
Chapter 12

Homogeneous, Isotropic

Cosmology

12.1 Spherically-symmetric spacetimes

Physical cosmology aims at studying the structure and evolution of the
universe as a whole. Of the four fundamental interactions of physics,
only gravity is relevant on the largest scales because the strong and
the weak interactions are confined to sub-atomic length scales, and the
electromagnetic force is shielded on large scales by opposite charges.
We thus expect that the spacetime of the Universe can be idealised as
a solution of Einstein’s field equations, satisfying certain simplicity re-
quirements expressed by symmetries imposed on the form of the solution.
In this chapter, we shall therefore first discuss spherically-symmetric
spacetimes in general and then specialise them to cosmological solutions
in particular.

12.1.1 Form of the metric

Generally, a spacetime (M, g) is called spherically symmetric if it admits
the group SO(3) as an isometry such that the group’s orbits are two-
dimensional, space-like surfaces.

For any point p ∈ M, we can then select the orbit Ω(p) of SO(3) through
p. In other words, we construct the spatial two-sphere containing p
which is compatible with the spherical symmetry.

Next, we construct the set of all geodesics N(p) through p which are
orthogonal to Ω(p). Locally, N(p) forms a two-dimensional surface
which we also call N(p). Repeating this construction for all p ∈ M
yields the surfaces N.
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184 12 Homogeneous, Isotropic Cosmology

We can now introduce coordinates (r, t) on N and (ϑ, ϕ) on Ω, i.e. such
that the group orbits Ω of SO(3) are given by (r, t) = const. and the
surfaces N by (ϑ, ϕ) = const. This allows the following intermediate
conclusion.

Metric of a spherically-symmetric spacetime

The line element of the metric of a spherically-symmetric spacetime M
can be written in the form

ds2 = ds̃2 + R2(t, r)
(
dϑ2 + sin2 ϑdϕ2

)
, (12.1)

where ds̃2 is the line element of a yet unspecified metric g̃ in the
coordinates (t, r) on the surfaces N.
Without loss of generality, we can now choose t and r such that the
metric g̃ is diagonal, which allows us to write its line element as

ds̃2 = −e2a(t,r)c2dt2 + e2b(t,r)dr2 , (12.2)

with functions a(t, r) and b(t, r) to be determined.

?

Following similar arguments as
presented here, how would
you construct the metric for
a cylindrically-symmetric space-
time?

As suggested by the line elements (12.1) and (12.2), we introduce the
dual basis

θ0 = eacdt , θ1 = ebdr , θ2 = Rdϑ , θ3 = R sinϑdϕ (12.3)

and find its exterior derivatives

dθ0 = −a′e−b θ0 ∧ θ1 ,
dθ1 = ḃe−a θ0 ∧ θ1 ,

dθ2 =
Ṙ
R

e−a θ0 ∧ θ2 + R′

R
e−b θ1 ∧ θ2 ,

dθ3 =
Ṙ
R

e−a θ0 ∧ θ3 + R′

R
e−b θ1 ∧ θ3 + cotϑ

R
θ2 ∧ θ3 , (12.4)

where the overdots and primes denote derivatives with respect to ct and
r, respectively.

?

Carry out the calculations lead-
ing to (12.4) yourself. Can you
confirm the results?

12.1.2 Connection and curvature forms

In the dual basis (12.3), the metric is Minkowskian, g = diag(−1, 1, 1, 1),
thus dg = 0, and Cartan’s first structure equation (8.13) implies

ωμν ∧ θν = −dθ μ (12.5)
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for the connection 1-forms ωμν . From (12.5) and the results (12.4), we
can read off

ω0
1 = ω

1
0 = a′e−b θ0 + ḃe−a θ1 , ω1

2 = −ω2
1 = −

R′

R
e−b θ2 ,

ω0
2 = ω

2
0 =

Ṙ
R

e−a θ2 , ω1
3 = −ω3

1 = −
R′

R
e−b θ3 ,

ω0
3 = ω

3
0 =

Ṙ
R

e−a θ3 , ω2
3 = −ω3

2 = −
cotϑ

R
θ3 . (12.6)

Cartan’s second structure equation (8.13) then yields the curvature 2-
forms Ωi

j,

Ω0
1 = dω0

1 ≡ E θ0 ∧ θ1 ,
Ω0

2 = dω0
2 + ω

0
1 ∧ ω

1
2 ≡ Ẽ θ0 ∧ θ2 + H θ1 ∧ θ2 ,

Ω0
3 = dω0

3 + ω
0
1 ∧ ω

1
3 + ω

0
2 ∧ ω

2
3 = Ẽ θ0 ∧ θ3 + H θ1 ∧ θ3 ,

Ω1
2 = dω1

2 + ω
1
0 ∧ ω0

2 ≡ −H θ0 ∧ θ2 + F̃ θ1 ∧ θ2 ,
Ω1

3 = dω1
3 + ω

1
0 ∧ ω0

3 + ω
1
2 ∧ ω2

3 = −H θ0 ∧ θ3 + F̃ θ1 ∧ θ3 ,
Ω2

3 = dω2
3 + ω

2
0 ∧ ω0

3 + ω
2
1 ∧ ω1

3 ≡ F θ2 ∧ θ3 , (12.7)

where the functions

E = e−2a
(
b̈ − ȧḃ + ḃ2

)
− e−2b

(
a′′ − a′b′ + a′2

)
,

Ẽ =
e−2a

R

(
R̈ − ȧṘ

)
− e−2b

R
a′R′ ,

H =
e−a−b

R

(
Ṙ′ − a′Ṙ − ḃR′

)
,

F =
1
R2

(
1 − R′2e−2b + Ṙ2e−2a

)
,

F̃ =
e−2a

R
ḃṘ +

e−2b

R
(
b′R′ − R′′) (12.8)

were defined for brevity.

?

Repeat the calculations leading to
(12.8) yourself, beginning read-
ing off the connection forms
(12.6).According to (8.20), the curvature forms imply the components

Rαβ = Ωλα(eλ, eβ) (12.9)

of the Ricci tensor, for which we obtain

R00 = −E − 2Ẽ , R01 = −2H , R02 = 0 = R03 ,

R11 = E + 2F̃ , R12 = 0 = R13

R22 = Ẽ + F̃ + F = R33 , R23 = 0 , (12.10)

the Ricci scalar

R = (E + 2Ẽ) + (E + 2F̃) + 2(Ẽ + F̃ + F)
= 2(E + F) + 4(Ẽ + F̃) , (12.11)
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and finally the components

Gαβ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
F + 2F̃ −2H 0 0
−2H −2Ẽ − F 0 0

0 0 −E − Ẽ − F̃ 0
0 0 0 −E − Ẽ − F̃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (12.12)

of the Einstein tensor
G = R − R

2
g . (12.13)

12.1.3 Generalised Birkhoff’s theorem

We can now state and prove Birkhoff’s theorem in its general form:

Birkhoff’s generalised theorem

Every C2 solution of Einstein’s vacuum equations which is spherically
symmetric in an open subset U ⊂ M is locally isometric to a domain
of the Schwarzschild-Kruskal solution.

The proof proceeds in four steps:

1. If the surfaces {R(t, r) = const.} are time-like in U and dR � 0,
we can choose R(t, r) = r, thus Ṙ = 0 and R′ = 1. Since H =
−ḃe−a−b/R then, the requirement G01 = 0 implies ḃ = 0. The sum
G00 +G11 = 2(F̃ − Ẽ) must also vanish, thus

e−2b

R
(
b′ + a′

)
= 0 , (12.14)

which means a(t, r) = −b(r) + f (t). By a suitable choice of a new
time coordinate, a can therefore be made time-independent as well.
Moreover, we see that

0 = G00 = F + 2F̃ =
1 − e−2b

R2 +
2b′e−2b

R
(12.15)

is identical to the condition (8.62) for the function b in the Schwarz-
schild spacetime. Thus, we have e−2b = 1 − 2m/r as there, further
a(r) = −b(r), and the metric turns into the Schwarzschild metric.

?

Construct yourself the new time
coordinate implied by the condi-
tion a(t, r) = −b(r) + f (t). 2. If the surfaces {R(t, r) = const.} are space-like in U and dR � 0,

we can choose R(t, r) = t and proceed in an analogous way. Then,
Ṙ = 1 and R′ = 0, thus H = −a′e−a−b/R, hence G01 = 0 implies
a′ = 0 and, again through G00 +G11 = 0, the condition ȧ + ḃ = 0
or b(t, r) = −a(t) + f (r). This allows us to change the radial
coordinate appropriately so that b(t, r) also becomes independent
of r. Then, G00 = 0 implies

0 = G00 =
1
R2

(
1 + e−2a

)
− 2ȧ

e−2a

R
, (12.16)
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where ḃ = −ȧ was used. Since R = t, this is equivalent to

∂t(te−2a) = −1 ⇒ e−2a = e2b =
2m
t
− 1 , (12.17)

with t < 2m. This is the Schwarzschild solution for r < 2m
because r and t change roles inside the Schwarzschild horizon.

3. If {R(t, r) = const.} are space-like in some part of U and time-
like in another, we obtain the respective different domains of the
Schwarzschild spacetime.

4. Assume finally 〈dR, dR〉 = 0 on U. If R is constant in U, G00 =

R−2 = 0 implies R = ∞. Therefore, suppose dR is not zero, but
light-like. Then, r and t can be chosen such that R = t − r and
dR = dt − dr. For dR to be light-like,

〈dR, dR〉 = g̃(dR, dR) = −e2a + e2b = 0 , (12.18)

we require a = b. Then, G00 +G11 = 0 or

− e−2a

R

(
ȧ + ḃ − a′ − b′

)
= 0 , (12.19)

implies ȧ = a′, which again leads to R = ∞ through G00 = 0.

This shows that the metric reduces to the Schwarzschild metric in all
relevant cases.

Cavity in spherically-symmetric spacetime

It is a corollary to Birkhoff’s theorem that a spherical cavity in a
spherically-symmetric spacetime has the Minkowski metric. Indeed,
Birkhoff’s theorem says that the cavity must have a Schwarzschild
metric with mass zero, which is the Minkowski metric.

?

Compare Birkhoff’s to Newton’s
theorem.

12.2 Homogeneous and isotropic spacetimes

12.2.1 Homogeneity and isotropy

There are good reasons to believe that the Universe at large is isotropic
around our position. The most convincing observational data are pro-
vided by the cosmic microwave background, which is a sea of blackbody
radiation at a temperature of (2.725 ± 0.001) K whose intensity is almost
exactly independent of the direction into which it is observed.

There is furthermore no good reason to believe that our position in the
Universe is in any sense prefered compared to others. We must therefore
conclude that any observer sees the cosmic microwave background as
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an isotropic source such as we do. Then, the Universe must also be
homogeneous.

We are thus led to the expectation that our Universe at large may be
described by a homogeneous and isotropic spacetime. Let us now give
these terms a precise mathematical meaning.

Caution While isotropy about
our position in spacetime can be
tested and is confirmed by ob-
servations, homogeneity is essen-
tially impossible to test. � Spatially homogeneous spacetime

A spacetime (M, g) is called spatially homogeneous if there exists a
one-parameter family of space-like hypersurfaces Σt that foliate the
spacetime such that for each t and any two points p, q ∈ Σt, there exists
an isometry φ of g which takes p into q.

Before we can define isotropy, we have to note that isotropy requires
that the state of motion of the observer needs to be specified first be-
cause two observers moving with different velocities through a given
point in spacetime will generally observe different redshifts in different
directions.

Spatially isotropic spacetime

Therefore, we define a spacetime (M, g) as spatially isotropic about a
point p if there exists a congruence of time-like geodesics through p
with tangents u such that for any two vectors v1, v2 ∈ TpM orthogonal
to u, there exists an isometry of g taking v1 into v2 but leaving u and
p invariant. In other words, if the spacetime is spatially isotropic, no
prefered spatial direction orthogonal to u can be identified.

Isotropy thus identifies a special class of observers, with four-velocities
u, who cannot identify a prefered spatial direction. The spatial hyper-
surfaces Σt must then be orthogonal to u because otherwise a prefered
direction could be identified through the misalignment of the normal
direction to Σt and u, breaking isotropy.

We thus arrive at the following conclusions: a homogeneous and isotropic
spacetime (M, g) is foliated into space-like hypersurfaces Σt on which g
induces a metric h. There must be isometries of h carrying any point p ∈
Σt into any other point q ∈ Σt. Because of isotropy, it must furthermore
be impossible to identify prefered spatial directions on Σt. These are
very restrictive requirements which we shall now exploit.

12.2.2 Spaces of constant curvature

Consider now the curvature tensor (3)R̄ induced on Σt (i.e. the curvature
tensor belonging to the metric h induced on Σt). We shall write it in
components with its first two indices lowered and the following two
indices raised,

(3)R̄ = (3)R̄
kl

i j . (12.20)
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In this way, (3)R̄ represents a linear map from the vector space of 2-
forms

∧2 into
∧2, because of the antisymmetry of (3)R̄ with respect to

permutations of the first and the second pairs of indices. Thus, it defines
an endomorphism

L :
∧2

→
∧2
, (Lω)i j =

(3)R̄
kl

i j ωkl . (12.21) Caution Recall that an endo-
morphism is a linear map of a
vector space into itself. �Due to the symmetry (3.81) of (3)R̄ upon swapping the first with the

second pair of indices, the endomorphism L is self-adjoint. In fact, for
any pair of 2-forms α, β ∈

∧2,

〈α, Lβ〉 = (3)R̄
kl

i j α
i jβkl =

(3)R̄i jklα
i jβkl = (3)R̄kli jα

i jβkl

= (3)R̄
i j

kl αi jβ
kl = 〈β, Lα〉 , (12.22)

which defines a self-adjoint endomorphism.

We can now use the theorem stating that the eigenvectors of a self-adjoint
endomorphism provide an orthonormal basis for the vector space it is
operating on. Isotropy now requires us to conclude that the eigenvalues
of these eigenvectors need to be equal because we could otherwise define
a prefered direction (e.g. by the eigenvector belonging to the largest
eigenvalue). Then, however, the endomorphism L must be proportional
to the identical map

L = 2k id , (12.23)

with some k ∈ R.

By the definition (12.21) of L, this implies for the coefficients of the
curvature tensor

(3)R̄
kl

i j = k
(
δk

i δ
l
j − δk

jδ
l
i

)
(12.24)

because (3)R̄ must be antisymmetrised. Lowering the indices by means
of the induced metric h yields

(3)R̄i jkl = k
(
hikh jl − hjkhil

)
. (12.25)

The Ricci tensor is

(3)Rjl =
(3)R̄

i
jil = khis

(
hsih jl − hjihsl

)
= k

(
3hjl − hjl

)
= 2kh jl , (12.26)

and the Ricci scalar becomes

(3)R = (3)R
j
j = 6k . (12.27) ?

Summarise the arguments lead-
ing to the Ricci tensor (12.26)
and the Ricci scalar (12.27) in
your own words.In the coordinate-free representation, the curvature is

R̄(x, y)v = k (〈x, v〉y − 〈y, v〉x) . (12.28)
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from (8.18) and (12.25), we find the curvature forms

Ωi
j =

1
2

(3)R̄
i
jkl θ

k ∧ θl = k
2

his
(
hskh jl − hjkhsl

)
θk ∧ θl

= k θi ∧ θ j (12.29)

in a so far arbitrary dual basis θi.

The curvature parameter k must be (spatially) constant because of ho-
mogeneity. Space-times with constant curvature can be shown to be
conformally flat, which means that coordinates can be introduced in
which the line element dl2 of the metric h reads

dl2 =
1
ψ2

3∑
i=1

(dxi)2 , (12.30)

with a yet unknown arbitrary function ψ = ψ(x j). This leads us to
introduce the dual basis

θi ≡ 1
ψ

dxi , (12.31)

from which we find

dθi = −
∂ jψ

ψ2 dx j ∧ dxi = ψ j θ
i ∧ θ j , (12.32)

where ψ j = ∂ jψ abbreviates the partial derivative of ψ with respect to x j.

In this basis, the metric h is represented by h = diag(1, 1, 1). Therefore,
we do not need to distinguish between raised and lowered indices, and
dh = 0. Hence Cartan’s first structure equation (8.13) implies the
connection forms

ωi j = ψi θ j − ψ j θi . (12.33)

According to Cartan’s second structure equation, the curvature forms are

Ωi j = dωi j + ωik ∧ ωk
j (12.34)

= ψ
(
ψik θ

k ∧ θ j − ψ jk θ
k ∧ θi

)
− ψkψ

k θi ∧ θ j ,

but at the same time we must satisfy (12.29). This immediately implies

ψik = 0 (i � k) , (12.35)

thus ψ has to be of the form

ψ =

3∑
k=1

fk(xk) (12.36)

because otherwise the mixed derivatives could not vanish.

Inserting this result into (12.34) shows

Ωi j = ψ

(
f ′′i + f ′′j −

f ′k f ′k

ψ

)
θi ∧ θ j . (12.37)
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In order to satisfy (12.29), we must have

f ′′i + f ′′j =
k + f ′k f ′k

ψ
. (12.38)

Since the two sides of these equations (one for each combination of i
and j) depend on different sets of variables, the second derivatives f ′′i
and f ′′j must all be equal and constant, and thus the fi must be quadratic
in xi with a coefficient of xi 2 which is independent of xi. Therefore, we
can write

ψ = 1 +
k
4

3∑
i=1

xi 2 (12.39)

because, if the linear term is non-zero, it can be made zero by translating
the coordinate origin, and a constant factor on ψ is irrelevant because it
simply scales the coordinates.

12.3 Friedmann’s equations

12.3.1 Connection and curvature forms

Robertson-Walker metric

According to the preceding discussion, the homogeneous and isotropic
spatial hypersurfaces Σt must have a metric h with a line element of the
form

dl2 =

∑3
i=1 dxi 2

(1 + kr2/4)2 , r2 ≡
3∑

i=1

xi 2 . (12.40)

By a suitable choice of the time coordinate t, the line element of the
metric of a spatially homogeneous and isotropic spacetime can then be
written as

ds2 = −c2dt2 + a2(t)dl2 , (12.41)

because the scaling function a(t) must not depend on the xi in order
to preserve isotropy and homogeneity. The metric (12.41) of a spa-
tially homogeneous and isotropic spacetime is called Robertson-Walker
metric.

Correspondingly, we choose the appropriate dual basis

θ0 = cdt , θi =
a(t) dxi

1 + kr2/4
, (12.42)

in terms of which the metric coefficients are g = diag(−1, 1, 1, 1).
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The exterior derivatives of the dual basis are

dθ0 = 0 ,

dθi =
ȧ dt ∧ dxi

1 + kr2/4
− a

(1 + kr2/4)2

k
2

x j dx j ∧ dxi

=
ȧ
ca
θ0 ∧ θi +

kx j

2a
θi ∧ θ j . (12.43)

Since the exterior derivative of the metric is dg = 0, Cartan’s first
structure equation (8.13) implies

ωi
j ∧ θ j = −dθi , (12.44)

suggesting the curvature forms

ω0
i = ω

i
0 =

ȧ
ca
θi ,

ωi
j = −ω

j
i =

k
2a

(
xi θ

j − x j θ
i
)
, (12.45)

which evidently satisfy (12.44).

Their exterior derivatives are

dω0
i =

äa − ȧ2

c2a2 θ
0 ∧ θi + ȧ

ca
dθi

=
ä

c2a
θ0 ∧ θi +

kȧx j

2ca2 θ
i ∧ θ j (12.46)

and

dωi
j = −

kȧ
2a2 θ

0 ∧
(
xiθ

j − x jθ
i
)

(12.47)

+
k

2a

(
dxi ∧ θ j − dx j ∧ θi + xidθ j − x jdθi

)
=

k
a2

(
1 +

k
4

r2
)
θi ∧ θ j +

k2

4a2

(
xixk θ

j ∧ θk − x jxk θ
i ∧ θk

)
.

Cartan’s second structure equation (8.13) then gives the curvature forms

Ω0
i = dω0

i + ω
0
k ∧ ω

k
i =

ä
c2a
θ0 ∧ θi , (12.48)

Ωi
j = dωi

j + ω
i
0 ∧ ω0

j + ω
i
k ∧ ω

k
j =

k + ȧ2/c2

a2 θi ∧ θ j ,

from which we obtain the components of the Ricci tensor

Rμν = R̄αμαν = Ω
α
μ(eα, eν) (12.49)

as

R00 = −
3ä
c2a
, R11 = R22 = R33 =

ä
c2a
+ 2

k + ȧ2/c2

a2 . (12.50)
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The Ricci scalar is then

R = Rμμ = 6
(

ä
c2a
+

k + ȧ2/c2

a2

)
. (12.51)

Einstein tensor for a spatially homogeneous and isotropic

spacetime

The Einstein tensor of a spatially homogeneous and isotropic spacetime
has the components

G00 = 3
k + ȧ2/c2

a2 , G11 = G22 = G33 = −
2ä
c2a

−k + ȧ2/c2

a2 . (12.52)

?

Beginning with the dual basis
(12.43), carry out all calculations
leading to (12.50) and (12.51)
yourself.

12.3.2 From Einstein to Friedmann

For Einstein’s field equations to be satisfied, the energy-momentum
tensor must be diagonal, and its components must not depend on the
spatial coordinates in order to preserve isotropy and homogeneity. We
set T00 = ρc2, which is the total energy density, and Ti j = pδi j, where p
is the pressure.

This corresponds to the energy-momentum tensor of an ideal fluid,

T =
(
ρ +

p
c2

)
u� ⊗ u� + pg (12.53)

as seen by a fundamental observer (i.e. an observer for whom the spatial
hypersurfaces are isotropic). For such an observer, u = c∂t, and since the
metric is Minkowskian in the tetrad (12.42), the components of T are
simply T00 = ρc2 and Tii = p.

Then, Einstein’s field equations in the form (6.80) with the cosmological
constant Λ reduce to

3
k + ȧ2/c2

a2 =
8πG
c2 ρ + Λ ,

− 2ä
c2a

− k + ȧ2/c2

a2 =
8πG
c4 p − Λ . (12.54)

Adding a third of the first equation to the second, and re-writing the first
equation, we find Friedmann’s equations.
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Friedmann’s equations

For a spatially homogeneous and isotropic spacetime with the
Robertson-Walker metric (12.41), Einstein’s field equations reduce
to Friedmann’s equations,

ȧ2

a2 =
8πG

3
ρ +
Λc2

3
− kc2

a2

ä
a
= −4πG

3

(
ρ +

3p
c2

)
+
Λc2

3
. (12.55)

A Robertson-Walker metric whose scale factor satisfies Friedmann’s
equations is called Friedmann-Lemaître-Robertson-Walker metric.

Figure 12.1 Alexander A. Friedmann (1888–1925), Russian physicist and
mathematician. Source: Wikipedia

12.4 Density evolution and redshift

12.4.1 Density evolution

After multiplication with 3a2 and differentiation with respect to t, Fried-
mann’s first equation gives

6ȧä = 8πG(ρ̇a2 + 2ρaȧ) + 2Λc2aȧ . (12.56)
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If we eliminate

6ȧä = −8πGaȧ
(
ρ +

3p
c2

)
+ 2Λc2aȧ (12.57)

by means of Friedmann’s second equation, we find

ρ̇ + 3
ȧ
a

(
ρ +

p
c2

)
= 0 (12.58)

for the evolution of the density ρ with time.

This equation has a very intuitive meaning. To see it, let us consider the
energy contained in a volume V0, which changes over time in proportion
to V0a3, and employ the first law of thermodynamics,

d(ρc2V0a3) + pd(V0a3) = 0 ⇒ d(ρc2a3) + pd(a3) = 0 . (12.59)

We can use the first law of thermodynamics here because isotropy forbids
any energy currents, thus no energy can flow into or out of the volume
a3.

Equation (12.59) yields

a3ρ̇ + 3ρa2ȧ +
3p
c2 a2ȧ = 0 , (12.60)

which is identical to (12.58). This demonstrates that (12.58) simply
expresses energy-momentum conservation. Consequently, one can show
that it also follows from the contracted second Bianchi identity, ∇·T = 0.

?

Why are energy and momentum
conserved here, but not in gen-
eral?Two limits are typically considered for (12.58). First, if matter moves

non-relativistically, p 	 ρc2, and we can assume p ≈ 0. Then,

ρ̇

ρ
= −3

ȧ
a
, (12.61)

which implies
ρ = ρ0a−3 (12.62)

if ρ0 is the density when a = 1.

Second, relativistic matter has p = ρc2/3, with which we obtain

ρ̇

ρ
= −4

ȧ
a

(12.63)

and thus
ρ = ρ0a−4 . (12.64)

This shows that the density of non-relativistic matter drops as expected
in proportion to the inverse volume, but the density of relativistic matter
drops faster by one order of the scale factor. An explanation will be
given below.
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12.4.2 Cosmological redshift

We can write the line element (12.41) in the form

ds2 = −c2dt2 + a2(t)dl2 , (12.65)

where dl2 is the line element of a three-space with constant curvature k.
Since light propagates on null geodesics, (12.65) implies

cdt = ±a(t)dl . (12.66)?

What do the two different signs
in (12.66) mean or imply? Suppose a light signal leaves the source at the coordinate time t0 and

reaches the observer at t1, then (12.66) shows that the coordinate time
satisfies the equation ∫ t1

t0

cdt
a(t)
=

∫ observer

source
dl , (12.67)

whose right-hand side is time-independent. Thus, for another light signal
leaving the source at t0 + dt0 and reaching the observer at t1 + dt1, we
have ∫ t1

t0

cdt
a(t)
=

∫ t1+dt1

t0+dt0

cdt
a(t)
. (12.68)

Since this implies ∫ t0+dt0

t0

dt
a(t)
=

∫ t1+dt1

t1

dt
a(t)
, (12.69)

we find for sufficiently small dt0,1 that

dt0

a(t0)
=

dt1

a(t1)
. (12.70)

We can now identify the time intervals dt0,1 with the inverse frequencies
of the emitted and observed light, dti = ν

−1
i for i = 0, 1. This shows that

the emitted and observed frequencies are related by

ν0

ν1
=

a(t1)
a(t0)

. (12.71)

Since the redshift z is defined in terms of the wavelengths as

z =
λ1 − λ0

λ0
=
ν0 − ν1

ν1
, (12.72)

we find that light emitted at t0 and observed at t1 is redshifted by

1 + z =
λ1

λ0
=

a(t1)
a(t0)

. (12.73)
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Cosmological redshift

The expansion or contraction of spacetime according to Friedmann’s
equations causes the wavelength of light to be increased or decreased
in the same proportion as the universe itself expands or contracts.

We can now interpret the result (12.64) that the density of relativistic
matter drops by one power of a more than expected by mere dilution:
as the universe expands, relativistic particles are redshifted by another
factor a and thus loose energy in addition to their dilution.

12.4.3 Alternative forms of the metric

Before we proceed, we bring the spatial line element dl from (12.40) into
a different form. We first write it in terms of spherical polar coordinates
as

dl2 =
dr2 + r2(dϑ2 + sin2 ϑdϕ2)

(1 + kr2/4)2 (12.74)

and introduce a new radial coordinate u defined by

u =
r

1 + kr2/4
. (12.75)

Requiring that r ≈ u for small r and u, we can uniquely solve (12.75) to
find

r =
2
ku

(
1 −

√
1 − ku2

)
, (12.76)

which implies the differential

d(ru) =
2udu

√
1 − ku2

. (12.77)

At the same time, (12.75) requires

d(ru) = d
(

r2

1 + kr2/4

)
=

2rdr(
1 + kr2/4

)2 = 2udr
1 + kr2/4

(12.78)

and thus
dr

1 + kr2/4
=

du
√

1 − ku2
. (12.79)

In terms of the new radial coordinate u, we can thus write the spatial line
element of the metric in the frequently used form

dl2 =
du2

1 − ku2 + u2dΩ2 , (12.80)

where dΩ abbreviates the solid-angle element. The constant k can be
positive, negative or zero, but its absolute value does not matter since it
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merely scales the coordinates. Therefore, we can normalise the coordi-
nates such that k = 0,±1.

Yet another form of the metric is found by introducing a radial coordinate
w such that

dw =
du

√
1 − ku2

. (12.81)

Integrating both sides, we find that this is satisfied if

u = fk(w) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
k−1/2 sin

(
k1/2w

)
(k > 0)

w (k = 0)
|k|−1/2 sinh

(
|k|1/2w

)
(k < 0)

. (12.82)?

What advantages or disadvan-
tages could alternative forms
of the Friedmann-Lemaître-
Robertson-Walker (or any other)
metric have?

Equivalent forms of the Robertson-Walker metric

We thus find that the homogeneous and isotropic class of cosmological
models based on Einstein’s field equations are characterised by the line
element

ds2 = −c2dt2 + a2(t)
[
dw2 + f 2

k (w)
(
dϑ2 + sin2 ϑdϕ2

)]
(12.83)

which is equivalent to

ds2 = −c2dt2 + a2(t)
[

du2

1 − ku2 + u2
(
dϑ2 + sin2 ϑdϕ2

)]
(12.84)

with u related to w by (12.82), and the scale factor a(t) satisfies the
Friedmann equations (12.55).

Metrics with line elements of the form (12.83) or (12.84) are called
Robertson-Walker metrics, and Friedmann-Lemaître-Robertson-Walker
metrics if their scale factor satisfies Friedmann’s equations.




