
Chapter 13

Two Examples of Relativistic

Astrophysics

13.1 Light bundles

13.1.1 Geodesic deviation

We had seen in (6.16) that the separation vector n between two geodesics
out of a congruence evolves in a way determined by the equation of
geodesic deviation or Jacobi equation

∇2
un = R̄(u, n)u , (13.1)

where u is the tangent vector to the geodesics and R̄(u, n)u is the curvature
as defined in (3.51).

Caution Recall that, as intro-
duced in Chapter 6, a congruence
is a bundle of world lines in this
context. �We apply this now to a light bundle, i.e. a congruence of light rays or

null geodesics propagating from a source to an observer moving with
a four-velocity uo. Let k be the wave vector of the light rays, then the
frequency of the light at the observer is

ωo = 〈k, uo〉 , (13.2)

and we introduce the normalised wave vector k̃ = k/ωo which satisfies
〈k̃, uo〉 = 1. Since k is a null vector, so is k̃.

Next, we introduce a screen perpendicular to k and to uo. It thus falls
into the local three-space of the observer, where it is perpendicular to
the light rays. Since it is two-dimensional, it can be spanned by two
orthonormal vectors E1,2, which are parallel-transported along the light
bundle such that

∇kEi = 0 = ∇k̃Ei (i = 1, 2) . (13.3)
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Notice that the parallel transport along a null geodesic implies that the
Ei remain perpendicular to k̃,

∇k̃〈k̃, Ei〉 = 〈∇k̃k̃, Ei〉 + 〈k̃,∇k̃Ei〉 = 0 . (13.4)

In a coordinate basis {eα} and its conjugate dual basis {θi}, they can be
written as

Ei = Eαi eα with Eαi = θ
α(Ei) . (13.5)

The separation vector n between rays of the bundle can now be expanded
into the basis E1,2,

n = nαeα = NiEi , (13.6)

showing that its components nα in the basis {eα} are

nα = θα(n) = θα(NiEi) = NiEαi . (13.7)

Substituting the normalised wave vector k̃ for the four-velocity u in the
Jacobi equation (13.1), we first have

∇2
k̃n = R̄(k̃, n)k̃ . (13.8)

Writing n = NiEi and using (13.3), we find

∇k̃n = Ei∇k̃Ni , ∇2
k̃n = Ei∇2

k̃Ni , (13.9)

and thus
Ei∇2

k̃Ni = R̄(k̃, E j)k̃ N j . (13.10)

Finally, we multiply equation (13.10) with Ei from the left and use the
orthonormality of the vectors E1,2,〈

Ei, E j

〉
= δi

j , (13.11)

to find the equation

∇2
k̃Ni =

〈
Ei, R̄

(
k̃, E j

)
k̃
〉

N j , (13.12)

describing how the perpendicular cross section of a light bundle changes
along the bundle.

13.1.2 Ricci and Weyl contributions

It will turn out convenient to introduce the Weyl tensor C̄, whose compo-
nents are determined by

R̄αβγδ = C̄αβγδ + gα[γRδ]β − gβ[γRδ]α −
R
3
gα[γgδ]β . (13.13)
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In contrast to the Riemann tensor, the Weyl tensor (representing the
Weyl curvature) is trace-free, C̄αβαδ = 0, but otherwise has the same
symmetries,

C̄αβγδ = −C̄βαγδ = −C̄αβδγ = C̄γδαβ . (13.14)

Inserting the second, third, and fourth terms on the right-hand side of
(13.12) into (13.12), we see that

gα[γRδ]β Eiαk̃βk̃γEδj =
1
2

(〈
Ei, k̃

〉
R
(
E j, k̃

)
−
〈
Ei, E j

〉
R
(
k̃, k̃

))
,

gβ[γRδ]α Eiαk̃βk̃γEδj =
1
2

(〈
k̃, k̃

〉
R
(
Ei, E j

)
−
〈
E j, k̃

〉
R
(
Ei, k̃

))
,

gα[γgδ]β Eiαk̃βk̃γEδj =
1
2

(〈
Ei, k̃

〉 〈
E j, k̃

〉
−
〈
Ei, E j

〉 〈
k̃, k̃

〉)
. (13.15)

Defining further the 2 × 2 matrix C with the components

Ci
j := C̄αβγδ Eiαk̃βk̃γEδj , (13.16)

and using 〈Ei, k̃〉 = 0 = 〈k̃, k̃〉 together with (13.11), we find that we can
write (13.12) as

∇2
k̃Ni =

(
−1

2
δi

j R
(
k̃, k̃

)
+Ci

j

)
N j . (13.17)

13.2 Gravitational lensing

13.2.1 The optical tidal matrix

The evolution of the bundle’s perpendicular cross section can thus be
described by a matrix T ,

∇2
k̃

(
N1

N2

)
= T

(
N1

N2

)
, (13.18)

which, according to (13.17), can be written in the form

T = −1
2

R
(
k̃, k̃

)
�2 +C . (13.19)

Some further insight can be gained by extracting the trace-free part from
T . Since the trace is

TrT = −R
(
k̃, k̃

)
+ Tr C , (13.20)

the trace-free part of T is

?

Why is there a factor of 1/2 in
front of the trace on the left-hand
side of (13.21)?

T − 1
2

Tr T �2 = C − 1
2

Tr C �2 =: Γ , (13.21)
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where we have defined the shear matrix Γ. Notice that the symmetries
(13.14) imply that C is symmetric,

Ci j = C̄αβγδEαi k̃βk̃γEδj = C̄δγβαEδj k̃
γk̃βEδi = C ji . (13.22)

Thus, Γ is also symmetric and has only the two independent components

γ1 = C̄αβγδk̃βk̃γ
(
Eα1 Eδ1 − Eα2 Eδ2

)
, γ2 = C̄αβγδk̃βk̃γEα1 Eδ2 . (13.23)

Optical tidal matrix

Summarising, we define three scalars, the shear components γ1,2 from
(13.23) and the convergence

κ := −1
2

[
R
(
k̃, k̃

)
− Tr C

]
, (13.24)

in terms of which the matrix T can be brought into the form

T =
(
κ + γ1 γ2

γ2 κ − γ1

)
. (13.25)

this is called the optical tidal matrix.

The effect of the optical tidal matrix becomes obvious if we start with a
light bundle with circular cross section, for which the components Ni of
the distance vector can be written as(

N1

N2

)
=

(
cosϕ
sinϕ

)
, (13.26)

where ϕ is the polar angle on the screen spanned by the vectors E1,2.
Before we apply the optical tidal matrix, we rotate it into its principal-
axis frame, (

κ + γ1 γ2

γ2 κ − γ1

)
→
(
κ + γ 0

0 κ − γ

)
(13.27)

with γ2 = γ2
1 + γ

2
2, which shows that it maps the circle onto a curve

outlined by the vector (
x
y

)
≡
(

(κ + γ) cosϕ
(κ − γ) sinϕ

)
. (13.28)

This is an ellipse with semi-major axis κ + γ and semi-minor axis κ − γ,
because obviously

x2

(κ + γ)2 +
y2

(κ − γ)2 = cos2 ϕ + sin2 ϕ = 1 . (13.29)

Thus, for γ = 0, the originally circular cross section remains circular,
with κ being responsible for isotropically expanding or shrinking it, while
the light bundle is elliptically deformed if γ � 0.
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13.2.2 Homogeneous and isotropic spacetimes

In an isotropic spacetime, it must be impossible to single out preferred
directions. This implies that γ = 0 then, because otherwise the principal-
axis frame of the optical tidal matrix would break isotropy. If the space-
time is homogeneous, this must hold everywhere, so that we can spe-
cialise

T = κ�2 , (13.30)

with κ defined in (13.24). Since the propagation equation (13.18) for the
light bundle is then isotropic, we replace Ni = D for i = 1, 2 and write

∇2
k̃D = κD . (13.31)

Moreover, we see that

G
(
k̃, k̃

)
=

(
R − R

2
g

) (
k̃, k̃

)
= R

(
k̃, k̃

)
(13.32)

because k̃ is a null vector. Thus, we can put

κ = −1
2

G
(
k̃, k̃

)
= −4πG

c4 T
(
k̃, k̃

)
, (13.33)

using Einstein’s field equations in the second step.

?

Why does the cosmological con-
stant Λ not appear in the expres-
sion (13.33) for the convergence?Next, we can insert the energy-momentum tensor (12.53) for a perfect

fluid,
T =

(
ρ +

p
c2

)
u� ⊗ u� + pg , (13.34)

and use the fact that fundamental observers (i.e. observers for whom the
universe appears isotropic) have u = c∂t and u� = −cdt.

The frequency of the light measured by a hypothetical fundamental
observer moving with four-velocity u and placed between the source
and the final observer is 〈k, u〉. Due to our definition of k̃ = k/ωo, and
because of the cosmological redshift (12.73), we can write

〈
k̃, u

〉
=
〈k, u〉
ωo
=
ω

ωo
= 1 + z , (13.35)

where ωo is the frequency measured by the final observer, and z is the
redshift relative to the final observer.

Thus, we find

κ = −4πG
c2

(
ρ +

p
c2

)
(1 + z)2 = −4πG

c2

ρ + p/c2

a2 , (13.36)

where a is the scale factor of the metric inserted according to (12.73),
setting a = 1 at the time of observation.
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If p 	 ρc2, the density scales like a−3 as shown in (12.62), and then

κ = −4πG
c2 ρ0a−5 . (13.37)

We still need to choose a suitable affine curve parameter λ along the
fiducial light ray. In terms of λ, the tangent vector k̃ is given by

k̃ =
dx
dλ
. (13.38)

Since we have normalised k̃ such that 〈k̃, u〉 = 1 + z as shown in (13.35),
we must have 〈

dx
dλ
, u
〉
=

dx0

dλ
=

cdt
dλ
= 1 + z = a−1 , (13.39)

where u = ∂t was used in the second step. Thus, the curve parameter
must be related to the cosmic time by dλ = cadt. Then, observing that
da = ȧdt, we find

dλ = cadt =
cada

ȧ
=

cda
ȧ/a
. (13.40)

With this result, we can rewrite

∇k̃D = k̃α∇αD =
dxα

dλ
∂αD =

dD
dλ
, (13.41)

and the propagation equation (13.31) becomes

D′′ = κD , (13.42)

where the prime indicates the derivative with respect to the affine param-
eter λ.

Equation (13.42) can be further simplified to reveal its very intuitive
meaning. From the metric in the form (12.83), we see that radially
propagating light rays must satisfy

cdt = ±adw , (13.43)

where w is the radial distance coordinate defined in (12.81). The sign
can be chosen depending on whether the distance should grow with
increasing time (i.e. into the future) or with decreasing time (i.e. into the
past), but it is irrelevant for our consideration. We choose cdt = adw and
therefore, with (13.40),

dλ = cadt = a2dw . (13.44)

In addition to replacing the affine parameter λ by the comoving radial
coordinate w, we consider now the propagation of the comoving diameter
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D/a, i.e. the diameter with the expansion of the universe divided out.
Substituting dw for dλ, we first see that

d2

dw2

(D
a

)
= a2 d

dλ

[
a2 d

dλ

(D
a

)]
= a2 d

dλ
(aD′ − a′D)

= a2(aD′′ − a′′D) . (13.45)

Next, we use (13.40) to write

a′′ =
da′

dλ
=

ȧ
ca

da′

da
=

ȧ
c2a

d
da

( ȧ
a

)
=

1
2c2

d
da

( ȧ
a

)2

, (13.46)

which enables us to insert Friedmann’s equation (12.55) in the form( ȧ
a

)2

=
8πG

3
ρ0

a3 +
Λc2

3
− kc2

a2 (13.47)

to find

a′′ =
da′

dλ
= −4πG

c2 ρ0a−4 + ka−3 = κa + ka−3 , (13.48)

inserting κ from (13.37).

Finally, we substitute D′′ = κD from (13.31) and a′′ from (13.48) into
(13.45) and obtain an intuitive result.

Propagation equation for the bundle diameter

In a spatially homogeneous and isotropic spacetime, the comoving
diameter D of a light bundle obeys the equation

d2

dw2

(D
a

)
= a3κD − a2D

(
κa + ka−3

)
= −k

(D
a

)
, (13.49)

which is a simple oscillator equation.

?

The derivation of the behaviour
of light bundles from Fried-
mann’s equation suggests that
it should be possible to derive
Friedmann’s equation from the
behaviour of light bundles. Is it?

Equation (13.49) is now easily solved. We set the boundary conditions
such that the bundle emerges from a source point, hence D = 0 at the
source, and that it initially expands linearly with the radial distance w,
hence d(D/a)/dw = 1 there. Then, the solution of (13.49) is

D = a fk(w) = a

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
k−1/2 sin

(
k1/2w

)
(k > 0)

w (k = 0)
|k|−1/2 sinh

(
|k|1/2w

)
(k < 0)

, (13.50)

with fk(w) defined in (12.82).

This shows that the diameter of the bundle increases linearly if space is
flat, diverges hyperbolically if space is negatively curved, and expands
and shrinks as a sine if space is positively curved.
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13.3 The Tolman-Oppenheimer-Volkoff solu-

tion

13.3.1 Relativistic hydrostatics

We now consider an axially symmetric, static solution of Einstein’s
field equations in presence of matter. As usual for an axisymmetric
solution, we can work in the Schwarzschild tetrad (8.40), in which the
energy-momentum tensor of a perfect fluid,

T = Tμν θ μ ⊗ θν with Tμν =
(
ρ +

p
c2

)
uμuν + pgμν , (13.51)

simplifies to
Tμν = diag(ρc2, p, p, p) (13.52)

because u = u0e0 = e0 in the static situation we are considering.

It has been shown in the In-depth box “Ideal hydrodynamics in general
relativity” on page 175 that the relativistic Euler equation is

(ρc2 + p)∇uu = −c2dp� − u∇u p , (13.53)

which had been derived by contracting the local conservation equation

∇ · T = 0 (13.54)

with the perpendicular projection tensor π⊥ = �4 + u ⊗ u�.

Specialising (13.53) to our situation, we use (8.9) to see that

∇uu = 〈duα + uβωαβ , u〉eα = 〈u0ω1
0, u〉e1 = c2a′e−be1 , (13.55)

because the only non-vanishing of the connection forms ωα0 for a static,
axially symmetric spacetime is

ω1
0 = a′e−b θ0 , (13.56)

as shown in (8.50). Moreover, in the static situation, ∇u p = 0.

The pressure gradient gradp = dp� is

gradp = dp� = p′dr� = p′e−b (θ1)� = p′e−b e1 . (13.57)
?

Compare the relativistic hy-
drostatic equation to its non-
relativistic counterpart in Newto-
nian gravity.

Relativistic hydrostatic equation

Substituting (13.55) and (13.57) into (13.53) yields

(ρc2 + p)a′ = −p′ ⇒ a′ = − p′

ρc2 + p
, (13.58)

which is the relativistic hydrostatic equation.
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Figure 13.1 Richard C. Tolman (1881–1948), US-American physicist.
Source: Wikipedia

13.3.2 The Tolman-Oppenheimer-Volkoff equation

With the components of the Einstein tensor given in (8.60) and the
energy-momentum tensor (13.52), the two independent field equations
read

− 1
r2 + e−2b

(
1
r2 −

2b′

r

)
= −8πG

c2 ρ

− 1
r2 + e−2b

(
1
r2 +

2a′

r

)
=

8πG
c4 p . (13.59)

The first of these equations is equivalent to(
re−2b

)′
= 1 − 8πG

c2 ρr
2 . (13.60)

Integrating, and using the mass

M(r) = 4π
∫ r

0
ρ(r′)r′2dr′ , (13.61)

shows that the function b is determined by

e−2b = 1 − 2m
r
, m :=

GM(r)
c2 . (13.62)

If we subtract the first from the second field equation (13.59), we find

2e−2b

r
(a′ + b′) =

8πG
c4 (ρc2 + p) (13.63)
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Figure 13.2 J. Robert Oppenheimer (1904–1967), US-American physicist.
Source: Wikimedia Commons

or
a′ = −b′ +

4πG
c4 e2b(ρc2 + p)r . (13.64)

On the other hand, (13.62) gives

− 2b′e−2b =
2m
r2 − 2m′

r
=

2m
r2 − 8πG

c2 ρr , (13.65)

or

b′ =
(
4πG
c2 ρr −

m
r2

)
e2b , (13.66)

which allows us to write (13.64) as

a′ =
(

m
r2 +

4πG
c4 pr

)
e2b =

m + 4πGpr3/c4

r(r − 2m)
. (13.67)

Tolman-Oppenheimer-Volkoff equation

But the hydrostatic equation demands (13.58), which we combine with
(13.67) to find

− p′ =
(ρc2 + p)(m + 4πGpr3/c4)

r(r − 2m)
. (13.68)

This is the Tolman-Oppenheimer-Volkoff equation for the pressure
gradient in a relativistic star.
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Figure 13.3 George M. Volkoff (1914–2000), Canadian physicist. Source:
Wikipedia

This equation generalises the hydrostatic Euler equation in Newtonian
physics, which reads for a spherically-symmetric configuration

− p′ =
GMρ

r2 =
mρc2

r2 . (13.69)

This shows that gravity acts on ρc2 + p instead of ρ alone, the pressure
itself adds to the source of gravity, and gravity increases more strongly
than ∝ r−2 towards the centre of the star.

13.4 The mass of non-rotating neutron stars

Neutron stars are a possible end product of the evolution of massive stars.
When such stars explode as supernovae, they may leave behind an object
with a density so high that protons and electrons combine to neutrons
in the process of inverse β decay. Objects thus form which consist of
matter with nuclear density

ρ0 ≈ 5 · 1014 g cm−3 . (13.70)

A greatly simplified, yet instructive solution to the Tolman-Oppenheimer-
Volkoff equation can be found assuming a constant density

ρ(r) =

⎧⎪⎪⎨⎪⎪⎩ρ0 (r ≤ r0)
0 (r > r0)

(13.71)
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throughout the star, with r0 representing the stellar radius. Introducing
the length scale

λ0 :=
(
4πG
c2 ρ0

)−1/2

, (13.72)

scaling the pressure p with the central energy density

q :=
p
ρ0c2 (13.73)

and introducing x := r/λ0, we can transform the Tolman-Oppenheimer-
Volkoff equation (13.68) to

− dq
dx
=

(1 + q)(1 + 3q)x
3 − 2x2 . (13.74)

Separating variables, setting the scaled pressure to q = q0 at x = 0, and
adopting q0 = 1/3 as appropriate for an ultrarelativistic gas, we can
integrate (13.74) to find

q(x) =
2 −

√
9 − 6x2

√
9 − 6x2 − 6

. (13.75)

?

Introducing the length scale λ0

from (13.72) and the dimension-
less pressure q from (13.75)
into the Tolman-Oppenheimer-
Volkoff equation (13.68), confirm
(13.74) and solve it to arrive at
(13.75).
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Figure 13.4 Pressure profile obtained from the Tolman-Oppenheimer-
Volkoff equation for a homogeneous star.

The pressure falls to zero at x∗ =
√

5/6, which defines the stellar radius
r∗ = x∗λ0 and a stellar mass M∗ of

M∗ =
4π
3

r3
∗ρ0 . (13.76)

With the nuclear density (13.75), we find

λ0 = 14.7 km , r∗ = 13.4 km and M∗ = 2.5 M
 . (13.77)

These are approximate results obtained under simplifying assumptions,
which show however that at most a few solar masses can be stabilised by
a relativistic gas with nuclear density. Masses exceeding this limit will
collapse into black holes.
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Instead of a postface

As mentioned instead of a preface, these lectures aim at introducing the
theory of general relativity, but cannot replace a comprehensive textbook.
They can be summarised as follows:

• The main concern of the introduction in Chap. 1 is the equivalence
principle and the consequence drawn from it that the light-cone
structure, commonly expressed by the metric, needs to be flexible.
Locally, in a freely-falling reference frame, special relativity must
hold with its light-cone defined by the Minkowski metric. Since
the directions of free fall will generally differ at different loca-
tions in spacetime, the metric needs to vary from place to place.
Sufficiently flexible spacetimes are represented by differentiable
manifolds.

• The mathematics on differentiable manifolds, i.e. differential ge-
ometry, is thus the adequate mathematical language for general
relativity. Tangent and dual spaces provide vectors and dual vec-
tors. Connections, or covariant derivatives, define how vectors
can be moved along curves from one tangent space to another.
Having chosen a connection, torsion and curvature can be defined.
Chapters 2 and 3 serve this purpose.

• With these tools at hand, concepts of physics can be ported from
Minkowskian spacetime to manifolds. The essential choice here is
the identification of the line element of the metric with the proper
time interval measured by an observer. Motion of test particles
and light rays on geodesics follows from this choice, as described
in Chap. 4.

• The Lie derivative defines how objects on a manifold change
as the manifold itself is transformed. It is most important for
specifying symmetry transformations of manifolds, generated by
Killing vector fields. Differential forms allow coordinate-free
differentiation and integration on manifolds. Chapter 5 introduces
these concepts.

• Einstein’s field equations are then motivated in two ways in Chap. 6,
first via the gravitational tidal field and its relation to curvature,
second via an action principle. Lovelock’s theorems reveal the
remarkable uniqueness of the field equations derived therefrom.

• In the remainder of the lecture, several classes of solutions of
Einstein’s field equations are discussed. In Chap. 7, the field
equations are linearised, leading to the various effects of weak
gravitational fields, among them gravitational light deflection,
gravitomagnetic frame-dragging and gravitational waves. The
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diffeomorphism invariance of general relativity and the gauge
freedom following from it are an important mathematical side-line
of this chapter.

• The Schwarzschild solution, its derivation, properties, its maximal
continuation, and its causal structure are the subjects of Chapters
8, 9, and 10. Chapter 11 adds charge and angular momentum to
the solution and offers a first look into the consequences. Thermo-
dynamics of black holes is briefly introduced there.

• Chapter 12 shows how the Friedmann equations of spatially ho-
mogeneous and isotropic cosmology follow from Einstein’s field
equations. It thus describes the root of a specialised cosmology lec-
ture which typically begins with these equations and their premises.
Similarly, Chap. 13 begins with light propagation through general
space-times and later focuses on the evolution of light bundles in
Friedmann cosmologies. Cosmic gravitational lensing by large-
scale structures begins with the optical tidal matrix defined there
and is typically again the subject of more specialised lectures.
Finally, the Tolman-Oppenheimer-Volkoff equation is derived as
the generally-relativistic analog to the hydrostatic equation of
hydrostatic stellar models in Newtonian gravity.

If these lectures lay the foundation for studying more detailed textbooks
and reading the research literature, they serve their intended purpose.




