symmetric
configurations. Then,

1
r2 ∂r

(
r2 ∂rP

ρ

)
=

c2
s0

r2 ∂r

r2
(
ρ

ρ0

)γ−1

∂rρ

 = −4πGρ . (3.255)

Instead of the adiabatic index, we now introduce the polytropic index n by
defining

γ − 1 =
1
n
. (3.256)

Moreover, we introduce a function θ to describe the density as
ρ

ρ0
= θn , (3.257)

define a characteristic radius

r0 =

 nc2
s0

4πGρ0

1/2

(3.258)
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and use that to introduce the dimension-less radial coordinate x = r/r0. These
operations leave (3.255) in the dimension-less form

1
x2 ∂x

(
x2∂xθ

)
= −θn , (3.259)

which is called the Lane-Emden equation.

?
Independently carry out all steps
leading from the hydrostatic equa-
tion (3.252) to the Lane-Emden
equation (3.259).Given a polytropic index n, it can be solved with the boundary conditions

∂xθ = 0 and θ = 1 at x = 0 to return the density profile of a polytropic,
self-gravitating gas sphere. Expanding the differential operator in (3.259), the
Lane-Emden equation reads

θ′′ +
2
x
θ′ + θn = 0 . (3.260)

Example: Solutions of the Lane-Emden equation

Analytic solutions for the Lane-Emden equation exist for n = 0, n = 1 and
n = 5. For n = 0, direct integration of (3.259) results in

θ = − x2

6
− A

x
+ B (3.261)

with two integration constants A and B. The boundary conditions require
A = 0 for the solution to remain regular at the centre and B = 1 for θ to reach
unity there. Thus,

θ(x) = 1 − x2

6
(3.262)

for n = 0. For n = 1, (3.260) is a spherical Bessel differential equation of
order zero, which is solved by spherical Bessel function

θ(x) = j0(x) =
sin x

x
. (3.263)

Numerical solutions for the Lane-Emden equation with adiabatic indices
γ = 5/3 (polytropic index n = 3/2) or γ = 4/3 (n = 3) are often used to model
the internal structure of white dwarfs or other stars (Figure 3.4). J

Another interesting and illustrative example for systems in hydrostatic equi-
librium is the case of a gas filled into a spherical gravitational potential well
caused by the dominant dark matter. If the gas mass is overall negligible, the
gravitational potential is given independently, and the gas just responds to it.
This requires us to separate the gas density ρgas from the dark-matter density
ρDM in the hydrostatic equation, thus

1
r2 ∂r

(
r2

ρgas
∂rP

)
= −4πGρDM . (3.264)

With the equation of state for an ideal gas,

P =
ρgas

m
kBT , (3.265)

where m is the (mean) mass of a gas particle, we find by integrating once

r2

ρgas

kB

m
∂r

(
ρgaskT

)
= −4πG

∫ r

0
r′2dr′ ρDM = −GMDM(r) , (3.266)
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Figure 3.4 Solutions of the Lane-Emden equation are shown for different choices
of the polytropic index. The curves are displayed up to their first root only.

where MDM(r) is the dark-matter mass enclosed by a sphere of radius r. Solving
this equation for the dark-matter mass shows how it is related to the logarithmic
gradients of temperature and gas density,

MDM(r) = −rkBT
mG

(
d ln ρgas

d ln r
+

d ln T
d ln r

)
. (3.267)

This equation is often applied to find mass estimates for galaxy clusters. There,
the two logarithmic gradients can be inferred from X-ray observations of the
hot intracluster gas.

3.4.4 Vorticity and Kelvin’s circulation theorem

We shall now give up the hydrostatic assumption, but still neglect any dissipative
effects, such as viscous friction and heat conduction. In the Navier-Stokes equa-
tion (3.148), we therefore set η = 0 = ζ, and κ = 0 in the energy-conservation
equation. We then also know from (3.163) that entropy is conserved under such
circumstances. Momentum conservation is then expressed by Euler’s equation

∂t~v +
(
~v · ~∇

)
~v +

~∇P
ρ

+ ~∇Φ = 0 . (3.268)

The identity

~v ×
(
~∇ ×~v

)
= ~∇

(
v2

2

)
−

(
~v · ~∇

)
~v (3.269)

enables us to replace the convective velocity derivative (~v · ~∇)~v in (3.268) to
obtain

∂t~v −~v ×
(
~∇ ×~v

)
= −~∇

(
v2

2

)
−
~∇P
ρ
− ~∇Φ . (3.270)

The curl of the velocity,
~Ω := ~∇ ×~v , (3.271)
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is called the vorticity of the flow. If we take the curl of Euler’s equation in its
form (3.270), we find the evolution equation for the vorticity

∂t~Ω = ~∇ ×
(
~v × ~Ω

)
+
~∇ρ × ~∇P

ρ2 (3.272)

since the curl of the gradients vanishes identically. If the pressure P is a function
of ρ only, as for example in a polytropic fluid, the gradients of P and ρ must
align because then

~∇P =
dP
dρ
~∇ρ ⇒ ~∇P × ~∇ρ = 0 . (3.273)

For such barotropic fluids, the vorticity equation simplifies to

∂Ω

∂t
= ~∇ ×

(
~v × ~Ω

)
. (3.274) ?

What does ∂t~Ω = 0 imply for the
solution(s) of the vorticity equation
(3.274) for barotropic fluids?

Figure 3.5 Illustration of Kelvin’s circulation theorem: The circulation of the veloc-
ity field in an inviscid fluid is conserved.

Having derived an evolution equation for the vorticity, we now consider the
so-called circulation, which is the line integral over the velocity along closed
curves swimming with the fluid flow,

Γ :=
∮

C
~v · d~l . (3.275)

We are interested in the total change with time of the circulation embedded
into the flow (Figure 3.5). We must therefore take into consideration that the
contour C is deformed by the flow. The total time derivative of Γ consists of the
change of the velocity field within the contour, plus the change of the contour
itself. For a more transparent notation, we write the infinitesimal path length d~l
as a difference δ~r of the position vectors pointing at the beginning and the end
of d~l. Accordingly, we write

dΓ

dt
=

∮
C

d~v
dt
· d~l +

∮
C
~v · dδ~r

dt
. (3.276)
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In the first term on the right-hand side, we expand the total time derivative of
the velocity into

d~v
dt

= ∂t~v +
(
~v · ~∇

)
~v = ∂t~v + ~∇

(
v2

2

)
−~v ×Ω . (3.277)

The line integral suggests taking the curl and applying Stokes’ law. The curl of
(3.277) is

d~Ω
dt

= ∂t~Ω − ~∇ ×
(
~v × ~Ω

)
= 0 (3.278)

according to the vorticity equation (3.274), hence the first term of the total time
derivative (3.276) of the circulation vanishes. The second term is∮

C
~v · dδ~r

dt
=

∮
C
~v · δ~v =

∮
C

~∇
(
v2

2

)
· d~l = 0 , (3.279)

which also vanishes because an integral along a closed loop of a gradient field
must vanish. The circulation is thus conserved in a barotropic, ideal fluid,

dΓ

dt
= 0 , (3.280)

which is Kelvin’s circulation theorem.

3.4.5 Bernoulli’s constant

If the fluid is not static, but the flow is stationary, all partial derivatives with
respect to time will vanish. In such cases, flow lines can be introduced as the
integral curves of the velocity field. Quite obviously, the flow lines must obey
the equations

dx
vx

= dt =
dy
vy

=
dz
vz
. (3.281)

In ideal fluids, we have seen that the specific entropy s̃ is constant because
energy dissipation and heat flows do not occur. For a stationary flow, ∂t s̃ = 0
and

ds̃
dt

= ∂t s̃ +
(
~v · ~∇

)
s̃ =

(
~v · ~∇

)
s̃ = 0 , thus

(
~v · ~∇

)
s̃ = 0 (3.282)

The specific entropy must therefore be constant along flow lines. Moreover, we
have seen in (3.241) that the specific enthalpy per unit mass satisfies

dh̃ =
dP
ρ

(3.283)

under adiabatic conditions.

For stationary flows, ∂t~v = 0, and Euler’s equation in its form (3.270) implies

1
2
~∇

(
~v 2

)
−~v × ~Ω = −

~∇P
ρ
− ~∇Φ . (3.284)

Let us now multiply (3.284) with the fluid velocity ~v to obtain the change of
its terms with time along flow lines. The term containing the vector product
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~v × ~Ω then vanishes because it is perpendicular to ~v. The remaining terms can
be combined under the gradient,

~v · ~∇
(
v2

2
+ h̃ + Φ

)
= 0 . (3.285)

This reveals that the term in parentheses,

v2

2
+ h̃ + Φ =: B = constant along flow lines (3.286)

must be a constant B along flow lines, which is called Bernoulli’s constant.
We have thus proven Bernoulli’s very important and intuitive law for ideal
flows. It shows that the specific kinetic energy of the flow, v2/2, is not only
balanced by the specific potential energy in the gravitational field, but also by
the specific enthalpy. For example, if a gas flow is expanding as it propagates
into a surrounding medium and against a gravitational field, the enthalpy term
takes into account that the gas will have to exert pressure-volume work against
the surrounding medium and thereby cool.

Example: The faucet

Bernoulli’s law, together with the equation of continuity, are very powerful
tools to study stationary fluid flows. Let us begin with water flowing from a
faucet, accelerated by gravity (Figure 3.6). Everyday experience tells us that
the diameter of the water shrinks as it falls. How exactly does the diameter
depend on the height, and why?
Bernoulli’s law tells us that the quantity

v2

2
+ h̃ + Φ = const (3.287)

along the flow lines of the water. Here, we can replace the gravitational
potential by Φ = gz if z points vertically upwards, where g is the local
gravitational acceleration. The pressure is set by the atmospheric pressure
surrounding the water, the density can be assumed to be constant. Bernoulli’s
law then tells us that the water accelerates as it falls according to v2 = v2

0 +

2g(h − z) if it is initially at rest at the height h.
To evaluate the continuity equation for a stationary flow, ∂tρ = 0, we integrate
the divergence ~∇ · (ρ~v) = 0 over an infinitesimally thin cylinder with cross
section A whose axis is aligned with the water. Gauss’ law then implies that

ρvA = const = ρv0A0 , (3.288)

from which we conclude that

A =
A0v0√

v2
0 + 2g(h − z)

. (3.289)

The cross section of the water decreases as it falls from z = h to z = 0. J
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Example: The Laval nozzle

Completely analogous is the discussion of gas flowing through a nozzle whose
cross section first decreases, then increases along the gas flow. For definiteness,
the x axis of the coordinate system may point into the direction of the gas
flow, and the cross section A(x) is given. Continuity now demands

ρvA(x) = ρ0v0A0 , (3.290)

while Bernoulli’s law requires

v2

2
+

c2
s − c2

s0

γ − 1
=
v2

0

2
. (3.291)

Dividing by the squared initial sound speed c2
s0 gives the dimension-less

equation
u2

2
+
αγ−1 − 1
γ − 1

=
u2

0

2
, (3.292)

where the dimension-less density α := ρ/ρ0 was introduced. A similar
operation brings the continuity equation into the form

αuA = u0A0 . (3.293)

Let us now take the total differentials of both equations (3.292) and (3.293).
This leads us to

udu + αγ−2dα = 0 ,
dα
α

+
du
u

+
dA
A

= 0 . (3.294)

Eliminating dα between these two equations leaves us with the equation

udu
(
1 − α

γ−1

u2

)
= udu

(
1 − 1
M2

)
= αγ−1 dA

A
, (3.295)

where we have identified the squared local Mach numberM2 = u2/αγ−1. As
long as the flow remains subsonic, M < 1, the left-hand side is negative.
The flow will continue to accelerate, udu > 0, if the cross section of the
nozzle decreases, dA < 0. This agrees with everyday experience: A gas flow
through a narrowing pipe accelerates. However, the sign changes once the
flow becomes supersonic,M > 1. Then, for udu to remain positive, the cross
section of the nozzle must increase, dA > 0! Otherwise, once the sonic point
is reached, the gas will decelerate in narrowing nozzle. If the situation is
arranged such that the sound speed is reached at the narrowest point of the
nozzle, the flow will continue accelerating. This is the principle of the Laval
nozzle, which is used for example in rocket engines (Figure 3.7). J



3.4 Flows under specific circumstances 161

Figure 3.6 Water running from a faucet has a cross section determined by
Bernoulli’s law.

3.4.6 Bondi accretion

Completely analogous to the discussion of the faucet and the Laval nozzle
is Bondi’s accretion problem. The situation is as follows: A star or another
point-like gravitating body of mass M is placed into a formerly homogeneous,
extended gas cloud of density ρ0 and pressure P0. Driven by gravity, the gas
will flow towards the star. How does it flow, and how much gas per unit time
will the star accrete? Again, Bernoulli’s law and the continuity equation provide
the complete answer.

For a stationary, spherically-symmetric flow, the continuity equation reads

1
r2 ∂r

(
r2ρv

)
= 0 ⇒ r2ρv = const. (3.296)

The constant has the dimension g s−1 and therefore corresponds to the accretion
rate, i.e. the rate at which matter flows onto the star. If we multiply (3.296) with
4π, we obtain the mass per unit time Ṁ flowing through the complete spherical
surface,

4πr2ρv = −Ṁ , (3.297)

where the minus sign is introduced to express that the mass is flowing towards
the star.

Bernoulli’s law reads
v2

2
+

c2
s − c2

s0

γ − 1
− GM

r
= 0 (3.298)

because the gas is assumed to be at rest far away from the star. This equation
holds for adiabatic gas which can be treated as a polytrope. If the gas is
isothermal and ideal rather than polytropic, its enthalpy per unit mass is

h̃ =

∫
dP
ρ

=
kBT
m

∫
dρ
ρ

= c2
s0 ln

(
ρ

ρ0

)
, (3.299)
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Figure 3.7 An example for a de Laval nozzle is the Vulcain-II engine of an Ariane
5 rocket (Wikipedia, Creative Commons License)

and Bernoulli’s law becomes

v2

2
+ c2

s0 ln
(
ρ

ρ0

)
− GM

r
= 0 (3.300)

instead. We now divide both versions of Bernoulli’s law by the unperturbed,
squared sound speed c2

s0, introduce the dimension-less velocity u = v/cs0, the
density α = ρ/ρ0, the so-called Bondi-radius

rB =
GM
c2

s0

(3.301)

and the dimension-less radius x := r/rB. These substitutions leave our two
versions of Bernoulli’s equations in the convenient, dimension-less forms

u2

2
+
αγ−1 − 1
γ − 1

− 1
x

= 0 ,
u2

2
+ lnα − 1

x
= 0 . (3.302)

The same substitutions turn the continuity equation into

x2αu = µ , µ := − Ṁ
4πr2

Bρ0cs0
. (3.303)

The parameter µ is the accretion rate in units of the so-called Bondi accretion
rate,

ṀB = 4πr2
Bρ0cs0 . (3.304)
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We now have two equations, the continuity equation (3.303) and Bernoulli’s
law (3.302), for the two functions α and u. Eliminating α between them leaves
one equation for the velocity u,

u2

2
+

(
µ

x2u

)γ−1 − 1

γ − 1
− 1

x
= 0 ,

u2

2
+ ln

(
µ

x2u

)
− 1

x
= 0 . (3.305)

But what accretion rates are possible? Does the flow turn supersonic some-
where? And if so, what happens? In order to see this, let us take complete
differentials of the continuity equation,

2dx
x

+
dα
α

+
du
u

= 0 , (3.306)

and of Bernoulli’s law,

udu + αγ−1 dα
α

+
dx
x2 = 0 , udu +

dα
α

+
dx
x2 = 0 , (3.307)

and eliminate dα/α between them. For the polytropic gas, the squared sound
speed is c2

s = c2
s0α

γ−1 according to (3.240), while it is constant c2
s = c2

s0 for the
isothermal gas. This leads to

udu
(
1 − 1
M2

)
=


dx
x

(
2αγ−1 − 1

x

)
polytropic

dx
x

(
2 − 1

x

)
isothermal

, (3.308)

where we have once more identified the squared Mach numberM as before in
(3.295) for the Laval nozzle.
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Figure 3.8 The radial velocity is shown as a function of radius for isothermal
Bondi accretion. Velocity curves are given for three different accretion rates: the
critical accretion rate µc in units of the Bondi accretion rate as well as 50 % more
or less. The curve for µc > 1 is mathematically possible, but physically excluded
because it corresponds to two velocities at the same radius.

This equation shows that there exists a critical radius, xc = 1/2 in the isothermal
and xc = α1−γ/2 in the polytropic case, where the right-hand side vanishes. The
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left-hand side must then also vanish, which is either possible if the flow comes
to a halt there, u = 0, if the velocity reaches a maximum, du = 0, or if the flow
turns supersonic,M = 1. What exactly happens, depends on the accretion rate
(Figure 3.8). If the flow turns supersonic at the critical radius, u2 = αγ−1 in the
polytropic and u = 1 in the isothermal case, we can solve Bernoulli’s equation
(3.302) for the dimension-less density α there, obtaining

α =

(
2

5 − 3γ

)1/(γ−1)

(polytropic) , α = e3/2 (isothermal) . (3.309)

The continuity equation finally gives the critical accretion rate,

µc =
1
4

(
2

5 − 3γ

)(5−3γ)/(2(γ−1))

, µc =
e3/2

4
. (3.310)

For accretion rates smaller than µc, the flow speed reaches a subsonic maximum
at the critical radius, corresponding to a gentle accretion flow that is everywhere
subsonic. For accretion rates higher than µc, the solution is mathematically
possible, but not physically: as Fig. 3.8 shows, the velocity then becomes
double-valued where it exists, while two velocities at the same radius cannot
exist in a fluid.

?
What would happen to the preceding
calculation if the accretion rate −Ṁ
from (3.297) would be set negative?
What physical situation would this
corresponed to? 3.4.7 Bernoulli’s law for irrotational, non-stationary flows

We have derived Bernoulli’s law for stationary flows before. It can be gener-
alised to some degree for irrotational flows. For those, ~∇ ×~v = ~Ω = 0, which
allows us to introduce a velocity potential ψ such that ~v = ~∇ψ. Euler’s equation
can then be written in the form

∂t~∇ψ + ~∇
(
v2

2

)
+
~∇P
ρ

+ ~∇Φ = 0 . (3.311)

For adiabatic flows,

~∇h̃ =
~∇P
ρ

, (3.312)

hence we can infer from (3.311) that the function

∂tψ +
v2

2
+ h̃ + Φ = B(t) (3.313)

must be a function of time only. Since the velocity is given by a spatial gradient
of ψ, we can gauge the velocity potential such that the right-hand side of (3.313)
vanishes,

ψ→ ψ +

∫
dt B(t) (3.314)

and simplify (3.313) to Bernoulli’s law for non-stationary, but irrotational flows,

∂tψ +
v2

2
+ h̃ + Φ = 0 . (3.315)
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3.4.8 Diffusion of vorticity

Let us now turn to simple examples of viscous flows. We begin with the
Navier-Stokes equation (3.148) in the form

∂t~v + ~∇
(
v2

2

)
−~v × ~Ω =

1
ρ

[
−~∇P + η~∇2~v +

(
ζ +

η

3

)
~∇

(
~∇ ·~v

)]
(3.316)

and take its curl. For simplicity, we assume that the flow is incompressible,
~∇ρ = 0, and find

∂t~Ω − ~∇ ×
(
~v × ~Ω

)
= ν~∇2~Ω , (3.317)

where the kinematic viscosity
ν :=

η

ρ
(3.318)

was introduced. Equation (3.317) relates a first-order partial time derivative to a
second-order spatial derivative and is thus a diffusion equation for the vorticity.
It shows how vorticity diffuses away in presence of viscosity.

3.4.9 The Reynolds Number

The kinematic viscosity has the dimension

g
cm s

cm3

g
=

cm2

s
, (3.319)

that is, it is squared length over time. Suppose we scale all lengths with a typical
length scale L, all velocities with a typical velocity V and all times with a time
scale L/V in the vorticity equation (3.317). The expressions occuring would
then scale as

∂t → L
V
∂t , ∂x → L∂x , ~v→ ~v

V
, ~Ω→ ~Ω

L
V
, ν→ ν

LV
, (3.320)

such that all terms in (3.317) would be scaled by L2/V2 and thus become
dimension-less. Therefore, if we characterise the viscosity by the dimension-
less number

ν

LV
=:

1
R , (3.321)

nothing in (3.317) reminds of the dimensions and the velocity of the flow. This
shows that flows with the same Reynolds number R are scale-free. If lengths
and velocities in a flow are stretched by factors L and V , respectively, the flow
remains the same if the viscosity is simultaneously scaled by LV . The Reynolds
number thus classifies such self-similar solutions of the flow equations. The
transition to ideal fluids is characterised by R → ∞.

3.4.10 Hagen-Poiseulle flow

As one instructive example for a viscous flow, let us consider a viscous fluid
running under the influence of a pressure gradient through a long, straight pipe.
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Long means that its length L is much larger than its Radius R. We turn the
coordinate system such that the symmetry axis of the pipe coincides with the x
axis. The velocity ~v will then only have an x component which will itself only
depend on the y and z coordinates perpendicular to the pipe. Since there are no
other components of ~v, we write ~v = v(y, z)êx.

For a stationary flow, the continuity equation requires

∂x(ρv) = v∂xρ + ρ∂xv = 0 , (3.322)

from where we read off that the density ρ will not depend on x either.
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Figure 3.9 Illustration of the parabolic velocity profile across a pipe for Hagen-
Poiseulle flow.

The Navier-Stokes equation shrinks to

∂xP = η
(
∂2
y + ∂2

z

)
v , ∂yP = 0 = ∂zP (3.323)

because the partial time derivative ∂t~v vanishes for a stationary flow, (~v · ~∇)v =

v∂xv = 0 since v does not depend on x, and ~∇ ·~v = 0 for the same reason. The
second equation tells us that P is constant on planes perpendicular to the pipe.
Since the right-hand side of the first equation cannot depend on x, neither can
∂xP, hence ∂xP is constant along the pipe,

∂xP =
∆P
L

, (3.324)

if ∆P is the pressure gradient applied between the ends of the pipe. Transform-
ing the two-dimensional Laplacian in the first equation (3.323) to plane polar
coordinates and taking into account that the flow must be symmetric about the
symmetry axis of the pipe, we find the equation

∆P
Lη

=
1
r
∂r (r∂rv) , (3.325)

which can easily be integrated to determine the velocity profile

v(r) =
∆P
4Lη

r2 + A ln r + B , (3.326)



3.4 Flows under specific circumstances 167

with two integration constants A and B. We must require that v(r) = 0 at the
wall of the pipe at r = R and that v(r) remains regular at r = 0. This can be
achieved by setting A = 0 and

B = − ∆P
4Lη

R2 , (3.327)

which leaves us with the parabolic velocity profile

v(r) =
∆P
4Lη

(
r2 − R2

)
(3.328)

across the pipe (Figure 3.9). The amount of mass flowing through the pipe per
unit time is

Ṁ = 2π
∫ R

0
rdr ρv(r) =

π∆PρR4

8Lη
, (3.329)

which is the Hagen-Poiseulle law: The mass of a viscous fluid flowing through
a pipe per unit time is proportional to the squared cross section of the pipe.

Problems

1. A cylinder that contains an incompressible fluid rotates with constant an-
gular velocity ~ω = ωêz in the gravitational field of the Earth, characterised
by the gravitational acceleration ~g = −gêz.

(a) Use Euler’s equation of momentum conservation

∂t~v +
(
~v · ~∇

)
~v = −

~∇P
ρ
− ~∇Φ (3.330)

to derive differential equations for each velocity component that
contain the angular velocity ω and the gravitational acceleration g.
Why does the continuity equation

∂tρ + ~∇ · (ρ~v ) = 0 (3.331)

not yield any additional information?

(b) Determine a function P(r, ϕ, z) from these differential equations.
What does the surface of the rotating fluid look like?

2. Jets are large directed outflows of material and a common astrophysical
phenomenon. They can be observed under various circumstances, e.g.
together with young T Tauri stars and the accretion onto a black hole
in the centre of an active galaxy. Here, we want to examine some basic
properties of a jet. Assume that a stationary jet has its origin on the
surface of a spherical star with mass M and radius R, has initially the
velocity v0 and the cross-sectional area A0. The outflowing material has
a polytropic equation-of-state, P = P0(ρ/ρ0)γ , where γ is the adiabatic
index, and the entropy stays constant, ds = 0 along flow lines. The gas
surrounding the star is assumed to be adiabatic, i.e. the pressure drops
exponentially with the distance r from the surface, P(r) = P0 exp(−r/h),
where h is the pressure scale height and P0 the pressure at the surface.
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(a) Determine the specific enthalpy h̃ per unit mass as a function of P
and ρ.

(b) Use Bernoulli’s equation,

v2

2
+ h̃ + Φ = const. , (3.332)

along flow lines, to determine v(r).
(c) Use the continuity equation

∂tρ + ~∇ · (ρ~v ) = 0 (3.333)

to determine the cross-sectional area A(r).

3. Assume that a layer of height h of a viscous and incompressible fluid
flows down a plane inclined by an angle α relative to the horizontal.
The top of the fluid is free and feels the atmospheric pressure P0. The
coordinate system is chosen such that the x-axis is parallel to the velocity
vector of the fluid and the z-axis is perpendicular to the plane.

(a) Determine the two equations that the Navier-Stokes equation

ρdt~v = −~∇P + η~∇2~v +

(
η

3
+ ζ

)
~∇

(
~∇ ·~v

)
+ ρ~g (3.334)

simplifies to, where ~g is the gravitational acceleration.
(b) Solve these two differential equations for P(z) and v(z). What are

the appropriate boundary conditions to be chosen for P(z = h),
v(z = 0) and (dv/dz)(z = h)?

3.5 Shock waves

This section deals with the formation and the properties of shock waves. We
begin with the method of characteristics for quasi-linear systems of partial
differential equations and derive the Riemann invariants (3.359), which are
used to explain the steepening of non-linear sound waves. Then, we turn to
global properties of shock waves following from conservation laws, finding
the Rankine-Hugoniot shock jump conditions (3.376) and (3.377). The
velocity (3.388) of the shock itself relative to the flow is derived and used
in the derivation of Sedov’s solution (3.399) for the outer radius of a strong
spherical shock wave.

The hydrodynamical equations are a set of non-linear, partial differential equa-
tions which give rise to non-linear phenomena in fluid flows. One important
aspect is the formation of shock waves, where the velocity field changes discon-
tinuously. Despite the non-linearity of the equations and some of the phenomena
they describe, some statements can be made on characteristic properties of the
flow without even solving the hydrodynamical equations. We have seen some
examples before, such as Kelvin’s circulation theorem and Bernoulli’s law. We
shall now proceed to show that even strongly non-linear phenomena such as
shock waves can be predicted as inevitable, and that some important properties
they display can be generally given. For doing so, we restrict our treatment to
one-dimensional flows, having in mind fluid flows in pipes, for example. We
shall begin with the method of characteristics.
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3.5.1 The method of characteristics

In one dimension, for a polytropic, inviscid fluid, the continuity and Euler
equations simplify to

∂tρ + ρ∂xv + v∂xρ = 0 ,

∂tv + v∂xv +
∂xP
ρ

= 0 . (3.335)

The derivative of the pressure can be expressed by the derivative of the density,

∂xP = c2
s∂xρ , (3.336)

introducing the sound speed

c2
s = c2

s0

(
ρ

ρ0

)γ−1

. (3.337)

Taking the differential of the last equation, we see that the differentials of the
sound velocity and of the density are related by

2
dcs

cs
= (γ − 1)

dρ
ρ
, (3.338)

which enables us to replace the partial density derivates of the density according
to

∂tρ

ρ
=

2
γ − 1

∂tcs

cs
,

∂xρ

ρ
=

2
γ − 1

∂xcs

cs
. (3.339)

Our reduced set of one-dimensional hydrodynamical equations now reads

2
γ − 1

∂tcs + cs∂xv +
2v
γ − 1

∂xcs = 0 ,

∂tv + v∂xv +
2cs

γ − 1
∂xcs = 0 . (3.340)

They are two partial differential equations for two functions, cs and v, in two
variables, t and x.

It is important to see that these equations are quasi-linear, which means that the
highest-order derivatives of the unknown functions occur linearly in them. Due
to this property, we can summarise the two equations as( 2

γ−1 0
0 1

) (
∂tcs
∂tv

)
+

 2v
γ−1 cs
2cs
γ−1 v

 ( ∂xcs
∂xv

)
= 0 . (3.341)

At this point, the method of characteristics sets in.

Suppose, more generally, that we are given a set of n quasi-linear, partial
differential equations for the n unknown functions u j of the two variables x and
y. By its quasi-linearity, this set of equations can be brought into the form

Xi j∂xu j + Yi j∂yu j = Zi , (3.342)

where the Zi represent possible inhomogeneities of the equations. The method
of characteristics consists in finding local directions in the x-y plane into which
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the partial differential equations can be written as complete differentials, and
thus be integrated. Of course, the functions could also depend on more than
two independent variables, but we restrict the discussion to this case here for
simplicity.

We wish to find differentials d~s in the two-dimensional space of independent
variables satisfying the conditions

d~s>X = ~L>dx , d~s>Y = ~L>dy (3.343)

with the same vector ~L on the right-hand sides, for both matrices X and Y . If we
could find such differentials, with a vector ~L yet to be determined, multiplying
our set of equations (3.342) with it from the left would result in

L j
(
∂xu jdx + ∂yu jdy

)
= L jdu j = dsiZi . (3.344)

We could then directly integrate these equations, finding

L ju j = Zisi . (3.345)

In order to see when we can hope to find such a vector of differentials d~s, we
multiply the first equation (3.343) by dy, the second by dx and subtract the
second from the first to get

d~s> (Xdy − Ydx) = 0 . (3.346)

For this set of linear equations to have a non-trivial solution for d~s, the determi-
nant of the matrix Xdy − Ydx must vanish,

det (Xdy − Ydx) = 0 . (3.347)

This will give us relations between the two differentials dy and dx which will
define preferred directions in x-y space. The integral curves of the expressions
for dy/dx are the characteristics of the system (3.342) of quasi-linear partial
differential equations. The differentials are then found as eigenvectors of the
matrix Xdy−Ydx belonging to the eigenvalue zero. Once they have been found,
the vector ~L is given by the two equations (3.343).

Let us apply this method of characteristics now to the set of hydrodynamical
equations (3.341). Here, we have the two functions cs and v in place of the
u1 and u2, and the two independent variables (t, x) in place of (x, y). The two
matrices X and Y are replaced by

T =

( 2
γ−1 0
0 1

)
, X =

 2v
γ−1 cs
2cs
γ−1 v

 . (3.348)

The characteristics are defined by the condition

0 = det (Tdx − Xdt) = det

 2(dx−vdt)
γ−1 −csdt
− 2csdt

γ−1 dx − vdt


=

2
γ − 1

det
(

dx − vdt −csdt
−csdt dx − vdt

)
, (3.349)
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which leads to the quadratic equation

dx2 − 2vdxdt +
(
v2 − c2

s

)
dt2 = 0 , (3.350)

whose two solutions
dx± = (v ± cs)dt (3.351)

define the characteristics of the system (3.341) of hydrodynamical equations.

?
What does the condition (3.351)
mean geometrically in a space-time
diagram?The differentials ds must be eigenvectors with eigenvalue zero of the difference

matrix Tdx − Xdt,

(ds1, ds2) ·
 2(dx−vdt)

γ−1 −csdt
− 2csdt

γ−1 dx − vdt

 = (0, 0) . (3.352)

In particular, this establishes the relation

− csdtds1 + (dx − vdt)ds2 = 0 (3.353)

between ds1 and ds2. On the characteristics, dx = dx± = (v ± cs)dt, hence ds1
and ds2 must agree except for their sign,

− csds1 ± csds2 = 0 ⇒ ds2 = ±ds1 . (3.354)

The vector ~L is finally found from one of the equations (3.343) applied to our
current situation,

(ds1,±ds1)

 2v
γ−1 cs
2cs
γ−1 v

 = (L1, L2)dx , (3.355)

which implies

L1dx =
2(v ± cs)
γ − 1

ds1 , L2dx = (cs ± v)ds1 . (3.356)

The ratio between these two components is all we need because d~s and d~L can
only be determined up to a common normalisation factor. The last equation
tells us

L1

L2
= ± 2

γ − 1
. (3.357)

We arbitrarily set L2 = 1 and return to evaluate (3.344) for our hydrodynamical
equations, where the inhomogeneities Zi = 0. This finally leads us to

dv ± 2
γ − 1

dcs = 0 , (3.358)

which we can directly integrate to find the two Riemann invariants

R± = v ± 2
γ − 1

cs , (3.359)

which are conserved on the plus and minus characteristics, respectively.
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3.5.2 Steepening of sound waves

Consider now a hitherto unperturbed fluid at rest, on which a non-linear density
perturbation is imprinted at time t = 0. Every point within the perturbation can
be connected to its unperturbed neighbourhood by means of minus character-
istics coming from the positive x region in the past. Those characteristics are
straight lines with slope

dx−
dt

= v − cs = −cs0 (3.360)

because they propagate through unperturbed material at rest. Along these minus
characteristics, the Riemann invariant

R− = v − 2cs

γ − 1
= − 2cs0

γ − 1
(3.361)

is conserved. This establishes the relation

v =
2(cs − cs0)
γ − 1

(3.362)

at every point that can be reached by a minus characteristic coming from
unperturbed material, which is every point in the fluid.
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Figure 3.10 Illustration of how a non-linear density wave steepens and ultimately
turns into a shock.

At the boundary points of the perturbation, the density is supposed to have
dropped to the unperturbed density, and they are considered to be at rest. A plus
characteristic attached to the boundary point at x > 0 is determined by

dx+

dt
= v + cs = cs0 , (3.363)

because it propagates into unperturbed material. Along this plus characteristic,
the Riemann invariant

R+ = v +
2cs

γ − 1
=

2cs0

γ − 1
(3.364)
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is conserved. The right boundary point of the perturbation has unperturbed
density and retains it as it propagates along the plus characteristic. Now consider
the central point of the density perturbation, where the density is highest. Its
enhanced density implies a sound speed higher than that of the unperturbed
fluid. According to (3.362), overdense points have a velocity v > 0. Both, the
velocity v and the sound speed cs, are therefore higher at an overdensity than
in the unperturbed fluid. Plus characteristics originating there thus propagate
faster than plus characteristics originating from unperturbed points. The plus
characteristic of the density peak thus approaches that of the right boundary
point of the perturbation. The density peak will catch up with the boundary
point and ultimately reach it: The density perturbation steepens and ultimately
produces a discontinuity in the density and the velocity because streams of
different density and velocity cannot coexist at the same location in a fluid
(Figure 3.10).

We have thus shown simply by the method of characteristics that non-linear
density perturbations have to steepen and ultimately form discontinuities, or
shocks. As generic as our discussion was, as generic is this result: The formation
of shocks by steepening of non-linear waves is inevitable in a fluid. It is quite
remarkable that we did not have to solve any of the hydrodynamical equations
to see this. The method of characteristics was sufficient.

3.5.3 The Rankine-Hugoniot shock jump conditions

Even though at least some of the flow variables may be discontinuous at a shock,
three current densities must be conserved across the shock, namely the matter
current density ρ~v, the energy current density

~q =

(
v2

2
+ h̃

)
ρ~v (3.365)

and the momentum-current density

T i j = ρviv j + Pδi j . (3.366)

We consider now a shock that is perpendicular to the local flow direction. We
fix an arbitrary point on the shock surface and locally construct a coordinate
system such that the x axis is perpendicular to the shock surface and the y-z
plane is tangential to it. On the y-z plane, the three conserved current densities
must meet. Identifying with subscripts 1 and 2 quantities on either side of the
shock, we must have

ρ1v1 = ρ2v2 ,v2
1

2
+ h̃1

 ρ1v1 =

v2
2

2
+ h̃2

 ρ2v2 ,

ρ1v
2
1 + P1 = ρ2v

2
2 + P2 . (3.367)

We wish to express the flow variables ρ2, v2 and P2 on one side of the shock by
those on the other. For doing so, we first adopt a polytropic equation of state
and thereby fix the sound speed

c2
s = γ

P
ρ

(3.368)
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and the specific enthalpy per unit mass

h̃ =
γ

γ − 1
P
ρ

=
c2

s

γ − 1
. (3.369)

We further introduce the Mach number on the 1-side of the shock,

v2
1 =M2

1c2
s1 , (3.370)

and the ratios r and q between the density and the pressure values on both sides
of the shock,

r :=
ρ2

ρ1
, q :=

P2

P1
. (3.371)

The enthalpy on the 2-side of the shock is then

h̃2 =
γ

γ − 1
P2

ρ2
=

γ

γ − 1
P1

ρ1

P2

P1

ρ1

ρ2
= h̃1

q
r

=
c2

s1

γ − 1
q
r
. (3.372)

After this preparation, (3.367) can be reduced to

M2
1

2
+

1
γ − 1

=
M2

1

2r2 +
1

γ − 1
q
r
,

M2
1 +

1
γ

=
M2

1

r
+

q
γ
. (3.373)

We multiply the first of these equations with r(γ − 1) and the second with γ to
find

M2
1

2
r(γ − 1) + r =

M2
1

2r
(γ − 1) + q ,

M2
1γ + 1 =

M2
1

r
γ + q , (3.374)

and subtract the first from the second to elimitate q and retain the quadratic
equation in r

r2
[
M2

1(γ − 1) + 2
]
− 2r

(
M2

1γ + 1
)

+M2
1(γ + 1) = 0 , (3.375)

which has the two solutions

r+ =: r =
M2

1(γ + 1)

M2
1(γ − 1) + 2

, r− = 1 . (3.376)

Only the solution r+ is interesting since r− corresponds to no density jump at
all. We thus set r = r+ and use this to find q from the second equation (3.374),

q =
2γM2

1 − γ + 1
γ + 1

. (3.377)?
Repeat the derivation of the jump
conditions (3.376) and (3.377) on
your own. The temperature jump can finally be obtained from the equation of state, such

as the ideal-gas equation, through

T2

T1
=

P2

ρ2

ρ1

P1
=

q
r
. (3.378)
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Figure 3.11 On the Rankine-Hugoniot shock jump conditions: The density jump
r at a shock is shown as a function of the Mach number upstream the shock for
gases with adiabatic indices γ = 5/3 and γ = 4/3.

The gas is assumed to approach the shock with supersonic velocity,M1 > 1.
Then, (3.376) tells us that

r =
γ + 1

γ − 1 + 2M−2
1

=
γ + 1

γ + 1 + 2(M−2
1 − 1)

> 1 . (3.379)

The density is higher downstream of the shock, the velocity must correspond-
ingly be lower. According to (3.377), the pressure also increases because

q =
2γM2

1 − γ + 1
γ + 1

>
2γ − γ + 1
γ + 1

= 1 . (3.380)

In the ultrasonic limit,M1 � 1, the density jump approaches

r =
γ + 1
γ − 1

, (3.381)

or r = 4 for a monatomic, ideal, non-relativistic gas. The closer γ gets towards
unity, the larger r will become (Figure 3.11). For a relativistic gas, γ = 4/3
and r = 7. The pressure and temperature jumps across such strong shocks can
become arbitrarily large. Both can rise strongly, showing that the gas will be
hot downstream the shock.

Caution The adiabatic index for
a gas composed of molecules with f
degrees of freedom is

γ =
f + 2

f

for a non-relativistic and

γ =
f + 1

f

for a relativistic gas. For f = 3, i.e.
if the molecules have only the three
translational but no internal (rota-
tional or vibrational) degrees of free-
dom, γ = 5/3 in the non-relativistic
and γ = 4/3 in the relativistic case.
J

Eliminating the Mach number between (3.376) and (3.377) gives either of the
two equations

r =
(γ + 1)q + (γ − 1)
(γ − 1)q + (γ + 1)

, q =
(γ + 1)r − (γ − 1)
(γ + 1) − (γ − 1)r

(3.382)

relating the pressure and the density jumps to each other.

3.5.4 Shock velocity

Having seen how conservation laws alone predict the discontinuities in the
density, the velocity and the pressure of a fluid through the Rankine-Hugoniot
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conditions, we now turn to the question how fast the shock itself will propagate
through the fluid. To this end, consider a long pipe filled with gas and closed
with a piston at its left end. At time t = 0, we imagine that the piston is
instantaneously accelerated to some high and constant velocity u.

The sudden acceleration will drive a shock into the unperturbed gas ahead of
the piston. Downstream of the shock, the gas will be at rest, v1 = 0, while it
will have the velocity of the piston, v2 = u, upstream. In between, the shock
will move with a yet unknown velocity vs.

To analyse this situation, we transform into the rest frame of the shock and
mark all velocities in the rest frame of the shock with primes. In that frame,
by construction, v′s = 0, further v′1 = v1 − vs = −vs and v′2 = v2 − vs = u − vs,
while the velocity difference between down- and upstream remains of course
unchanged, v2 − v1 = u = v′2 − v′1.

Solving the identity

u = v′2 − v′1 = v′1

(
1
r
− 1

)
(3.383)

for v′1 = −vs immediately gives the shock velocity

vs =
ru

r − 1
(3.384)

in terms of the velocity u of the piston. A strong shock, which has r = (γ +

1)/(γ − 1) as we have seen before, thus moves with the velocity

vs =
γ + 1

2
u . (3.385)?

Test several limiting cases of the re-
sult (3.388) for the shock velocity
and interpret the results. In an ideal, monatomic, nonrelativistic gas, for example, the shock velocity

exceeds the velocity of the piston by 4/3 − 1 ≈ 33 %. We now know the shock
speed only as a function of the velocity u of the piston. Sometimes this is
unknown, sometimes it is irrelevant because we want to know the shock speed
in terms of the intrinsic properties r and q of the shock. To achieve this, we
simply write

vs = −v′1 = |M1|cs1 , (3.386)

solve either one of the Rankine-Hugoniot shock jump conditions (3.376) or
(3.377) forM2

1,

M2
1 =

2r
(γ + 1) − (γ − 1)r

=
(γ + 1)q + (γ − 1)

2γ
, (3.387)

and insert the result into (3.386) to find the shock velocity as a function of either
the density jump r or the pressure jump q,

vs = cs1

√
2r

(γ + 1) − (γ − 1)r
= cs1

√
(γ + 1)q + (γ − 1)

2γ
. (3.388)

3.5.5 The Sedov solution

An impressive example for a shock wave is given by an explosion, i.e. by an
event in which in very short time energy is being released within a very small
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volume (Figure 3.12). We now consider such an event under the following
simplifying assumptions: (1) The shock is very strong, meaning that the pressure
of the surrounding medium can be neglected, P1 � P2. (2) The explosion
energy E is released instantaneously and the energy of the surrounding material
is negligible compared to E, i.e. the explosion energy dominates that of the
surroundings. (3) The gas be polytropic with an adiabatic index γ.

Under these conditions, our shock jump condition for the density is

r =
ρ2

ρ1
≈ γ + 1
γ − 1

, (3.389)

as it has to be for a very strong shock. The densities ρ1 and ρ2 are completely
determined by each other, which implies that the behaviour of the shock must
be entirely determined by the explosion energy E and the surrounding matter
density ρ1.

Let us now consider the shock at a time t after the explosion, when it has already
reached an unknown radius R(t). The only quantity with the dimension of a
length that can be formed from E, t and ρ1 is(

Et2

ρ1

)1/5

, (3.390)

which suggests the ansatz

R(t) = R0

(
Et2

ρ1

)1/5

(3.391)

with a dimension-less constant R0 which remains to be determined. The shock
velocity is obviously the time derivative of R(t),

vs =
dR
dt

=
2
5

R
t

=
2R0

5

(
E
ρ1

)1/5

t−3/5 , (3.392)

but it also has to obey the relation (3.388) found above. Solving the latter for
the pressure jump q and inserting c2

s = γP1/ρ1 gives

q =
P2

P1
=

1
γ + 1

[
2v2

sρ1

P1
− (γ − 1)

]
. (3.393)

Under the assumption that P1 � P2, we can neglect the second term on the
right-hand side and approximate the pressure inside the shock by

P2 =
2v2

sρ1

γ + 1
. (3.394)

The jump condition (3.389) for the density ratio shows that the density inside
the shock must remains constant in time because ρ1 is constant. Given the
shock velocity (3.392), the pressure inside the shock must be

P2 =
8R2

0

25(γ + 1)
E2/5ρ3/5

1 t−6/5 . (3.395)
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Figure 3.12 This image of the remnant of Tycho’s supernova combines X-ray and
infrared data from the Chandra and Spitzer space telescopes, respectively. Blue-red
colours show the energetic X-ray emission at the shock, while yellow-green colours
show the infrared emission inside the shock front.

According to (3.385), the velocity of the gas behind the shock then falls off in
the same way,

u =
2vs

γ + 1
=

4R0

5(γ + 1)

(
E
ρ1

)1/5

t−3/5 . (3.396)

We can interpret these relations as follows: A shock wave driven by the sudden
release of a large amount of energy E, which propagates outward with the
time-dependent radius R(t), sweeps up surrounding material with the mass

M =
4π
3
ρ1R3 , (3.397)

which is accelerated from rest to a velocity ≈ R/t. Thus, the kinetic energy

Ekin ≈ 4π
3
ρ1

R5

t2 (3.398)

must be put into the swept-up material. Equating this to the explosion energy
E, we immediately find

R =

(
3Et2

4πρ1

)1/5

, (3.399)

i.e. the scaling relation (3.391) simply expresses energy conservation.

Without solving any of the hydrodynamical equations, we now know how the
radius of the explosion shock, its velocity as well as the pressure and the density
at its inside. They are completely determined by the released amount of energy
E and the density ρ1 of the surrounding material.
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Problems

1. In astrophysics, the hydrodynamical equations often simplify a lot due to
spherical symmetry, e.g. when a young star of mass M accretes material.
In this case, ~v = v(r)êr, and the continuity and the Euler equations
simplify to

∂tρ +
1
r2 ∂r

(
r2ρv

)
= 0 , ∂tv + v∂rv +

c2
s

ρ
∂rρ = −∂rΦ =

GM
r2 , (3.400)

respectively, where we have used ~∇P = c2
s
~∇ρ. Let us for simplicity

further assume that the sound speed cs is constant. In order to use the
method of characteristics, the equations have to be brought into the form

Ti j∂tu j + Ri j∂ru j = Zi , (3.401)

where summing over j is implied. The matrix elements Ri j and Ti j are
given by the coefficients in front of the partial derivatives, while the Zi

are given by the inhomogeneities.

(a) Bring the continuity and the Euler equations into the form (3.401)
and identify T , R, ~u and ~Z.

(b) Determine a relation between the differentials dr and dt from the
condition det(Tdr−Rdt) = 0. What does the result mean physically?

(c) The goal is to find the differentials ds> = (ds1, ds2) and the vector
~L> = (L1, L2) such that

d~s>T = ~L>dt , d~s>T = ~L>dr (3.402)

are satisfied. Determine ds1 and ds2 from d~s>(Tdr − Rdt) = 0 and
L1 from (3.402), arbitrarily setting L2 = 1.

(d) Multiplying (3.401) by d~s> from the left and using (3.402) leads
to ~L> · d~u = d~s> · ~Z. Set up the latter equation which defines the
Riemann invariants and carry the necessary integration out as far as
possible.

2. Assume that the coordinate system is chosen such that the yz-plane is
parallel to a shock front and the x-direction perpendicular to it and the gas
flows from the side 1 to the side 2. With the energy-momentum tensor

T µν =

(
ρ +

P
c2

)
uµuν − ηµνP (3.403)

and the four-velocity (uµ) = γ(c,~v>), where γ = (1 − v2/c2)−1/2 is the
Lorentz factor, the relativistic generalisations of the continuity conditions
for the densities of the particle current, the momentum current and the
energy current are given by

n1ux
1 = n1ux

1 , T xx
1 = T xx

2 , cT 0x
1 = cT 0x

2 , (3.404)

respectively.
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(a) Express the continuity conditions as functions of the velocities
βi ≡ βx

i in units of the light speed, the enthalpies per volume
hi = εi + Pi with εi = ρc2, and the specific volumes per particle
Vi ≡ n−1

i (here and in the following, i = 1, 2).

(b) Determine the velocities on both sides of the discontinuity as a
function of Pi and εi. Hint: It is helpful to introduce the rapidity
θ ≡ artanh(v/c).

(c) What is the relative velocity v12 of the gases on both sides of the
discontinuity?

(d) In the ultrarelativistic case, P = ε/3. Determine the velocities on
both sides of the discontinuity in the case of a very strong shock
front (ε2 → ∞).

3.6 Instabilities

This section concludes the chapter on hydrodynamics with a discussion
of fluid instabilities. The method of analysis is common to most of them:
The governing equations are linearised by a perturbation ansatz. Decom-
posing the perturbations into plane waves turns these linearised differential
equations into systems of linear algebraic equations which the dispersion
relations can directly be derived from requiring non-trivial solutions. We
begin with surface waves on a fluid in a gravitational field which are shown
to satisfy the non-linear dispersion relation (3.418). The Rayleigh-Taylor or
buoyancy instability follows, whose dispersion relation (3.426) shows that
a specifically lighter fluid placed below a specifically heavier fluid tends to
develop an unstable boundary. The Kelvin-Helmholtz or shear instability
arises at the boundary between two fluids one of which flows with respect
to the other. Its dispersion relation is given in (3.436). Thermal instability
sets in if and when heating a gas leads to less efficient cooling, or cooling
leads to less efficient heating. The dispersion relation of this instability is
shown in (3.456). After a brief intermezzo on heat conduction, we consider
heat transport by convection and show in (3.486) that convection sets in
if the temperature gradient is steep. Finally, we briefly discuss turbulence
and derive the Kolmogorov spectrum (3.500) for the energy distribution over
scales of turbulent eddies.

We shall now proceed to examine hydrodynamical instabilities, i.e. the evolution
of situations in which an equilibrium configuration is slightly perturbed. Such
investigations follow standard procedures. The equilibrium configuration is
taken as given. Small perturbations are applied and the relevant equations
are linearised in these perturbations. The linear equations resulting therefrom
are then decomposed into Fourier modes whose dispersion relation is derived.
Instable situations are characterised by complex or imaginary frequencies,
which signal exponential growth of the perturbations. For simplicity, we shall
assume that the fluids are inviscid and incompressible, hence ~∇ ·~v = 0.

We transform into the rest frame of one of the unperturbed solutions, in such a
way that the velocity field there is given by the velocity perturbation only. Then,
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only terms linear in the velocity need to be retained. The vorticity equation
(3.272) then tells us that

∂t~Ω = ∂t
(
~∇ ×~v

)
= 0 . (3.405)

Vorticity cannot build up, and we can assume that ~∇ ×~v = 0. Then, there exists
a velocity potential ψ such that ~v = ~∇ψ. Since the fluid is also incompressible,
the velocity potential must satisfy Laplace’s equation

~∇2ψ = 0 . (3.406)

In addition, Bernoulli’s law in the form (3.315) must hold with the term
quadratic in the velocity neglected,

∂tψ + h̃ + Φ = 0 . (3.407)

Moreover, for an incompressible fluid, the enthalpy per unit mass is determined
by

dh̃ =
dP
ρ

= d
(

P
ρ

)
(3.408)

since dρ = 0, hence h̃ = P/ρ, and Bernoulli’s law turns into

P = −ρ (∂tψ + Φ) . (3.409)
?

Interpret the physical meaning of
(3.409). To do so, taking the gra-
dient is helpful.We begin with two situations in which two fluids are separated by a surface.

Our fundamental set of equations for these investigations will be (3.406) and
(3.409).

3.6.1 Gravity waves

Consider a fluid which rests under local gravity such that its surface is a plane.
Above the surface, we imagine a gas which is much less dense than the fluid
and sets the pressure P2 = const. at the surface. We introduce a coordinate
frame such that the surface of the fluid coincides with the x-y plane. We wish
to find out how perturbations in the fluid surface propagate.

To this end, we introduce a function ζ(x, y, t) describing the perturbed fluid
surface (Figure 3.13). The velocity in z direction is the change of ζ with time,
hence

vz = ∂tζ +~v · ~∇ζ ≈ ∂tζ , (3.410)

where the last step was possible since ~v and ζ are both small quantities. More-
over, the velocity in z direction is the z derivative of the velocity potential
ψ,

vz = ∂zψ . (3.411)

Given the external, e.g. atmospheric pressure P0, equation (3.409) demands

P0 = −ρ (∂tψ + gζ) , (3.412)

where Φ = gζ is the local gravitational potential due to the gravitational
acceleration g, evaluated at the surface where z = ζ. Since only the spatial
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ζ(x, y, t)

(x, y)

z

Figure 3.13 Illustration of the perturbed boundary between two fluids, described
by a function z = ζ(x, y, t).

gradient of ψ is relevant for the velocity ~v, we can absorb the constant pressure
term into ψ by the gauge choice

ψ→ ψ +
P0t
ρ

. (3.413)

The equation we have to solve is then simply

∂tψ = −gζ . (3.414)

Taking another time derivative leads to the equation

∂tζ = vz = ∂zψ = −1
g
∂2

t ψ , (3.415)

which has to be evaluated at z = ζ. The velocity potential thus has to satisfy the
Laplace equation (3.406) and Bernoulli’s equation (3.415).

We begin our solution with the ansatz

ψ = f (z)ei(kx−ωt) (3.416)

for a wave-like solution propagating in x direction. The Laplace equation,
applied to this ansatz, constrains f (z) to satisfy

f ′′(z) − k2 f (z) = 0 , (3.417)

which is solved by f (z) = f0 exp(±kz). Since this velocity potential is confined
to z < 0, we need the branch f (z) = f0 exp(kz) here.

?
The choice f (z) = f0ekz hides the
selection of a specific boundary con-
dition for the solution of the Laplace
equation (3.417). Which is it? How
could different boundary conditions
be set?

Inserting this result together with (3.416) into Bernoulli’s equation (3.415) now
immediately gives the dispersion relation for gravity waves,

ω2 = kg . (3.418)

Interestingly, the group velocity vg = ∂kω of such waves depends on the
wavelength,

vg = ∂k
√

kg =
1
2

√
g

k
: (3.419)

Longer gravity waves travel faster.



3.6 Instabilities 183

3.6.2 The Rayleigh-Taylor instability

We now consider a somewhat more involved situation. Imagine two different
fluids meeting at a common, unperturbed surface perpendicular to the local
gravitational acceleration g. The fluid above has density ρ1 and height h1, the
fluid below has density ρ2 and depth h2. Both fluids are initially at rest. We
choose the coordinate system such that the unperturbed surface coincides with
the x-y plane. If this is perturbed as described by a function ζ(x, y, t), how do
the perturbations develop?

Figure 3.14 This sequence of images shows the onset of the Rayleigh-Taylor
instability in a simulation. The boundaries of the rising “Rayleigh-Taylor finger”
additionally become Kelvin-Helmholtz unstable. (courtesy of Volker Springel)

Now, we have to find two velocity potentials, ψ1 and ψ2, subject to the following
conditions: Both have to satisfy the Laplace equation (3.406), the Bernoulli
equation (3.415) at the surface and the boundary conditions that the pressure
and the velocity at the surface must be continuous and that the velocities at
z = h1 and z = −h2 must both vanish,

(P1 − P2)|z=ζ = 0 , (∂zψ1 − ∂zψ2)|z=ζ = 0 ,

(∂zψ1)|z=h1
= 0 = (∂zψ2)|z=−h2

. (3.420)

Laplace’s equation, together with the third of these conditions suggests the
ansatz

ψ1 = A1 cosh[k(z − h1)]ei(kx−ωt) ,

ψ2 = A2 cosh[k(z + h2)]ei(kx−ωt) . (3.421)

With Bernoulli’s equation (3.412), the first of the boundary conditions (3.420)
requires

ζ =
ρ2∂tψ2 − ρ1∂tψ1

g(ρ1 − ρ2)
, (3.422)
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where we can now evaluate the right-hand side at z = 0 rather than at z = ζ,
since ζ is supposed to be a small perturbation. Another time derivative of
(3.422) gives

∂tζ = vz = ∂zψ1 =
ρ2∂

2
t ψ2 − ρ1∂

2
t ψ1

g(ρ1 − ρ2)
. (3.423)

Inserting the ansatz (3.421) here, we first find

− A1k sinh(kh1) =
ω2

g(ρ1 − ρ2)
[
A2ρ2 cosh(kh2) − A1ρ1 cosh(kh1)

]
, (3.424)

and the second boundary condition (3.420) finally requires

− A1 sinh(kh1) = A2 sinh(kh2) . (3.425)

We now eliminate A2 between the latter two equations and obtain

ω2 =
kg(ρ2 − ρ1)

ρ2 coth(kh2) + ρ1 coth(kh1)
. (3.426)

This dispersion relation shows the highly interesting result that the frequency be-
comes imaginary if the specifically lighter fluid is placed beneath the specifically
heavier one. This is the Rayleigh-Taylor or buoyancy instability (Figure 3.14):
In such a configuration, small perturbations of the surface between the two
fluids cause the fluids to begin exchanging their stratification.

3.6.3 The Kelvin-Helmholtz instability

We now come to another hydrodynamical instability, caused by a tangential
velocity perturbation at the boundary between two fluids. Again, the boundary
is described by a surface ζ(x, y, t) which, as long as the surfaces remain unper-
turbed, coincides with the plane z = 0. We proceed as follows. We imagine an
unperturbed situation in which the upper fluid is streaming with velocity~v = vêx

into the x direction. We anticipate that this shear flow will excite wave-like
perturbations δ~v in the velocity, δP in the pressure and δz = ζ in the boundary,
and express this anticipation by adopting

δ~v = δ~v0 ei(kx−ωt) , δP = δP0 f (z) ei(kx−ωt) ,

ζ = ζ0 ei(kx−ωt) . (3.427)

The equations we need to solve are the linearised Euler equation

∂tδ~v + v∂xδ~v = −
~∇δP
ρ

(3.428)

for an incompressible fluid, ~∇·δ~v = 0. Applying the divergence to (3.428) shows
that the pressure perturbation δP now needs to satisfy the Laplace equation

~∇2δP = 0 , (3.429)

which immediately implies the equation f ′′(z) − k2 f (z) = 0 for f (z) or

f (z) = f0e−kz (3.430)
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above the surface since the solution is then confined to z > 0. Now, the
z component of Euler’s equation shows that the velocity perturbation in z
direction above the surface needs to satisfy

δvz =
kδP1

iρ1(kv − ω)
. (3.431)

?
Notice once more the choice of a
boundary condition for the Laplace
equation (3.429) implied by the
ansatz (3.430).

At the same time, δvz must be given by the derivatives of the surface ζ,

δvz = ∂tζ + v∂xζ = i(kv − ω)ζ . (3.432)

Equating both expressions for δvz, we find the relation

δP1 = −ρ1ζ

k
(kv − ω)2 (3.433)

for the pressure fluctuation above the boundary. Below the boundary, v = 0 and
the minus sign is changed to a plus sign since f (z) = f0 exp(kz) there. Thus,

δP2 =
ρ2ζ

k
ω2 . (3.434)

Since the pressure fluctuation needs to be continuous at the boundary, δP1 = δP2
at z = ζ,

ρ2ω
2 + ρ1(kv − ω)2 = 0 . (3.435)

This quadratic equation for ω leads to the dispersion relation

ω± =
kv

ρ1 + ρ2

(
ρ1 ± i

√
ρ1ρ2

)
. (3.436)

Unless ρ1 = 0, this frequency is complex and thus necessarily implies an
instability, the so-called Kelvin-Helmholtz instability (Figures 3.15 and 3.15).

Figure 3.15 Examples for the Kelvin-Helmholtz instability in the atmospheres of
the Earth (left panel) and Jupiter (right panel), in both cases indicated by clouds.
(Wikipedia)

3.6.4 Thermal Instability

Let us now consider a physical system that gains energy by heating processes
and loses energy by cooling mechanisms. Both heating and cooling can occur
in many ways. Frequent heating mechanisms are heating by compression, by
the injection of hot particles or by radiation from nearby sources. Cooling
may occur by expansion or through radiation losses, but also for example by
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the emission of energetic particles. The net effect of the heating and cooling
processes taken together is described by the cooling function

L(ρ,T ) , (3.437)

which describes the total energy loss per unit mass and unit time. It is typically
a function of the density ρ and the temperature T , but may of course depend
on other parameters, such as the chemical composition of the system under
consideration.

If the system is in thermal equilibrium, we require that the net cooling function
vanish, L(ρ,T ) = 0: thermal equilibrium requires that the rates of energy gain
by heating and loss by cooling exactly balance each other. This condition
implicitly defines a relation between ρ and T .

Example: Thermal bremsstrahlung

For thermal bremsstrahlung, for example, the cooling function is proportional
to the squared density times the square root of the temperature,

L(ρ,T ) = C ρ
√

T − (heating terms) . (3.438)

The density ρ appears linear here rather than quadratic because we refer the
cooling function to unit mass rather than unit volume. More realistic cooling
functions contain terms caused by so-called line cooling, i.e. cooling by the
emission of energy via spectral lines. J

The cooling function L(ρ,T ) can adopt various forms, in particular because
cooling processes are often related to thermal occupation numbers of quantum
states and the quantum-mechanical transition probabilities between atomic or
molecular excitations. Since the Boltzmann factor decreases exponentially
with the energy of states scaled by the thermal energy kBT , sometimes small
temperature changes can give rise to large changes in occupation numbers. If
quantum transitions contribute to the cooling processes, the discrete atomic or
molecular energy levels involved introduce discrete thresholds. A typical curve
in the ρ-T plane characterised by the equilibrium condition L(ρ,T ) = 0 may
thus contain flat plateaus and steep steps.

As is common in thermodynamics, there may be several equilibria for the
system to attain, such as mechanical, thermal or phase equilibrium. Mechanical
equilibrium could be established by the system adapting to some external
pressure P. In such a case, the pressure at the system’s boundary is set externally.
Then, the equation of state, i.e. the relation between pressure, temperature and
density P = P(ρ,T ), may define an additional curve in the ρ-T plane. For an
ideal gas, for example, we must satisfy

P =
ρkBT

mparticle
. (3.439)

Maintaining mechanical equilibrium with a constant external pressure Pext then
defines a hyperbola in the ρ-T plane, or a straight line in the log ρ-log T plane.

If thermal and mechanical equilibrium need to be maintained at the same time,
the system may occupy only such points in the ρ-T plane where the curves
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defined by the conditions L(ρ,T ) = 0 and P(ρ,T ) = Pext intersect. If the
condition L(ρ,T ) = 0 contains plateaus and steps, this may occur in several
points (Figure 3.16).

Mechanical equilibrium is usually established much faster than thermal or
phase equilibria. Thus, if the external, mechanical conditions change, the
system will first rearrange itself to maintain mechanical equilibrium. Doing so,
it moves to another point in the ρ-T plane on the appropriate curve defined by
P(ρ,T ) = Pext. This will bring it out of thermal equilibrium.

ln ρ

ln T

P(ρ,T ) = Pext

L(ρ,T ) = 0

L < 0

L > 0

Figure 3.16 Illustration of the discussion on the onset of thermal instability in
mechanical equilibrium with constant external pressure.

Example: Unstable or stable evolution

To construct a specific example, suppose that the system is heated by extra
energy at constant external pressure. It will typically reestablish mechanical
equilibrium faster than thermal equilibrium. To sufficient approximation, it
will thus first expand and move along its isobaric curve towards lower density
and higher temperature. Suppose this drives the system to a place where the
cooling function is negative, L < 0. Now, the energy gain will be larger than
the energy loss. Then, the temperature will increase further, the density will
decrease by further expansion, and the system will move even further away
from thermal equilibrium. It will then be thermally unstable. Suppose, on
the contrary, that the heating drives the system to a point where the cooling
function is positive, L > 0. It can then cool from its new position and move
back to thermal equilibrium. J

Let us now consider a simple model for the thermal instability. Besides the
continuity and Euler equations, taken in the form

∂tρ + ~∇ · (ρ~v ) = 0 and ∂t~v +
~∇v2

2
−~v ×

(
~∇ ×~v

)
= −

~∇P
ρ

, (3.440)
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we write the energy-conservation equation

T
[
∂t s +

(
~v · ~∇

)
s
]

= −L(ρ,T ) (3.441)

in terms of the specific entropy. The cooling function L gives the net energy
loss per unit mass.

Let now the thermal equilibrium state be characterised by the density ρ = ρ0
and the temperature T = T0. By definition, the cooling function vanishes there,
L(ρ0,T0) = 0. We shall further assume that the unperturbed fluid velocity
~v0 = 0, which can be achieved by transforming to the comoving frame of the
unperturbed flow. We perturb this state by small deviations δρ, δT and δ~v to the
density, the temperature and the velocity, respectively, and linearise in these
perturbations. The linearised continuity and Euler equations read

∂tδρ + ~∇ · (ρ0δ~v
)

= 0 , ∂tδ~v = −
~∇δP
ρ0

. (3.442)

As usual, we eliminate the divergence of the velocity perturbation by combining
the time derivative of the continuity equation with the divergence of the Euler
equation. This enables us to write

∂2
t δρ = ~∇2δP . (3.443)

We first allow perturbations with δP , 0 and ask later for the conditions for
instability under constant pressure.

We continue by linearising the entropy equation. We expand the specific entropy
near its equilibrium value s0 as

s = s0 +
∂s
∂P

δP +
∂s
∂ρ
δρ = s0 + cv

δP
P0
− cp

δρ

ρ0
, (3.444)

where the earlier result (3.250) was used in the second step. Likewise, we
expand the cooling function on the right-hand side of (3.441),

L(ρ,T ) = L0 +

(
∂L
∂T

)
ρ

δTρ +

(
∂L
∂T

)
P
δTP , (3.445)

distinguishing temperature changes at constant density, δTρ, and at constant
pressure, δTP. For later convenience, we introduce the abbreviations

LP :=
1
cp

(
∂L
∂T

)
P

and LV :=
1
cv

(
∂L
∂T

)
ρ

(3.446)

for the derivatives of the cooling function with respect to temperature, taken
at constant pressure or constant density. Since the specific entropy s0 at equi-
librium must satisfy the unperturbed entropy equation (3.441), we can insert
the expansions (3.444) and (3.445) into (3.441), eliminate the equilibrium
expressions and linearise in the perturbations to obtain

T0∂t

(
cv
δP
P0
− cp

δρ

ρ0

)
= −cvLVδTρ − cpLPδTP . (3.447)
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Now, for an ideal gas, the perturbed equation of state is

δP =
ρ0kBT0

m̄

(
δT
T0

+
δρ

ρ0

)
= P0

(
δT
T0

+
δρ

ρ0

)
, (3.448)

implying that the temperature changes at constant density and at constant
pressure are

δTρ = T0
δP
P0

and δTP = −T0
δρ

ρ0
. (3.449)

These expressions allow us to bring (3.447) into the form

∂t

(
cv
δP
P0
− cp

δρ

ρ0

)
= cpLP

δρ

ρ0
− cvLV

δP
P0

. (3.450)

After multiplying with P0, replacing

P0

ρ0
=

c2
s

γ
(3.451)

according to (3.240) and recalling cp = γcv, we arrive at

∂t
(
δP − c2

sδρ
)

= c2
sLPδρ − LVδP . (3.452)

At this point, we take the Laplacian and insert the result (3.443) obtained
previously from the linearly perturbed continuity and Euler equations. This
leads to the equation

∂t
(
∂2

t δρ − c2
s
~∇2δρ

)
= c2

sLP~∇2δρ − LV∂
2
t δρ (3.453)

for the density perturbations δρ.

As usual in linear stability analysis, we evaluate this equation for a plane wave

δρ = δρ̂ei(kx−ωt) , (3.454)

for which (3.453) turns into

∂t
[(

c2
s k2 − ω2

)
δρ

]
=

(
LVω

2 − LPc2
s k2

)
δρ , (3.455)

which yields the cubic dispersion relation

−iω
(
c2

s k2 − ω2
)

= LVω
2 − LPc2

s k2 . (3.456)

In general, this equation is difficult to solve. In the limiting case of small wave
lengths, c2

s k2 � ω2, we can approximate

iω ≈ LP or ω ≈ −iLP . (3.457)

Then, the density perturbation depends on time as

δρ = δρ̂ e−LPt , (3.458)

hence it grows exponentially if LP < 0. Thermal instability thus sets in on
small scales if

LP =
1
cp

(
∂L
∂T

)
P
< 0 , (3.459)
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i.e. if the cooling function decreases upon temperature increases at constant
pressure. In the opposite limiting case of very large wave length, c2

s k2 � ω2,
the dispersion relation (3.456) demands that

ω ≈ −iLV . (3.460)

Thermal intability then sets in if

LV =
1
cv

(
∂L
∂T

)
ρ

< 0 . (3.461)

The conditions (3.459) and (3.461) show that thermal instability must be ex-
pected if the cooling function decreases upon temperature increases, or in other
words, if higher temperature leads to reduced cooling or conversely if lower
temperature implies enhanced cooling. These conditions are of course quite
intuitive: If a system can cool more efficiently the cooler it gets, or if it can
cool less efficiently the hotter it gets, any small temperature fluctuation can be
expected to grow.

3.6.5 Heat conduction

Since mechanical equilibrium can typically be established much faster than
thermal equilibrium, systems can be in mechanical equilibrium, but out of
thermal equilibrium. Perhaps the most straightforward example is a star which
is being kept in mechanical equilibrium by the balance between gravity and the
pressure gradient, but nonetheless continuously radiates energy. In this case,
a temperature gradient is maintained between the core and the surface by the
central energy production, and the entropy equation reads

ρT
ds
dt

= ~∇ ·
(
κ~∇T

)
+ σi j

∂vi

∂x j
. (3.462)

If the velocity gradient on the right-hand side can be considered too small
to drive any matter currents, the second term on the right-hand side can be
neglected. At constant pressure, we can write the change δq of heat per unit
mass as

δq = cpdT = Tds , (3.463)

which we can solve for the differential

ds = cpd ln T (3.464)

of the specific entropy. This allows us to reduce the entropy equation (3.462) to
read

ρcp
dT
dt

= κ~∇2T . (3.465)

Introducing the transport coefficient χ ≡ κ/(ρcp) for the temperature, we can
re-write the entropy equation as a diffusion equation

dT
dt

= χ~∇2T (3.466)

for the temperature T with the diffusion coefficient χ.
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In close analogy to radiative energy transport, in particular the result (2.484) for
the radiative energy-current density, we now define a conductive opacity κcond
through the conductive energy current

~Fcond = − c
3ρκcond

~∇
(
aT 4

)
= − 4acT 3

3ρκcond
~∇T ≡ −κ~∇T , (3.467)

from which we obtain the relation

κ =
4caT 3

3ρκcond
(3.468)

between the heat conductivity κ and the conductive opacity κcond. If both
radiative and conductive energy transport are present, an effective opacity κeff

can thus usefully be defined by

1
κeff

=
1
κrad

+
1

κcond
⇒ κeff =

κradκcond

κrad + κcond
. (3.469)

?
Why is it useful to define the inverse
of the effective opacity as the sum of
the inverse radiative and conductive
opacities as in (3.469)?3.6.6 Convection

We have just seen that temperature gradients drive energy currents of either by
electromagnetic radiation or heat conduction. If the temperature gradient is too
large, convection sets in. Then, warm, rising bubbles cannot cool sufficiently
and adapt to their environment as they rise. Instead, they remain warmer than
the surrounding medium and continue to rise. We now investigate this situation,
considering a volume V(P, s) of gas characterised by the pressure P and the
specific entropy s as it rises against the gravitational force (Figure 3.17).

T
gr

ad
ie

nt

Figure 3.17 Convection sets in if rising bubbles retain higher entropy than their
environment.

We ignore again thermal compared to mechanical adaptation processes because
they are typically slower. We watch the bubble with volume V(P, s) as it rises by
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Example: Heat conductivity due to electrons

When we discussed the heat conductivity as a phenomenon due to particle
transport, we saw in (3.135) that it can be written as

κ =
nv√

3
cvλ (3.470)

in terms of the mean-free path λ of the fluid particles. If we consider electrons
whose mean free path is determined by scattering off the ions,

λ =
1

niσ
, (3.471)

where ni and σ are the number density of the ions and their scattering cross
section with the electrons.
Typically, an electron will approach an ion up to a distance ri where the kinetic
and potential energies equal,

mv2

2
≈ Ze2

ri
⇒ ri ≈ 2Ze2

mv2 . (3.472)

The cross section for electron-ion scattering can then be crudely approximated
by

σ ≈ πr2
i , (3.473)

and we obtain the expression

κ =
neve√

3
cv

m2
ev

4
e

4πniZ2e4 =
1√
3

(
m2

e

4πZ2e4

) (
ne

ni

)
cvv

5
e (3.474)

for the heat conductivity contributed by electrons scattered by ions.
In a thermal electron gas, the heat capacity at constant volume is cv = 3kB/2
per particle and the thermal electron velocity is

v2
e =

3kBTe

me
. (3.475)

Inserted into (3.474), these results give the heat conductivity

κ =

√
3kB

2

(
m2

e

4πZ2e4

) (
ne

ni

) (
3kBTe

me

)5/2

(3.476)

for classical (non-degenerate) electrons. J
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Example: Heat conductivity due to electrons (continued)

If we identify the Thomson cross section σT here, we can alternatively write

κ =
9kBc
Z2σT

(
ne

ni

) (
kBTe

me

)5/2

, (3.477)

which obviously has the required dimension

[κ] =
erg

cm s K
. (3.478)

Numerically, we find

κ ≈ 9.5 · 1012 Z−2
(
ne

ni

) (
kTe

1 keV

)5/2

. (3.479)

J

an amount ∆z, where its volume after the essentially instantaneous mechanical
adaptation is V ′ = V(P′, s). Having risen, the bubble experiences a buoyancy
force determined by the volume V ′′ = V(P′, s′) which the bubble would adopt
if it had the specific entropy s′ of its new environment. This situation is stable
if the actual bubble volume V ′ = V(P′, s) is smaller than the adapted volume
V ′′ = V(P′, s′), because then gravity will dominate the buoyancy force, and the
bubble will then sink down again. We thus have the condition

V(P′, s′) = V ′′ > V ′ = V(P′, s) (3.480)

for convective stability.

The entropy at the increased height z + ∆z is

s′ = s +
ds
dz

∣∣∣∣∣
z
∆z , (3.481)

and the volume change of the bubble with specific entropy at constant pressure
is

dV =

(
∂V
∂s

)
P

ds = cp

(
∂V
∂s

)
P

dT
T

. (3.482)

In its new environment at increased height z + ∆z with its specific entropy s′,
the bubble thus attains the new volume

V ′′ = V ′ +
(
∂V
∂s

)
P

∆s = V ′ +
(
∂V
∂s

)
P

ds
dz

∣∣∣∣∣
z
∆z . (3.483)

The stability condition (3.480) is thus satisfied if the specific entropy increases
with the height z,

ds
dz

∣∣∣∣∣
z
> 0 . (3.484)

The derivative of the specific entropy with respect to the height z can be ex-
pressed by

ds
dz

=

(
∂s
∂T

)
P

dT
dz

+

(
∂s
∂P

)
T

dP
dz

= cv

[
γ

d ln T
dz
− (γ − 1)

d ln P
dz

]
, (3.485)
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where we have used the partial derivatives (3.246) of the entropy found earlier.
The stability condition (3.484) then shows that the temperature gradient must
satisfy

d ln T
d ln z

>
γ − 1
γ

d ln P
d ln z

(3.486)

for the gas stratification to be unstable against convection. The quantity

γ − 1
γ
≡ ∇ad (3.487)

is often called the adiabatic temperature gradient (“nabla adiabatic”). Using
this, we stability condition is written in the compact form

d ln T
d ln P

≡ ∇ < ∇ad . (3.488)

Once convection sets in, it is a very efficient means of transporting heat, but
viscosity can hinder the convective energy transport.

?
Why is ∇ad from (3.487) called “adi-
abatic” temperature gradient? To see
this, work out

d ln T
d ln P

for an adiabatically stratified gas. 3.6.7 Turbulence

Turbulence is a very rich, important and fascinating field of its own. By no
means can we treat turbulence here in any depth. We confine the discussion here
to one physically and methodically aspect, i.e. the derivation of the Kolmogorov
power spectrum for the scale dependence of energy in subsonic turbulence.

Hydrodynamical flows with large Reynolds numbers turn out to be highly unsta-
ble. For high viscosity (low Reynolds number), stable solutions of the Navier-
Stokes equation exist which develop instabilities above a critical Reynolds
number

R =
uL
ν
& Rcr . (3.489)

A full analysis of such instabilities is very difficult and in general an unsoved
problem. Turbulence sets in, in the course of which energy is being transported
from large to small scales until it is dissipated by the production of viscous
heat on sufficiently small scales. Turbulence can be seen as the transitional
regime between macroscopic, ordered as opposed to microscopic, unordered
or thermal motion. On the macroscopic scale, turbulence is driven by some
stirring mechanism acting on some linear scale. Eddies form on that scale which
feed a cascade of eddies of decreasing size. This proceeds until the smallest
eddies reach a size comparable to the mean-free path of the fluid particles. The
energy fed into the turbulent cascade on the driving scale propagates through
the cascade of eddies and is finally dissipated into heat by dissipation, i.e. by
the viscosity of the fluid.

Let λ be the size of an eddy within the turbulent cascade of the fluid flow, and
vλ the linear velocity that the eddy rotates with. The characteristic time scale of
one turn-over of the eddy is τλ = λ/vλ. Let further ελ be the specific energy, i.e.
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the energy per unit mass characteristic for the material in such an eddy. Then,
the flow of the specific energy through an eddy of the size λ is

ε̇ ≈ dε
dτ
≈

specific energy︷︸︸︷v2
λ

2

 (
λ

vλ

)−1

︸ ︷︷ ︸
inverse time scale

≈ v3
λ

λ
. (3.490)

Let L be the macroscopic length scale on which the energy is being fed into
the turbulent cascade, and u be the typical stirring velocity. From there, the
energy cascades through the turbulent eddies to progressively smaller scales
until it is finally viscously dissipated on a scale λvisc. In between, i.e. on scales
λ satisfying the scale hierarchy

λvisc < λ < L , (3.491)

the energy flow ε̇ must be independent of scale because the energy cannot be
accumulated at any scale in the cascade. Therefore, we conclude from (3.490)
that the typical eddy velocity must change with the eddy scale λ as

vλ ∝ λ1/3 . (3.492)

Together with the boundary condition that the velocity be u on the driving scale
L, we thus expect

vλ ≈ u
(
λ

L

)1/3
. (3.493)

The largest eddies thus rotate with the highest velocities, but the smallest have
the highest vorticity,

Ω ≈ vλ
λ
≈ u
λ

(
λ

L

)1/3
≈ u

(λ2L)1/3 . (3.494)

To estimate the viscous scale λvisc, we compare the viscous dissipation with the
specific energy flow ε̇. The viscous heating rate hvisc can be estimated by the
viscosity times the squared velocity gradient, as can be seen from the dissipation
term on the right-hand side of the Navier-Stokes equation (3.148). Thus,

hvisc ≈ η
(
vλ
λ

)2
≈ η

v3
λ

λ

2/3

λ−4/3 = ηε̇2/3λ−4/3 . (3.495)

Therefore, hvisc is negligibly small on large scales, but if the heating rate
becomes of the order of the energy flow rate,

hvisc ≈ ρε̇ , (3.496)

viscous dissipation begins dominating. According to (3.495), this happens on a
length scale λvisc given by

ηε̇2/3λ−4/3
visc ≈ ρε̇ . (3.497)

Solving for λvisc and inserting ε̇ = u3/L gives

λvisc =

(
ηL1/3

ρu

)3/4

= L
(
ν

uL

)3/4
=

L
R3/4 , (3.498)
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where R is the Reynolds number on the scale L.

Finally, we consider how the specific energy is distributed over scales. Doing
so, we assess how the specific energy scales with the wave number k. Since the
squared velocity scales like λ2/3, its Fourier transform scales like(̂

v2
λ

)
∝ λ3 λ2/3 ∝ λ11/3 ∝ k−11/3 . (3.499)

The number of Fourier modes in shells of width dk is ∝ k2, hence the energy
spectrum as a function of wave number is

E(k) ∝ k2 k−11/3 = k−5/3 . (3.500)

This is the famous energy spectrum derived by Kolmogorov in 1941, showing
how the energy in a turbulent cascade is distributed over scales identified by
their wave number k.

Problems

1. Studying gravity waves, we have solved (3.417) with the implicitly as-
sumed boundary condition f (z) = 0 for z→ −∞. The dispersion relation
(3.418) is thus valid for infinitely deep water.

(a) Derive the solution of (3.417) satisfying the boundary condition
f (z) = 0 at finite depth, z = −h.

(b) Which dispersion relation do you find for water with finite depth?

Suggested further reading: [10, 11, 12, 13, 14, 15, 16, 17]



Chapter 4

Fundamentals of Plasma
Physics and
Magnetohydrodynamics

4.1 Collision-less Plasmas

We begin this chapter on plasma physics and magnetohydrodynamics with a
discussion of Debye shielding, showing that charges embedded in a plasma
have a Yukawa- rather than a Coulomb potential with a characteristic length
scale, the Debye length (4.11), which can be combined with the mean
thermal velocity of the plasma particles to derive the plasma frequency
(4.16).

4.1.1 Shielding and the Debye length

Plasmas are gases whose particles are charged. They typically occur when the
kinetic energies of the gas particles exceed the ionisation energy of the atomic
species they are composed of. The atoms are then partially or fully ionised.
Unless the positive and the negative charges, i.e. the ions and the electrons, are
separated by macroscopic electric fields, the plasma is macroscopically neutral.
In subvolumes of a plasma whose linear dimensions are much larger than the
typical inter-particle separation, there are thus on average as many negative as
positive charges.

For many purposes, a plasma can be treated as a single fluid. This is possible
if not only the mean-free path for collisions between the plasma particles is
much smaller than any macroscopically relevant length scale, but if also the
interactions between the positive and the negative charges are fast enough for
them not to separate on a macroscopic scale. Sometimes, however, the positive
and the negative charges need to be treated as two interacting fluids.

In principle, the electromagnetic interaction between the positive and the nega-
tive charges has an infinite range because the Coulomb force falls off like the
inverse-squared distance from a charge. The Coulomb interaction between its

197
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particles is thus the fundamental difference between plasma physics and the
hydrodynamics of neutral fluids. A treatment of plasmas as fluids, however, re-
quires that collisions between the plasma particles be random, short-ranged and
fast, such that equilibrium can locally be quickly established. This is possible
despite the Coulomb interaction because the existence of two different types of
charge allows shielding on a characteristic length scale which we first want to
work out.

Let the plasma consist of electrons of charge −e and ions of charge Ze. The
spatial number densities of the electrons and the ions be ne and ni, respectively.
We begin with a macroscopically neutral plasma with negative charge density
−ene and positive charge density Zeni. For the plasma to be neutral, the number
densities must be related by

Zeni = ene ⇒ ni =
ne

Z
. (4.1)

Suppose now we place a point charge q at the (arbitrary) origin into the plasma.
This point charge will displace the positive and negative plasma charges to
some degree and thereby change their number densities locally. If q is positive,
as we shall assume without loss of generality, ni will be lowered in its immedi-
ate neighbourhood, while ne will be slightly increased there compared to the
equilibrium densities of the electrons and the ions given by (4.1). The local
imbalance between the positive and the negative charge distributions will create
an electrostatic potential Φ different from zero.

The thermal motion of the plasma particles will counteract their displacement.
In presence of an electrostatic potential, the particles will rearrange such as to
minimise their potential energies ZeΦ and −eΦ. The unperturbed equilibrium
densities n̄e for the negative charges and n̄i = n̄e/Z for the positive charges will
thus be modified by a Boltzmann factor and read

ni =
n̄e

Z
exp

(
ZeΦ

kBT

)
, ne = n̄e exp

(
− eΦ

kBT

)
. (4.2)

The potential Φ is determined by the Poisson equation

~∇2Φ = 4π (Zeni − ene) + 4πqδD
(
~x
)

= 4πn̄ee
[
exp

(
ZeΦ

kBT

)
− exp

(−eΦ

kBT

)]
+ 4πqδD

(
~x
)

(4.3)

together with the boundary condition that Φ→ 0 far away from the point charge.
On the right-hand side of the Poisson equation, the point charge q appears at
the coordinate origin in addition to the plasma charges. If q is not too large and
the plasma is not very cold, it is appropriate to assume

eΦ

kBT
� 1 ,

ZeΦ

kBT
� 1 (4.4)

and to Taylor-expand the exponentials in (4.3) to first order. This leads us to the
approximate Poisson equation

~∇2Φ = 4π(Z + 1)
n̄ee2

kBT
Φ + 4πqδD

(
~x
)
, (4.5)
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which is most easily solved after transforming it into Fourier space. Introducing
the Debye wave number

k2
D = 4π

n̄ee2

kBT
, (4.6)

we can write the Fourier-transformed Poisson equation as

Φ̂(k) = − 4πq
(Z + 1)k2

D + k2
. (4.7)

Caution The approximate Pois-
son equation (4.5) is an inhomoge-
neous Helmholtz equation. JThis is straightforwardly transformed back into real space because Φ̂(k) depends

on the wave number only, but not on the direction of the wave vector. The
angular integrations in the inverse Fourier transform first give

Φ(r) = 2π
∫ ∞

0

k2dk
(2π)3 Φ̂(k)

∫ 1

−1
d cos θ eikr cos θ

= 4π
∫ ∞

0

k2dk
(2π)3 Φ̂(k)

sin(kr)
kr

. (4.8)

With the help of the definite integral∫ ∞

0
dx

x sin(αx)
β2 + x2 =

π

2
e−αβ , (4.9)

the remaining k integration in (4.9) over the potential (4.7) can now directly be
carried out to give

Φ(r) = −q
r

exp
(
−
√

Z + 1kDr
)
. (4.10)

?
How could you prove (4.9)?

By the presence of the plama charges, the Coulomb potential of the point
charge q is thus changed to a Yukawa potential (Figure 4.1) which decreases
exponentially on the typical length scale

λD = k−1
D =

(
kBT

4πn̄ee2

)1/2

. (4.11)

Notice that λD does not depend on the charge q placed into the plasma! This is
the Debye length, which gives the characteristic length scale for the shielding
of an arbitrary charge in an otherwise neutral plasma (Figure 4.2a).

A plasma is called ideal if it contains many particles in a volume given by
the cubed Debye length. Then the interaction energy between positive and
negative charges is small compared to their thermal energy; in other words,
the electrostatic interactions affect the thermal motion of the plasma particles
only very weakly. To see this, we compare the mean potential energy Ze2/r̄ of
an electron in the Coulomb field of an ion with its kinetic energy 3kBT/2 in
thermal equilibrium.

The mean separation r̄ between the particles is determined by

4π
3

r̄3n̄e ≈ 1 ⇒ r̄ ≈
(

3
4πn̄e

)1/3

. (4.12)
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Figure 4.1 A point charge in a plasma rearranges the surrounding charges. Its
electrostatic potential is shielded and thus exponentially cut off.

The ratio between the electrostatic interaction energy and the thermal energy is
thus (Figure 4.2b)

Ze2

kBT

(
4πn̄e

3

)1/3

= Z
4πn̄ee2

3kBT

(
3

4πn̄e

)2/3

=
Z
3

r̄2

λ2
D

, (4.13)

which is much less than unity if the Debye length greatly exceeds the mean
inter-particle separation r̄. For an ideal plasma, we can thus assume r̄ � λD by
definition.
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Figure 4.2 The Debye wavelength λD in centimetres (left panel) and the ratio
between the electrostatic and the thermal energies (right panel) are shown as
functions of the plasma temperature T and the mean electron number density n̄e.
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4.1.2 The plasma frequency

By the equipartition theorem from statistical physics, the mean-squared thermal
velocity of the plasma electrons in one spatial direction is

〈
v2

〉
=

kBT
me

(4.14)

if they are in thermal equilibrium with a plasma at temperature T . A plasma
electron thus moves by the Debye length in a mean time interval of

tD =
λD〈
v2〉1/2 =

√
kBT

4πn̄ee2

me

kBT
=

√
me

4πn̄ee2 . (4.15)

This sets the time scale on which the thermal motion of the electrons can
compensate charge displacements by shielding. This characteristic reaction
time tD of the plasma can be transformed into a characteristic frequency,

ωp =
1
tD

=

√
4πn̄ee2

me
≈ 5.6 · 104 Hz

( n̄e

cm−3

)1/2
, (4.16)

called the plasma frequency. External changes applied to the plasma with
frequencies higher than the plasma frequency, for example by an incident elec-
tromagnetic wave, are too fast for the plasma particles to adapt and rearrange,
while changes with lower frequency can be accommodated. With the Debye
length λD and the plasma frequency ωp, we now have two essential parameters
at hand for describing plasmas.

Problems

1. Solve the Poisson equation (4.5) directly, i.e. without transforming into
Fourier space. Hint: Solve the homogeneous equation first, introducing
spherical polar coordinates. Then solve the inhomogeneous equation by
variation of constants. For solving the homogeneous equation, try the
ansatz

Φ(r) = Φ0(αr)n exp(−αr) (4.17)

and see whether a suitable exponent n can be found.

4.2 Electromagnetic Waves in Media

This section is a recollection of electrodynamics in media, introducing the
dielectric displacement ~D, the polarisation ~P and the dielectric tensor ε.
For later convenience, we decompose in (4.37) the dielectric tensor into its
components parallel and perpendicular to the propagation direction of elec-
tromagnetic waves and define the longitudinal and transverse dielectricities
in (4.40).
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4.2.1 Polarisation and dielectric displacement

An important part of plasma physics concerns the propagation of electromag-
netic waves through plasmas. There, Maxwell’s vacuum equations in vacuum
no longer hold because the plasma as a medium reacts to the presence of elec-
tromagnetic fields, and thereby alters them. While the homogeneous Maxwell
equations remain unchanged, the inhomogeneous equations change due to
the appearance of charges and currents that only appear because the external
electromagnetic fields act on the charges and possible magnetic dipoles of the
medium.

Recall that electric and magnetic fields are defined by forces on test charges
and test-current loops. Such test systems are idealisations whose own, intrinsic
fields are so small that the fields can be considered unchanged that are supposed
to be measured. The electric force experienced by a test charge embedded in a
medium is expressed by the dielectric displacement ~D instead of the electric
field ~E, while a test-current loop in the medium experiences a magnetic force
expressed by the magnetic field strength ~H instead of the magnetic field ~B.

Considering the linearity of Maxwell’s equations, it is natural to assume that ~D
and ~H be linearly related to ~E and ~B, respectively. We thus adopt the common
linear relations

~D = ε~E , ~B = µ ~H , (4.18)

where the dielectricity ε and the magnetic permeability µ appear. In the Gaus-
sian system of units, ~D and ~H are defined such that ε and µ of the vacuum are
unity. Even though the relations (4.18) appear very simple, several complica-
tions may arise. First, ε and µ may depend on space and time. Second, they
may be tensors if the medium has preferred spatial directions imprinted, such
as the principal axes of a crystal or the magnetic field lines in a magnetised
plasma. Then, not only the magnitudes of ~D and ~H may differ from those of ~E
and ~B, but also their directions if the principal axes of the ε and µ tensors are
misaligned with ~E and ~B.

?
Can you construct an (artificial) di-
electric tensor ε such that ~D is per-
pendicular to ~E? In what follows, we shall generally consider astrophysical media whose parti-

cles have no relevant magnetic moments. Then, external magnetic fields will
neither be dimished nor strengthened by macroscopically aligned, microscopic
magnetic dipoles, the medium will not respond to the presence of an external
magnetic field, and we can identify ~B with ~H, adopting µ = 1. We shall thus
only consider the response of the medium to external electric fields in the
following.

External electric fields ~E polarise media, i.e. they slightly displace the positive
and negative charges of the microscopic constituents of these media. To lowest,
but sufficient order in a multipole expansion, these charge displacements can be
described by electric dipole moments. When macroscopically averaged over
scales large compared to the individual particles, but small compared to the
overall dimensions of the complete medium, these microscopic dipoles can be
linearly superposed to form the macroscopic polarisation ~P, which counteracts
the external electric field ~E. The divergence of the polarisation corresponds to a
polarised charge density ρpol, defined by

ρpol = −~∇ · ~P . (4.19)
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Inside the medium, this polarised charged density must be added to any free
charge density ρ that may additionally be present. The Maxwell equation for an
electric field in vacuum, ~∇ · ~E = 4πρ, must now be augmented by the polarised
charge density ρpol,

~∇ · ~E = 4π
(
ρ + ρpol

)
= 4πρ − 4π~∇ · ~P . (4.20)

As discussed before, the dielectric displacement, ~D ≡ ~E + 4π~P, is introduced as
an auxiliary field describing the response of the medium to an external electric
field. Its sources are the free charges only,

~∇ · ~D = 4πρ , (4.21)

excluding any charges ρpol that are exclusively caused by polarisation of other-
wise neutral microscopic particles.

Charge conservation, expressed by the continuity equation for the charge density,
must also apply to the polarised charge density,

∂ρpol

∂t
+ ~∇ · ~jpol = 0 . (4.22)

If we substitute (4.19) here, we find the current density jpol caused by changes
of the polarisation with time,

~∇ ·
−∂~P

∂t
+ ~jpol

 = 0 or ~jpol =
∂~P
∂t

, (4.23)

where the final step assumes that jpol is curl-free. This current density needs to
be added to the current density ~j of the free charges. The induction equation
then reads

~∇ × ~B =
1
c
∂~E
∂t

+
4π
c

(
~j + ~jpol

)
=

1
c

∂~E
∂t

+ 4π
∂~P
∂t

 +
4π
c
~j (4.24)

and can be brought into the form

~∇ × ~B =
1
c
∂t ~D +

4π
c
~j : (4.25)

In a medium, it is not the time derivative of the electric field, but of the dielectric
displacement that creates the curl of the magnetic field together with the current.
Equations (4.21) and (4.25) replace the previous inhomogeneous Maxwell
equations for the divergence of the electric field ~E and the curl of the magnetic
field ~B.

In the following, we shall assume macroscopically neutral media in which the
free charge density vanishes, ρ = 0. This does not necessarily imply that there
could be no macroscopic currents. In fact, the free current density ~j may differ
from zero. We shall further assume that the microscopic constituents of the
media have no net magnetic moment, allowing us to neglect any distinction
between ~B and ~H. In such media, Maxwell’s equations then read

~∇ · ~D = 0 , ~̇D + 4π~j = c~∇ × ~H , ~̇B = −c~∇ × ~E , ~∇ · ~B = 0 , (4.26)
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augmented by the linear relations

~D = ε~E , ~j = σ~E (4.27)

between ~D, ~E and ~j, where the dielectricity ε and the conductivity σ may be
tensors. For the time being, we shall neglect free currents, setting ~j = 0. Later
on, in magnetohydrodynamics, we shall have to take them into account.

4.2.2 Structure of the dielectric tensor

The dielectric displacement ~D may be delayed with respect to the external field
~E, and it may propagate through the medium. The dielectric displacement
~D(t, ~x) at a time t and a place ~x may thus depend on the electric field ~E(t′, ~x ′) at
an earlier time t′ < t and another place ~x ′. The dielectric displacement would
then be determined by a convolution of the electric field with a suitable kernel
because they must still be related in a linear way. Since convolutions are multi-
plications in Fourier space, it is thus reasonable to begin with a multiplicative
ansatz in Fourier space.

Second, the medium itself may have a preferred direction. This could be a
crystal axis or the local direction of a magnetic field. Then, ~D does no longer
need to be colinear with ~E, but may point into a different direction. Such a
change of orientation can be expressed by introducing a dielectric tensor instead
of a dielectric constant.

Taking these two arguments together, we begin with

~̂D
(
ω,~k

)
= ε̂

(
ω,~k

)
~̂E
(
ω,~k

)
, (4.28)

defining the dielectric tensor ε̂(ω,~k ) as a function of frequency ω and wave
vector ~k. Since the fields must remain real in configuration space (t, ~x ), the
dielectric tensor must satisfy the symmetry relation

ε̂
(
−ω,−~k

)
= ε̂∗

(
ω,~k

)
(4.29)

in Fourier space (ω,~k ).

If the medium, in our case the plasma, does not imprint a specific direction,
the only vector that can be used to span the tensor ε̂i

j is the wave vector ~k of
an incoming electromagnetic wave itself. We introduce a unit vector k̂ in the
direction of ~k by k̂ = ~k/k and begin with the ansatz

ε̂
(
ω,~k

)
= Â13 + B̂ k̂ ⊗ k̂ (4.30)

with functions Â(ω, k) and B̂(ω, k) that may depend on the frequency ω and
the wave number k. That is, we linearly compose the dielectric tensor ε̂ of
the unit tensor and the tensor k̂ ⊗ k̂, the only basis tensors we have available
here (Figure 4.3). Notice that the tensor ε̂ defined this way is symmetric. In
particular, this means that ~D and ~E can be multiplied in a symmetric scalar
product,

~̂D · ~̂E = ~̂E >ε̂ ~̂E . (4.31)
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If we had reasons to believe that ε̂ should contain an antisymmetric part, this
could be supplied by adding a contribution proportional to the Levi-Civita
tensor, e.g. of the form

εi jkk̂k . (4.32)

δi j − k̂ik̂ j

δi j

Figure 4.3 The direction of the wave vector ~k itself defines the structure of the
dielectric tensor, if no other preferred directions are defined in the plasma.

Obviously, since ~k · k̂ = ~k 2/k = k, the expression(
k̂ ⊗ k̂

)
~k =: π‖~k = ~k (4.33)

is parallel to ~k, while (
13 − k̂ ⊗ k̂

)
~k =: π⊥~k = ~k − ~k = 0 (4.34)

vanishes and is thus perpendicular to ~k. The tensors π‖ and π⊥ with the compo-
nents

π‖ = k̂ ⊗ k̂ and π⊥ = 13 − k̂ ⊗ k̂ = 13 − π‖ (4.35)

are generally convenient projectors for vector components parallel and perpen-
dicular to the direction k̂ satisfying

π2
‖ = π‖ , π2

⊥ = π⊥ , π‖π⊥ = 0 = π⊥π‖ . (4.36)

?
As remarked before, projections
need to be idempotent, in the present
case π2

‖ = π‖ and π2⊥ = π⊥. Confirm
and interpret equations (4.36) geo-
metrically.

We can use them we split the tensor ε̂ into a transversal and a longitudinal part,

ε̂ = ε̂⊥π⊥ + ε̂‖π‖ , (4.37)

where the transversal and the longitudinal dielectricities ε̂⊥ and ε̂‖ were defined.
These are related to the functions Â and B̂ introduced in (4.30) above by Â = ε̂⊥
and B̂ = ε̂‖ − ε̂⊥. Of course, ε̂⊥ and ε̂‖ are generally functions of ω and k which
also need to satisfy the symmetry condition (4.29),

ε̂⊥,‖(−ω, k) = ε̂∗⊥,‖(ω, k) . (4.38)

Contracting (4.37) with either of the projection tensors π⊥ or π‖, and using that
their traces are

Tr π⊥ = 2 and Tr π‖ = 1 , (4.39)
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we can project the longitudinal and transverse dielectricities out of the dielectric
tensor,

ε̂⊥ =
1
2

Tr π⊥ε̂ and ε̂‖ = Tr π‖ε̂ . (4.40)

Notice explicitly that we have neglected in this decomposition of the dielectric
tensor ε̂i j(ω,~k ) that preferred macroscopic directions may exist in the plasma,
e.g. due to magnetic fields ordered on large scales. If they exist, they must also
be built into the dielectric tensor.

?
Why is there a factor of 1/2 in the
expression for ε̂⊥ in (4.40)?

Problems

1. In media, the electric and magnetic fields ~E and ~B in Maxwell’s inho-
mogeneous equations need to be replaced according to (4.18), while
Maxwell’s homogeneous equations remain unchanged.

(a) From Maxwell’s equations in media and Ohm’s law ~j = σ~E, derive
the telegraph equation

~∇2 ~E − εµ
c2 ∂

2
t
~E =

4πσµ
c2 ∂t ~E . (4.41)

Assume plane-wave solutions for ~E and derive the dispersion rela-
tion for waves in media.

(b) From the equation of motion

d~v
dt

=
e
m
~E − ~v

τ
(4.42)

for the electrons, containing a damping term with a characteris-
tic collision time τ, derive an equation for the current density ~j.
Assume harmonic time dependence of ~E and ~j and identify the
conductivity

σ =
ne2

m
τ

1 − iωτ
. (4.43)

(c) Combine the results from the preceding subproblems, assume µ = 1
and ωτ � 1 and identify the plasma frequency ωp. What does the
limit ωτ � 1 mean?

4.3 Dispersion Relations

We proceed in this section by deriving the general expression (4.51) for
the dispersion relation of electromagnetic waves in a plasma, which we
split into the two dispersion relations (4.53) and (4.54) for transverse and
longitudinal waves. By a perturbative analysis of the one-particle phase-
space distribution of the plasma charges and its evolution equation, we
derive the models (4.69) and (4.69) for the longitudinal and the transverse
dielectricity. We conclude by deriving the Landau damping rate (4.87) of
longitudinal waves.



4.3 Dispersion Relations 207

4.3.1 General form of the dispersion relations

The dielectric tensor determines which kinds of electromagnetic wave can
propagate through the plasma. The conditions for propagating waves are given
by dispersion relations, which relate the frequency ω to the wave vector ~k.
Recall that the dispersion relation for electromagnetic waves in vacuum is
c2ω2 = ~k 2. Based on our ansatz for the dielectric tensor and its decomposition
into a longitudinal and a transversal part, we shall now derive the dispersion
relations for electromagnetic waves propagating through a plasma.

We begin as usual by decomposing the incoming waves into plane waves with
a phase factor exp[i(~k · ~x − ωt)]. When applied to plane waves, Maxwell’s
equations (4.26) in a medium read

~k × ~̂E =
ω~̂B
c

, ~k × ~̂B = −ω
~̂D

c
,

~k · ~̂D = 0 , ~k · ~̂B = 0 , (4.44)

if we neglect any free charge densities and currents. Combining the curl of the
first equation (4.44) with the second yields

~k ×
(
~k × ~̂E

)
=
ω

c
~k × ~̂B = −ω

2

c2
~̂D . (4.45)

If we expand the double vector product, we see that the dielectric displacement
vector must satisfy the equation

ω2

c2
~̂D = k2 ~̂E − ~k

(
~k · ~̂E

)
. (4.46)

We now introduce the dielectric tensor by substituting ~̂D = ε̂ ~̂E and find

ω2

c2 ε̂
~̂E = k2 ~̂E −

(
~k ⊗ ~k

)
~̂E = k2

(
13 − k̂ ⊗ k̂

)
~̂E (4.47)

or, after dividing by k2 and rearranging,(
13 − k̂ ⊗ k̂ − ω2

c2k2 ε̂

)
~̂E =

(
π⊥ − ω2

c2k2 ε̂

)
~̂E = 0 . (4.48)

This is a linear equation with the expression in parentheses representing a
square, 3× 3 matrix. Equation (4.48) has non-trivial solutions ~̂E , 0 if and only
if the determinant of this matrix vanishes,

det
(
π⊥ − ω2

c2k2 ε̂

)
= 0 . (4.49)

This is the general form of the dispersion relation between the frequency ω and
the wave vector ~k for electromagnetic waves that can propagate through the
plasma.

It is now convenient to insert the decomposition (4.37) of the dielectric tensor
and to rewrite the matrix in (4.48) such that its transverse and longitudinal
components are grouped together. This results in[(

1 − ω2

c2k2 ε̂⊥
)
π⊥ − ω2

c2k2 ε̂‖π‖
]
~̂E = 0 (4.50)
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and the form

det
[(

1 − ω2

c2k2 ε̂⊥
)
π⊥ − ω2

c2k2 ε̂‖π‖
]

= 0 (4.51)

of the dispersion relation.

4.3.2 Transversal and longitudinal waves

We expect that the last condition (4.51) defines more than one dispersion
relation because the dielectric tensor ε̂ has a longitudinal and a transversal
part. In contrast to electromagnetic waves in vacuum, which are exclusively
transversal, longitudinal as well as transversal electromagnetic waves may occur
in media.

For transversal waves, the projection of ~̂E on ~k vanishes, π‖ ~̂E = 0, while

π⊥ ~̂E = ~̂E. The matrix equation (4.50) then reduces to the simpler equation(
1 − ω2

c2k2 ε̂⊥
)
~̂E = 0 , (4.52)

which implies the dispersion relation

ω2 =
c2k2

ε̂⊥
. (4.53)

This recovers the usual result that transversal electromagnetic waves propagate
in a medium with a reduced velocity cε̂−1/2

⊥ .

Caution Note that, according to
the dispersion relation (4.53), the re-
fractive index

n⊥ = ε̂1/2
⊥

for transversal electromagnetic
waves can be assigned to a
magnetised plasma. J

For longitudinal waves, π⊥ ~̂E = 0 and π‖ ~̂E = ~̂E, and the matrix equation (4.50)
is reduced to

ω2

c2k2 ε̂‖
~̂E = 0 . (4.54)

Generally, this requires that the longitudinal dielectricity itself must vanish,
ε̂‖ = 0. In order to understand this condition, we first need to determine the
form of the longitudinal and transversal dielectricities, ε̂‖ and ε̂⊥.

4.3.3 Longitudinal and transversal dielectricities

In order to determine the form of ε̂‖ and ε̂⊥, we invoke the collision-less Boltz-
mann equation to study the response of the plasma particles to the incoming
electromagnetic wave. We neglect the motion of the ions because of their lower
velocities and concentrate on the plasma electrons. Before the electromagnetic
wave arrives, the phase space density is assumed to have attained an equilibrium
value f0 which is then slightly perturbed by the wave,

f = f0 + δ f . (4.55)

This expresses our expectation that sufficiently weak fields ~E and ~B will perturb
the phase-space distribution function only by a small amount away from the
equilibrium distribution f0. Inserting the perturbation ansatz (4.55) into the



4.3 Dispersion Relations 209

Boltzmann equation, subtracting the pure equilibrium terms and dropping terms
of second order in the perturbation then gives

∂δ f
∂t

+~v · ~∇δ f − e
(
~E +

~v

c
× ~B

)
· ∂ f0
∂~p

= 0 , (4.56)

where~v and ~p are the equilibrium plasma velocity and momentum. For a locally
isotropic distribution f0, we must further have

∂ f0
∂~p
‖ ~v (4.57)

because no other preferred directions can be present. Thus(
~v × ~B

)
· ∂ f0
∂~p

= 0 , (4.58)

and Boltzmann’s equation in linear approximation shrinks to

∂δ f
∂t

+~v · ~∇δ f = e~E · ∂ f0
∂~p

. (4.59)

We now decompose the incoming electric field into plane waves with a phase
factor exp[i(~k ·~x−ωt)] and assume that the phase-space distribution will respond
in form of plane waves with equal phase. Then, (4.59) turns into the algebraic
equation

− iωδ f + i~v · ~kδ f = e~E · ∂ f0
∂~p

, (4.60)

which can be solved for the perturbation δ f of the phase-space distribution,

δ f = − ie~E
~k ·~v − ω

· ∂ f0
∂~p

. (4.61)

If the equilibrium distribution f0 is locally homogeneous, isotropic and station-
ary, charge and current densities are exclusively caused by the perturbations
δ f of f0. Therefore, the polarised charge density ρpol and the polarised current
density ~jpol are

ρpol = −e
∫

d3 p δ f , ~jpol = −e
∫

d3 p δ f~v . (4.62)

These quantities are then also proportional to the same phase factor exp[i(~k · ~x−
ωt)], and the polarisation equations (4.19) and (4.23) can be written in the form

i~k · ~̂P = −ρ̂pol , −iω~̂P = ~̂jpol . (4.63)

We take the second of these equations and insert δ f from (4.61) to find first

− iω~̂P = ie2
∫

d3 p
~v

~k ·~v − ω
∂ f0
∂~p
· ~̂E . (4.64)

Since at the same time we have to satisfy the general relation

4π~̂P = ~̂D − ~̂E = (ε̂ − 13) ~̂E , (4.65)
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we can directly read the dielectric tensor ε̂ off (4.64),

ε̂ = 13 − 4πe2

ω

∫
d3 p

~v

~k ·~v − ω
⊗ ∂ f0
∂~p

. (4.66)

By means of the projection tensors, we can now project out the longitudinal
and transversal components of the dielectric tensor, as shown in (4.40). In this
way, we first find the longitudinal dielectricity

ε̂‖ = Tr π‖ε̂ = 1 − 4πe2

ωk2

∫
d3 p

~k ·~v
~k ·~v − ω

∂ f0
∂~p
· ~k . (4.67)

Noticing that
~k ·~v

~k ·~v − ω
= 1 +

ω

~k ·~v − ω
, (4.68)

and integrating once by parts, we can bring this expression into the form

ε̂‖ = 1 − 4πe2

k2

∫
d3 p

1
~k ·~v − ω

∂ f0
∂~p
· ~k . (4.69)

The transverse dielectricity is

ε̂⊥ =
1
2

Tr π⊥ε̂ = 1 − 2πe2

ω

∫
d3 p

1
~k ·~v − ω

∂ f0
∂~p⊥

·~v⊥ , (4.70)

where the perpendicular velocity ~v⊥ and the perpendicular momentum ~p⊥ are
defined by

~v⊥ = π⊥~v = ~v −
(
k̂ ·~v

)
k̂ , ~p⊥ = m~v⊥ . (4.71)

?
Beginning with (4.66), confirm the
expressions (4.69) and (4.69) for the
transverse and longitudinal dielec-
tric tensors. 4.3.4 Landau Damping

Before we proceed to calculate the longitudinal and the transversal dielectricities
for the special, but frequent case of a thermal plasma, we consider longitudinal
waves in particular and identify an interesting damping process.

Because of the pole at ~k · ~v = ω, the longitudinal dielectricity ε̂‖ has a real
and an imaginary part. The latter is responsible for damping of the incoming
waves because it leads to an imaginary frequency. As we shall see, this damping
process dissipates the incoming electromagnetic energy. To begin with, we note
that the energy dissipation Q rate has two contributions, one from the damping
of the electromagnetic waves and the associated decrease of the electromagnetic
field energy density, and another from the Ohmic heating,

Q =
∂

∂t

 ~E 2

8π

 + ~E · ~jpol . (4.72)

In absence of any current of the free charges, the current density is solely the
polarisation current defined by the continuity equation (4.22) and related to the
polarisation change by (4.23). We can thus continue calculating the dissipation
as

Q =
~E · ~̇E
4π

+ ~E · ~̇P =
~E

4π

(
~̇E + 4π~̇P

)
=
~E · ~̇D
4π

. (4.73)
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Notice that the electromagnetic field, the dielectric displacement and the po-
larisation do not wear hats here: They are to be taken as functions of ~x and t
here.

We now consider the contribution of an individual plane wave characterised by
frequency ω and wave number ~k to the dissipation Q, i.e. we insert

~E = ~̂E ei
(
~k·~x−ωt

)
, ~D = ~̂D ei

(
~k·~x−ωt

)
(4.74)

into (4.73). The dissipation Q resulting therefrom will thus be the dissipation
per Fourier mode (ω,~k ). Since we should finally arrive at a real expression for
Q, we replace ~E by (~E + ~E∗)/2 to obtain its real part, and likewise for ~D by
(~D + ~D∗)/2. Furthermore, since ~̂D = ε̂‖ ~̂E for longitudinal waves, we can write

~̂D = ε̂‖ ~̂E → 1
2

(
ε̂‖ ~̂E + ε̂∗‖ ~̂E

∗
)
. (4.75)

Inserting these expressions for ~E and ~D into Q from (4.73) gives

Q = − iω
16π

(
~E + ~E∗

) (
ε̂‖ ~E − ε̂∗‖ ~E∗

)
, (4.76)

where the minus sign in the second factor comes from the change in sign
in the phase factor exp[i(~k · ~x − ωt)] due to the complex conjugation of the
dielectric displacement. Averaging the dissipation (4.76) over time eliminates
the products ~E · ~E and ~E∗ · ~E∗ because they vary with the phase factor like
exp(−2iωt), while the mixed terms become independent of time. Thus, the
time-averaged dissipation is

〈Q〉 = − iω
16π

(
ε̂‖ ~̂E · ~̂E∗ − ε̂∗‖ ~̂E∗ · ~̂E

)
= − iω

16π

(
ε̂‖ − ε̂∗‖

) ∣∣∣∣ ~̂E ∣∣∣∣2 . (4.77)

The remaining expression in brackets is twice the imaginary part of the longitu-
dinal dielectricity ε̂‖,

ε̂‖ − ε̂∗‖ = 2i Im ε̂‖ , (4.78)

and thus we find
〈Q〉 =

ω

8π
Im ε̂‖

∣∣∣∣ ~̂E ∣∣∣∣2 . (4.79)

The imaginary part of ε̂‖ can be obtained from (4.71). In order to avoid the pole
in the integrand there, we shift it away from the real axis by a small amount δ,

1
~k ·~v − ω

→ 1
~k ·~v − ω − iδ

, (4.80)

and then take the imaginary value

Im
1

~k ·~v − ω − iδ
= Im

~k ·~v − ω + iδ(
~k ·~v − ω

)2
+ δ2

=
δ(

~k ·~v − ω
)2

+ δ2
. (4.81)

In the limit δ→ 0, this turns into π times a Dirac delta function,

lim
δ→0

δ(
~k ·~v − ω

)2
+ δ2

= πδD
(
~k ·~v − ω

)
. (4.82)
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This can be seen by verifying that the limit satisfies the two defining criteria of
a δ function,

lim
δ→0

δ

π
(
x2 + δ2) = 0 (x , 0) (4.83)

and

lim
δ→0

∫ R

−R

δ

π
(
x2 + δ2)dx =

2
π

lim
δ→0

arctan
R
δ

= 1 . (4.84)

Without loss of generality, we now rotate the coordinate frame such that the
x axis aligns with the wave vector ~k. We further integrate the one-particle
phase-space distribution function f0 over the momentum components py and pz

and define
f̄ (px) =

∫
dpy

∫
dpz f0

(
~p
)
. (4.85)

The imaginary part of the longitudinal dielectricity ε̂‖ can then be written as

Im ε̂‖ = −4π2e2

k2

∫
dpx k

d f̄
dpx

δD (kvx − ω)

= −4π2e2me

k2

d f̄
dpx

∣∣∣∣∣∣
px=ωm/k

, (4.86)

and the mean dissipation rate turns into

〈Q〉 = −
∣∣∣∣ ~̂E ∣∣∣∣2 πme2ω

k2

d f̄
dpx

∣∣∣∣∣∣
px=ωm/k

. (4.87)

This is Landau damping, which is caused by the fact that electrons which are
slightly faster than the wave are slowed down, electrons which are slightly
slower than the wave are accelerated, and since the velocity distribution is
typically monotonically decreasing, more electrons need to be accelerated than
decelerated, and thus the wave loses energy.

Problems

1. Landau damping in a thermal plasma:

(a) Evaluate the mean energy dissipation rate 〈Q〉 due to Landau damp-
ing for waves propagating through a thermal plasma, assuming (as
will be shown in the next section) that longitudinal waves with the
plasma frequency can propagate.

(b) Estimate a time scale for Landau damping of a longitudinal wave
in a thermal plasma, depending on its wavelength.

4.4 Electromagnetic Waves in Thermal Plasmas

In this section, we evaluate the microscopic models for the longitudinal
and the transverse dielectricities from the preceding section for a thermal
plasma. This leads us to the expressions (4.101) and (4.102), giving the two
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dielectricities in terms of the plasma dispersion function. From appropriate
expansions of this function, approximations to the dispersion relations for
frequencies low and high compared to the plasma frequency are derived.
The section ends with a discussion of dispersion and damping of transversal
waves propagating through a plasma, leading to the definition (4.115) of the
dispersion measure.

4.4.1 Longitudinal and transversal dielectricities

In a thermal plasma with temperature T , the equilibrium phase-space distribu-
tion f0 of the electrons can be assumed to be a Maxwellian,

f0
(
~p
)

=
n̄

(2πσ2)3/2 e−p2/(2σ2) , σ =
√

mekBT . (4.88)

With this specific choice, the integrals in the longitudinal and the transversal
dielectricities, (4.69) and (4.70) respectively, can be worked out.

Without loss of generality, we can first conveniently rotate the coordinate frame
such that ~k points into the positive ~x direction. Then, ~v⊥ falls into the y-z plane.
Since the derivative of f0 with respect to any momentum component pi is

∂ f0
(
~p
)

∂pi
= − pi

σ2 f0
(
~p
)
, (4.89)

the remaining integrals in (4.69) and (4.70) read∫
d3 p~k · ∂ f0

∂~p
1

~k ·~v − ω
= −

∫
d3 p

kpx

σ2 f0(~p )
1

kpx/m − ω (4.90)

and∫
d3 p~v⊥ · ∂ f0

∂~p⊥
1

~k ·~v − ω
= − 1

m

∫
d3 p

p2
y + p2

z

σ2 f0(~p ) .
1

kpx/m − ω . (4.91)

The integrations over py and pz in (4.91) and (4.91) can immediately be carried
out, resulting in∫

d3 p~k · ∂ f0
∂~p

1
~k ·~v − ω

= − n̄
(2πσ2)1/2

k
σ2

∫ ∞

−∞
dpx

px e−p2
x/(2σ

2)

kpx/m − ω (4.92)

and ∫
d3 p~v⊥ · ∂ f0

∂~p⊥
1

~k ·~v − ω
= − 2n̄

(2πσ2)1/2m

∫ ∞

−∞
dpx

e−p2
x/(2σ

2)

kpx/m − ω . (4.93)

To simplify the remaining integrals in (4.92) and (4.93), we introduce the
dimension-less momentum component

t :=
px√
2σ

(4.94)

and the dimension-less frequency

y =
mω√
2kσ

=
ω

ωth
with ωth :=

√
2kσ
m

= k

√
2kBT

m
(4.95)
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to bring (4.92) and (4.93) into the forms∫
d3 p~k · ∂ f0

∂~p
1

~k ·~v − ω
=

n̄
(2πσ2)1/2

√
2m
σ

∫ ∞

−∞
dt

t e−t2

y − t
(4.96)

and ∫
d3 p~v⊥ · ∂ f0

∂~p⊥
1

~k ·~v − ω
=

2n̄
(2πσ2)1/2k

∫ ∞

−∞
dt

e−t2

y − t
. (4.97)

?
Since the integrands in (4.96) and
(4.97) are singular at t = y, it re-
mains to be shown that the integrals
exist at all. How could you achieve
this?

Before we can gain further insight into expressions like (4.96) and (4.97), we
need to carefully evaluate the integrals appearing there because the integrands
have a pole on the t axis at t = y. These integrals can be solved by continuing
the integrand into the complex plane, t → z ∈ C, and then using the residue
theorem from the theory of complex functions. Before doing so, we rewrite the
integral in (4.96) as∫ ∞

−∞
dz

z e−z2

y − z
= −

∫ ∞

−∞
dz

(z − y + y) e−z2

z − y = −√π + y

∫ ∞

−∞
dz e−z2

y − z
. (4.98)

The remaining integral is given by the so-called Faddeeva function w(z) which,
for a positive imaginary part of z, has the integral representation

w(z) =
i
π

∫ ∞

−∞
e−t2

z − t
dt . (4.99)

If we choose the imaginary part of y to be arbitrarily small, we may thus express
the integral from (4.96) by∫ ∞

−∞
dt

t e−t2

y − t
= −√π − iπyw(y) = −√π [

1 + yZ(y)
]

with

Z(y) := i
√
πw(y) . (4.100)

The function Z(y) defined here is called plasma dispersion function.

?
Based on the definitions of the
Debye wavelength and the plasma
frequency, confirm the expressions
(4.101) and (4.102) for ε̂‖ and ε̂⊥. Returning with (4.100) into (4.96) and inserting the result into (4.69), we can

now write the longitudinal dielectricity (4.69) as

ε̂‖ = 1 +
1 + yZ(y)
λ2

Dk2
= 1 +

ω2
p

ω2 2y2 [
1 + yZ(y)

]
, (4.101)

where the Debye wavelength λD as defined in (4.11) was identified in the first
step and the plasma frequency ωp from (4.16) as well as the dimension-less fre-
quency y from (4.95) in the second. Similarly, identifying the Faddeeva function
(4.99) in (4.97), using the definition (4.100) of the plasma dispersion function
and inserting these expressions into (4.70), we find the simple expression

ε̂⊥ = 1 +
ω2

p

ω2 yZ(y) (4.102)

for the transversal dielectricity. Here, we have again inserted the plasma fre-
quency ωp defined in (4.16) and used the definition (4.95) of the dimension-less
frequency y. We have thus reduced the longitudinal and transverse dielectrici-
ties of a thermal plasma to the plasma dispersion function Z(y), with the scaled
frequency y defined by (4.95).
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Series expansions of Z(y) are useful for practical calculations (Figure 4.4). For
small |y| � 1,

yZ(y) ≈ −2y2
(
1 − 2y2

3
+

4x4

15
− . . .

)
+ i
√
π y

(
1 − y2

)
(4.103)

while for large |y| � 1,

yZ(y) ≈ −1 − 1
2y2 −

3
4y4 + . . . . (4.104)
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Figure 4.4 The absolute value of the plasma dispersion function Z(y) as a function
of y is plotted along the real axis, together with the approximations given in (4.103)
and (4.104).

Before we begin discuss the results (4.101) and (4.102) in more detail, we recall
the definition (4.95) of y and introduce the plasma frequency ωp from (4.16)
and the Debye wave number kD from (4.6) into it,

y =
ωm√
2kσ

=
ω

ωp

kD

k
ωp

kD

m√
2σ

=
ω̃√
2k̃

, (4.105)

inserting the definition (4.88) of σ in the final step. Quantities with a tilde now
refer to plasma units,

ω̃ =
ω

ωp
, k̃ =

k
kD

. (4.106)

In terms of these quantities, we can write the dielectricities (4.101) and (4.102)
as

ε̂‖ = 1 +
1 + yZ(y)

k̃2
, ε̂⊥ = 1 +

yZ(y)
ω̃2 . (4.107)

With the series expansions (4.103) and (4.104) of the plasma dispersion function,
we arrive at the formal expressions for ε̂‖ and ε̂⊥ listed in Tab. 4.1.

?
Verify the entries in Tab. 4.1.

If multiple particle species need to be taken into account in addition to the
electrons, the individual dielectricities are summed over all species according to

ε̂ − 1 =
∑

species i

(ε̂i − 1) . (4.108)
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Table 4.1 Limiting cases for the longitudinal and transverse dielectricities, ε̂‖ and
ε̂⊥, for small and large values of |y|.

dielectricity |y| � 1, ω̃ � k̃ |y| � 1, k̃ � ω̃

ε̂‖ 1 +
1
k̃2

(
1 − ω̃

2

k̃2

)
+ i

√
π

2
ω̃

k̃3
1 − 1

ω̃2

(
1 +

3k̃2

ω̃2

)
ε̂⊥ 1− 1

k̃2

(
1 − 1

3
ω̃2

k̃2

)
+i

√
π

2
1

k̃ω̃
1 − 1

ω̃2

(
1 +

k̃2

ω̃2

)

4.4.2 Dispersion Measure and Dispersion Relations

The dispersion relation for transversal waves was given by (4.53). We combine
it with the relation

ω2
p =

kBT
m

k2
D =

〈
v2

〉
k2

D . (4.109)

between the plasma frequency and the Debye wavenumber and introduce the
root-mean square velocity from (4.14). Defining a mean-squared beta factor by

β2 :=
1
c2

〈
v2

〉
, (4.110)

we can write the dispersion relation (4.53) in dimension-less form as

β2ω̃2 =
k̃2

ε̂⊥
(4.111)

in plasma units. For high frequencies ω̃ � k̃, we can approximate the transverse
dielectricity fom Tab. 4.1 by ε̂⊥ ≈ 1 − ω̃−2 and find the dispersion relation

ω̃2 =
k̃2

β2 + 1 or k̃ = β
√
ω̃2 − 1 . (4.112)

Since the group velocity of such transversal waves is

cg =
∂ω

∂k
=
ωp

kD

∂ω̃

∂k̃
=

c
β

k̃
ω̃

= c

√
1 − 1

ω̃2 , (4.113)

the propagation time of such waves is

∆tω =

∫
dl
cg
≈

∫
dl
c

1 +
ω2

p

2ω2

 =
L
c

+
2πe2

mcω2

∫
dl n , (4.114)

where the integral over the electron density along the light path,∫
dl n ≡ DM , (4.115)

is called the dispersion measure. In the last steps, we have used ω � ωp to
approximate the square root in the group velocity (4.113).

For lower frequencies, we need to take one more order in k̃/ω̃ into account.
Taking the expression for ε̂⊥ from the second row and the second column of
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Tab. 4.1 and inserting it into the dimension-less dispersion relation (4.111), we
find first

β2ω̃2
[
1 − 1

ω̃2

(
1 +

k̃2

ω̃2

)]
= k̃2 (4.116)

or, solving for the wavenumber k̃,

k̃ = βω̃

√
ω̃2 − 1
ω̃2 + β2 . (4.117)
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Figure 4.5 The dispersion relation for transverse waves is shown together with
the approximations k̃ = βω̃ and (4.117). ?

Solve the dispersion relation (4.116)
for the frequency ω̃.

Example: Ionosphere of the Earth

In the ionosphere of the Earth, n ≈ 106 cm−3. Assuming a temperature of
T = 273 K, the Debye length and the root-mean square thermal electron
velocity are

λD ≈ 0.11 cm and ve =

√
kBT
m
≈ 6.43 · 106 cm s−1 ; (4.118)

see also (4.14). Thus, the Debye wavenumber is kD = 9.1 cm−1, the β factor
of the electrons is β = 2.1 · 10−4, and the plasma frequency is

ωp =
ve

λD
≈ 58.5 MHz . (4.119)

Transversal Gigahertz waves, for example, have ω̃ � 1, thus a transversal
dielectricity of ε̂⊥ ≈ 1 and wavelengths of

λ =
2π
k
≈ 2π

c
ω

(4.120)

like in vacuum. Approaching the plasma frequency from above, the wavenum-
ber falls below its vacuum value, and thus the waves become longer than in
vacuum. J
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The dispersion relation for longitudinal waves requires ε̂‖ = 0, as was shown in
(4.54) above. Assuming high frequencies,

the entry in the first row and the second column in Tab. 4.1 gives

ω̃2 = 1 +
3k̃2

ω̃2 (4.121)

or, solving for ω̃,

ω̃2
± =

1
2

(
1 ±

√
1 + 12k̃2

)
. (4.122)

Only the positive branch is meaningful here. In the high-frequency limit applied,
we require ω̃ � k̃, thus ω̃ ≈ 1 and k̃ � 1. This allows us to approximate

ω̃ ≈ 1 +
3
2

k̃2 . (4.123)

Such longitudinal waves thus have frequencies slightly higher than the plasma
frequency and very large wavelengths.

Problems

1. Derive the phase and the group velocities of longitudinal and transverse
electromagnetic waves in a thermal plasma in the high-frequency limit.

2. Derive the series expansions (4.103) and (4.104) of the plasma dispersion
function in the limits y � 1 and y � 1.

3. Radio waves propagating through a thermal plasma in a deep gravitational
well experience two kinds of time delay: the delay (4.114) due to the
electromagnetic dispersion and the so-called Shapiro delay

∆tShapiro = − 2
c3

∫
dl Φ , (4.124)

due to generally-relativistic time dilation, where Φ is the Newtonian
gravitational potential. Estimate the relative magnitude of both time
delays.

4.5 The Magnetohydrodynamic Equations

In this section, we introduce the assumptions of magnetohydrodynamics
and derive the induction equation (4.141) for the evolution of the magnetic
field in a plasma. Magnetic forces on the plasma appear in the extension
(4.145) of Euler’s equation, and we show in (4.161) how the energy current
density has to be modified in presence of a magnetic field. The comparison
of magnetic advection and diffusion leads to the definition of the magnetic
Reynolds number in (4.169).
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4.5.1 Assumptions

Magnetohydrodynamics is the theory of how magnetised plasmas move. It is
built upon several assumptions which go significantly beyond hydrodynamics.
They begin with the fact that plasmas consist of ions and electrons which should
in the simplest case be described as two fluids coupled to each other rather than
a single fluid, as in hydrodynamics. At this point, recall that the constitutive
assumption of hydrodynamics was that the mean-free path of the fluid particles
is very small compared to all other relevant length scales occurring in the system.
In ideal hydrodynamics, the mean-free path is infinitely short. Giving up this
idealisation, but still assuming that the mean-free path is very short, gives rise
to effects based on particle transport, such as viscosity and diffusion.

The common, greatly simplifying assumption in magnetohydrodynamics is
that the ions and the electrons are so tightly coupled to each other by their
electrodynamic interaction that they can indeed be treated as a single fluid. The
central assumption of hydrodynamics is then applied in addition, namely that
the mean-free path of the plasma particles, ions and electrons alike, is very
small.

If, however, there is no net motion of the electrons with respect to the ions, then
there is no separation of charges, no net electric current, and thus neither an
electric nor a magnetic field. For magnetohydrodynamics, therefore, we need
to assume that there is in fact a small drift velocity ~vdrift between the electrons
and ions,

~vdrift = ~ve −~vi , (4.125)

causing an electric current ~j of free charges, which can sustain a magnetic field.
As in non-ideal, viscous hydrodynamics, the strict idealisation of two fluids
of opposite charge infinitely tightly coupled to each other is slightly loosened
here.

A final, common assumption is that the plasma flows non-relativistically, allow-
ing us to neglect terms of higher than linear order in v/c, where v is the flow
velocity.

More quantitatively, we thus arrive at the following assumptions: We first trans-
form into the rest frame of the plasma, defined as the frame locally co-moving
with the mean velocity of the two or more plasma components. Quantities in
this rest frame are primed.

The plasma is macroscopically neutral, but as it consists of charged particles,
even small drift velocities can create substantial currents. This is expressed by
supposing that the time component of the current-density four-vector j′µ ob-
served in this rest frame be negligibly small compared to the spatial components
of the current density,

cρ′ �
∣∣∣∣~j ′∣∣∣∣ . (4.126)

As usual in electrodynamics, the spatial current density ~j ′ itself is assumed to
be related to the electric field ~E′ through Ohm’s law by the conductivity σ,

~j ′ = σ~E′ . (4.127)
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The plasma is assumed to be an ideal or near-ideal conductor such that even
weak electric fields can be responsible for significant currents. By its definition,
the conductivity must have the dimension

[σ] = time−1 . (4.128)

Accordingly, very high conductivity means that the time scale needed by the
plasma charges to respond to changes in the electromagnetic fields is very small.
This allows us to neglect the displacement current compared to the charge
current,

∂~E′

∂t
� ~j ′ , (4.129)

because any change in the electric field will immediately (or at least on a very
short time scale of order σ−1) lead to a substantial charge current. Maxwell’s
equations for the magnetic field thus simplify to read

~∇ · ~B′ = 0 , ~∇ × ~B′ =
4π
c
~j ′ (4.130)

in the rest frame of the plasma. This rest frame and the observer’s laboratory
frame are related by a Lorentz transform as given in (1.26). However, by the
assumption of non-relativistic plasma flow relative to the laboratory frame, we
can expand the Lorentz factor γ to lowest order in β = v/c, i.e. we can adopt
γ ≈ 1. Then, the Lorentz transform of the four-current gives

cρ′ = cρ − ~β · ~j , ~j ′ = ~j − ~βcρ . (4.131)

Since we have assumed cρ′ � |~j ′| in the plasma’s rest frame, we also have
cρ � |~j | in the laboratory frame due to the non-relativistic plasma flow, β � 1.
Since we must further obey the Maxwell equations

~∇ · ~E′ = 4πρ′ , ~∇ × ~B′ =
4π
c
~j ′ , (4.132)

this also implies |~E| � |~B|. Accordingly, the assumptions of (non-relativistic)
magnetohydrodynamics imply the conditions

cρ �
∣∣∣∣~j ∣∣∣∣ , ∣∣∣∣~E ∣∣∣∣ � ∣∣∣∣~B ∣∣∣∣ , ∣∣∣∣∣∣∂~E∂t

∣∣∣∣∣∣ � ∣∣∣∣~j ∣∣∣∣ , β =

∣∣∣~v ∣∣∣
c
� 1 . (4.133)

On the basis of these relations, we can now derive the equations of magnetohy-
drodynamics.

?
Confirm expressions (4.131) by car-
rying out a Lorentz transform in the
appropriate limit.

4.5.2 The induction equation

We begin with Ohm’s law
~j ≈ ~j ′ = σ~E′ (4.134)

and relate the electric field ~E′ in the plasma’s rest frame to the electric field ~E
in the laboratory frame by the Lorentz transform (1.87) in the limit γ ≈ 1. We
can thus insert

~E′ = ~E + ~β × ~B (4.135)
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into (4.134) and to solve for ~E to obtain

~E =
~j
σ
− ~β × ~B . (4.136)

Next, we put this result into the induction equation

∂~B
∂t

= −c~∇ × ~E (4.137)

and find
∂~B
∂t

= −c~∇ ×
 ~j
σ
− ~β × ~B

 (4.138)

for the evolution of the magnetic field. At the same time, we need to satisfy
Ampère’s law with vanishing displacement current,

~j =
c

4π
~∇ × ~B , (4.139)

which enables us to eliminate the current density from the induction equation.
Using the identity

~∇ ×
(
~∇ × ~B

)
= ~∇

(
~∇ · ~B

)
− ~∇2~B (4.140)

for the double curl and Maxwell’s equation ~∇ · ~B = 0 for the divergence of the
magnetic field, we find

∂~B
∂t

=
c2

4πσ
~∇2~B + ~∇ ×

(
~v × ~B

)
(4.141)

if we further assume that the conductivity is spatially constant, ~∇σ = 0. This
induction equation determines the evolution of the magnetic field embedded
into a plasma flow with the velocity ~v.

?
What do the two terms on the right-
hand side of the induction equation
(4.141) mean, i.e. what physical ef-
fects do they encode?

4.5.3 Euler’s equation

The induction equation tells us how the magnetic field changes in response
to the plasma flow. In addition, we need equations for the back-reaction of
the magnetic field on the plasma flow. We have to expect that a magnetised
plasma flows differently than a neutral fluid because the magnetic field acts on
the charged particles through the Lorentz force.

Notice, however, that the continuity equation for the mass density ρ will remain
unchanged,

∂ρ

∂t
+ ~∇ · (ρ~v ) = 0 , (4.142)

because mass conservation must not be affected by the presence of the magnetic
field. Euler’s equation, which describes the conservation of momentum or, more
precisely, the transport of the specific momentum density, must be modified by
the presence of the Lorentz force. In absence of electric fields, the force exerted
on a charge e by the magnetic field ~B is

e
c
~v × ~B . (4.143)
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Multiplying this expression with the number density n of charges will turn
it into the Lorentz force density, i.e. into the combined Lorentz force on all
charges in a unit volume. Noticing that the product ne~v is the current density
~j, and eliminating the current density once more by Ampère’s law (4.139), we
find that the magnetic force density on the plasma must be

1
4π

(
~∇ × ~B

)
× ~B , (4.144)

and this term must be added to Euler’s equation, which now reads

ρ
d~v
dt

= −~∇P +
1

4π

(
~∇ × ~B

)
× ~B (4.145)

in absence of gravitational forces. By means of the identity(
~∇ × ~B

)
× ~B =

(
~B · ~∇

)
~B − 1

2
~∇

(
~B2

)
, (4.146)

the Lorentz force density acting on the plasma can be cast into the very intuitive
form

1
4π

(
~∇ × ~B

)
× ~B =

1
4π

(
~B · ~∇

)
~B − 1

8π
~∇

(
~B2

)
. (4.147)

The first term specifies how ~B changes along ~B, i.e. it quantifies the tension of
the magnetic field lines, which obviously tend to be as straight as possible. The
second term is the gradient of the magnetic energy density and augments the
pressure gradient in Euler’s equation. We thus find that the magnetic field acts
in two ways on the plasma flow: It resists motions that bend and compress the
field (Figure 4.6).

Figure 4.6 A magnetic field exert two kinds of force on a plasma: The field lines
tend to straighten due to the (~B · ~∇)~B term, and they tend to reduce the magnetic
pressure due to the ~∇(~B2) term in the magnetic Euler equation.
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We have seen in normal, viscous hydrodynamics that Euler’s equation can be
written in the manifestly conservative form

∂t
(
ρ~v

)
+ ~∇ · T̄ = 0 , (4.148)

where the stress-energy tensor

T̄ = ρ~v ⊗~v + P13 + T̄d (4.149)

occurs. It contains the diffusive contribution Td, given in (3.143), which reads

T̄d = −η
[(
~∇ ⊗~v

)
+

(
~∇ ⊗~v

)> − 2
3
~∇ ·~v13

]
− ζ~∇ ·~v13 . (4.150)

In presence of a magnetic field, the stress-energy tensor must be augmented by
a magnetic contribution,

T̄ → T̄ + T̄m , (4.151)

whose components are given in (1.111),

T̄m = − 1
4π

~B ⊗ ~B − ~B2

2
13

 . (4.152)

The stress-energy tensor of the ideal fluid (3.51), a the diffusive part (3.143)
for the viscous fluid and the contribution by the magnetic field (4.152) are thus
simply added.

Together with an equation of state, P = P(ρ), the induction equation (4.141),
the continuity equation (4.142) and Euler’s equation (4.145) determine both the
plasma flow and the evolution of the magnetic field embedded into it. These
are two scalar and two vector equations, thus eight equations, for the eight
unknowns ρ, P, ~v and ~B. If the magnetic field is known, the current follows
from Ampère’s law (4.139), and the electric field is finally given by (4.136).

4.5.4 Energy and entropy

The evolution equation (3.163) for the specific entropy s̃ per unit mass, which
read

ρT
ds̃
dt

= ~∇ ·
(
κ~∇T

)
+ Tr

(
T̄dDv

)
, (4.153)

in ordinary, viscous hydrodynamics of neutral fluids, now needs to be aug-
mented by the entropy production through the release of Ohmic heat.

?
Entropy production by which physi-
cal process does the new term on the
right-hand side of (4.155) describe?Per unit time, the induction current ~j ′ in the rest frame of the fluid dissipates

the energy

~j ′ · ~E′ =
~j ′2

σ
≈
~j 2

σ
=

c2

16π2σ

(
~∇ × ~B

)2
, (4.154)

where we have used Ohm’s law in the first, ~j ′ ≈ ~j in the second and Ampère’s
law (4.139) in the last steps. The resulting expression must be added to the
right-hand side of the entropy equation, giving

ρT
ds̃
dt

= ~∇ ·
(
κ~∇T

)
+ Tr

(
T̄dDv

)
+

c2

16π2σ

(
~∇ × ~B

)2
. (4.155)
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If we need to express energy conservation by the specific energy density ε

instead of the specific entropy density s, we start from the energy conservation
equation of viscous hydrodynamics and augment it in a completely analogous
way. First, the energy density of the magnetic field, ~B2/(8π), must be added to
the kinetic and thermal energy density of the fluid,

ρ

2
~v 2 + ε→ ρ

2
~v 2 + ε +

~B2

8π
. (4.156)

Next, the Poynting vector of the electromagnetic field,

~S =
c

4π
~E × ~B , (4.157)

must be added to the energy current density ~q. In ordinary, viscous hydrody-
namics, its components were given by (3.51) and (3.151)

~q = ρ

(
~v 2

2
+ h̃

)
~v − κ~∇T − T̄d~v . (4.158)

Using (4.136) and Ampère’s law (4.139) once more, the Poyting vector can be
expressed by

~S =
c2

16π2σ

(
~∇ × ~B

)
× ~B − 1

4π

(
~v × ~B

)
× ~B , (4.159)

which we can rearrange by expanding the vector products into

~S =
c2

16π2σ

[(
~B · ~∇

)
~B − 1

2
~∇~B2

]
− 1

4π

[(
~B ·~v

)
~B − ~B2~v

]
(4.160)

Thus, the energy current density in a viscous, magnetised plasma has the
components

~q = ρ

(
~v 2

2
+ h̃

)
~v − κ~∇T − T̄d~v

− c2

16π2σ

[(
~B · ~∇

)
~B − 1

2
~∇~B2

]
− 1

4π

[(
~B ·~v

)
~B − ~B2~v

]
. (4.161)

Each of these terms has an intuitive physical meaning: The first term in paren-
theses is the transport of kinetic energy and enthalpy with the fluid flow, where
the enthalpy appears instead of the kinetic energy to take any pressure-volume
work into account that the fluid may have to exert. The following two terms
describe energy loss by heat conduction and by viscous friction. The next term
in brackets is multiplied with the inverse conductivity and thus disappears if the
plasma is ideally conducting, σ→ ∞. The first term in brackets is the magnetic
tension, the second is the gradient of the internal energy of the magnetic field. In
the final bracket, the first term quantifies how the magnetic field changes along
the flow lines of the fluid, and the final term is the transport of the magnetic
energy with the fluid.
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4.5.5 Incompressible flows

For incompressible flows with ~∇ ·~v = 0, the magnetohydrodynamic equations
simplify somewhat. First, expanding the curl of the vector product in the
induction equation (4.141) and using ~∇ ·~v = 0 in addition to ~∇ · ~B = 0, we find

d~B
dt

=
∂~B
∂t

+
(
~v · ~∇

)
~B =

(
~B · ~∇

)
~v +

c2

4πσ
~∇2~B , (4.162)

and Euler’s equation becomes

d~v
dt

=
∂~v

∂t
+

(
~v · ~∇

)
~v = −1

ρ
~∇

P +
~B2

8π

 +
1

4πρ

(
~B · ~∇

)
~B + ν~∇2~v , (4.163)

where ν = η/ρ is the specific viscosity per unit mass. Moreover, the diffusive
stress-energy tensor Td in the energy-conservation equation simplifies to read

T̄d = −η
[(
~∇ ⊗~v

)
+

(
~∇ ⊗~v

)>]
= −2ηDv , (4.164)

where the symmetrised velocity-gradient tensor Dv from (3.154) was inserted.
This enables us to bring the viscous dissipation term in the energy-conservation
equation into the simple form

Tr
[
T̄>d

(
~∇ ⊗~v

)]
=

1
2

Tr
(
T̄>d Dv

)
= −η Tr

(
Dv>Dv

)
. (4.165)

4.5.6 Magnetic advection and diffusion

Two terms determine the temporal change of the magnetic field in the induction
equation (4.141),

~∇ ×
(
~v × ~B

)
and

c2

4πσ
~∇2~B . (4.166)

The first term, ~∇ × (~v × ~B), determines the transport of the magnetic field with
the fluid flow. It is called advection term. Its order-of-magnitude is

vB
L
, (4.167)

if L is a typical length scale characterising the plasma flow. The second term,
proportional to ~∇2~B, determines the diffusion of the magnetic field due to the
finite conductivity of the plasma. If the conductivity is ideally large, σ→ ∞,
the diffusion coefficient vanishes, showing that magnetic fields cannot move
with respect to an ideally conducting plasma.

?
Expand the curl of the vector prod-
uct ~v × ~B and verify the meaning of
this term noted in the text.The diffusion term has the order of magnitude

c2

4πσ
B
L2 . (4.168)

The order-of-magnitude ratio between the advection and diffusion terms,

advection
diffusion

=
4πσ
c2

L2

B
vB
L

=
4πσvL

c2 ≡ RM , (4.169)
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is called the magnetic Reynolds number. Obviously, the magnetic-field diffusion
can be neglected if RM � 1, and the induction equation simplifies to

∂~B
∂t
− ~∇ ×

(
~v × ~B

)
= 0 . (4.170)

In absence of diffusion, the magnetic field is said to be “frozen” into the plasma.
The physical reason for this is that, if the conductivity is very high, σ → ∞,
each motion of the magnetic field with respect to the plasma immediately
induces strong current densities which counter-act their origin, i.e. the motion
of the field. This is a typical case in astrophysical plasmas.

In the opposite limit, RM � 1, which occurs if the conductivity is small, the
induction equation turns into the pure diffusion equation

∂~B
∂t

=
c2

4πσ
~∇2~B . (4.171)

Transforming this equation into Fourier space immediately shows that Fourier
modes of wave number k solve this equation if their frequency is

ωdiff = i
c2k2

4πσ
. (4.172)

This means that magnetic field modes with wavelength λ = 2πk−1 must decay
exponentially on the diffusion time scale

τdiff =
2π

Imωdiff
≈ 2σ

λ2

c2 , (4.173)

which is directly proportional to the conductivity σ: The lower the conductivity
is, the faster the magnetic field decays by diffusion. Plasmas in the laboratory
are typically characterised by RM � 1, while astrophysical plasmas typically
have RM � 1.

Problems

1. Specialise the expression (4.144) for the magnetic force density to the
case of a magnetic field confined to the x-y plane or parallel to the z axis.

2. Consider a general diffusion equation for a function f (t, ~x ),

∂ f
∂t

= C~∇2 f , (4.174)

and show that it is solved by a convolution of an initial function f0(~x )
with a Gaussian. How does the width of this Gaussian evolve in time?

4.6 Generation of Magnetic Fields

In this section, we briefly touch the vast subject of how magnetic fields can
be generated. We show how magnetic fields can be generated if electrons
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and ions are not ideally tightly coupled to each other and derive the modified
induction equation (4.185) that now contains a source term given by any
misalignment between the gradients of the electron pressure and the particle
number density.

The induction equation (4.141) contains no source term: Both terms on its
right-hand side, which together determine the time evolution of ~B, are linear
in ~B. The equation can therefore only describe how existing magnetic fields
change, but if ~B = 0 initially, this remains so. This is a consequence of the
assumption that ions and electrons are ideally (tightly) coupled to each other.
Should this not be the case, the flows of the electrons and of the ions need to
be considered separately, most notably with different velocities ~ve and ~vi. Then,
two separate Euler equations must hold for the electrons and the ions,

neme
d~ve

dt
= −~∇Pe − nee

(
~E +

~ve

c
× ~B

)
− neme~∇Φ ,

nimi
d~vi

dt
= −~∇Pi + nie

(
~E +

~vi

c
× ~B

)
− nimi~∇Φ , (4.175)

which are coupled by common electromagnetic fields ~E and ~B and by the gravi-
tational potential Φ. We divide these equations by neme and nimi, respectively,
and subtract the second from the first to find the evolution of the relative velocity

d
(
~ve −~vi

)
dt

= −
~∇Pe

neme
+
~∇Pi

nimi
− e

me

(
~E +

~ve

c
× ~B

)
− e

mi

(
~E +

~vi

c
× ~B

)
. (4.176)

Since the ion mass mi is much larger than the electron mass me, but ne = ni ≡ n,
equation (4.176) can be approximated by

d
(
~ve −~vi

)
dt

= −
~∇Pe

nme
− e

me

(
~E +

~ve

c
× ~B

)
. (4.177)

The terms containing the ion mass may be neglected because, if a relative
velocity difference is to be maintained, it must be due to the lower inertia and
thus the higher mobility of the electrons.

The last equation must be augmented by a phenomenological collision term
through which different electron and ion velocities can be justified or produced
in the first place. Introducing a collision time τ, we simply write

d
(
~ve −~vi

)
dt

= −
~∇Pe

nme
− e

me

(
~E +

~ve

c
× ~B

)
− ~ve −~vi

τ
. (4.178)

The net current density of the electrons and the ions together is

~j = eni~vi − ene~ve = en(~vi −~ve) , (4.179)

where we have implicitly assumed singly-charged ions. This is not a severe
restriction at all because whatever the ion charge Z is, we only need to make
sure that the plasma is electrically neutral by satisfying (4.1).

For a stationary situation, the relative drift velocity between electrons and ions
must be constant,

d
(
~vi −~ve

)
dt

= 0 , (4.180)



228 4 Plasma Physics and Magnetohydrodynamics

which implies by (4.179) a constant total electric current density ~j. In this
situation, we can solve the drift equation (4.178) for the electric field ~E and
eliminate the drift velocity by the current density ~j to find

~E = −
~∇Pe

ene
− ~ve

c
× ~B +

me~j
ne2τ

. (4.181)

What does this electric field mean? If the last term on the right-hand side was
missing, (4.181) would say that an equilibrium situation required an electric
field which, when combined with the existing magnetic field, creates a Lorentz
force balancing the pressure-gradient force. The phenomenological collision
term on the right-hand side adds friction between the electrons and the ions.
Seen from the perspective of the electrons, (4.181) now means that the particle
collisions hinder the motion of the electrons and thereby enhance the electric
field required for equilibrium.

By Faraday’s law (1.97), this electric field determines the time evolution of the
magnetic field,

∂~B
∂t

= −c~∇ × ~E =
c
e
~∇ ×

~∇Pe

n
+ ~∇ ×

(
~ve × ~B

)
− mec

e2τ
~∇ ×

~j
n
. (4.182)

Now, since the curl of the pressure gradient vanishes identically, ~∇ × ~∇Pe, we
can re-write the first term on the right-hand side as

~∇ ×
~∇Pe

n
= −~∇Pe ×

~∇n
en2 . (4.183)

?
In what kind of situations does the
vector product ~∇Pe×~∇n between the
pressure and number-density gradi-
ents not vanish? Construct exam-
ples.

The curl of the current density can be rewritten using Ampère’s law, making use
of the fundamental assumption of magnetohydrodynamics that displacement
currents can be neglected; recall (4.182). We can then further conclude that

~∇ ×
~j
n

=
c

4πn
~∇ ×

(
~∇ × ~B

)
+ ~j ×

~∇n
n2 . (4.184)

If the electric current is flowing along the gradient in the number density of the
electrons, which is generally a reasonable assumption, the latter term vanishes
identically, and we obtain the modified induction equation

∂~B
∂t

=
c2

4πσ
~∇2~B + ~∇ ×

(
~ve × ~B

)
− c

en2

(
~∇Pe × ~∇n

)
, (4.185)

where we have made use of the definition

σ ≡ ne2τ

me
(4.186)

of the conductivity. Compared to (4.141), this new induction equation is
augmented by an inhomogeneity in terms of the magnetic field, given by the
term on the right-hand side containing the gradient of the number density,

− c
en2

(
~∇Pe × ~∇n

)
, (4.187)

which now appears as a source of the magnetic field. It shows that magnetic
fields can be created if there is a gradient in the number density of the electrons
which is misaligned with the pressure gradient. Mechanisms like this for
creating magnetic fields are called battery mechanisms.
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Problems

1. The condition for an inhomogeneity of the form (4.187) to occur in the
induction equation can be given in the simple form

~∇ ×
~∇P
ρ

 , 0 , (4.188)

if the electron pressure and the electron number density are supposed to
be proportional to the total gas pressure P and the gas density ρ.

(a) Set up Euler’s equation for an ideal fluid in hydrostatic equilibrium,
ignoring magnetic forces, but adding the centrifugal force appearing
if the fluid is rotating with an angular velocity ~Ω about the z axis.

(b) Can magnetic fields build up in a rotating object in hydrostatic
equilibrium? If so, under which conditions on the rotation? How is
the magnetic field oriented that is generated this way?

(c) Suppose the rotation is uniform, but the fluid is chemically inhomo-
geneous such that the relation between the electron density and the
matter density changes. Can magnetic fields be built up now?

4.7 Ambipolar Diffusion

This section discusses what happens if plasma and neutral gas are mixed:
The neutral gas moves freely relative to the magnetic field, but remains
coupled to the plasma by particle collisions. The first main result is the
expression (4.208) for the density of the friction force between the plasma
and the neutral gas. Introducing the effect of the friction into the induction
equation yields the evolution equation (4.216) for the magnetic field, showing
how the friction causes diffusion of the magnetic field.

4.7.1 Velocity-averaged scattering cross section

Suppose we now have a partially ionised medium, which can be seen as a
mixture of neutral particles and plasma. As we have discussed before, the
magnetic field can then be thought of being “frozen into” the plasma. Collisions
between the plasma and neutral particles then create a friction force between
the plasma and the neutral fluid, which causes the magnetic field to diffuse with
respect to the plasma even if the plasma’s conductivity is ideal. This diffusion
process is called “ambipolar”.

In order to work out this friction force, we first need a cross section σ for the
collisions, or, more conveniently, the velocity-averaged cross section 〈σv〉. We
adopt two limiting cases for it, one for small and one for high relative velocities

v =
∣∣∣~vi −~vn

∣∣∣ (4.189)

during the interaction of the collision partners, i.e. the ions (“i”) and the neutral
gas particles (“n”).
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If v is very large, we may approximate the cross section by its geometrical
value. If ri and rn are the effective radii of the ions and the neutral particles,
respectively, we can then replace the cross section by a disk whose radius is the
sum of the two radii,

σ = π(ri + rn)2 , (4.190)

implying the velocity-averaged cross section

〈σv〉 = 〈v〉σ = 〈v〉π(ri + rn)2 . (4.191)
?

What would the cross section for the
Coulomb scattering of an electron
with an ion be, or between two ions? If v is sufficiently small, the ion’s charge can polarise the neutral particle

and thereby enlarge the interaction cross section due to the electromagnetic
interaction. While the electric field of an ion with charge Ze is the Coulomb
field

~Ei =
Ze
r2 êr , (4.192)

it appears reasonable to assume that the electric field of the polarised neutral
particle is the dipole field

~En =
3(~p · êr)êr − ~p

r3 = −~∇
(
~p · ~r
r3

)
(4.193)

of the polarised dipole moment ~p. We assume that the dipole moment responds
linearly to the ion’s electric field,

~p = α~Ei =
Zαe
r2 êr , (4.194)

with a parameter α quantifying the polarisability of the neutral particles.

This induced dipole field of the neutral particle exerts the force

~F = Ze~En = −Ze~∇
(
~p · ~r
r3

)
= −Z2e2α~∇

(
1
r4

)
(4.195)

on the ion, whose potential is evidently

V =
Z2e2α

r4 . (4.196)

Since this is a central potential, Noether’s theorems imply that motion under its
influence conserves angular momentum. We can then characterise the motion
of the ion past the neutral particle by the minimum separation r0, the impact
parameter b and the velocity v∞ at infinity. Angular-momentum conservation
requires

µv∞b = µr0v0 , (4.197)

where the reduced mass
µ ≡ mimn

mi + mn
(4.198)

occurs because we are treating a two-body problem. Energy conservation
further demands

µ

2
v2
∞ =

µ

2
v2

0 −
αZ2e2

r4
0

. (4.199)
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Eliminating now the velocity v0 at closest approach by angular-momentum
conservation (4.197), we obtain a quadratic equation for the squared minimum
separation r2

0,

r4
0 − b2r2

0 +
αZ2e2

µv2∞
= 0 , (4.200)

which has the two solutions

r2
0,± =

b2

2
±

√
b4

4
− αZ2e2

µv2∞
. (4.201)

Both roots are mathematically possible, but only r2
0,+ is physically relevant

because in the limiting case of vanishing coupling α, the minimum radius must
equal the impact parameter, r0 = b, since the ion is then not scattered at all. The
minimum separation r0 will itself be smallest if the root in (4.201) vanishes and
the impact parameter satisfies

b0 =

(
4αZ2e2

µv2∞

)1/4

. (4.202)

Since the force between the ion and the neutral particle decreases very steeply
with increasing r, by far the strongest effect occurs for close encounters. Thus,
we estimate the cross section as

σ = πb2
0 =

2πZe
v∞

√
α

µ
. (4.203)

Obviously, the velocity-averaged cross section 〈σv∞〉 is independent of the
asymptotic velocity v∞, and we find

〈σv∞〉 = 2πZe
√
α

µ
. (4.204)

4.7.2 Friction force and diffusion coefficient

A single collision between an ion and a neutral particle transfers the momentum∣∣∣∆~p ∣∣∣ = µ
∣∣∣~vi −~vn

∣∣∣ (4.205)

between the two. Since the scattering rate per volume is ninn〈σv∞〉, the mo-
mentum transfer per unit time and volume is

~ffriction = ninn〈σv∞〉µ (
~vi −~vn

)
, (4.206)

which corresponds to the spatial density of a friction force. With

ρiρn = niminnmn = (mi + mn)ninnµ , (4.207)

this can be cast into the form

~ffriction = γρiρn
(
~vi −~vn

)
, (4.208)

where the friction coefficient

γ ≡ 〈σv∞〉
mi + mn

(4.209)
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appears. In the two limiting cases discussed above, those of very small or very
large relative velocities, we find

γ =
π(ri + rn)2

mi + mn

∣∣∣~vi −~vn
∣∣∣ or

γ =
2πZe

mi + mn

√
α

µ
. (4.210)

A stationary situation can be established if this friction force between the ions
and the neutral particles is balanced by the Lorentz force on the net electric
current density caused by the motion of the plasma particles with the magnetic
field. Since the Lorentz force density is

~fL =
~j × ~B

c
=

1
4π

(
~∇ × ~B

)
× ~B , (4.211)

where Ampère’s law was used in the second step, we find the relation

~vd ≡ ~vi −~vn =

(
~∇ × ~B

)
× ~B

4πγρiρn
(4.212)

between the drift velocity of the ions relative to the neutral particles by equating
the Lorentz force density (4.211) to the friction force density (4.208). In a
magnetic field with characteristic length scale L, the drift velocity thus has the
order of magnitude

vd ≈ B2

4πγρiρnL
. (4.213)

A magnetic field which can be assumed to be “frozen” into the flow of an ideally
conducting plasma must satisfy the induction equation

∂~B
∂t

+ ~∇ ×
(
~B ×~vi

)
= 0 (4.214)

without the diffusion term arising from a finite conductivity. In order to calculate
the diffusion of the magnetic field relative to the neutral particles, we transform
into the rest frame of the neutral flow, where ~vn = 0, allowing us to replace ~vi
by the drift velocity ~vd. This leads to the remarkable equation

∂~B
∂t

+ ~∇ ×
~B ×

(
~∇ × ~B

)
× ~B

4πγρiρn

 = 0 (4.215)

for the magnetic field in the rest-frame of the neutral gas. Using ~∇ · ~B = 0 and
introducing the magnetic pressure PB = ~B2/(8π), it can be brought into the
form

∂~B
∂t

+
1

γρiρn

[
~∇

(
~B · ~∇PB

)
− ~∇2

(
PB~B

)]
= 0 . (4.216)

The second term has the order of magnitude DB, where D corresponds to a
diffusion coefficient

D ≈ PB

γρiρn
, (4.217)

which approximately equals the estimate (4.213) for the drift velocity ~vd, times
the length scale L of the magnetic field.



4.8 Waves in magnetised cold plasmas 233

Problems

1. Verify that (4.216) follows from (4.215).

4.8 Waves in magnetised cold plasmas

This section deals with electromagnetic waves in cold plasmas. Since the
magnetic field imprints a preferred direction into the plasma which charges
are gyrating around, the dielectric tensor is most conveniently split into
contributions parallel, perpendicular and helical to the magnetic field, shown
in (4.242). The dispersion relations (4.264) for electromagnetic waves are
found to depend on the angle between their propagation direction and the
magnetic field. We illustrate in (4.276) that waves polarised along their
propagation direction are generally damped. Waves polarised transverse
to their propagation direction are found to be eigenstates of the dielectric
tensor only if they propagate along the magnetic field, in which case Faraday
rotation occurs which is quantified by the rotation measure (4.284).

4.8.1 The dielectric tensor

We now proceed to study the propagation of electromagnetic waves in a magne-
tised plasma in which random particle motion is negligible, whose temperature
is thus low, and which can in this sense be considered as cold. The equation
of motion of an electron in such a plasma with embedded magnetic field ~B0 is
then exclusively determined by the Lorentz force.

In a magnetised plasma irradiated by electromagnetic radiation, the Lorentz
force is caused by the magnetic field embedded into the plasma, now called ~B0 to
avoid confusion, together with the electric and magnetic fields, ~E and ~B, of the
incoming electromagnetic wave. The fields ~E and ~B of the electromagnetic wave
are of similar magnitude. For non-relativistic motion of the plasma electrons,
the magnetic part of the Lorentz force contributed by the electromagnetic wave
can thus be neglected. Therefore, the Lorentz force of the combined fields
has the electric part −e~E of the electromagnetic wave and the magnetic part
−e~β × ~B0 of the magnetic field embedded into the plasma. The equation of
motion for a plasma electron is then

d~v
dt

= − e
m

(
~E + ~β × ~B0

)
. (4.218)

We now assume that the amplitude of the electric field ~E depends harmonically
on time, ~E(t, ~x) = ~E(~x)e−iωt. Likewise, we expand the velocity into an position-
dependent amplitude and a harmonic time dependence,~v(t, ~x) = ~v(~x)e−iωt. Then,
each of these monochromatic velocity modes is determined by

− iω~v = − e
m

(
~E + ~β × ~B0

)
(4.219)

due to the equation of motion (4.218). For the following calculations, it will be
enormously helpful to introduce the matrix B̂ with the components

B̂i j := εi jkb̂k , (4.220)
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where b̂ is the unit vector in the direction of the magnetic field, ~B0 = B0b̂. This
allows us to cast the linear system of equations (4.219) into the matrix form(

iω13 − eB0

mc
B̂
)
~v := M~v =

e
m
~E , (4.221)

where we have separated the amplitude B0 of the magnetic field from its unit
direction vector b̂. Identifying now the non-relativistic Larmor frequency

ωL ≡ eB0

mc
, (4.222)

see (2.60), we can abbreviate the matrix M implicitly defined in (4.221) by

M = iω13 − ωLB̂ = iω
(
13 + iwLB̂

)
, (4.223)

where wL = ωL/ω is the Larmor frequency divided by the frequency of the
incoming electromagnetic radiation. As we move on, the identities

det
(
13 + aB̂

)
= 1 + a2 , B̂2 = b̂ ⊗ b̂ − 13 and

(
b̂ ⊗ b̂

)
B̂ = 0 (4.224)

will turn out to be most convenient. The first of these immediately gives

det M = −iω3
(
1 − w2

L

)
= −iω

(
ω2 − ω2

L

)
, (4.225)

while the second and the third will greatly simplify inverting the matrix M.
?

Verify the identities (4.224) by direct
calculation.

The inverse of M should be a linear combination of the three matrices 13, b̂⊗ b̂,
and B̂ we have available here. We thus try the ansatz

M−1 = A13 + Bb̂ ⊗ b̂ + CB̂ , (4.226)

which must satisfy(
A13 + Bb̂ ⊗ b̂ + CB̂

) (
iω13 + ωLB̂

)
= 13 . (4.227)

Multiplying out the sums in the parentheses, using the identities (4.224) and
grouping terms takes us immediately to

Aiω −CωL = 1 , Biω + CωL = 0 and Ciω + AωL = 0 . (4.228)

The sum of the first and the second of these equations implies

iω(A + B) = 1 , (4.229)

while multiplying the first with iωL and the third with ω and adding these two
results in

C =
wL

ω
(
1 − w2

L

) . (4.230)

?
Determine the coefficients (A, B,C)
from (4.226) in your own, inde-
pendent calculation. Confirm that
the matrix M−1 found in (4.232) in-
deed inverts the matrix M defined in
(4.221).

Substituting backwards and identifying 1−w2
L = iω−3 det M from (4.225) gives

A = − ω2

det M
, B = Aw2

L and C = −iAwL . (4.231)

Thus, the matrix M is inverted by

M−1 =
ω2

det M

(
−13 + w2

Lb̂ ⊗ b̂ − iwLB̂
)
. (4.232)
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δi j − k̂ik̂ j

δi j

δi j − b̂ib̂ j

δi j

cos θ = ~̂k · ~̂b

Figure 4.7 Electromagnetic waves in a magnetised plasma experience two pre-
ferred directions which are usually not aligned.

With this result, we can invert (4.221) to obtain the velocity

~v =
e
m

M−1 ~E =
e

imω
(
1 − w2

L

) (
−13 + w2

Lb̂ ⊗ b̂ − iwLB̂
)
. (4.233)

This electron velocity gives us the polarised current density ~jpol, from which
we can find the polarisation and the dielectricity tensor.

As usual, the polarisation is given by 4π~P = ~D − ~E, and its derivative with
respect to time is the polarised current density

~jpol = −ene~v =
∂~P
∂t

. (4.234)

Extending the assumed harmonic time dependence of the incoming electro-
magnetic radiation to the polarisation, we adopt ~P(t, ~x) = ~P(~x)e−iωt. Then, the
previous equation shows that the electromagnetic fields and the velocity must
be related by

− iω~P = − iω
4π

(
~D − ~E

)
= −ene~v . (4.235)

Solving the last equation in this chain for the dielectric displacement ~D, and
substituting the velocity vector from (4.233), we find

~D =
4πene

iω
~v + ~E = ~E − w2

p

1 − w2
L

(
13 − w2

Lb̂ ⊗ b̂ − iwLB̂
)
~E , (4.236)

where we have identified the plasma frequency

ωp =

√
4πe2ne

m
(4.237)

and introduced its dimension-less form wp = ωp/ω. Recalling that the dielectric
tensor is defined by the linear relation ~D = ε~E, we can directly read it off

(4.236) and obtain

ε =

1 − w2
p

1 − w2
L

13 +
w2

pw
2
L

1 − w2
L

b̂ ⊗ b̂ +
iw2

pwL

1 − w2
L

B̂ . (4.238)
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This result for the dielectric tensor can be further decomposed into components
parallel and perpendicular to the magnetic field, and an additional, antisymmet-
ric contribution. To this end, we define the parallel and perpendicular projection
operators (Figure 4.7),

π‖ := b̂ ⊗ b̂ , π⊥ := 13 − b̂ ⊗ b̂ , (4.239)

and contract ε with them, finding

ε‖ = Tr
(
π‖ε

)
= 1 − w2

p , ε⊥ =
1
2

Tr (π⊥ε) = 1 − w2
p

1 − w2
L

. (4.240)?
Can you confirm the expressions
(4.240) for the longitudinal and the
transverse dielectricity? Finally abbreviating the antisymmetric amplitude by

g =
w2

pwL

1 − w2
L

, (4.241)

we can bring the dielectricity tensor into the compact form

ε =
(
1 − w2

p

)
π‖ +

1 − w2
p

1 − w2
L

 π⊥ + i
w2

pwL

1 − w2
L

B̂ . (4.242)

4.8.2 Contribution by ions

If ions need to be taken into consideration, the parallel, perpendicular and
antisymmetric dielectricity components change according to

ε⊥ − 1→ (ε⊥ − 1)e + (ε⊥ − 1)i ,

ε‖ − 1→ (ε‖ − 1)e + (ε‖ − 1)i ,

g→ ge + gi , (4.243)

where the plasma and the Larmor frequencies of the electrons and the ions have
to be distinguished. The Larmor frequency of ions with charge Ze is

ωL,i =
ZeB0

mic
= fωL,e � ωL,e with f ≡ Zme

mi
, (4.244)

much smaller than the Larmor frequency of the electrons. The squared plasma
frequency of the ions is

ω2
p,i =

4πZ2e2ni

mi
=

4πZe2ne

mi
= fω2

p,e , (4.245)

where we have used in the second step that the plasma is supposed to be neutral,
Zeni = ene. Therefore, the ratio between the plasma frequencies of the ions and
the electrons is

ωpi

ωpe
= f 1/2 � 1 , (4.246)

also much less than unity.
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The contribution of the ions to the longitudinal dielectricity ε‖ thus turns out to
be negligible. However, their contribution to the transverse dielectricity ε⊥ and
the antisymmetric dielectricity g is not necessarily small. The ratio∣∣∣∣∣∣∣∣

 w2
p,i

1 − w2
L,i


 w2

p,e

1 − w2
L,e

−1
∣∣∣∣∣∣∣∣ = f

∣∣∣∣∣∣∣ 1 − w2
L,e

1 − f 2w2
L,e

∣∣∣∣∣∣∣ (4.247)

is of order unity if ∣∣∣∣∣∣∣ 1 − w2
L,e

1 − f 2w2
L,e

∣∣∣∣∣∣∣ ≈ 1
f

(4.248)

holds. Searching for a solution of this approximate equation, it turns out that
we need to choose the negative branch of the modulus on the left-hand side
because otherwise w2

L turned out negative. Then, the approximate equation
(4.248) demands

− f
(
1 − w2

L,e

)
≈ 1 − f 2w2

L,e , (4.249)

showing that ions can contribute substantially to the transverse dielectricity if
the Larmor frequency of the electrons is much larger than the frequency ω of
the electromagnetic radiation,

wL,e =
ωL,e

ω
.

1√
f
. (4.250)

In a fully analogous way, we can see that the contributions of ions and electrons
to g are comparable if the radiation frequency ω is suitably small compared to
ωL,e,

w2
L .

1
2 f 2 . (4.251)

Thus, radiation with sufficiently low frequency, ω .
√

fωL,e, will feel the ion
contribution to the transverse dielectricity, and it will feel the ion contribution
to the antisymmetric dielectricity if ω .

√
2 fωL,e. For a pure hydrogen plasma,

f ≈ 5.6 · 10−4. Ions then become important for the transverse dielectricity
for frequencies ω . 0.02ωL,e, and for the antisymmetric dielectricity g if
ω . 8 · 10−4ωL,e.

4.8.3 Dispersion relations in a cold, magnetised plasma

With the dielectric tensor (4.239) in presence of a magnetic field, we return to
the general dispersion relation (4.49)

det
(
13 − k̂ ⊗ k̂ − ω2

k2c2 ε̂

)
= 0 . (4.252)

Through the dielectric tensor, this dispersion relation contains the projectors
π‖ and π⊥ parallel and perpendicular to the magnetic field, while the first two
terms together are the projector

π̃⊥ = 13 − k̂ ⊗ k̂ (4.253)

perpendicular to the propagation direction of the incoming electromagnetic
field, which we now mark with a tilde to distinguish it from the projectors
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relative to the magnetic field. It is advantageous to express π̃⊥ in terms of the
projectors π‖ and π⊥. To this end, we write

π̃⊥ = Aπ‖ + Bπ⊥ , (4.254)

apply π‖ and π⊥ from the left and take the trace to find

A = Tr
(
π‖π̃⊥

)
and B =

1
2

Tr (π⊥π̃⊥) . (4.255)

The remaining traces are easily worked out. To do so, we introduce the angle θ
between the direction k̂ of the wave propagation and b̂ of the magnetic field by
cos θ = k̂ · b̂.

Caution Notice (and convince
yourself) that Tr(b̂ ⊗ b̂) = b̂2 = 1
and

Tr
[(

b̂ ⊗ b̂
) (

k̂ ⊗ k̂
)]

=
(
b̂ · k̂

)2

= cos2 θ .

J

This gives

A = Tr
(
π‖π̃⊥

)
= Tr

(
b̂ ⊗ b̂

) (
13 − k̂ ⊗ k̂

)
= 1 − cos2 θ = sin2 θ (4.256)

and

B =
1
2

Tr (π⊥π̃⊥) =
1
2

Tr
(
13 − b̂ ⊗ b̂

) (
13 − k̂ ⊗ k̂

)
=

1 + cos2 θ

2
, (4.257)

allowing us to write the projector π̃⊥ perpendicular to the wave vector as the
linear combination

π̃⊥ = sin2 θ π‖ +
1 + cos2 θ

2
π⊥ (4.258)

of the projectors π⊥ and π‖ relative to the magnetic field. In much the same
way, the parallel projector π̃‖ relative to the wave vector can be expanded as

π̃‖ = cos2 θ π‖ +
sin2 θ

2
π⊥ . (4.259)

?
Perform the calculations yourself
that lead to the representations
(4.258) and (4.259) of the perpen-
dicular and parallel projectors with
respect to k̂.

Introducing (4.258) into (4.252) and abbreviating further ω2/(k2c2) =: w2

enables us to write the dispersion relation as

det
{(

sin2 θ − w2ε‖
)
π‖ +

[
1
2

(
1 + cos2 θ

)
− w2ε⊥

]
π⊥ − iw2gB̂

}
= 0 . (4.260)

Since the determinant is invariant under orthogonal transformations, we can
rotate the coordinate frame such that b̂ points into the êz direction such that
b̂i = δi

3. Under this choice, which does not affect generality, the dispersion
relation (4.260) simplifies to

det


1
2

(
1 + cos2 θ

)
− w2ε⊥ −iw2g 0

iw2g 1
2

(
1 + cos2 θ

)
− w2ε⊥ 0

0 0 sin2 θ − w2ε‖

 = 0 .

(4.261)
The solutions can directly be read off this expression now. They are

sin2 θ = w2ε‖ and
1 + cos2 θ

2
= w2 (ε⊥ ± g) , (4.262)
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showing that the propagation of electromagnetic waves through a magnetised
plasma depends on the propagation direction of the waves relative to the mag-
netic field. Inserting the expressions (4.240) and (4.241) for the parallel, trans-
verse, and antisymmetric dielectricities, the dispersion relations (4.262) can
finally be cast into the forms

w2
(
1 − w2

p

)
= sin2 θ and w2

1 − w2
p

1 ± wL

 =
1 + cos2 θ

2
(4.263)

or, when written in terms of the frequencies,

ω2 − ω2
p = k2c2 sin2 θ and ω2

1 − ω2
p

ω(ω ± ωL)

 =
1 + cos2 θ

2
k2c2 .

(4.264)
The first dispersion relation (4.264) is a second-order polynomial with one real
root. It applies to waves with an electric field vector polarised parallel to the
magnetic field. The second dispersion relation is a fourth-order polynomial
with four real roots which belong to two branches split by the Larmor frequency
of gyration in the magnetic field (Figure 4.8).
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Figure 4.8 Dispersion relations for electromagnetic waves propagating through a
magnetised, cold plasma.

4.8.4 Longitudinal and transverse waves

Having derived the dispersion relations for waves polarised relative to the
magnetic field, it is now very interesting and instructive to repeat this derivation
for waves polarised longitudinally or transversally to their propagation direction.
For this purpose, we need to return to the original propagation equation(

π̃⊥ − w2ε
)
~̂E = 0 , (4.265)

but now expand the projectors π‖ and π⊥ relative to the magnetic field in terms of
the projectors π̃‖ and π̃⊥ parallel and perpendicular to the propagation direction
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k̂. By a procedure entirely analogous to the reverse expansion of π̃⊥ performed
above, we find expressions (4.258) and (4.259) with the projectors π̃ and π
interchanged,

π⊥ = sin2 θ π̃‖ +
1 + cos2 θ

2
π̃⊥ and π‖ = cos2 θ π̃‖ +

sin2 θ

2
π̃⊥ (4.266)

and accordingly decompose the propagation equation (4.265) as{ (
1 − w

2

2

[
ε‖ sin2 θ + ε⊥

(
1 + cos2 θ

)])
π̃⊥

− w2
(
ε‖ cos2 θ + ε⊥ sin2 θ

)
π̃‖ − iw2g B̂

}
~̂E = 0 . (4.267)

We turn the coordinate system such that the wave propagates into the z direction,
k̂ = êz, and that the unit vector b̂ in field direction falls into the x − z plane,

b̂ =

 sin θ
0

cos θ

 . (4.268)

The propagation condition (4.267) can then be cast into the matrix form A −iC cos θ 0
iC cos θ A iC sin θ

0 −iC sin θ −B




Êx

Êy

Êz

 = 0 (4.269)

with the abbreviations

A = 1 − w
2

2

[
ε‖ sin2 θ + ε⊥

(
1 + cos2 θ

)]
,

B = w2
(
ε‖ cos2 θ + ε⊥ sin2 θ

)
and

C = w2g . (4.270)
?

Verify that, for the orientation of the
coordinate frame defined in the text,
(4.267) turns into (4.269) with the
coefficients (4.270).

Longitudinal waves. Consider now a longitudinally polarised wave, Êx = 0 =

Êy. According to (4.270), its dispersion relation is B − iC cos θ = 0 or

ε‖ cos2 θ + ε⊥ sin2 θ − ig sin θ = 0 . (4.271)

An imaginary part appears if the wave does not propagate in or against the
direction of the magnetic field, θ = 0 or θ = π. Then, the frequency is typically
complex, and the longitudinally polarised wave is expected to be damped. Let
us have a closer look into this. If sin θ = 0, the dispersion relation simplifies to
ε‖ = 0 or ω = ωp according to (4.240). Such waves can propagate if they have
the plasma frequency. Suppose now sin θ , 0, but let the Larmor frequency be
much smaller than the plasma frequency, allowing us to approximate

ε⊥ ≈ 1 − w2
p = ε‖ , g ≈ w2

pwL (4.272)

to linear order in wL. We assume that the frequency ω can then be approximated
as ω = ωp + δω with a small and possibly complex correction δω. To first order
in δω and ωL, the dielectricities are

ε⊥ ≈ ε‖ = 1 − ω
2
p

ω2 = 1 − 1(
1 + δω/ωp

)2 ≈ 2
δω

ωp
(4.273)
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and

g =
ω2

pωL

ω3 =
ωL

ωp
(
1 + δω/ωp

)3 ≈
ωL

ωp

(
1 − 3

δω

ωp

)
. (4.274)

With these expressions, the dispersion relation (4.271) turns into

2
δω

ωp
− i

ωL

ωp

(
1 − 3

δω

ωp

)
sin θ = 0 , (4.275)

which has the solution

δω ≈ i
2
ωL sin θ (4.276)

to first order in the Larmor frequency ωL. This imaginary part damps the
longitudinally polarised waves.

Transverse waves. Beginning instead with transversally polarised waves, Êz =

0, we see immediately that field vectors in the x-y plane cannot be eigenvectors
of the matrix in (4.269) unless sin θ = 0: An initially transversally polarised
field vector Ê immediately acquires a longitudinal component Êz = iÊy C sin θ.
For transverse waves to remain transverse, let us therefore assume that the wave
vector is aligned with the magnetic field, sin θ = 0. Then, the propagation
condition (4.269) shrinks to(

1 − w2ε⊥ −iw2g

iw2g 1 − w2ε⊥

) (
Ê1

Ê2

)
= 0 . (4.277)

Using the second dispersion relation from (4.262) with cos θ = ±1, we can
eliminate

w2 =
1

ε⊥ ± g (4.278)

and bring the condition (4.277) into the simple form

g

ε⊥ ± g
( ±1 −i

i ±1

) (
Ê1

Ê2

)
= 0 . (4.279)

This equation immediately shows that the electric-field components must satisfy

Ê1 = ∓iÊ2 or
(
Ê1

)2
+

(
Ê2

)2
= 1 , (4.280)

which characterises circularly polarised light: The two remaining components
of the electric field are determined such that the electric-field vector lies on
a circle. Since the multiplication with the imaginary unit i corresponds to a
rotation by π/2 in the plane transversal to the propagation direction of the wave,
E1 = ∓iE2 describe right- and left-circularly polarised light.

4.8.5 Faraday rotation

The preceding discussion of transversal waves propagating parallel to the mag-
netic field thus leads us to the conclusion that the two branches of the second
dispersion relation from (4.263) describe the propagation of left- and right-
circularly polarised waves which propagate differently because they obey differ-
ent dispersion relations. The left-circular polarisation state propagates through
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the magnetised plasma in a different way than the right-circular polarisation
state. Qualitatively, this is not surprising because the motion of the electrons in
the magnetised plasma has a fixed sense of rotation: The Lorentz force (1.146)
on negatively charged particles requires them to spiral counter-clockwise around
the magnetic field lines, seen in the direction of the field lines themselves.

Figure 4.9 The superposition of a left- and a right-circularly polarised wave with
a slight phase difference is a plane-polarised wave with a rotating polarisation
direction.

Linearly polarised light can be decomposed into left- and right-circularly po-
larised modes of equal intensity and constant phase difference. If the two
circularly-polarised modes now travel through a magnetised plasma at different
phase velocities, their phase difference changes as they travel. The polarisation
direction of linearly polarised light is then rotated. This effect is called Faraday
rotation (Figure 4.9). In the high-frequency limit, when the frequency of the
electromagnetic wave is much higher than both the Larmor and the plasma
frequencies, ω � ωL and ω � ωp, we can approximate the second dispersion
relation from (4.264) for cos θ = ±1 by

k2
± =

ω2

c2

1 − ω2
p

ω(ω ± ωL)

 ≈ ω2

c2

1 − ω2
p

ω2

(
1 ∓ ωL

ω

) (4.281)

in a first step for which only ω � ωL is required. The condition ω � ωp allows
us to continue by taking a square root to first order Taylor approximation,

k± ≈ ω

c

1 − ω2
p

2ω2

(
1 ∓ ωL

ω

) =

ωc − ω2
p

2ωc

 ± ω2
pωL

2ω2c
≡ k0 ± ∆k . (4.282)

The first term, k0, corresponds to a wave vector in the unmagnetised plasma,
while the second term, ∆k, is responsible for the phase shift between the left-
and right-circularly polarised states. This phase shift causes the direction of
linear polarisation by an angle

ψ =

∫
∆kdz =

∫
ω2

pωL

2ω2c
dz =

∫
4πe2ne

m
eB
mc

dz
2ω2c

=
2πe3

m2c2ω2

∫
dz neB ,

(4.283)
where we have inserted the explicit expressions for the plasma and Larmor
frequencies. According to this result, in the high-frequency limit, the Faraday
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rotation is proportional to ω−2 or, equivalently, to the squared wave length λ2.
The expression ∫

dz neB ≡ RM (4.284)

is called the rotation measure.

Faraday rotation is an important diagnostic for astrophysical magnetic fields. If
a source of linearly polarised light, such as a radio source emitting synchrotron
radiation, shines through a magnetised plasma in its foreground, the plane of
linear polarisation rotates by different amounts at different frequencies. If the
polarisation direction can be measured in two or more frequency bands, the
rotation measure can be determined and thus a line-of-sight integral over the
magnetic field strength parallel to the line-of-sight, weighted by the electron
density. Assumptions then need to be made on the orientation of the magnetic
field and on the electron density, under which the field strength can then be
estimated.

Problems

1. Return to the dispersion relations (4.264) for electromagnetic waves in a
magnetised plasma and consider their limit for very weak fields. Derive
approximate dispersion relations for this case and discuss their physical
meaning.

2. Since Faraday rotation is only sensitive to the line-of-sight component B‖
of the magnetic field, it can only measure a net magnetic field remaining
after cancellation of sections along the line-of-sight where the field is
pointing towards and away from the observer.

(a) What is the expectation value of the rotation measure created by a
randomly magnetised, homogeneous medium?

(b) What is the variance of the distribution of rotation measures ob-
tained along many different lines-of-sight through the randomly
magnetised medium if the energy density in the magnetic field is
UB?

(c) If the magnetic field is not completely random, but has a correlation
function ξB(r) given by

ξB(r)δi j =
〈
Bi

(
~x
)

B j
(
~x + ~r

)〉
, (4.285)

what correlation function of the rotation measure is observed?

(d) Suppose a magnetised medium of thickness L can be modelled as
composed of subvolumes with a characteristic linear dimension
λ, carrying magnetic fields of identical strength B0 but random
orientation. How will the variance of the observed distribution of
Faraday rotations depend on λ and L?
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4.9 Hydromagnetic Waves

In this section, a linear perturbation analysis of the equations of ideal, invis-
cid magnetohydrodynamics is carried out, allowing us to identify different
modes of hydromagnetic waves. The result of linearising the equations in
the perturbations is the general dispersion relation (4.301), which can be
specialised to identify the dispersion relation (4.304) for Alfvén waves and
to infer the existence of fast and slow hydromagnetic waves with the sound
speeds (4.309).

4.9.1 Linearised perturbation equations

Now we consider, in a way very similar to the treatment of sound waves in a
neutral fluid, the propagation of waves in a magnetised plasma. For simplicity,
we assume that dissipation and heat conduction are unimportant, ζ = η = κ = 0,
and that the conductivity be infinite, σ−1 = 0. Then, the combined equations of
this ideal, inviscid specialisation of magnetohydrodynamics read

~∇ · ~B = 0 ,
∂~B
∂t

= ~∇ ×
(
~v × ~B

)
,

∂ρ

∂t
+ ~∇ · (ρ~v ) = 0 ,

∂~v

∂t
+

(
~v · ~∇

)
~v = −

~∇P
ρ

+
1

4πρ

(
~∇ × ~B

)
× ~B : (4.286)

Besides mass conservation and Maxwell’s equation ~∇ · ~B = 0, the magnetic
field must satisfy the induction equation and Euler’s equation must contain the
back-reaction of the magnetic field on the plasma flow. The energy conservation
equation is not relevant for the following considerations. We now proceed as
usual in a perturbation analysis. We begin by assuming that an equilibrium
solution for the magnetic field and the plasma quantities exists,

~B0 , ρ0 , P0 , ~v0 = 0 , (4.287)

which we indicate by the subscript 0. Setting the equilibrium velocity to zero is
not a severe restriction because it means that we transform into a coordinate
system comoving with the equilibrium plasma flow. This equilibrium solution
is then perturbed by small amounts

δ~B , δρ , δP , δ~v (4.288)

in all variables. In absence of dissipation, entropy has to be conserved along
flow lines. We further assume isentropic flow, thus s = const. everywhere in
the flow.

Then, we proceed by linearising the ideal magnetohydrodynamic equations. For
doing so, we insert the perturbed variables ~B0 + δ~B, ~ρ0 + δρ, P0 + δP and δ~v
into the equations (4.286) and drop all terms of higher than first order in the
perturbations. Moreover, we use the fact that the equilibrium quantities ~B0, ρ0,
P0 and ~v0 are in fact solutions of the equations. In this way, we find from the
first three equations (4.286)

~∇ · δ~B = 0 ,
∂δ~B
∂t

= ~∇ ×
(
δ~v × ~B0

)
,

∂δρ

∂t
+ ~∇ · (ρ0δ~v

)
= 0 . (4.289)
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Suppose further that the fluctuations in the density, δρ, are of much smaller
scale than any scale on which the equilibrium density ρ0 might change. This
allows us to assume that the equilibrium density is locally constant, ρ0 = const.,
so that the continutity equation can be simplified to read

∂δρ

∂t
+ ρ0~∇ · δ~v = 0 . (4.290)

Finally, also to first order in all perturbations, Euler’s equation reads

∂δ~v

∂t
= −

~∇δP
ρ0

+

(
~∇ × δ~B

)
× ~B0

4πρ0
, (4.291)

again under the assumption that the equilibrium solution is locally homoge-
neous, thus ~∇P0 = 0 = ~∇ × ~B0. The pressure perturbation δP can further be
related to the density perturbation δρ by means of the sound speed cs of the
neutral gas, δP = c2

sδρ.

As usual in a perturbation analysis, we decompose all of the perturbations,
jointly represented by Q, into plane waves,

δQ ∝ ei
(
~k·~x−ωt

)
, (4.292)

which turns the ideal magnetohydrodynamic equations into a set of algebraic
equations. These are

~k · δ~B = 0 , ωδ~B + ~k ×
(
δ~v × ~B0

)
= 0 (4.293)

for the magnetic field and

ωδρ − ρ0~k · δ~v = 0 , ωδ~v − c2
sδρ

ρ0
~k +

(
~k × δ~B

)
× ~B0

4πρ0
= 0 (4.294)

for the plasma velocity.

Without loss of generality, we can now rotate the coordinate frame such that
~k points along the positive x axis and that ~B0 falls into the x-y plane. Further,
we denote the angle between ~k and ~B with ψ such that ~k · ~B0 = kB0 cosψ. With
this choice of coordinates, the vector products in (4.293) and (4.294) become

k ×
(
δ~v × ~B0

)
= kB0

 0
δvy cosψ − δvx sinψ

δvz cosψ

 (4.295)

and (
~k × δ~B

)
× ~B0 = kB0

 −δBy sinψ
δBy cosψ
δBz cosψ

 (4.296)

Equations (4.293) for the magnetic field now specialise to

δBx = 0 , δBy =
kB0

ω

(
δvx sinψ − δvy cosψ

)
, δBz = −kB0

ω
δvz cosψ .

(4.297)
The continuity equation simplifies to

δρ

ρ0
=

k
ω
δvx (4.298)
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and allows us to express the density fluctuation δρ by the velocity fluctuation
δvx. This, then, turns the three components of the Euler equations into

δvx − k2c2
s

ω2 δvx −
kB0δBy sinψ

4πρ0ω
= 0 , δvy,z +

kB0δBy,z cosψ
4πρ0ω

= 0 . (4.299)?
Confirm the expressions given in
(4.295) and (4.296) for the double
vector products. Next, we use the equations (4.297) for the magnetic field to eliminate the field

fluctuations δ~B from the components (4.299) of the Euler equation. On the way,
we introduce two velocities, the phase velocity ck = ω/k of the plane-wave
perturbations (4.292) and the so-called Alfvén velocity cA through

c2
A =

B2
0

4πρ0
. (4.300)

These definitions allow writing the three components of the Euler equation in
the compact matrix form c2

k − c2
s − c2

A sin2 ψ c2
A sinψ cosψ 0

c2
A sinψ cosψ c2

k − c2
A cos2 ψ 0

0 0 c2
k − c2

A cos2 ψ

 δ~v = 0 . (4.301)

Once the velocity perturbations are found from this propagation equation, the
magnetic-field perturbations follow from (4.297), the density fluctuation from
the continuity equation (4.298), and pressure fluctuations from the density
fluctuations by multiplication with the squared sound speed. Since the density
perturbations are caused exclusively by the x component of the velocity pertur-
bations δvx which point, by construction, into the direction of the wave vector,
only longitudinal waves are responsible for the density fluctuations.

4.9.2 Alfvén waves

Let us focus on velocity perturbations in êz direction first. For such perturba-
tions, the propagation equation (4.301) requires the dispersion relation

c2
k = c2

A cos2 ψ (4.302)

or, since the phase velocity ck of the plane-wave perturbation is ck = ω/k,

ω = cAk cosψ = cA~k · b̂ , (4.303)

where the Alfvén speed occurs. Comparing with the ordinary sound speed in a
gas, the expression (4.300) for the Alfvén speed is very intuitive: The squared
Alfvén speed is the pressure of the magnetic field divided by the plasma density,
just as the ordinary sound speed cs is given by the ratio of the gas pressure and
the gas density. The phase velocity of these Alfvén waves is

ω

k
= cA cosψ , (4.304)

while their group velocity is
∂ω

∂~k
= cAb̂ . (4.305)
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We thus see that the Alfvén waves described by (4.303) are wave-like perturba-
tions of the velocity field and the magnetic field transverse to their propagation
direction and to the unperturbed magnetic field (Figure 4.10). Their group
velocity has an absolute value depending only on the ratio of the magnetic
pressure and the matter density. While the phase of the wave propagates along
the wave vector ~k into the êx direction, the group velocity points into the direc-
tion of the magnetic field. Alfvén waves thus transport physical quantities, for
example their energy and momentum, along the magnetic field ~B, independent
of ~k. The phase velocity of the Alfvén waves, cA cosψ, depends on the angle
between ~k and ~B and vanishes if ~k is transverse to the magnetic field. Such
Alfvén waves have a time-independent phase, and their energy propagates with
the Alfvén velocity perpendicular to their wave vector. Alfvén wave packets, for
example, with ~k ⊥ ~B would propagate along ~B, without changing their phase.
If ~k and ~B are aligned, phase and group velocity become equal and point into
the same direction.

y

z

x ~k

~B
ψ

δvz, δBz

phase velocity
group velocity

Figure 4.10 Alfvén waves are perturbations of the velocity field and the magnetic
field perpendicular to their propagation direction ~k and the magnetic field ~B.

Since the velocity perturbations δvx and δvy vanish for pure Alfvén waves, no
density perturbations are associated with them, and the only component of the
magnetic-field perturbation is

δBz = −B0 cosψ
δvz

ck
. (4.306)

The magnetic-field perturbation associated with Alfvén waves is thus antipar-
allel to the velocity perturbation, transverse to both the wave vector ~k and the
magnetic field ~B0, and its amplitude is proportional to the component of the
unperturbed magnetic field in the direction of the wave vector.

4.9.3 Slow and fast hydro-magnetic waves

Let us now consider waves described by the x and y components of the propa-
gation equation (4.301),(

c2
k − c2

s − c2
A sin2 ψ c2

A sinψ cosψ
c2

A sinψ cosψ c2
k − c2

A cos2 ψ

) (
δvx

δvy

)
= 0 . (4.307)
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The dispersion relation is found requiring that the determinant of the coefficient
matrix in this equation vanish, which gives a quadratic equation in the phase
velocity ck,

c4
k − c2

k

(
c2

A + c2
s

)
+ c2

Ac2
s cos2 ψ = 0 . (4.308)

Its solutions are

c2
k,± =

1
2

(c2
A + c2

s

)
±

√(
c2

A + c2
s

)2 − 4c2
Ac2

s cos2 ψ

 . (4.309)

Thus, a fast and a slow wave mode are possible (Figure 4.11). We analyse their
modes in the special cases when the wave vector ~k is either aligned with the
magnetic field ~B0, or transverse to it.

-1.5

-1

-0.5
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0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

fast mode
slow mode

Figure 4.11 Polar velocity diagram of the fast and slow hydromagnetic modes.
The polar angle is the angle ψ between the wave vector ~k and the magnetic field ~B.
The sound and Alfvén speeds are arbitrarily set to cs = 1 and cA = 0.75.

Let us begin with the case ψ = 0, when the perturbation propagates with or
against the magnetic field. Then, cosψ = 1 and the dispersion relation becomes

c2
k =

ω2

k2 =
1
2

(
c2

s + c2
A ±

∣∣∣c2
s − c2

A

∣∣∣) =

{
c2

s or
c2

A
. (4.310)

Accordingly, the fast wave propagates with the faster of the sound and the
Alfvén velocities, the slow wave with the slower of these two. The propagation
condition (4.301) shows that the wave travelling with the sound speed, the so-
called acoustic mode, must have δvy = 0 and is therefore logitudinal, while the
wave travelling with the Alfvén speed, called the Alfvénic mode, is transversal
since δvx = 0. The acoustic mode creates density perturbations according to
the continuity equation (4.298) while the Alfvénic mode does not because the
density perturbations are proportional to δvx. Similarly, the Alfvénic mode
creates a transverse magnetic-field perturbation according to (4.297) while the
acoustic mode has no magnetic-field perturbation associated.
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For waves perpendicular to the magnetic field, ~B ⊥ ~k and cosψ = 0, the phase
velocities are

c2
k,± =

1
2

(
c2

s + c2
A ± c2

s + c2
A

)
=

{
c2

s + c2
A or

0
(4.311)

for the fast and the slow hydromagnetic waves. As for the Alfvén waves
themselves, the phase velocity of the slow hydromagnetic waves then drops to
zero. For ψ = π/2, the propagation condition (4.301) shows that the fast wave
must be longitudinal while the slow wave must be transversal. Then, the fast
wave creates density fluctuations and transversal magnetic-field perturbations
as shown by (4.297), while the slow mode creates neither of them.

This concludes our brief introduction into the very rich field of magneto-
hydrodynamics. Even neglecting any thermal motion of the plasma particles,
viscosity or gravity, we found an interesting collection of phenomena, of which
the Faraday rotation, the Alfvén waves, and the occurrence of the fast and the
slow hydromagnetic waves were the most important.

Problems

1. Return to the ideal magneto-hydrodynamic equations (4.286), add a
gravitational field, and assume a static, planar system infinitely extended
in the x-y plane. Let the magnetic field be oriented parallel to the plane.
For simplicity, assume further that the fluid is isothermal and that the
ratio of the magnetic to the thermal pressure is constant.

(a) Derive and solve an equation for the pressure as a function of
distance z above the plane.

(b) How is the magnetic field structured above the plane?

Suggested further reading: [2, 13, 15, 16, 18]





Chapter 5

Stellar Dynamics

5.1 The Jeans equations and Jeans’ theorem

We begin this section by a derivation of the relaxation time scale (5.20),
showing how long it takes a star orbiting through a system of stars to
substantially change its velocity. In a way reminiscent of the derivation of
the hydrodynamical equations, we then derive Jeans’ equations (5.41) for
the evolution of the number density and the mean velocity of stars in a
stellar system. We then transform the Jeans equations to spherical polar
coordinates and specialise them to stationary spherical systems in (5.56),
showing that the main difference to hydrostatics is the anisotropy in velocity
space. Next, we derive the tensor virial theorem (5.82) for stellar-dynamical
systems and introduce Jeans’ theorem.

5.1.1 Collision-less motion in a gravitational field

Particles in a gas or a fluid move almost unaccelerated until they meet another
particle, which forces them to change their state of motion abruptly. As we
have discussed before, hydrodynamics is based on the central assumption that
the collisions occur on much smaller length scales λ than those macroscopic
scales L that characterise the extent of the entire hydrodynamical system. In
plasma physics, we had seen that the shielding of charges on the scale of the
Debye length λD allows a hydrodynamical treatment despite the formally inifite
range of electrostatic interactions, provided there are sufficiently many particles
in the Debye volume ≈ λ3

D. In all these cases, the interactions are effectively
extremely short-ranged. Likewise, we had assumed in our treatment of local
thermodynamical equilibrium in radiation transport that the mean free path of
the photons be much smaller than the characteristic dimensions of the system
under consideration.

Studying the motion of many point masses such as stars in a gravitational
field, we encounter a fundamentally changed situation. The forces between the
particles are now long-ranged and cannot be shielded. A single star in a galaxy,
for instance, thus experiences not only the attraction of its nearest neighbours,
but essentially the gravitational force exerted by all stars in the entire galaxy.

251
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To give an illustrative example, let us consider a two-dimensional system, such
as a galactic disk, which we shall assume to be infinitely extended for now and
in whose centre we assume a star. The disk be randomly covered by stars in
such a way that their mean number density is spatially constant (Figure 5.1).

r

r + dr

Figure 5.1 Illustration of a small section of a random star field, centered on an
arbitrarily chosen star.

In a circular ring around the central star of radius r and width dr, we find

dN = 2πrdr n (5.1)

stars whose combined gravitational force on the central star is

dF = 2πrdr n
Gm2

r2 (5.2)

if the mass m is assumed to be the same for all stars for simplicity. Of course,
the directions of all forces cancel in the mean, but the contribution of arbitrarily
distant rings diverges logarithmically,∫

dF = 2πGnm2
∫

dr
r

= 2πGnm2 ln r . (5.3)

Thus, the structure of the entire stellar system is important for the dynamics of
the stars in the gravitational field.

In the spirit of the distinction between microscopic and macroscopic forces that
we had made when introducing hydrodynamics, the forces in a system which
is dominated by self-gravity are also macroscopic. Therefore, the collision
terms, which describe the interaction on a microscopic scale, can be neglected
here at least to first order of approximation. Thus, we begin our treatment of
self-gravitating systems with the collision-less Boltzmann equation,

dt f
(
~x,~v, t

)
= ∂t f + ~̇x · ~∇ f + ~̇v · ~∇~v f = 0 (5.4)
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5.1.2 The relaxation time scale

Before we turn to a detailed study of Eq. (5.4) in a gravitational field, we
investigate approximately how the trajectory of a star through a galaxy which is
composed of individual stars deviates from the trajectory through a hypothetical,
“smooth” galaxy. We consider the passage of a star past another star employing
Born’s approximation, i.e. we integrate the deflection along a straight trajectory
passing the deflecting star at an impact parameter b. The perpendicular force at
the location x along the hypothetical, straight trajectory is

F⊥ =
∣∣∣∣−~∇⊥φ∣∣∣∣ =

∣∣∣∣∣∣− ∂∂b
Gm2
√

b2 + x2

∣∣∣∣∣∣ =
Gm2b(

b2 + x2)3/2 , (5.5)

where φ is the Newtonian gravitational potential. With x ≈ vt, we have

F⊥ ≈ Gm2

b2

[
1 +

(
vt
b

)2
]−3/2

, (5.6)

and Newton’s second law mv̇⊥ = F⊥ thus implies

δv⊥ ≈ Gm
b2

∫ ∞

−∞

[
1 +

(
vt
b

)2
]−3/2

dt

=
2Gm

bv

∫ ∞

0

(
1 + τ2

)−3/2
dτ =

2Gm
bv

. (5.7) ?
How do you solve an integral like
that in (5.7)?Let N be the number of stars in the galaxy and R be its radius, then the fiducial

test star experiences

δN = 2πbδb n = 2πbδb
N
πR2 =

2N
R2 bδb (5.8)

such encounters with other stars at an impact parameter between b and b + δb.
The mean quadratic velocity change is thus

δv2
⊥ ≈

2Nbδb
R2

(
2Gm

bv

)2

=
8NG2m2

R2v2

δb
b
. (5.9)

Integrating this expression, we need to take into account that the assumption of
Born’s approximation requires that

δv⊥ . v ⇒ 2Gm
bv
. v ⇒ b & bmin =

Gm
v2 , (5.10)

and thus we obtain

∆v2
⊥ =

∫ ∞

bmin

δv2
⊥ ≈ 2N

(
2Gm
Rv

)2

ln b
∣∣∣∣R
bmin
≡ 2N

(
2Gm
Rv

)2

ln Λ , (5.11)

where

ln Λ ≡ ln
R

bmin
= ln

Rv2

Gm
; (5.12)

is the so-called Coulomb logarithm. A typical velocity for the stars in a galaxy
of mass M = Nm is, according to the virial theorem,

v2 ≈ GMm
R

⇒ R ≈ GNm
v2 . (5.13)
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Using this, we obtain
∆v2⊥
v2 ≈

8 ln Λ

N
. (5.14)

This shows by which relative amount the star’s velocity is changed during one
passage through the galaxy. The Coulomb logarithm ln Λ follows from

ln Λ = ln
R

bmin
= ln

Rv2

Gm
≈ ln N , (5.15)

i.e. the relative velocity change is approximated by

∆v2⊥
v2 ≈

8 ln N
N

. (5.16)

After ncross passages through the galaxy, the total relative velocity change will
approximately be

ncross
8 ln N

N
. (5.17)

For this expression to be of order unity, the number of passages needs to be

ncross ≈ N
8 ln N

. (5.18)

Since one passage takes approximately the time

tcross ≈ R
v
, (5.19)

a substantial velocity change needs the relaxation time

trelax ≈ R
v

N
8 ln N

. (5.20)

Example: Relaxation of a galaxy

In a galaxy, we typically have a crossing time scale of

tcross ≈ 10 kpc
200 km s−1 ≈ 5 · 107 yr (5.21)

and perhaps N ≈ 1011 stars. The relaxation time thus turns out to be

trelax ≈ 3 · 1016 yr , (5.22)

which is much more than the age of the Universe. This illustrates that in many,
if not most astrophysically relevant systems, the collision-less Boltzmann
equation can safely be used. J

5.1.3 The Jeans equations

The derivation of the Jeans equation, which will now follow, is formally similar
to the derivation of the hydrodynamical equations. Yet, there are several impor-
tant conceptual differences which justify going through the derivation again.
First of all, we now have to do with a collection of individual, indentifiable
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Example: Relaxation of a globular cluster

A counter-example is given by globular clusters. There, the number of stars is
much smaller, N ≈ 105, and crossing times are of order tcross ≈ 105 yr. Their
relaxation time scale is therefore

trelax ≈ 108 yr , (5.23)

which is short compared to the life time of the globular cluster. In such cases,
therefore, collisions do play an essential role. J

“particles”, namely the stars in a stellar system, orbiting under their mutual
gravitational interaction and possibly in an external, more or less smooth gravi-
tational potential φ. Second, when we integrated over the momentum subspace
during the derivation of hydrodynamics, we introduced an integral measure to
ensure that the integral was relativistically invariant. There is no need to do so
here since we can treat the stars in a stellar system as non-relativistically moving
objects. Third, on the way to hydrodynamics, we introduced the four-vector
Jµ for the particle-current density and the energy-momentum tensor T µν of
the fluid and showed that the hydrodynamical equations followed from the
vanishing four-divergences of Jµ and T µν. Since we now have a collection of
individual point masses, the introduction of continuous quantities such as the
current densities of stars, momentum and energy is not necessarily justified.
What we shall introduce, though, is the mean spatial number density n(t, ~x ) of
the stars at the position ~x and at the time t.

We thus begin again with Boltzmann’s collision-less equation, in which the
right-hand side is set to zero, dt f = 0. Consider f (~x,~v, t) as a function of
position, velocity and time, and replace the time derivative of the velocity
according to Newton’s second law,

~̇v =
~F
m

= −~∇φ (5.24)

to obtain
∂t f +~v · ~∇ f − ~∇φ · ~∇~v f = 0 . (5.25)

Similar to the derivation of the hydrodynamical equations, we now form ve-
locity moments of equation (5.25) by multiplying the collision-less Boltzmann
equation with powers of the velocity and integrating over velocity space,

∂t

∫
d3v f +

∫
d3v~v · ~∇ f − ~∇φ ·

∫
d3v ~∇~v f = 0 . (5.26)

The last term here simply gives boundary terms at infinity which vanish under
the assumption that there are no infinitely fast point masses,

f
(
~x,~v, t

)→ 0 for
∣∣∣~v ∣∣∣→ ∞ . (5.27)

In the second term, the gradient can be pulled out of the integral since it operates
on the spatial coordinates ~x, while the integration is carried out over the velocity.
Equation (5.26) then gives

∂tn + ~∇ ·
∫

d3v f~v = 0 . (5.28)
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Since the mean velocity is defined as〈
~v
〉

=
1
n

∫
d3v f~v , (5.29)

we find the continuity equation for our point masses,

∂tn + ~∇ · (n 〈
~v
〉)

= 0 , (5.30)

as we might have expected. Notice in particular that we have introduced the
mean spatial number density

n
(
~x, t

)
=

∫
d3v f

(
~x,~v, t

)
(5.31)

of the stars here. As an integral over the one-particle phase-space distribution f ,
this is a well-defined quantity, which should however not be confused with the
smooth matter density of a fluid. Given the discrete nature of the stars in a stellar
system, their spatial number density may fluctuate considerably. Moreover, it is
not easily possible to move from the number density n to the matter density ρ
by multiplying with a particle mass since the stars will typically have a wide
mass distribution.

The second moment of Boltzmann’s equation is taken by multiplying equation
(5.25) with the velocity ~v prior to the integration over velocity space. In this
way, further using that(

~∇ f ·~v
)
~v = ~∇ f>

(
~v ⊗~v ) = ~∇ · ( f~v ⊗~v ) and(

~∇φ · ~∇~v f
)
~v = ~∇φ>

(
∂ f
∂~v
⊗~v

)
(5.32)

we obtain

∂t

∫
d3v f~v + ~∇ ·

∫
d3v f~v ⊗~v − ~∇φ>

∫
d3v

(
∂ f
∂~v
⊗~v

)
= 0 . (5.33)?

Verify the expressions (5.32) by your
own calculation. We continue by considering the third term, which can be integrated by parts to

yield ∫
d3v

(
∂ f
∂~v
⊗~v

)
= −

∫
d3v f

∂~v

∂~v
= −n13 , (5.34)

if we can ignore boundary terms at infinity as before. This expression enables
us to re-write (5.33) as

∂t
(
n
〈
~v
〉)

+ ~∇ · (n 〈
~v ⊗~v 〉) + n~∇φ = 0 , (5.35)

where 〈
~v ⊗~v 〉 ≡ 1

n

∫
d3v f~v ⊗~v (5.36)

is the velocity-dispersion tensor. This tensor can be re-written in terms of the
velocity-correlation tensor and the average velocity components,〈

~v ⊗~v 〉 =
〈(
~v − 〈

~v
〉) ⊗ (

~v − 〈
~v
〉)〉

+
〈
~v
〉 ⊗ 〈

~v
〉 ≡ σ2 +

〈
~v
〉 ⊗ 〈

~v
〉
. (5.37)

For convenience, we now substitute〈
~v
〉→ ~v (5.38)
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since only averaged velocities and no velocities of individual particles remain.
This allows us to write (5.35) as

∂t
(
n~v

)
+ ~∇ ·

(
nσ2

)
+ ~∇ · (n~v ⊗~v ) + n~∇φ = 0 . (5.39)

Applying the product rule to the first and third terms and grouping terms
conveniently, we can continue to write

~v
[
∂tn + ~∇ · (n~v )] + n∂t~v +

(
n~v · ~∇

)
~v + ~∇ ·

(
nσ2

)
+ n~∇φ = 0 . (5.40)

Noticing that the term in square brackets vanishes due to the continuity equation,
we thus obtain the two equations

∂tn + ~∇ · (n~v ) = 0 ,

∂t~v +
(
~v · ~∇

)
~v = −~∇φ − 1

n
~∇ ·

(
nσ2

)
. (5.41)

These are the Jeans equations which were derived for the first time by Maxwell,
but first applied to stellar-dynamical problems by Sir James Jeans. As an
equation of motion for the mean velocity components, the second equation
corresponds to Euler’s equation in ideal hydrodynamics, where the divergence
of the tensor nσ2 takes the role of the pressure gradient,

~∇P
ρ

= ρ−1~∇ · (P13)→ ~∇ ·
(
nσ2

)
. (5.42)

5.1.4 Jeans equations in cylindrical and spherical coordinates

It is useful for many applications to write the distribution function f as a func-
tion not of Cartesian but of such coordinates that are adapted to the symmetry of
a specific stellar-dynamical system under investigation. The Jeans equation then
needs to be transformed from the Cartesian basis vectors {êx, êy, êz} to those of
the new, curvi-linear coordinates system. Let us carry out this transformation
for the two frequent cases of cylindrical and spherical coordinates. Doing so,
the transformations (3.209) and (3.214) derived earlier for the components of
the acceleration need to be taken into account.

Since the gradient in cylindrical coordinates is

~∇ = êr∂r +
êϕ
r
∂ϕ + êz∂z , (5.43)

we first obtain the components

ar = −∂rφ , aϕ = −∂ϕφ
r

, az = −∂zφ (5.44)

of the equation of motion. With (3.209), we find

v̇r −
v2
ϕ

r
= −∂rφ , v̇ϕ +

vrvϕ

r
= −∂ϕφ

r
. (5.45)
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This implies that the collision-less Boltzmann equation in cylindrical coordi-
nates reads

∂t f + vr∂r f +
vϕ

r
∂ϕ f + vz∂z f

+

v2
ϕ

r
− ∂rφ

 ∂vr f −
(
vrvϕ

r
+
∂ϕφ

r

)
∂vϕ f − ∂zφ∂vz f = 0 . (5.46)

In spherical polar coordinates, we use the representation

~∇ = êr∂r +
êθ
r
∂θ +

êϕ
r sin θ

∂ϕ (5.47)

of the gradient operator and transformation (3.214) of the acceleration compo-
nents to find the fairly lengthy form

∂t f + vr∂r f +
vθ
r
∂θ f +

vϕ

r sin θ
∂ϕ f +

v2
θ + v2

ϕ

r
− ∂rφ

 ∂vr f (5.48)

−
vrvθ

r
− v

2
ϕ

r
cot θ +

∂θφ

r

 ∂vθ f −
[
vϕ

r
(vr + vθ cot θ) +

∂ϕφ

r sin θ

]
∂vϕ f = 0

for the collision-less Boltzmann equation, whose physical meaning remains of
course unchanged.

Whatever coordinates we choose, the zeroth moment of the collision-less Boltz-
mann equation must reproduce the continuity equation (5.30), with the appro-
priate representation of the divergence operator in the coordinate system chosen.
Let us multiply the Boltzmann equation in spherical coordinates, (5.48), with
the radial velocity component vr and then integrate it over the complete velocity
subspace of phase space. The result is the still lengthy expression

∂t (n 〈vr〉) + ∂r
(
n
〈
v2

r

〉)
+
∂θ
r

(n 〈vrvθ〉) +
∂ϕ

r sin θ

(
n
〈
vrvϕ

〉)
− n

r

〈
v2
θ + v2

ϕ

〉
+ n∂rφ +

2n
r

〈
v2

r

〉
+

n
r
〈vrvθ〉 cot θ = 0 , (5.49)

where we have kept the order and the arrangement of the terms like those from
which they originate in (5.48). The decisive step in deriving (5.49) are partial
integrations in velocity space.

?
Derive (5.49) yourself, following the
steps described in the text.

5.1.5 Application to spherical systems

Equation (5.49) can be considerably simplified under the following natural
assumptions. First, let us assume that the average velocities in the polar and
azimuthal directions vanish, 〈

vϕ
〉

= 0 = 〈vθ〉 . (5.50)

Then, let us further assume that the velocity components are statistically inde-
pendent of each other,

〈vrvθ〉 = 0 =
〈
vrvϕ

〉
, (5.51)
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and that the situation is static, allowing us to ignore the partial time derivative.
If we further introduce the velocity dispersions as the averages

σ2
r,θ,ϕ =

1
n

∫
d3v v2

r,θ,ϕ f , (5.52)

we arrive at the much simpler equation

∂r
(
nσ2

r

)
+

n
r

[
2σ2

r −
(
σ2
θ + σ2

ϕ

)]
= −n∂rφ . (5.53)

Notice that we have neither used the continuity equation nor the explicit as-
sumption of spherical symmetry here, but exclusively the first, radial moment
of the collision-less Boltzmann equation together with an assumed isotropy in
velocity space, expressed by the conditions (5.50) and (5.51).

Given this isotropy in velocity space, it is natural to assume that the polar and
azimuthal velocity dispersions be equal,

σ2
θ = σ2

ϕ . (5.54)

We relate them to the radial velocity dispersion σ2
r by an anisotropy parameter

β such that
σ2
θ = σ2

r (1 − β) = σ2
ϕ . (5.55)

Typically, the anisotropy parameter is non-negative, β ≥ 0. If β > 0, radial
motion dominates, while tangential motion dominates if β < 0. The anisotropy
parameter itself cannot generally be assumed to be constant, but should be taken
as depending on the radius r.

We are finally left with the radial Jeans equation

∂r
(
nσ2

r

)
+

2β(r)
r

nσ2
r = −n∂rφ , (5.56)

which is a first-order, linear, ordinary and inhomogeneous differential equation
for the quantity nσ2

r . It is easily solved by variation of constants. The general
homogeneous solution is quickly found to be

nσ2
r = C exp

(
−2

∫ r

0

β(x)
x

dx
)
, (5.57)

where the constant C is chosen such that nσ2
r = C at the centre, r = 0, and

x was introduced merely as a radial integration variable. For solving the
inhomogeneous equation, we now allow C to vary with radius, C = C(r). Then,
(5.56) gives the differential equation

C′(r) = −n∂rφ exp
(
2
∫ r

0

β(x)
x

dx
)

(5.58)

for C(r) since the exponential from (5.57) was constructed to solve the homoge-
neous equation (5.56) in the first place. This equation can formally be integrated
to give

C(r) =

∫ ∞

r
dy

[
n(y)(∂rφ)(y) exp

(
2
∫ y

0

β(x)
x

dx
)]
, (5.59)
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where y was introduced as another radial integration variable and the boundary
condition was chosen such that C → 0 for r → ∞ irrespective of what β(r) may
be. Returning with this result to (5.57), we obtain the solution

nσ2
r =

∫ ∞

r
dy

[
n(y)(∂rφ)(y) exp

(
2
∫ y

r

β(x)
x

dx
)]

(5.60)

for the radial velocity dispersion σ2
r times the stellar density n. For a spherically-

symmetric system, we can further write the radial derivative of the gravitational
potential as

∂rφ =
GM(r)

r2 , (5.61)

which enables us to write

nσ2
r = G

∫ ∞

r
dy

[
M(y)n(y)

y2 exp
(
2
∫ y

r

β(x)
x

dx
)]
. (5.62)?

Carry out all steps yourself that lead
from the radial Jeans equation (5.56)
to the solution (5.62). Many studies of stellar dynamics begin here. In principle, the radial stellar

density n(r) is observable through the surface brightness of an observed stellar
system. By spectroscopy, the radial velocity dispersion σ2

r is accessible. If
an anisotropy parameter β(r) can now be reasonably guessed, (5.62) allows
determining the mass (Figure 5.2).
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Figure 5.2 The effective kinematic pressure in a spherically-symmetric system
according to Jeans’ equation is shown as a function of the three-dimensional radius
for different anisotropy parameters β.

The radial velocity dispersion multiplied with the stellar number density is of
course not quite an observable quantity. Only the line-of-sight component of
stellar velocities can typically be measured by the red- or blueshift of spectral
lines. Since the red- and blueshifts of many stars generally appear superposed,
lines appear broadened by the motion of the stars within the gravitational
potential and shifted by the systemic velocity of the potential well as a whole
relative to us as observers. The Doppler-broadened width of the spectral lines
is the observable quantity to be measured, and it is directly related to the
line-of-sight averaged velocity dispersion. Since the observed spectral line
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is a superposition of lines in the spectra of many stars, the observed line is
dominated by those velocities that are represented by the most intense stellar
light. Assuming that the stellar light is related to the stellar density by some
constant factor, what we see is thus the density-weighted component of the
stellar velocity along the line-of-sight.

line-of-sight

α

σr

σθ

velocity ellipsoid

Figure 5.3 Illustration of the projection of the radial and tangential velocity disper-
sions along the line-of-sight.

Imagine a line-of-sight that passes through the spherical galaxy at a projected
distance s from the line-of-sight through its centre at an azimuthal angle that
we can without loss of generality assume to be zero, ϕ = 0. Further, let α be the
angle between this line-of-sight and the radial direction. Then, the projected
velocity component parallel to the line-of-sight is (Figure 5.3)

v‖ = vr cosα + vθ sinα , (5.63)

whose density-weighted, averaged square we see,

σ2
‖ =

∫ ∞
−∞ dz n(s, z)

〈
v2
‖
〉∫ ∞

−∞ dz n(s, z)
. (5.64)

The denominator normalises the line-of-sight weighting with the stellar density.
Since it is proportional to the surface brightness of the stellar light, we abbreviate
it by I(s). The integral along the z direction is conveniently converted into an
integral in radial direction by noting that r2 = s2 + z2 such that, at constant
projected distance s, we have rdr = zdz. We can thus write the normalisation
integral as

I(s) =

∫ ∞

−∞
dz n(s, z) = 2

∫ ∞

s

rdr
z

n(s, z) = 2
∫ ∞

s

rdr n(r)√
r2 − s2

(5.65)

and the projected velocity dispersion as

σ2
‖ =

2
I(s)

∫ ∞

s

rdr n(r)√
r2 − s2

〈
(vr cosα + vθ sinα)2

〉
. (5.66)
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The average is easily carried out. The mixed average 〈vrvθ〉 vanishes due to our
isotropy assumption (5.51) such that〈

(vr cosα + vθ sinα)2
〉

= σ2
r cos2 α + σ2

θ sin2 α

= σ2
r

[
cos2 α + (1 − β) sin2 α

]
= σ2

r

(
1 − β sin2 α

)
(5.67)

remains, where the anisotropy parameter β from (5.55) was inserted. By defini-
tion of the angle α, we can further substitute

sin2 α =
s2

r2 (5.68)

in (5.67) and (5.66). This gives the relation

σ2
‖ =

2
I(s)

∫ ∞

s

rdr n(r)σ2
r√

r2 − s2

(
1 − β(r)s2

r2

)
(5.69)

between the observable, density-weighted line-of-sight velocity dispersion σ2
‖

and the radial velocity dispersion σ2
r (Figure 5.4).

?
Confirm the expression (5.69) for
the line-of-sight velocity dispersion.
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Figure 5.4 The observable line-of-sight velocity dispersion in a spherical system
is shown as a function of projected radius for different anisotropy parameters β.

The anisotropy parameter can finally be eliminated by means of (5.56), since

β(r)
r

nσ2
r = −1

2

[
∂r

(
nσ2

r

)
+ n∂rφ

]
. (5.70)

Inserting this expression into (5.69) and rearranging leads us to

I(s)σ2
‖ −Gs2

∫ ∞

s

dr n(r)M(r)

r2
√

r2 − s2
=

∫ ∞

s

rdr√
r2 − s2

[
2n(r)σ2

r +
s2∂r(nσ2

r )
r

]
.

(5.71)
This is an integro-differential equation for the density-weighted, radial velocity-
dispersion profile nσ2

r , determined by two observables, the surface-brightness
profile I(s) and the line-of-sight velocity dispersion σ2

‖ , together with a mass
model M(r). With (5.70), the solution can be used to constrain the anisotropy
parameter β(r).
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5.1.6 The tensor virial theorem in stellar dynamics

We return to the Jeans equation in the form (5.35),

∂t
(
n
〈
~v
〉)

+ ~∇ · (n 〈
~v ⊗~v 〉) + n~∇φ = 0 . (5.72)

Multiplication with the particle mass m and the spatial position vector ~x, fol-
lowed by integration over d3x yields∫

d3x ~x ⊗ ∂t
(
ρ
〈
~v
〉)

= −
∫

d3x ~x ⊗ ~∇ · (ρ 〈
~v ⊗~v 〉) − ∫

d3x ~x ⊗ ρ~∇φ . (5.73)

We had seen already in (3.178) that the second term on the right-hand side is
Chandrasekhar’s tensor of the potential energy,

U = −
∫

d3x ~x ⊗ ρ~∇φ , (5.74)

whose trace is the system’s potential energy, as was shown in (3.180),

Tr U =
1
2

∫
d3x ρφ . (5.75)

Now we return to the first term on the right-hand side of the spatial integral
(5.73), which we write as an integral over a complete divergence and a correction
term, ∫

d3x ~x ⊗ ~∇ · (ρ 〈
~v ⊗~v 〉) =

∫
d3x ~∇ · (ρ 〈

~v ⊗~v 〉 ⊗ ~x )
−

∫
d3x ρ

〈
~v ⊗~v 〉 (~∇ ⊗ ~x )

. (5.76)

By Gauss’ law, the integral over the divergence is the surface integral over
ρ〈~v ⊗~v 〉 ⊗ ~x, which vanishes if the surface completely encloses the system such
that the density vanishes there. The remaining term is related to the tensor K of
the kinetic energy,∫

d3x ρ
〈
~v ⊗~v 〉 (~∇ ⊗ ~x )

=

∫
d3x ρ

〈
~v ⊗~v 〉 = 2K , (5.77)

whose trace is the total kinetic energy of the system. By means of the velocity-
correlation tensor σ2 defined in (5.37), we can split up the tensor of kinetic
energy into a part T due to the bulk motion of the system, and another part Π

due to the random motion of the stars about the mean motion. Specifically, we
define

K =
1
2

T +
1
2

Π , (5.78)

where T and Π are defined by

T ≡
∫

d3x ρ
〈
~v
〉 〈
~v
〉
, Π ≡

∫
d3x ρσ2 . (5.79)

Quite evidently, the tensor T corresponds to the stress-energy tensor in ideal
hydrodynamics up to the pressure term, while the tensor Π describes the mo-
mentum transport by unordered motion and is thus represents the pressure.
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On the left-hand side of the spatial integral (5.73), the term∫
d3x ~x ⊗ ∂t

(
ρ
〈
~v
〉)

(5.80)

remains. We symmetrise it by bringing it into the form

1
2

∫
d3x

[
~x ⊗ ∂t

(
ρ
〈
~v
〉)

+ ∂t
(
ρ
〈
~v
〉) ⊗ ~x ]

(5.81)

which, by comparison with (3.184), equals the second absolute time derivative
of the inertial tensor I. We thus obtain the tensor virial theorem for collision-less
systems,

1
2

d2I
dt2 = T + Π + U . (5.82)?

Why is it appropriate to symmetrise
the tensor given by (5.80)? Taking the trace of this equation leads us back to the ordinary (scalar) virial

theorem, if the mass distribution is static,

d2 Tr I
dt2 = 0 ⇒ Tr T + Tr Π + Tr U = 0 . (5.83)

Now, the sum of the traces of T and Π is twice the trace of the total kinetic-
energy tensor,

Tr T + Tr Π = 2 Tr K =

∫
d3x ρv2 , (5.84)

and thus twice the total kinetic energy K, while Tr U is the total potential energy,
as we have seen before. Thus,

2 Tr K = −Tr U , (5.85)

which is the ordinary scalar virial theorem.

5.1.7 Jeans’ theorem

An integral of the motion in any field of force is any function Q(~x,~v ) of the
phase-space coordinates that satisfies

dQ
(
~x,~v

)
dt

= 0 (5.86)

along all possible particle trajectories [~x(t),~v(t)] through phase space. Integrals
of the motion should not be confused with constants of the motion, which
are less strongly defined as quantities that do not depend on time along one
particular orbit. Any integral of the motion turns into a constant of the motion
when evaluated along a particular orbit, but the reverse is not generally true.

An orbit of a classical particle in a Hamiltonian system always has six constants
of the motion. Namely, let the orbit be specified by ~x(t) and ~v(t), then it can be
uniquely traced back to an initial phase-space point (~x0, ~v0) by means of the
equations of motion. These six numbers are constants of the motion, since they
are independent of time along any trajectory.
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For Hamiltonian systems, a potential φ(~x) exists and the Hamiltonian equations
of motion require ~̇v = −~∇φ(~x). The condition (5.86) for Q to be an integral of
the motion can then be cast into the form

dQ
(
~x,~v

)
dt

= ~̇x · ~∇Q + ~̇v · ∂Q
∂~v

= ~v · ~∇Q − ~∇φ · ∂Q
∂~v

= 0 . (5.87)

By comparison with the collision-less Boltzmann equation, we see that Q is an
integral of the motion if and only if it is a stationary solution of the collision-less
Boltzmann’s equation, i.e. a solution satisfying

∂Q
∂t

= 0 . (5.88)

This leads us to Jeans’ theorem:

Any stationary solution of the collision-less Boltzmann equation depends on the
phase-space coordinates only through integrals of the motion, and conversely
any function depending only on integrals of the motion is a stationary solution
of the collision-less Boltzmann equation.

The proof of the first statement has already been given: If Q is a stationary
solution of the collision-less Boltzmann equation it is by itself an integral of
the motion. Regarding the second statement, let Ii, 1 ≤ i ≤ n be an arbitrary
number n of integrals of the motion, and let Q(I1, I2, . . . , In) an arbitrary function
exclusively depending on these integrals. Then,

dQ
dt

=
∂Q
∂Ii

dIi

dt
= 0 , (5.89)

and Q solves the collision-less Boltzmann equation.

Jeans’ theorem is important because it guides the construction of physically
meaningful phase-space densities. For example, in a static, spherically sym-
metric potential with isotropic orbits, the phase-space density can only be a
function of the energy E = ~v 2/2 + φ(r). If the potential remains spherically
symmetric, but the orbits become anisotropic, the phase-space density will
depend on E and the absolute value of the angular momentum L. In a static
system with axial symmetry, the energy E and the component Lz of the angular
momentum along the symmetry axis will be integrals of the motion, and the
phase-space density will depend only on those.

One distinguishes isolating and non-isolating integrals of the motion. An isolat-
ing integral of the motion defines a subspace of phase space with dimension
lowered by one to which an orbit is confined. Let I1 be a first isolating inte-
gral of the motion, for example the energy. In the originally six-dimensional
phase space, I1 defines a five-dimensional subspace from which no orbit can
escape. An further isolating integral I2 will confine orbits to a four-dimensional
subspace, and so forth. Isolating integrals such as the energy E or the angular-
momentum vector ~L constrain the orbits. If n isolating integrals exist, orbits
must be confined to a (6 − n)-dimensional subspace of phase space. Isolating
integrals are extraordinarily important while non-isolating integrals have no
practical importance for stellar dynamics.

Orbits are called regular if they have as many isolating integrals as there are
spatial dimensions; otherwise they are called irregular. Regular orbits in d
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Example: Harmonic oscillator

The example of a harmonic oscillator in one spatial dimension may perhaps
be instructive. Its phase space is two-dimensional, its energy is conserved.
The constant energy confines the phase-space orbits of the oscillator to one-
dimensional subspaces of phase space which are the ellipses defined by

E =
m
2

(
~v 2 + ω2x2

)
= const . (5.90)

Any one-dimensional harmonic oscillator must remain on the ellipse defined
by its energy, and no harmonic oscillator with another energy will ever enter
that subspace of phase space. This illustrates the isolating effect of the energy
in phase space. J

spatial dimensions are thus confined to 2d − d = d-dimensional subspaces of
phase space. The one-dimensional harmonic oscillator is one example for a
system with regular orbits.

Problems

1. A convenient model density profile for different kinds of astrophysical
objects is the Hernquist profile

ρ(x) =
ρ0

x(1 + x)3 , (5.91)

proposed by L. Hernquist (1990). The dimension-less radius x is defined
as x = r/a, with a scale or core radius a.

(a) Write the density amplitude ρ0 in terms of the total mass M con-
tained in the profile (5.91).

(b) Derive the Newtonian potential φ(x) of objects with the Hernquist
density profile.

(c) Assuming that the number-density n(x) of the stars in a Hernquist-
like object follows the matter-density profile, and assuming that the
anisotropy parameter β = 1/2 is independent of the radius, solve
(5.62) for the radial velocity dispersion.

(d) Calculate the profile (5.69) of the observable, line-of-sight velocity
dispersion profile.

2. For the Hernquist profile (5.91), calculate Chandrasekhar’s tensor U i
j of

the potential energy.

5.2 Equilibrium and Stability

This section discusses issues of equilibrium and stability of self-gravitating
systems. The isothermal sphere (5.111) is introduced first as a simple
example for a solution of the static Jeans equation in spherical symmetry.
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Equilibrium considerations are briefly mentioned, emphasising that self-
gravitating systems have no stable equilibrium state. A linear perturbation
analysis reveals the close analogy (5.130) between perturbations of the
gravitational potential in a stellar-dynamical system and the longitudinal
dielectricity in a plasma. The Jeans wave number (5.136) is derived as
the boundary between stable and unstable perturbations. A detour on
two-dimensional, self-gravitating systems leads to the solution (5.159) of
Poisson’s equation for a disk with a given surface-mass density. Finally,
the dispersion relation (5.185) for linear perturbations of disks is derived,
leading to Toomre’s stability criterion (5.193) for disks.

5.2.1 The Isothermal Sphere

By Noether’s theorem, spherical systems which are independent of time have
orbits with at least the four integrals of the motion, which are the energy E and
the angular momentum ~L. Jeans’ theorem then tells us that any (non-negative)
function f (E, ~L ) of these integrals of the motion is a stationary solution of
the collision-less Boltzmann equation and may thus represent a stable, self-
gravitating system. Generally, the gravitational potential generated by a system
with a phase-space distribution function f is determined by Poisson’s equation,

~∇2φ = 4πGρ = 4πGm
∫

d3v f , (5.92)

where m is the particle mass, assumed to be the same for all particles. If the
system is also isotropic in velocity space, the phase-space density cannot depend
on the direction of the angular momentum either. Then, the phase-space density
may be taken to be a function of E and the absolute value L = m|~x ×~v | of the
angular momentum only,

f
(
E, ~L

)
= f (E, L) . (5.93)

Writing the Laplacian operator in spherical symmetry,

~∇2 =
1
r2 ∂r

(
r2∂r

)
, (5.94)

the equation for the gravitational potential

1
r2 ∂r

(
r2∂rφ

)
= 4πGm

∫
d3v f

(
mv2

2
+ mφ,m

∣∣∣~x ×~v ∣∣∣) (5.95)

follows as the fundamental equation for self-gravitating spherical systems in
equilibrium.

It is now convenient to re-scale the gravitational potential φ and the energy
E = mv2/2 + mφ by subtracting a constant potential φ0 and defining the shifted
potential ψ and the shifted specific energy E,

ψ ≡ −φ + φ0 , E ≡ −E
m

+ φ0 = ψ − v
2

2
. (5.96)
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Let us consider a simple example specified by a phase-space distribution func-
tion f entirely independent of L and depending exponentially on the shifted
specific energy E,

f (E) =
ñ

(2πσ2)3/2 eE/σ
2

=
ñ

(2πσ2)3/2 exp
(
ψ − v2/2
σ2

)
, (5.97)

where the constant ñ appears for normalisation. Integration over all velocities
yields the number density n of the particles,∫

d3v f (E) =
4πñeψ/σ

2

(2πσ2)3/2

∫ ∞

0
dv v2e−v

2/(2σ2) = ñeψ/σ
2

= n , (5.98)

as must be the case for all phase-space densities. Poisson’s equation for this
system then reads

1
r2 ∂r

(
r2∂rψ

)
= −4πGnm = −4πGmñeψ/σ

2
. (5.99)

Eliminating the re-scaled potential ψ and the exponential by means of (5.98),

ψ = σ2 ln
n
ñ

= σ2 (ln n − ln ñ) , eψ/σ
2

=
n
ñ
, (5.100)

and substituting
∂rψ = σ2∂r ln n , (5.101)

we can turn Poisson’s equation (5.99) into an equation for the spatial number
density n,

1
r2 ∂r

(
r2∂r ln n

)
= −4πGm

σ2 n , (5.102)

which can of course also be considered as an equation for the mass density
ρ = nm.

In ideal hydrodynamics, we had derived the equation (3.267),

M(r) = −rkBT
mG

(
d ln ρgas

d ln r
+

d ln T
d ln r

)
(5.103)

for a spherical gas mass in hydrostatic equilibrium with the gravitational-
potential well given by its mass M(r) enclosed by the radius r. If this gas
is isothermal, dT/dr = 0, we can re-write (5.103) as

r2∂r ln ρgas = −mG
kBT

∫ r

0
dr′ r′2ρgas(r′) (5.104)

if we consider the mass as being only contributed by the gas without any dark
matter. Differentiating (5.104) with respect to r and dividing by r2 yields

1
r2 ∂r

(
r2∂r ln ρgas

)
= −4πGm

kBT
ρgas . (5.105)

This equation is identical with our result (5.102) which we had previously
derived from Jeans’ theorem if we identify the velocity dispersion σ with the
specific thermal energy,

σ2 =
kBT
m

. (5.106)
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Thus, the corresponding self-gravitating, stellar-dynamical model with constant
velocity dispersion σ2 is called the isothermal sphere. The mean-squared
velocity in the isothermal sphere is

〈
v2

〉
=

1
n

∫
d3v v2 f =

∫
dv v4 exp

( −v2

2σ2

)
∫

dv v2 exp
( −v2

2σ2

) = 3σ2 . (5.107)

Since no direction is preferred due to the spherical symmetry, the three individ-
ual velocity components thus have the same mean square〈

v2
x

〉
=

〈
v2
y

〉
=

〈
v2

z

〉
= σ2 . (5.108)

One solution of the equation (5.102) for the density of the isothermal sphere
can be obtained with the ansatz

n = Cr−α . (5.109)

The operations on the left-hand side of (5.102) yield

− α

r2 ∂r
(
r2∂r ln r

)
= − α

r2 . (5.110)

Since the right-hand side scales with the radius as r−2, the two sides can equal if
and only if α = 2. Therefore, the ansatz (5.109) is indeed a solution of (5.102)
if α = 2 and C = σ2/(2πGm), giving the matter density

ρ(r) = mn(r) =
σ2

2πGr2 . (5.111)

This solution is called the singular isothermal sphere. It has the considerable
advantage that the velocity of test particles on circular orbits around its centre
is independent of radius,

v2
circ =

GM(r)
r

= 4πG
∫ r

0
r2dr ρ(r) = 2σ2 , (5.112)

which is observed in the vast majority of galaxies. Besides the central singularity,
a substantial conceptual disadvantage is that its mass grows linearly with the
radius and is thus formally infinite. Of course, this is an inevitable consequence
of the assumption that the gas is isothermal: If this is so, the gas distribution
must extend to infinity.

Another solution of (5.102) which avoids the central singularity can be found
numerically. For doing so, we conveniently introduce the dimension-less quan-
tities

x ≡ r
r0
, y ≡ ρ

ρ0
, (5.113)

where ρ0 is meant to be the finite central density. Then, the equation for the
scaled density y is

∂x
(
x2∂x ln y

)
= −4πG

σ2 ρ0r2
0 yx2 . (5.114)
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Figure 5.5 The density profile of the non-singular isothermal solution is shown
together with its approximation.

If we define the scale radius r0 to be related to the central density and the
velocity dispersion by

r0 ≡
√

9σ2

4πGρ0
, (5.115)

equation (5.114) simplifies to

∂x
(
x2∂x ln y

)
= −9yx2 , (5.116)

which can numerically be integrated with the appropriate boundary conditions

y(0) = 1 ,
dy
dx

∣∣∣∣∣
0

= 0 . (5.117)
?

Compare (5.116) with the Lane-
Emden equation (3.259) and the
scale radius r0 from (5.115) with r0
from (3.258). Should they be related,
and if so, for which n?

These boundary conditions mean that the central density is indeed ρ0 and that
the density profile is flat at the centre. For sufficiently small radii, the numerical
result is very well approximated by (Figure 5.5)

y(x) ≈
(
1 + x2

)−3/2
. (5.118)

For x . 4.5 or r . 4.5r0, the relative deviation between the true numerical
solution of (5.116) and the approximate solution (5.118) is . 10%. As expected
from isothermality, the total mass of the non-singular isothermal sphere still
diverges. Since the density falls off asymptotically like r−3 for r � r0, the mass
must diverge logarithmically for r → ∞.

5.2.2 Equilibrium and Relaxation

Is there an equilibrium state of a self-gravitating system, which corresponds to
an entropy maximum? The entropy

S ∝ −
∫

phase space
d3xd3 p p ln p (5.119)
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is maximised if and only if p is the distribution function of the isothermal sphere.
However, the isothermal sphere has infinite mass and energy and can thus not
be an exact description of a thermodynamical equilibrium state. This implies
that there is no thermodynamical equilibrium of a self-gravitating system, and
that self-gravitating systems cannot have stable final configurations, but at best
long-lived transient states!

If we populate a narrow region in phase space with N stars, their orbits will have
slightly different initial conditions. As time proceeds, they will progressively
evolve away from each other and thus occupy a growing part of phase space.
This phase mixing causes the averaged phase-space distribution f̄ to decrease,
because the averaged phase-space density is progressively diluted. Thus, the
macroscopic entropy

S̄ ∝ −
∫

d3xd3v f̄ ln f̄ (5.120)

does indeed increase.

This process of phase mixing is in fact hardly different from the thermody-
namical trend to equilibrium. There, too, the increase of entropy is caused by
macroscopically averaging over processes which are otherwise reversible. If
the potential is changed while the particles are moving through it, energy can
be transported from particles to others. If, for example, the system contracts
while a star approaches its centre, the potential deepens and the star looses
energy. Other stars can gain considerable amounts of energy; this process is
called violent relaxation (Lynden-Bell).

5.2.3 Linear analysis and the Jeans swindle

In a way very similar to the derivation of the dielectricity tensor in plasma
physics, we now consider an equilibrium solution f0, φ0 of the coupled system
of the collision-less Boltzmann equation and the Poisson equation,

∂ f
∂t

+~v · ~∇ f − ~∇φ · ∂ f
∂~v

= 0 ,

~∇2φ = 4πGm
∫

d3v f . (5.121)

In a stationary equilibrium state, ∂ f0/∂t = 0. As usual for a linear stability
analysis, we perturb f0 and φ0 by small amounts δ f and δφ and linearise the
equations in these perturbations. The result is

∂δ f
∂t

+~v · ~∇δ f − ~∇φ0 · ∂δ f
∂~v
− ~∇δφ · ∂ f0

∂~v
= 0 ,

~∇2δφ = 4πGm
∫

d3v δ f . (5.122)

Poisson’s equation implies one peculiarity here which needs to be emphasised.
Suppose we adopt as the unperturbed equilibrium state an infinitely extended,
homogeneous phase-space distribution f0, which implies a constant density ρ0
and a potential φ0 given by

~∇2φ0 = 4πGρ0 . (5.123)
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Due to the infinite extent of this matter distribution and its homogeneity, we
must have

~∇φ0 = 0 (5.124)

because there cannot be any gravitational force on a test particle in a surrounding
homogeneous matter density. This condition complies with the Poisson equation
if and only if ρ0 = 0. An infinitely extended, homogeneous matter distribution
is possible in Newtonian gravity only if it has no matter; it is therefore generally
inconsistent with Newtonian gravity. The reason is profound: In Newtonian
gravity, the boundary conditions for the potential are of decisive importance for
the solution of the Poisson equation, but an infinitely extended mass distribution
has no boundary. Only in General Relativity, this problem is satisfactorily
solved.

We rather invoke the “Jeans swindle” and set φ0 = 0. This is practically
permissible if we study perturbations whose spatial scales are small compared
to possible scales in the smooth background density ρ0. By the “Jeans swindle”,
we simply ignore the potential φ0 and obtain the linearised equations

∂δ f
∂t

+~v · ~∇δ f − ~∇δφ · ∂ f0
∂~v

= 0 ,

~∇2δφ = 4πGm
∫

d3v δ f . (5.125)

Now, we decompose the spatial and temporal dependence of the perturbations
into plane waves,

δ f = δ f̂ ei
(
~k·~x−ωt

)
, δφ = δφ̂ ei

(
~k·~x−ωt

)
, (5.126)

where the amplitude δ f̂ of the phase-space distribution function will generally
still depend on the velocity coordinates of phase space. The perturbation
amplitudes must then satisfy the equations

−iωδ f̂ + i~v · ~kδ f̂ − iδφ̂~k · ∂ f0
∂~v

= 0 ,

−k2δφ̂ = 4πGm
∫

d3v δ f̂ . (5.127)

The perturbed Boltzmann equation can be solved to relate the perturbation of
the phase-space distribution δ f̂ to the potential perturbation δφ̂,

δ f̂ = δφ̂~k · ∂ f0
∂~v

1
~k ·~v − ω

, (5.128)

which can in turn be inserted into the perturbed Poisson equation to find

− k2δφ̂ = 4πGm
∫

d3v~k · ∂ f0
∂~v

δφ̂

~k ·~v − ω
. (5.129)

Since the potential perturbation δφ̂ does not depend on ~v, (5.129) shows that
non-vanishing perturbations δφ̂ , 0 are possible only if

1 +
4πGm

k2

∫
d3v~k · ∂ f0

∂~v

1
~k ·~v − ω

= 0 . (5.130)
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This correponds exactly to the longitudinal dielectricity ε̂‖ (4.69) from plasma
physics,

ε̂‖ = 1 − 4πe2

k2

∫
d3 p~k · ∂ f0

∂~p
1

~k ·~v − ω
(5.131)

which has to vanish for longitudinal electromagnetic waves to propagate. Just
as longitudinal electromagnetic waves undergo Landau damping in a plasma,
so do potential fluctuations in a stellar-dynamical system.

5.2.4 Jeans length and Jeans mass

Analysing the stability of a self-gravitating system, we need to distinguish
potential fluctuations which oscillate from others. Accordingly, we seek the
boundary between oscillating and unstable solutions requiring that the frequency
should vanish there, ω = 0. If we assume that the unperturbed equilibrium
state has a Maxwellian velocity distribution with a velocity dispersion σ2 and a
homogeneous spatial number density n0,

f0
(
~v
)

=
n0

(2πσ2)3/2 e−v
2/(2σ2) , (5.132)

the velocity gradient of f0 required in (5.130) is

∂ f0
∂~v

= − f0
(
~v
) ~v

σ2 . (5.133)

Without loss of generality, we rotate the coordinate frame such that the positive
x axis points into the direction of the wave vector ~k, the condition (5.130)
simplifies to

1 − 4πGmn0

k2σ2(2πσ2)3/2

∫
d3v

kvxe−v2/(2σ2)

kvx − ω = 0 . (5.134)

For ω = 0, the remaining integral is easily solved since∫
d3v e−v

2
x/(2σ

2) =
(
2πσ2

)3/2
, (5.135)

and we find from (5.134) the condition

k2
∣∣∣
ω=0 ≡ k2

J =
4πGρ0

σ2 . (5.136)

The wave number kJ satisfying this equation is called the Jeans wave number.
Gravitational instability sets in for larger perturbations, that is, for wave numbers
k < kJ or wave lengths exceeding the so-called Jeans wave length

λJ ≡ 2π
kJ

=
2πσ√
4πGρ0

=

√
πσ√
Gρ0

. (5.137) ?
Why is ω = 0 relevant for separating
between gravitational stability and
instability?The Jeans wave length or Jeans length defines the Jeans volume λ3

J and thereby
the Jeans mass MJ = ρ0λ

3
J . An interesting insight follows if we compare the



274 5 Stellar Dynamics

Jeans mass to the actual mass M of an object and its velocity dispersion. Solving
the equation (5.137) for the Jeans length for the density,

ρ0 =
πσ2

Gλ2
J

, (5.138)

and multiplying with the actual radius R of an object, we find

M ≈ ρ0R3 =
πσ2R3

Gλ2
J

. (5.139)

However, due to the virial theorem, we must further obey the relation

σ2 ≈ GM
R

. (5.140)

Eliminating the velocity dispersion between (5.140) and (5.139) shows that

R ≈ λJ√
π
. (5.141)

The radius of the system is thus necessarily comparable to the Jeans length.
This means that the assumption of homogeneity on the scale of the Jeans length
cannot be satisfied and that the nature of the instability needs to be studied
for each system in detail once its geometry is specified. Nonetheless, the
Jeans length defines an order-of-magnitude estimate for the boundary between
stability and instability.

5.2.5 Disk potentials

Disk-like structures are of particular importance for stellar-dynamical systems.
Imagine a disk in the x-y plane, centred on the coordinate origin, with a spatial
matter density

ρ(x, y, z) = Σ(x, y)δD(z) . (5.142)

The disk is thus infinitely thin and has a surface-mass density Σ(x, y). Assume
further that the disk is axially symmetric about the êz axis. The surface-mass
density can then only depend on the radius s in the x-y plane, Σ = Σ(s). In the
appropriate cylindrical coordinates, Poisson’s equation then reads

1
s
∂s (s∂sφ) + ∂2

zφ = 0 (5.143)

everywhere outside the x-y plane. The structure of this equation suggests a
separation ansatz for φ,

φ(s, z) = ψ(s)χ(z) . (5.144)

Inserting this into (5.143), we obtain

1
sψ(s)

∂s (s∂sψ) =
∂2

zχ(z)
χ(z)

. (5.145)

Since the left- and right-hand sides of this equation depend on different variables,
s and z, respectively, they must individually equal the same constant, which we
call −k2. From the oscillator equation

∂2
zχ(z)
χ(z)

= −k2 (5.146)
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with negative squared frequency −k2, we immediately infer that χ(z) must be
an exponential function,

χ(z) = χ0e±kz . (5.147)

?
Strictly speaking, we should write
the general solution of (5.146) as
χ(z) = χ0ekz + χ1e−kz with two con-
stants χ0,1. Why is it appropriate to
proceed as described in the text?

Since the potential should tend to zero far away from the disk, the positive
sign applies to negative z and vice versa. The potential therefore decreases
exponentially in the direction perpendicular to the disk. Turning to the s
dependence, ψ(s) must satisfy the equation

∂s (s∂sψ) + k2sψ = 0 . (5.148)

Substituting x = ks turns this equation into Bessel’s differential equation of
order zero,

xψ′′(x) + ψ′(x) + xψ(x) = 0 , (5.149)

where the prime denotes the derivative with respect to x. Its solution with the
appropriate boundary condition that ψ(s) remains regular at the centre s = 0
is the ordinary, zeroth-order Bessel function J0(x). Our solution of Poisson’s
equation is thus

φk(s, z) = e−k|z|J0(ks) . (5.150)

Any linear superposition of such potential modes φk(s, z) will also be solutions
of Poisson’s equation.

For taking the disk into account, we enclose an arbitrary point (s, 0) on the disk
by a small cylinder of height h and cross section A such that the disk plane is
perpendicular to the symmetry axis of the cylinder and cuts through its centre.
We then apply Gauss’ law to ~∇2φ in the cylinder and let the height h become
arbitrarily small to find∫

dV~∇2φ =

∫
∂V

~∇φ · d~A→ A
(
∂zφ

∣∣∣
z→0+

− ∂zφ
∣∣∣
z→0−

)
. (5.151)

By Poisson’s equation, this integral must equal 4πG times the mass contained in
the cylinder, which is Σ(s)A. Hence, the surface density causes the discontinuity

4πGΣ(s) = ∂zφ
∣∣∣
z→0+

− ∂zφ
∣∣∣
z→0− (5.152)

in the potential gradient ∂zφ perpendicular to the disk, Inserting (5.150) here,
we see that

kJ0(ks) = 2πGΣk(s) (5.153)

must hold for Poisson’s equation to be satisfied. However, we generally wish to
determine the gravitational potential of disks with arbitrary surface densities
Σ(s). We can do so if we can find a function S (k) such that

Σ(s) =

∫ ∞

0
dk S (k)Σk(s) =

1
G

∫ ∞

0

kdk
2π

S (k)J0(ks) . (5.154)

In this way, the arbitrary surface density Σ(s) would then be assembled by linear
superposition of modes Σk(s) that individually satisfy Poisson’s equation, and
the complete potential would be given by

φ(s, z) =

∫ ∞

0
dk S (k)φk(s, z) =

∫ ∞

0
dk e−k|z|S (k)J0(ks) . (5.155)
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To see how such a function S (k) could be found, consider the inverse Fourier
transform of an arbitrary, two-dimensional and axi-symmetric function f̂ (k),

f (s) =

∫
kdkdϕ
(2π)2 f̂ (k) eiks cosϕ . (5.156)

The azimuthal integral can be carried out, giving∫ 2π

0
dϕ eiks cosϕ =

∫ 2π

0
dϕ cos (ks cosϕ) = 2π J0(ks) . (5.157)?

Why does the solution (5.157) have
no imaginary part? Comparing with (5.154), we see that the sought function S (k) is simply G times

the Fourier transform of the surface-density Σ(s),

S (k) = G
∫

sdsdϕΣ(s) eiks cosϕ = 2πG
∫ ∞

0
sds Σ(s)J0(ks) . (5.158)

Inserting this back into (5.155) shows that the potential is related to the surface
mass density by

φ(s, z) = 2πG
∫ ∞

0
dk e−k|z|J0(ks)

∫ ∞

0
s′ds′Σ(s′)J0(ks′) . (5.159)
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Figure 5.6 The function S (k) is shown here for the Maclaurin disk model, nor-
malised by GΣ0a2.

5.2.6 Fluid equations for two-dimensional systems

As the simplest example for a rotating disk, we now consider an infinitely thin
disk which is rigidly rotating about the z axis with the constant angular velocity
~Ω = Ωêz. The disk thus fills the x-y plane and has a constant surface-mass
density Σ.

We consider perturbations in the plane of the disk and neglect warps or twists.
Furthermore, we transform into a co-rotating coordinate frame and study the
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Example: The Maclaurin disk

The integrals in (5.159) can be solved analytically only for a surprisingly
small class of surface densities Σ(s). One example is the so-called Maclaurin
disk, for which

Σ(s) = Σ0

(
1 − s2

a2

)1/2

(5.160)

for s ≤ a and zero otherwise. For this disk model, the function S (k) is

S (k) = GΣ0

√
2π3a

k3 J3/2(ka) , (5.161)

where J3/2(x) is the cylindrical Bessel function of the first kind of fractional
order 3/2. This function is shown in Fig. 5.6. For s ≤ a, the potential in the
plane of the disk is

φ(s, 0) =: φ0(s) =
π2GΣ0

4a

(
2a2 − s2

)
= −π

2GΣ0

4a
s2 + const . (5.162)

Except for an irrelevant constant, the potential within the disk is therefore
quadratic in the two-dimensional radius s,

φ0(s) = −1
2

Ω2
0s2 , Ω2

0 =
π2GΣ0

2a
. (5.163)

Deriving these results, we have used the integrals∫ 1

0
dx x

√
1 − x2 J0(kx) =

√
π

2k3 J3/2(k) (5.164)

and ∫ ∞

0
dk J0(ks)J3/2(ka)k−3/2 =

1
4

√
π

2a3

(
2a2 − s2

)
, (5.165)

which may not be obvious. J
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disk in the substantially simpler fluid approximation. We begin with the conti-
nuity equation, insert the spatial density

ρ(~x ) = Σ(t)δD(z) (5.166)

there and integrate over dz. The result is

∂tΣ + ~∇ · (Σ~v ) = 0 , (5.167)

where the divergence is now two-dimensional and operates in the x-y plane
only. Next, we take the x and y components of the Euler equation of ideal
hydrodynamics in the form

ΣδD(z)
d~v
dt

= −~∇P − ΣδD(z)~∇φ , (5.168)

integrate again over dz and obtain

∂t~v +
(
~v · ~∇

)
~v = −

~∇P
Σ
− ~∇φ , (5.169)

where ~∇ is again reduced to two dimensions. Poisson’s equation reads

~∇2φ = 4πGΣδD(z) (5.170)

with the three-dimensional Laplacian. We now move into a coordinate system
co-rotating with the disk. Since we are then in a non-inertial frame, we must
augment Euler’s equation with the specific Coriolis and centrifugal force terms,
−2~Ω ×~v and ~Ω2~r, respectively. With these terms, Euler’s equation becomes

∂~v

∂t
+

(
~v · ~∇

)
~v = −

~∇P
Σ
− ~∇φ − 2~Ω ×~v + ~Ω2~r . (5.171)

The physical quantities occuring here have two spatial dimensions, ~v(x, y, t),
Σ(x, y, t) and so on. For the pressure, we assume a barotropic equation-of-state,
P = P(Σ).

The unperturbed quantities are obviously a vanishing velocity ~v = 0 in the
co-rotating frame, a constant surface-mass density Σ = Σ0, and the pressure
P0 = P(Σ0) according to the equation-of-state. This solution satisfies the
continuity equation trivially. Since the pressure gradient vanishes because Σ0 is
constant, Euler’s equation reads

~∇φ0 = Ω2~r , (5.172)

while Poisson’s equation is

~∇2φ0 = 4πGΣ0δD(z) . (5.173)

Since no direction can be preferred in a homogeneous disk, ~∇φ0 must point
along the z axis, which contradicts Euler’s equation. Thus, there is no gravita-
tional force yet to balance the centrifugal force. Therefore, we have to assume
that the disk can only exist if it is embedded into a surrounding gravitational
field which compensates the centrifugal force, such as the halo of a galaxy.
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5.2.7 Dispersion relation

As usual in linear stability analyses, we perturb our infinitely extended, rigidly
rotating disk by small amounts of surface density δΣ, velocity δ~v and gravi-
tational potential δφ and linearise the equations in these perturbations. This
implies

∂tδΣ + Σ0~∇ · δ~v = 0 ,

∂tδ~v = − c2
s

Σ0
~∇δΣ − ~∇δφ − 2~Ω × δ~v ,

~∇2δφ = 4πGδΣδD(z) , (5.174)

where the sound velocity was introduced as the derivative of the pressure with
respect to the surface-mass density,

c2
s =

(
dP(Σ)

dΣ

)∣∣∣∣∣∣
Σ0

, (5.175)

taken at the unperturbed surface-mass density Σ0. Next, we decompose the
perturbations into plane waves with amplitudes δΣA, δ~vA and δφA,

δΣ

δvx

δvy
δφ

 =


δΣA

δvAx

δvAy

δφA

 ei
(
~k·~x−ωt

)
(5.176)

confined to the x-y plane and therefore valid at z = 0. Without loss of gener-
ality, we turn the x axis into the direction of the wave vector ~k. The first two
perturbation equations (5.174) turn into

ωδΣA − kΣ0δvAx = 0 ,

ωδvAx − c2
s k

Σ0
δΣA − kδφA − 2iΩδvAy = 0 ,

ωδvAy + 2iΩδvAx = 0 , (5.177)

while Poisson’s equation needs a more detailed treatment. Within the disk
plane, the potential perturbation behaves like the plane wave given by the third
equation in (5.176), while the Laplace equation

~∇2δφ = 0 (5.178)

must hold otherwise. A separation ansatz demonstrates that this can only be
achieved by the function

δφ = δφAei(kx−ωt)−|kz| , (5.179)

where the modulus is taken of the product kz since k = kx can have either sign.

?
Verify that the function δφ from
(5.179) is the only one satisfying all
conditions required here.The preceding discussion leading to (5.151) and (5.152), specified to our per-

turbed disk, shows that the potential derivatives in z direction above and below
the disk need to obey

∂zδφ
∣∣∣
z→0+

− ∂zδφ
∣∣∣
z→0− = 4πGδΣ = 4πGδΣAei(kx−ωt) . (5.180)
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However, we see at the same time from (5.179) that

∂zφ
∣∣∣
z→0+

− ∂zφ
∣∣∣
z→0− = −2|k|δφAei(kx−ωt) , (5.181)

which implies that the fluctuation amplitudes in the gravitational potential and
in the surface-mass density must be related through

− 2|k|δφA = 4πGδΣA . (5.182)

This enables us to eliminate the amplitude δφA of the potential fluctuations from
(5.177), leaving us with the linear system of equations

ω −kΣ0 0

k
(

2πG
|k| −

c2
s

Σ0

)
ω −2iΩ

0 2iΩ ω


 δΣA

δvAx

δvAy

 = 0 (5.183)

for the remaining variables δΣA, δvAx and δvAy.

?
Confirm the dispersion relation
(5.184) by setting the determinant
of the coefficient matrix in (5.183)
to zero.

Non-trivial solutions exist if and only if the determinant of the coefficient matrix
vanishes, which leads us to the dispersion relation

ω
(
ω2 − 4Ω2

)
+ ωk2Σ0

(
2πG
|k| −

c2
s

Σ0

)
= 0 (5.184)

for the perturbations of the disk. This shows that perturbations must either be
stationary, ω = 0, or obey

ω2 = 4Ω2 + k2c2
s − 2πG|k|Σ0 . (5.185)

This dispersion relation describes the non-stationary, propagating modes of the
perturbed, rigidly rotating, uniform disk. The modes are stable for ω2 ≥ 0 and
unstable for ω2 < 0.

5.2.8 Toomre’s criterion

Let us now analyse the dispersion relation (5.185). If Ω = 0, which is certainly
not the most exciting case of a rotating disk, the disk is unstable if the wave
number satisfies

|k| < kJ ≡ 2πGΣ0

c2
s

, (5.186)

where kJ plays the rôle of the Jeans wave number for the disk. If the sound
speed can be arbitrarily low, cs → 0, perturbations are unstable for arbitrarily
large k or arbitrarily small wave length. The rate of the exponential growth of
unstable perturbations is given by the imaginary part of ω,

γ = Imω =
(
2πGΣ0|k| − k2c2

s

)1/2
. (5.187)

For a cold disk, cs → 0, small perturbations with λ→ 0 and |k| → ∞ grow at a
rate increasing linearly with |k|, i.e. cold, non-rotating disks fragment violently
on small scales.
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This violent fragmentation is not suppressed by rotation either. For cs → 0, the
oscillation frequency ω of the linear perturbations becomes imaginary for wave
numbers

|k| > 2Ω2

πGΣ0
, (5.188)

i.e. even then the instability sets in on the smallest scales.

Pressure and rotation are therefore not able to stabilise the disk individually.
For Ω = 0, (5.186) shows that warm disks are unstable on large scales,

|k| < 2πGΣ0

c2
s

, (5.189)

while cold disks with vanishing pressure are unstable on small scales despite
any rotation, as we have seen in (5.188). However, pressure and rotation can be
stabilising if they act together, since then the dispersion relation (5.185) has a
minimum where

0 =
∂ω2

∂k
=

∂

∂k

(
4Ω2 + k2c2

s − 2πG|k|Σ0
)
, (5.190)

which yields

2|k|c2
s = 2πGΣ0 or |k| = πGΣ0

c2
s

=
kJ

2
. (5.191)

The disk can be stable if and only if ω2 ≥ 0 at this wave number because it is
then positive for all wave numbers. Thus, the condition for global stability is
ω2(kJ/2) ≥ 0 or

4Ω2 −
(
πGΣ0

c2
s

)
≥ 0 , (5.192)

which constrains the sound speed cs and the angular velocity Ω for a globally
stable disk with mean surface-mass density Σ0 by Toomre’s criterion

csΩ

GΣ0
≥ π

2
≈ 1.57 . (5.193)

A similar criterion can also be derived for collision-less systems (recall that we
had adopted the fluid approximation!). Then,

csΩ

GΣ0
& 1.68 (5.194)

is the condition for global stability.

Problems

1. Show that the scalar virial theorem reads

2K = −pU (5.195)

if the potential energy scales like U ∝ r−p with the separation r between
two particles. Derive for which values of p the heat capacity of self-
gravitating systems is negative.
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5.3 Dynamical Friction

This final section discusses the friction experienced by a test mass moving
through an infinite system of other masses due to gravity. We first calculate
the velocity changes (5.213) and (5.215) of the test mass perpendicular and
parallel to its direction of motion due to encounters with the surrounding
masses and average over impact parameters to arrive at Chandrasekhar’s
formula (5.228) for the acceleration due to dynamical friction. A specialisa-
tion of this formula for a Maxwellian velocity distribution in the surrounding
system of masses is given in (5.232).

5.3.1 Deflection of point masses

An interesting effect occurs if a mass M moves through a system of masses m
which are homogeneously distributed around the mass M. Although the motion
of the masses can be considered collision-less, a deceleration occurs which is
called dynamical friction.

Let us begin analysing a single two-body encounter between the mass M and a
mass m, with ~vM and ~vm being their respective velocities and ~xM and ~xm being
their positions. We introduce the separation vector

~r ≡ ~xm − ~xM (5.196)

from M to m and the relative velocity

~v ≡ ~̇r = ~vm −~vM (5.197)

of m with respect to M. The two-body system of two point masses obeys an
effective equation of motion around a fixed force centre of a single body with
the reduced mass, ( mM

m + M

)
~̈r = −GMm

r2 êr ≡ − αr2 êr , (5.198)

where êr is the unit vector in radial direction away from M. By definition of the
centre-of-mass ~X,

~X =
m~xm + M~xM

m + M
, (5.199)

its velocity remains unchanged,

~̇X =
m~vm + M~vM

m + M
= 0 . (5.200)

Any changes ∆~vm and ∆~vM in the velocites of m and M are thus related by

M∆~vM = −m∆~vm (5.201)

with each other and by

∆~vM = −m
M

∆~vm = −m
M

(∆~v + ∆~vM) or ∆~vM = − m
M + m

∆~v (5.202)

to any change
∆~v = ∆~vm − ∆~vM (5.203)
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in the relative velocity of m and M. We shall now determine the relative velocity
change ∆~v in a two-body encounter.

The fictitous particle with the reduced mass, Mm/(M + m), follows a hyperbolic
orbit around the (resting) centre of force.

Earlier in this book, we came across another situation where one particle moves
on a hyperbolic orbit around another one, namely when we studied the emission
of a plasma electron scattering off an ion. We can thus refer to the treatment
there. We recall the relation (2.99) between the distance r of the orbiting particle
from the force centre and the polar angle ϕ, from which we read off that the
particle reaches infinity if and when

cosϕ = −1
ε
, (5.204)

where ε is the orbit’s eccentricity. From (2.100), we infer that the squared
eccentricity is

ε2 = 1 +
2El2

α2µ
, (5.205)

where α = GMm replaces the product Ze2 in (2.100) since now the coupling is
gravitational rather than electromagnetic, and the reduced mass µ replaces the
electron mass m. Let now v be the velocity at infinity of our fictituous particle
with the reduced mass µ, and b its impact parameter. Then, its conserved
angular momentum is l = µvb, and its equally conserved energy is E = µv2/2.
We can then re-write the squared eccentricity as

ε2 = 1 +
µ2b2v4

α2 . (5.206)

Since the total scattering angle is θ = 2ϕ − π, we have

sin
θ

2
= sin

(
ϕ − π

2

)
= − cosϕ =

1
ε
. (5.207)

Since the cosine of θ/2 is

cos
θ

2
=

√
1 − sin2 θ

2
=

√
ε2 − 1
ε

, (5.208)

we find for the scattering angle itself

sin θ = 2 sin
θ

2
cos

θ

2
= 2

√
ε2 − 1
ε2 =

2µbv2α

µ2b2v4 + α2 (5.209)

and

cos θ = cos2 θ

2
− sin2 θ

2
=
ε2 − 2
ε2 =

µ2b2v4 − α2

µ2b2v4 + α2 . (5.210)

5.3.2 Velocity changes

The fictitous particle is approaching from infinity with velocity v. When it is
leaving towards infinity, it will have been scattered by the angle θ. Relative to
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its incoming direction, its outgoing velocity will have the perpendicular and
parallel components

v⊥ = −v sin θ = − 2µbv3α

µ2b2v4 + α2 (5.211)

and

v‖ = v cos θ = v
µ2b2v4 − α2

µ2b2v4 + α2 , (5.212)

where (5.209) and (5.210) were used. Since the velocity change perpendicular
to the incoming direction is ∆v⊥ = v⊥, we find from (5.202) that the velocity
change of the mass M perpendicular to its initial direction of motion is

∆vM⊥ = − m
M + m

v⊥ = − µ
M
v⊥ =

2µ2bv3α

M
(
µ2b2v4 + α2) . (5.213)

Parallel to the incoming direction, we have

∆v‖ = v − v‖ = − 2vα2

µ2b2v4 + α2 , (5.214)

hence the velocity change of the mass M in the direction parallel to its initial
motion is

∆vM‖ = − µ
M

∆v‖ =
2vµα2

M
(
µ2b2v4 + α2) . (5.215)

5.3.3 Chandrasekhar’s formula

Having studied the effect of a single encounter on the velocity of the mass M,
we shall proceed to determine the combined effect of many encounters. If the
mass M is moving through a homogeneous “sea” of masses m, all velocity
changes (5.213) perpendicular to the direction of motion must cancel, while
the parallel velocity changes (5.215) must add up. Therefore, the mass M
will experience a steady deceleration parallel to its direction of motion from
the combined effect of many encounters with the masses m. Let f (~vm) be the
phase-space density of the stars with mass m which constitute that background
“sea” of point masses. Then, the rate at which the mass M encounters collisions
with stars with an impact parameter between b and b + db is

(2πbdb) · v · ( f (~vm)d3vm) , (5.216)

where the first factor is the area of the ring with radius b and width db and the
third is the spatial number density of masses m with velocity vm. The velocity v
appearing in between is the relative velocity of M and m. According to (5.215),
these collisions change the velocity of M by

d~vM

dt
= ~v f (~vm)d3vm

∫ bmax

0
2πbdb

2vµα2

M
(
µ2b2v4 + α2) , (5.217)

The integral is easily carried out and returns a logarithm,∫ bmax

0
2πbdb

2vµα2

M
(
µ2b2v4 + α2) =

2πvµα2

M

∫ b2
max

0

d(b2)
µ2b2v4 + α2

=
2πα2

Mµv3 ln
(
1 + Λ2

)
, (5.218)
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where the abbreviation

Λ :=
bmaxµv

2

α
=

bmaxv
2

G(M + m)
(5.219)

was introduced. Since ~v in (5.217) is the relative velocity between the masses m
and M, we need to set ~v = ~vm −~vM. Inserting this expression and (5.218) into
(5.217), we find

d~vM

dt
=

2πα2

Mµ
ln

(
1 + Λ2

) ~vm −~vM∣∣∣~vm −~vM
∣∣∣3 f (~vm) d3vm . (5.220)

The quantity Λ is typically Λ � 1, allowing us to approximate

ln(1 + Λ2) ≈ ln Λ2 = 2 ln Λ . (5.221)

Typical values for this so-called Coulomb logarithm are

5 . ln Λ . 20 . (5.222)

The expression (5.220) is the deceleration of the mass M by those of the
surrounding stars with mass m whose velocity falls within the volume element
d3vm around ~vm in velocity space. We obtain the total deceleration only after
a further integration over all velocities ~vm. We proceed to doing so in two
steps. First, we specialise to isotropic velocity distributions, f (~vm) = f (vm). We
further abbreviate ~x = ~vm and ~y = ~vM and begin by simplifying the velocity
integral as∫

d3x
f (x)

(
~x − ~y )∣∣∣~x − ~y ∣∣∣3 = −

∫
d3x f (x)~∇ 1∣∣∣~x − ~y ∣∣∣ = ~∇~y

∫
d3x

f (x)∣∣∣~x − ~y ∣∣∣ . (5.223)

For solving the remaining integral, we turn the coordinate system such that ~y
points into the êz direction, introduce spherical polar coordinates and continue
writing∫

d3x
f (x)∣∣∣~x − ~y ∣∣∣ = 2π

∫ ∞

0
x2dx f (x)

∫ 1

−1

dµ√
x2 + y2 − 2xyµ

, (5.224)

where the direction cosine µ = cos θ was introduced. The factor of 2π out front
is the result of the azimuthal integration. The µ integral is now easily carried
out, giving∫ 1

−1

dµ√
x2 + y2 − 2xyµ

=
|x + y| − |x − y|

xy
=


2
x (x > y)
2
y (else)

. (5.225)
?

Carry out the integral in (5.225)
yourself.Returning to (5.224), we write∫

d3x
f (x)∣∣∣~x − ~y ∣∣∣ = 4π

(
1
y

∫ y

0
x2dx f (x) +

∫ ∞

y
xdx f (x)

)
. (5.226)

The gradient with respect to ~y, required by (5.223), finally leaves us with∫
d3x

f (x)
(
~x − ~y )∣∣∣~x − ~y ∣∣∣3 = −4π

~y

y3

∫ y

0
x2dx f (x) . (5.227)
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Restoring the velocities ~vM = ~y and ~vm = ~x in this expression and returning
with it to the deceleration (5.220), we obtain Chandrasekhar’s equation for
dynamical friction (Figure 5.7),

d~vM

dt
= −16π2G2m(M + m) ln Λ

~vM

v3
M

∫ vM

0
v2

mdvm f (vm) , (5.228)

where we have also expanded α = GMm and µ = Mm/(M + m).

Limiting cases are instructive. If vM is small compared to the typical velocity
of the stars m, the remaining integral can be approximated by∫ vM

0
dvm v

2
m f (vm) ≈ v3

M

3
f (0) . (5.229)

In this case, the dynamical friction becomes proportional to the velocity ~vM,

d~vM

dt
= −16π2

3
G2m(M + m) ln Λ f (0)~vM , (5.230)

which is characteristic for Stokes-type friction. In the opposite limiting case of
sufficiently large vM , the integral covers most or all of the velocity distribution
of the masses m and thus converges to a constant. Then, the friction force
becomes proportional to v−2

M .
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Figure 5.7 An example is shown for the trajectory of a test particle under the
combined effect of gravity and dynamical friction.

For a Maxwellian velocity distribution with velocity dispersion σ,

f (vm) =
n0

(2πσ2)3/2 e−v
2/(2σ2) , (5.231)

the friction force becomes

d~vM

dt
= −4πG2 ln Λ (M + m)ρ0

~vM

v3
M

[
erf(X) − 2X√

π
e−X2

]
, (5.232)
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where X ≡ vM/(
√

2σ) is the velocity vM appropriately scaled by the velocity
dispersion. The mass density ρ0 of the masses m is ρ0 = mn0. If M � m,
(M + m) ≈ M, and the friction only depends on the density ρ0 of the scatteres
stars, but not on their mass any more,

d~vM

dt
= −4πG2 ln Λ ρ0M

~vM

v3
M

[
erf(X) − 2X√

π
e−X2

]
. (5.233)

In this case, the friction force is proportional to M2 because the deceleration is
proportional to M. An example for an orbit decaying via the dynamical friction
in a system with Maxwellian velocity distribution is shown in Fig. 5.7.

Problems

1. Approximate the velocity distribution of a hypothetical stellar-dynamical
system by the step function

f (vm) = Θ(v0 − vm) (5.234)

with some maximal velocity v0 > 0.

(a) Solve Chandrasekhar’s equation for dynamical friction (5.228) for
a star moving through this system with an initial velocity VM0 > v0.

(b) How long will it take for the star to reach v0, and when will it stop
completely?

Suggested further reading: [19, 4]
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Brief summary and concluding remarks

Our introductory tour through theoretical astrophysics is coming to an end. Its
main goal should be seen as achieved if it could reveal the roots of four main
branches of the field: the largely classical physics of electromagnetic radiation
processes, ideal and viscous hydrodynamics, the physics of plasmas with and
without magnetic fields, and stellar dynamics.

Larmor’s equation, underlying the strictly classical electromagnetic radiation
processes, follows directly from the Liénard-Wiechert potentials and thus from
the retarded Greens function of electrodynamics. The back-reaction of the
radiation on the radiating charges needs to be added by hand to classical
electrodynamics because it is a linear theory. For Compton scattering, the
photon picture needs to be introduced, and quantum mechanics, in particular
Fermi’s Golden Rule, is required to describe the internal degrees of freedom in
systems interacting with radiation.

Hydrodynamics, including viscous, relativistic and magnetised fluids, follows
from the conservation law for the energy-momentum tensor, which can be
derived from moments of the Boltzmann equation. The phenomenology of
the resulting equations is very rich, but global statements can be derived by
integration. Powerful examples are Bernoulli’s law, which is an integral of
Euler’s equation, and the Rankine-Hugoniot jump conditions at shocks. Linear
stability analysis, following a well-defined procedure, reveals a rich variety of
dispersion relations and instabilities, some of which were discussed. Turbulence,
at the boundary between ordered, macroscopic and unordered, microscopic
motion, could only be touched briefly.

Plasma physics adds electromagnetic properties to a fluid which are encapsu-
lated in the dielectric tensor. Magnetic fields add two types of force to a plasma,
one due to gradients in the magnetic pressure, the other due to the bending
of field lines. Through the induction equation, the fluid flow acts back on the
magnetic field. Ambipolar diffusion was introduced as an effect arising from
non-ideal coupling between a plasma a neutral fluid, and the battery mecha-
nism was mentioned as an example for how magnetic fields can be generated.
The very rich field of magneto-hydrodynamic stability analysis could only be
discussed to the level of Alfvén waves and the fast and slow hydromagnetic
modes.

Stellar dynamics finally has the same root as hydrodynamics, namely the
Liouville or Boltzmann equations, depending on what degree of interaction
between particles is to be included. Three main differences to hydrodynamics
arise: The long-range gravitational interaction between the particles cannot be
shielded, the absence of collisions allows anisotropic particle orbits and thus an
anisotropic pressure, and self-gravitating systems have a negative heat capacity
and thus no stable equilibrium state. Again, the rich subject of stability analyses
of self-gravitating systems could only briefly be touched.

Equally important as recognising the foundations of theoretical astrophysics is
becoming aware of their limitations due to idealising assumptions. Some care
was taken to clearly specify the assumptions made. If this book can enable its
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readers to ask and address their own questions on the theory of astrophysical
phenomena, it has reached its goal.
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partial differential equations, 170

charge density
polarised, 202

charge in radiation field
energy loss, 66

Christoffel symbols, 129
circulation, 157
cold magnetised plasma

longitudinal dielectricity, 236
longitudinal electromagnetic waves,

240
transverse dielectricity, 236
transverse electromagnetic waves,

241
collisional invariants, 120
collisions

in evolution equation, 91
phase change, 90

Compton parameter, 74
Compton scattering

energy transfer, 69
averaged, 70

frequency change, 69
connection forms, 129

weak-field limit, 131
conservation equations

ideal fluid
Lorentz-covariant form, 123

constant of the motion, 264
constants

natural, 3
continuity equation

electromagnetic field energy, 21
fluid, 123

relativistic, 130
in momentum space, 32

293



294 INDEX

convective stability
condition, 193, 194

cooling function, 186
Coriolis force, 277
Cosmic Microwave Background

decoupling, 71
cosmic microwave background

dipole, 101
Coulomb logarithm, 253
covariant derivative, 129
cross section

scattering
off harmonically bound charge,

63
crossing time, 254
current density

kinetic energy, 125
curve-of-growth

for equivalent width, 95

Debye length, 199
Debye shielding, 198
Debye wave number, 199
dielectric displacement, 202
dielectric tensor, 204

decomposition, 205
in terms of phase-space distribu-

tion, 209
dielectricity, 202

longitudinal, 210
in thermal plasma, 214

longitudinal and transverse, 205
transversal

in thermal plasma, 214
transverse, 210

dielectricity tensor
cold magnetised plasma, 235

diffusion
ambipolar, 229

diffusion approximation
in phase space, 30

diffusion equation
temperature, 190

diffusion time scale
magnetised plasma, 226

diffusive energy transport, 139
diffusive momentum transport, 138
diffusive particle transport, 138
diffusive stress-energy tensor, 139
disk potential, 276

dispersion measure, 216
dispersion relation

Alfvén waves, 246
electromagnetic waves in cold mag-

netised plasma, 238
electromagnetic waves in plasma,

207
longitudinal, 208
perpendicular, 208

for disk stability, 279
gravity waves, 182
hydromagnetic waves, 248
Jeans instability, 272
Kelvin-Helmholtz instability, 185
Rayleigh-Taylor instability, 184
thermal instability, 189

distribution function
one particle, 29

master equation, 30
drift velocity

in magnetised plasma, 219
dynamical friction, 281

Chandrasekhar’s equation, 285

eccentric anomaly, 56
Eddington limit, 42
Einstein coefficients, 106
Einstein’s relations, 107
electromagnetic fields

Lorentz transforms, 17
electromagnetic power

emitted by charge in radiation field,
65

transferred by charge in radiation
field, 66

electromagnetic radiation
damping force, 61, 62
Doppler shift, 91
photon picture, 68

electromagnetism
antisymmetric field tensor, 16
Coulomb gauge, 81
four-current density, 17
four-potential, 16

wave equation, 19
gauge freedom, 18
Lagrange density, 18
Lorentz invariants, 18

electron
equation of motion
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non-relativistic, 39
electron radius

classical, 40
emissivity, 109

continuous case, 114
energy conservation

ideal fluid, 124, 126
viscous fluid, 141

energy current
conductive, 191

energy current density, 98
viscous magnetised plasma, 224

energy density
electromagnetic field, 21

energy transfer
by moving charge to photons, 71

net effect, 71
by photons to moving charge, 71

energy-current density
viscous fluid, 140

energy-momentum conservation
in general relativity, 129

energy-momentum four-vector, 14
energy-momentum tensor

electromagnetic field, 21
from Lagrangian, 20
ideal fluid, 129
of particle ensemble, 119

enthalpy density, 126
entropy

as a function of pressure and den-
sity, 153

as a function of temperature and
pressure, 153

equilibria
time scales of establishing, 187

equipartition theorem, 74, 91
Euler’s equation

for magnetised plasma, 222
ideal fluid, 125

relativistic, 130
in cylinder coordinates, 148
in spherical coordinates, 149

Euler’s theorem for homogeneous func-
tions, 62

Faddeeva function, 214
far field

electric, 23
magnetic, 23

Faraday rotation, 242
rotation measure, 242

Fick’s law, 138
flow from a faucet

cross section, 159
fluid

definition, 120
Fokker-Planck approximation

diffusion coefficients, 31
Compton scattering, 74
for hard spheres, 35
relation, 32

in Compton scattering, 73
Fokker-Planck equation, 31

for absolute momentum, 33
relative to equilibrium, 34

for Compton scattering, 74
four-momentum, 12
four-velocity, 12
frame

inertial, 4
of reference, 4

Gaunt factor, 59
Gaussian profile

from Doppler broadening, 92
gravitational potential energy

Chandrasekhar’s expression, 144,
263

Green’s function
d’Alembert operator

retarded, 19
groups

symmetry, 5

Hagen-Poiseulle law, 167
Hamilton’s equations of motion, 27
Hamiltonian

in electromagnetic field, 81
perturbation due to electromagnetic

field, 81
Hankel function, 58
harmonic oscillator

damped
driven, 63

heat conductivity, 139
electrons, 192
relation to conductive opacity, 191

hydrodynamic equations
covariant form

generally relativistic, 123
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ideal fluid, 126
generally-relativistic, 133
linearised, 150
relativistic, 131, 132

hydromagnetic waves
velocities, 247

hydrostatic equation, 154

induced emission coefficient, 109
induction equation

battery term, 228
inhomogeneous, 228

inertial tensor, 144
integral measure in phase space

Lorentz invariant, 118
integral of the motion, 264

isolating, 265
intensity

relation to Poynting vector, 98
interaction potential

charged and neutral particles, 230
invariance

under Galilei transforms, 5
under Lorentz transforms, 5

isothermal sphere, 269
non-singular, 270
singular, 269

Jeans equations, 257
radial, 259

solution, 260
spherical polar coordinates, 258

Jeans swindle, 272
Jeans wave length, 273
Jeans wave number, 135, 273
Jeans’ theorem, 265

Kelvin’s circulation theorem, 158
Kepler’s equation

for hyperbolic orbit, 57
Kirchhoff’s law, 109
Kolmogorov spectrum, 196
Kompaneets equation, 74

Landau damping
dissipation rate, 212
stellar-dynamical systems, 272

Lane-Emden equation, 154
Larmor formula

non-relativistic, 24
relativistic, 24

Larmor power
non-relativistic, 25
relativistic, 24

Laval nozzle
flow velocity, 160

Levi-Civita symbol, 139
Liénard-Wiechert potentials, 21
Liouville’s equation, 28
Lorentz contravariance, 9
Lorentz factor, 6
Lorentz force

covariant, 26
spatial components, 26

Lorentz invariance, 9
Lorentz profile, 64

for transition probability, 90
Lorentz transform

orthogonality, 18
special, 6

matrix representation, 8
Lorentz transforms

general, 6

Mach number, 160
Maclaurin disk, 276
magnetic advection, 225
magnetic diffusion, 225
magnetic field

frozen into plasma, 225
magnetohydrodynamic equations

linear perturbation analysis, 245
magnetohydrodynamics

assumptions, 219, 220
battery mechanism, 228
induction equation, 221

Maxwell’s equations
homogeneous

covariant, 19
in media, 203
inhomogeneous

covariant, 19
Maxwell’s stress tensor

electromagnetic field, 21
metric, 7
Minkowski metric, 7

line element, 9
Minkowski space, 6
momenta

canonically conjugated, 27
momentum conservation
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ideal fluid, 124

Navier-Stokes equation, 140
with gravitational force, 143

Newtonian gravitational field
energy-momentum tensor, 143
Lagrange density, 143

occupation number
Bosons and Fermions, 103
Lorentz transform, 100

Ohm’s law, 219
Ohmic heating, 210

in magnetised plasma, 223
time-averaged, 211

opacity, 109
conductive, 191
effective, 191

optical depth, 93
orbits

regular and irregular, 265
orthonormality relation

Minkowskian, 9
oscillator strength, 85

Parseval’s equation, 43
particle current density

conservation
Lorentz-invariant form, 122

four-vector, 119
partition sum

grand canonical, 102
permeability

magnetic, 202
perpetuum mobile

construction, 73
phase mixing

in collision-less systems, 271
phase space, 27

distribution function
reduced, 28

division into cells, 28
Plancherel’s theorem, 43, 82
Planck spectrum, 103

spectral energy density, 104
total energy density, 105

plasma, 197
ideal, 199

plasma dispersion function, 214
plasma frequency, 201
Poisson equation

generalised, 132
polarisation

plasma, 202
polarised current density

in cold magnetised plasma, 235
polytropic equation of state, 133, 152
polytropic index, 154
polytropic sound speed, 152
polytropic specific enthalpy, 152
polytropic temperature-density relation,

152
Poynting vector, 21

far field, 23
projection tensors

parallel and perpendicular, 205
projector, 205
proper time, 9

quantum states
absorption cross section

for electromagnetic radiation, 84
transition probability

due to electromagnetic radiation,
83

due to unpolarised electromag-
netic radiation, 84

quantum transitions
bound-free, 85
cross section

for bound-free transitions, 86,
87

dipole approximation, 84
quantum-mechanical states

long-term population, 90
spontaneous decay, 89

quasi-linear partial differential equa-
tions, 169

radiation pressure, 99
relation to intensity, 99

radiation pressure force
by Thomson scattering, 42

radiation temperature, 104
radiation transport equation, 110

solution, 110
radiative energy current density

transport, 116
Rankine-Hugoniot condition

density, 174
pressure, 174
relation, 175
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Rayleigh scattering, 64
Rayleigh-Jeans law, 104
relativistic aberration of light, 11
relativistic beaming, 11
relativistic dynamics

action, 13
Lagrange function, 13

relativistic hydrodynamics
density contrast

linearised evolution equation, 134
relativistic length contraction, 10
relativistic time dilation, 10
relativistic velocity addition, 11
relaxation time, 254
retarded time, 22
Reynolds number, 165

critical, 194
magnetic, 225

Riemann invariants, 171

scalar product
Minkowskian, 7

scattering
hyperbolic orbit, 55

scattering off hard spheres, 34
Sedov solution

radius, 178
shock velocity, 177

shear flow, 139
shock, 173

velocity, 176
sound waves, 151

dispersion relation, 151
in density contrast, 135
steepening, 173

specific entropy
viscous fluid, 142

specific intensity, 98
Planck spectrum, 103
relation to occupation number, 98
relativistic invariant, 100

spectral lines
equivalent width, 93

spectrum
electromagnetic radiation

from non-relativistic charge, 45
from relativistic charge, 45

Stefan-Boltzmann law, 105
stress-energy tensor

for magnetised plasma, 223

viscous fluid, 140
sum convention

Einstein’s, 8
Sunyaev-Zel’dovich effect, 76
synchrotron radiation

beaming, 49
spectrum, 52

cutoff frequency, 53
in orbital plane, 53

total power, 50

thermal instability
condition, 189

Thomson cross section
differential

for polarised light, 39, 41
for unpolarised light, 41

total, 41
Toomre’s criterion, 280
transformations

canonical, 28
transport phenomena

non-ideal fluid, 136
turbulence, 194
turbulent cascade, 194

units
cgs and SI, 1
of charge, 1

vector space
dual, 7

velocity dispersion
line-of-sight, 262

velocity potential, 181
velocity-dispersion tensor, 256
velocity-gradient tensor

symmetrised, 139
violent relaxation, 271
virial theorem

scalar
collision-less systems, 264

tensor, 145
collision-less systems, 264

viscosity, 139
kinematic, 165

viscous dissipation, 195
Voigt profile, 85, 93
vorticity, 156

diffusion equation, 164
vorticity equation
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barotropic fluid, 157

Wien’s law, 104



Understanding astronomical objects requires knowledge and 
methods from different branches of theoretical physics: we 
diagnose these objects mostly by the light we receive; the observed 
phenomena often have to do with the flow of fluids, sometimes 
ionised, sometimes magnetised; and the measured velocities reflect 
dynamics driven by gravitational fields. Courses in theoretical 
physics lay the foundation in classical and quantum mechanics, 
electrodynamics, and thermodynamics, but a gap remains between 
this foundation and its application to astrophysics. These lecture 
notes build upon the core courses in theoretical physics and 
provides the methods for understanding astrophysics theoretically.
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