
Appendix B

Summary of Differential

Geometry

B.1 Manifold

An n-dimensional manifold M is a suitably well-behaved space that is
locally homeomorphic to Rn, i.e. that locally “looks like” Rn.

A chart h, or a coordinate system, is a homeomorphism from D ⊂ M to
U ⊂ Rn,

h : D → U , p �→ h(p) = (x1, . . . , xn) , (B.1)

i.e. it assigns an n-tupel of coordinates {xi} to a point p ∈ D.

An atlas is a collection of charts whose domains cover the entire manifold.
If all coordinate changes between charts of the atlas with overlapping
domains are differentiable, the manifold and the atlas themselves are
called differentiable.

B.2 Tangent and dual spaces

The tangent space TpM at a point p ∈ M is the vector space of all
derivations. A derivation v is a map from the space Fp of C∞ functions
in p into the real numbers,

v : Fp → R , f �→ v( f ) . (B.2)

A derivation is a linear map which satisfies the Leibniz rule,

v(λ f + μg) = λv( f ) + μv(g) , v( fg) = v( f )g + f v(g) . (B.3)

Tangent vectors generalise directional derivatives of functions.
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218 B Differential Geometry

A coordinate basis of the tangent vector space is given by the partial
derivatives {∂i}. Tangent vectors can then be expanded in this basis,

v = vi∂i , v( f ) = vi∂i f . (B.4)

A dual vector w is a linear map assigning a real number to a vector,

w : T M → R , v �→ w(v) . (B.5)

The space of dual vectors to a tangent vector space T M is the dual space
T ∗M.

Specifically, the differential of a function f ∈ F is a dual vector defined
by

d f : T M → R , v �→ d f (v) = v( f ) . (B.6)

Accordingly, the differentials of the coordinate functions xi form a basis
{dxi} of the dual space which is orthonormal to the coordinate basis {∂i}
of the tangent space,

dxi(∂ j) = ∂ j(xi) = δi
j . (B.7)

B.3 Tensors

A tensor t ∈ T r
s of rank (r, s) is a multilinear mapping of r dual vectors

and s vectors into the real numbers. For example, a tensor of rank (0, 2)
is a bilinear mapping of 2 vectors into the real numbers,

t : T M × T M → R , (x, y) �→ t(x, y) . (B.8)

The tensor product is defined component-wise. For example, two dual
vectors w1,2 can be multiplied to form a rank-(0, 2) tensor w1 ⊗ w2

(v1, v2) �→ (w1 ⊗ w2)(v1, v2) = w1(v1)w2(v2) . (B.9)

A basis for tensors of arbitrary rank is obtained by the tensor product of
suitably many elements of the bases {∂i} of the tangent space and {dx j}
of the dual space. For example, a tensor t ∈ T 0

2 can be expanded as

t = ti j dxi ⊗ dx j . (B.10)

If applied to two vectors x = xk∂k and y = yl∂l, the result is

t(x, y) = ti j dxi(xk∂k) dx j(yl∂l) = ti jxkylδi
kδ

j
l = ti jxiy j . (B.11)

The contraction of a tensor t ∈ T r
s is defined by

C : T r
s → T r−1

s−1 , t �→ Ct (B.12)
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such that one of the dual vector arguments and one of the vector argu-
ments are filled with pairs of basis elements and summed over all pairs.
For example, the contraction of a tensor t ∈ T 1

1 is

Ct = t(dxk, ∂k) = (ti
j ∂i ⊗ dx j)(dxk, ∂k) = ti

jδ
k
i δ

j
k = tk

k . (B.13)

The metric g ∈ T 0
2 is a symmetric, non-degenerate tensor field of rank

(0, 2), i.e. it satisfies

g(x, y) = g(y, x) , g(x, y) = 0 ∀ y ⇒ x = 0 . (B.14)

The metric defines the scalar product between two vectors,

〈x, y〉 = g(x, y) . (B.15)

B.4 Covariant derivative

The covariant derivative or a connection linearly maps a pair of vectors
to a vector,

∇ : T M × T M → T M , (x, y) �→ ∇xy (B.16)

such that for a function f ∈ F

∇ f xy = f∇xy , ∇x( f y) = f∇xy + x( f )y . (B.17)

The covariant derivative of a function f is its differential,

∇v f = v f = d f (v) . (B.18)

Due to the linearity, it is completely specified by the covariant derivatives
of the basis vectors,

∇∂i∂ j = Γ
k
i j∂k . (B.19)

The functions Γk
i j are called connection coefficients or Christoffel sym-

bols. They are not tensors.

By means of the exponential map, so-called normal coordinates can
always be introduced locally in which the Christoffel symbols all vanish.

The covariant derivative ∇y of a vector y is a rank-(1, 1) tensor field
defined by

∇y : T ∗M × T M → R , ∇y(w, v) = w(∇vy) . (B.20)

In components,

(∇y)i
j = ∇y(dxi, ∂ j) = dxi(∇∂ jy

k∂k) = ∂ jy
i + Γi

jky
k . (B.21)

The covariant derivative of a tensor field is defined to obey the Leib-
niz rule and to commute with contractions. Specifically, the covariant
derivative of a dual vector field w ∈ T ∗M is a tensor of rank (0, 2) with
components

(∇w)i j = ∂ jwi − Γk
i jwk . (B.22)
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B.5 Parallel transport and geodesics

A curve γ is defined as a map from some interval I ⊂ R to the manifold,

γ : I → M , t �→ γ(t) . (B.23)

Its tangent vector is γ̇(t).

A vector v is said to be parallel transported along γ if

∇γ̇v = 0 . (B.24)

A geodesic curve is defined as a curve whose tangent vector is parallel
transported along γ,

∇γ̇γ̇ = 0 . (B.25)

In coordinates, let u = γ̇ be the tangent vector to γ and with components
ẋi = ui, then

ẍk + Γk
i j ẋ

i ẋ j = 0 . (B.26)

B.6 Torsion and curvature

The torsion of a connection is defined by

T : T M×T M → T M , (x, y) �→ T (x, y) = ∇xy−∇yx−[x, y] . (B.27)

It vanishes if and only if the connection is symmetric.

On a manifold M with a metric g, a symmetric connection can always
be uniquely defined by requiring that ∇g = 0. This is the Levi-Civita
connection, whose Christoffel symbols are

Γi
jk =

1
2
gia
(
∂ jgak + ∂kg ja − ∂ag jk

)
. (B.28)

From now on, we shall assume that we are working with the Levi-Civita
connection whose torsion vanishes.

The curvature is defined by

R̄ : T M × T M × T M → T M ,

(x, y, z) �→ R̄(x, y)z =
(
∇x∇y − ∇y∇x − ∇[x,y]

)
z . (B.29)

The curvature or Riemann tensor R̄ ∈ T 1
3 is given by

R̄ : T ∗M×T M×T M×T M → R , (w, x, y, z) �→ w[R̄(x, y)z] . (B.30)

Its components are

R̄i
jkl = dxi[R̄(∂k, ∂l)∂ j] = ∂kΓ

i
jl − ∂lΓ

i
jk + Γ

a
jlΓ

i
ak − Γ

a
jkΓ

i
al . (B.31)
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The Riemann tensor obeys three important symmetries,

R̄i jkl = −R̄ jikl = R̄ jilk , R̄i jkl = R̄kli j , (B.32)

which reduce its 44 = 256 components in four dimensions to 21.

In addition, the Bianchi identities hold,∑
(x,y,z)

R̄(x, y)z = 0 ,
∑

(x,y,z)

∇xR̄(y, z) = 0 , (B.33)

where the sums extend over all cyclic permutations of x, y, z. The first
Bianchi identity reduces the number of independent components of the
Riemann tensor to 20. In components, the second Bianchi identity can
be written

R̄i
j[kl;m] = 0 , (B.34)

where the indices in brackets need to be antisymmetrised.

The Ricci tensor is the contraction of the Riemann tensor over its first
and third indices, thus its components are

Rjl = R̄i
jil = Rl j . (B.35)

A further contraction yields the Ricci scalar,

R = Ri
i . (B.36)

The Einstein tensor is the combination

G = R − R
2
g . (B.37)

Contracting the second Bianchi identity, we find the contracted Bianchi
identity,

∇ ·G = 0 . (B.38)

B.7 Pull-back, Lie derivative and Killing

vector fields

A differentiable curve γt(p) defined at every point p ∈ M defines a
diffeomorphic map φt : M → M. If γ̇t = v for a vector field v ∈ T M, φt

is called the flow of v.

The pull-back of a function f defined on the target manifold at φt(p) is
given by

(φ∗t f )(p) = ( f ◦ φt)(p) . (B.39)

This allows vectors defined at p to be pushed forward to φt(p) by

(φt∗v)( f ) = v(φ∗t f ) = v( f ◦ φt) . (B.40)
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Dual vectors w can then be pulled back by

(φ∗tw)(v) = w(φt∗v) . (B.41)

For diffeomorphisms φt, the pull-back and the push-forward are inverse,
φ∗t = φ

−1
t∗ .

As for vectors and dual vectors, the pull-back and the push-forward can
also be defined for tensors of arbitrary rank.

The Lie derivative of a tensor field T into direction v is given by the limit

LvT = lim
t→0

φ∗t T − T
t

, (B.42)

where φt is the flow of v. The Lie derivative quantifies how a tensor
changes as the manifold is transformed by the flow of a vector field.

The Lie derivative is linear and obeys the Leibniz rule,

Lx(y + z) = Lxy +Lxz , Lx(y ⊗ z) = Lxy ⊗ z + y ⊗ Lxz . (B.43)

It commutes with the contraction. Further important properties are

Lx+y = Lx +Ly , Lλx = λLx , L[x,y] = [Lx,Ly] . (B.44)

The Lie derivative of a function f is the ordinary differential

Lv f = v( f ) = d f (v) . (B.45)

The Lie derivative and the differential commute,

Lvd f = dLv f . (B.46)

The Lie derivative of a vector x is the commutator

Lvx = [v, x] . (B.47)

By its commutation with contractions and the Leibniz rule, the Lie
derivative of a dual vector w turns out to be

(Lxw)(v) = x[w(v)] − w([x, v]) . (B.48)

Lie derivatives of arbitrary tensors can be similarly derived. For example,
if g ∈ T 0

2 , we find

(Lxg)(v1, v2) = x[g(v1, v2)] − g([x, v1], v2) − g(v1, [x, v2]) (B.49)

with v1,2 ∈ T M.

Killing vector fields K define isometries of the metric, i.e. the metric
does not change under the flow of K. This implies the Killing equation

LKg = 0 ⇒ ∇iK j + ∇ jKi = 0 . (B.50)
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B.8 Differential forms

Differential p-forms ω ∈
∧p are totally antisymmetric tensor fields of

rank (0, p). Their components satisfy

ωi1...ip = ω[i1...ip] . (B.51)

The exterior product ∧ is defined by

∧ :
∧p

×
∧q

→
∧p+q

, (ω, η) �→ ω ∧ η = (p + q)!
p!q!

A(ω ⊗ η) ,
(B.52)

where A is the alternation operator

(At)(v1, . . . , vp) =
1
p!

∑
π

sgn(π)t(vπ(1), . . . , vπ(p)) . (B.53)

On the vector space
∧

of differential forms, the wedge product defines
an associative, skew-commutative Grassmann algebra,

ω ∧ η = (−1)pq η ∧ ω , (B.54)

with ω ∈
∧p and η ∈

∧q.

A basis for the p-forms is

dxi1 ∧ . . . ∧ dxip , (B.55)

which shows that the dimension of
∧p is

dim
∧p
=

(
n
p

)
. (B.56)

The interior product iv is defined by

i : T M ×
∧p

→
∧p−1

, (v, ω) �→ iv(ω) = ω(v, . . .) . (B.57)

In components, the interior product is given by

(ivω)i2...ip = v
jω ji2...ip . (B.58)

The exterior derivative turns p-forms ω into (p + 1)-forms dω,

d :
∧p

→
∧p+1

, ω �→ dω =
∑

i1<...<ip

dωi1...ip ∧ dxi1 ∧ . . . ∧ dxip .

(B.59)
Accordingly, the components of the exterior derivative are given by
partial derivatives,

(dω)i1,...,ip+1 = (p + 1) ∂[i1ωi2...ip+1] (B.60)

A differential form α is called exact if a differential form β exists such
that α = dβ. It is called closed if dα = 0.
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B.9 Cartan’s structure equations

Let {ei} be an arbitrary basis and {θi} its dual basis such that

〈θi, e j〉 = δi
j . (B.61)

The connection forms ωi
j ∈

∧1 are defined by

∇vei = ω
j
i (v) e j . (B.62)

In terms of Christoffel symbols, they can be expressed as

ωi
j = Γ

i
k j θ

k . (B.63)

They satisfy the antisymmetry relation

dgi j = ωi j + ω ji . (B.64)

The covariant derivative of a dual basis vector is

∇vθi = −ωi
j(v) θ

j . (B.65)

Covariant derivatives of arbitrary vectors x and dual vectors α are then
given by

∇vx = 〈dxi + x jωi
j, v〉 ei , ∇vα = 〈dαi − α jω

j
i , v〉 θ

i (B.66)

or

∇x = ei ⊗ (dxi + x jω
j
i ) , ∇α = θi ⊗ (dαi − α jω

j
i ) . (B.67)

Torsion and curvature are expressed by the torsion 2-form Θi ∈
∧2 and

the curvature 2-form Ωi
j ∈

∧2 as

T (x, y) = Θi(x, y) ei , R̄(x, y)ei = Ω
j
i (x, y) e j . (B.68)

The torsion and curvature forms are related to the connection forms and
the dual basis vectors by Cartan’s structure equations

Θi = dθi + ωi
k ∧ θ

k , Ωi
j = dωi

j + ω
i
k ∧ ω

k
j . (B.69)

The components of the torsion and curvature tensors are determined by

Θi = T i
jk θ

j ∧ θk , Ωi
j = R̄i

jkl θ
k ∧ θl . (B.70)
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B.10 Differential operators and integration

The Hodge star operator turns a p-form into an (n − p)-form,

∗ :
∧p

→
∧n−p

, ω �→ ∗ω . (B.71)

If {ei} is an orthonormal basis of the dual space, the Hodge star operator
is uniquely defined by

∗ (e1 ∧ . . . ∧ eip) = eip+1 ∧ . . . ∧ ein , (B.72)

where the indices i1 . . . in appear in their natural order or a cyclic per-
mutation thereof. For example, the coordinate differentials {dxi} are an
orthonormal dual basis in R3, and

∗dx1 = dx2 ∧ dx3 , ∗dx2 = dx3 ∧ dx1 , ∗dx3 = dx1 ∧ dx2 . (B.73)

The codifferential is a differentiation lowering the order of a p-form by
one,

δ :
∧p

→
∧p−1

, ω �→ δω , (B.74)

which is defined by

δω = sgn(g)(−1)n(p+1) (∗d∗)ω . (B.75)

It generalises the divergence of a vector field and thus has the components

(δω)i2...ip =
1√
|g|
∂i1

( √
|g|ωi1i2...ip

)
. (B.76)

The Laplace-de Rham operator

d ◦ δ + δ ◦ d (B.77)

generalises the Laplace operator.

The canonical volume form is an n-form given by

η =
√
|g| dx1 ∧ . . . ∧ dxn . (B.78)

The integration of n-forms ω = f (x1, . . . , xn) dx1∧ . . .∧dxn over domains
D ⊂ M is defined by∫

D
ω =

∫
D

f (x1, . . . , xn) dx1 . . . dxn . (B.79)

Functions f are integrated by means of the canonical volume form,∫
D

fη =
∫

D
f
√
|g| dx1 . . . dxn . (B.80)

The theorems of Stokes and Gauss can be expressed as∫
D

dα =
∫
∂D
α ,

∫
D
δv� η =

∫
∂D
∗v� , (B.81)

where α ∈
∧n−1 is an (n − 1)-form and v ∈ T M is a vector field.




