
Chapter 11

Charged, Rotating Black Holes

11.1 The Reissner-Nordström solution

11.1.1 Energy-momentum tensor of electric charge

The Schwarzschild solution is a very important exact solution of Ein-
stein’s vacuum equations, but we expect that real objects collapsing
to become black holes may be charged and rotating. We shall now
generalise the Schwarzschild solution into these two directions.

First, we consider a static, axially-symmetric solution of Einstein’s
equations in the presence of an electromagnetic charge q at the origin of
the Schwarzschild coordinates, i.e. at r = 0. The electromagnetic field
will then also be static and axially symmetric.

Expressing the field tensor in the Schwarzschild tetrad (8.40), we thus
expect the Faraday 2-form (5.86) to be

F = − q
r2 cdt ∧ dr = − q

r2 e−a−b θ0 ∧ θ1 . (11.1)

We shall verify below that a = −b also for a Schwarzschild solution with
charge, so that the exponential factor will become unity later.

?

Why would the Faraday-2-form
be given by (11.1)? Recall the
meaning of the components of
the electromagnetic field tensor.The electromagnetic energy-momentum tensor

T μν =
1

4π

[
FμλFνλ −

1
4
gμνFαβFαβ

]
(11.2)

is now easily evaluated. Since the only non-vanishing component of
Fμν is F01 and the metric is diagonal in the Schwarzschild tetrad, g =
diag(−1, 1, 1, 1), we have

FαβFαβ = F01F01 + F10F10 = −2F2
01 . (11.3)
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162 11 Charged, Rotating Black Holes

Using this, we find the components of the energy-momentum tensor

T 00 =
1

4π

[
F01F0

1 −
1
2

F2
01

]
=

1
8π

F2
01 =

q2

8πr4 e−2(a+b) ,

T 11 =
1

4π

[
F10F1

0 +
1
2

F2
01

]
= − q2

8πr4 e−2(a+b) = −T 00 ,

T 22 =
1

8π
F2

01 =
q2

8πr4 e−2(a+b) = T 33 . (11.4)

11.1.2 The Reissner-Nordström metric

Inserting these expressions instead of zero into the right-hand side of
Einstein’s field equations yields, with (8.60),

G00 =
1
r2 − e−2b

(
1
r2 −

2b′

r

)
=

8πG
c4 T00 =

Gq2

c4r4 e−2(a+b) ,

G11 = −
1
r2 + e−2b

(
1
r2 +

2a′

r

)
= −8πG

c4 T00 = −G00 . (11.5)

Adding these two equations, we find a′ + b′ = 0, which implies a+ b = 0
because the functions have to tend to zero at infinity. This confirms that
we can identify cdt ∧ dr = θ0 ∧ θ1 and write F01 = q/r2.

Analogous to (8.62), we note that the first of equations (11.5) with
a = −b is equivalent to

(
re−2b

)′
= 1 − Gq2

c4r2 , (11.6)

which gives

e−2b = e2a = 1 − 2m
r
+
Gq2

c4r2 , (11.7)

if we use −2m as the integration constant as for the neutral Schwarzschild
solution.

?

Verify that the term Gq2/c4 has
the unit of a squared length in
Gaussian cgs units. Recall that
the unit of the electric charge in
the cgs system is g1/2cm3/2s−1.

Reissner-Nordström solution

Defining

Δ ≡ r2 − 2mr +
Gq2

c4 , (11.8)

we thus obtain the line element for the metric of a charged Schwarz-
schild black hole,

ds2 = −Δ
r2 dt2 +

r2dr2

Δ
+ r2

(
dϑ2 + sin2 ϑdϕ2

)
. (11.9)

This is the Reissner-Nordström solution.

Of course, for q = 0, the Reissner-Nordström solution returns to the
Schwarzschild solution.
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Figure 11.1 Hans J. Reissner (right; 1874–1967), German engineer, math-
ematician and physicist. Source: Wikipedia

Before we proceed, we should verify that Maxwell’s equations are indeed
satisfied. First, we note that the Faraday 2-form (11.1) is exact because
it is the exterior derivative of the 1-form

A = −q
r

cdt , dA =
q
r2 dr∧cdt = − q

r2 cdt∧dr = − q
r2 θ

0∧θ1 . (11.10)

Thus, since d ◦ d = 0, dF = d2A = 0, so that the homogeneous Maxwell
equations are satisfied.

Moreover, we notice that

∗F =
q
r2 θ

2 ∧ θ3 , (11.11)

which is easily verified using (5.75),

∗(θ0 ∧ θ1) =
1
2
g00g11ε01αβ θ

α ∧ θβ (11.12)

= −1
2

(
θ2 ∧ θ3 − θ3 ∧ θ2

)
= −θ2 ∧ θ3 .

Inserting the Schwarzschild tetrad from (8.40) yields

∗F = q sinϑ dϑ ∧ dϕ = −d (q cosϑdϕ) , (11.13)

which shows, again by d ◦ d = 0, that d(∗F) = 0, hence also (∗d∗)F = 0
and δF = 0, so that also the inhomogeneous Maxwell equations (in
vacuum!) are satisfied.
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Figure 11.2 Gunnar Nordström (1881–1923), Finnish physicist. Source:
Wikipedia

11.2 The Kerr-Newman solution

11.2.1 The Kerr-Newman metric

The formal derivation of the metric of a rotating black hole is a formidable
task which we cannot possibly demonstrate during this lecture. We thus
start with general remarks on the expected form of the metric and then
immediately quote the metric coefficients without deriving them.

In presence of angular momentum, we expect the spherical symmetry
of the Schwarzschild solution to be broken. Instead, we expect that
the solution must be axisymmetric, with the axis fixed by the angular
momentum. Moreover, we seek to find a stationary solution.

Then, the group R × SO(2) must be an isometry of the metric, where
R represents the stationarity and SO(2) the (two-dimensional) rotations
about the symmetry axis. Expressing these symmetries, there must be a
time-like Killing vector field k and another Killing vector field m which
is tangential to the orbits of SO(2).

These two Killing vector fields span the tangent spaces of the two-
dimensional submanifolds which are the orbits of R × SO(2), i.e. cylin-
ders.
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We can choose adapted coordinates t and ϕ such that k = ∂t and m = ∂ϕ.
Then, the metric (4)g of four-dimensional spacetime can be decomposed
as

(4)g = gab(xi) dxa ⊗ dxb + gi j(xk) dxi ⊗ dx j , (11.14)

where indices a, b = 0, 1 indicate the coordinates on the orbits of
R × SO(2), and indices i, j, k = 2, 3 the others. Note that, due to the
symmetry imposed, the remaining metric coefficients can only depend
on the coordinates xi.

A stationary, axi-symmetric spacetime (M, g) can thus be foliated into
M = Σ × Γ, where Σ is diffeomorphic to the orbits of R × SO(2), and
the metric coefficients in adapted coordinates can only depend on the
coordinates of Γ. We write

(4)g = σ + g (11.15)

and have

σ = σab(xi) dxa ⊗ dxb . (11.16)

The coefficients σab are scalar products of the two Killing vector fields k
and m,

(σab) =
(
−〈k, k〉 〈k,m〉
〈k,m〉 〈m,m〉

)
, (11.17)

and we abbreviate the determinant of σ by

ρ ≡
√
− detσ =

√
〈k, k〉〈m,m〉 + 〈k,m〉2 . (11.18)

Without proof, we now give the metric of a stationary, axially-symmetric
solution of Einstein’s field equations for either vacuum or an electro-
magnetic field. We first define the auxiliary quantities

Δ := r2 − 2mr + Q2 + a2 , ρ2 := r2 + a2 cos2 ϑ ,

Σ2 := (r2 + a2)2 − a2Δ sin2 ϑ . (11.19)

Moreover, we need appropriately scaled expressions Q and a for the
charge q and the angular momentum L of the black hole, which are given
by

Q2 :=
Gq2

c4 , a :=
L

Mc
=
GL
mc3 (11.20)

and both Q and a have the dimension of a length.
?

Verify that a also has the dimen-
sion of a length, like Q.
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Kerr-Newman solution

With these definitions, we can write the coefficients of the metric for a
charged, rotating black hole in the form

gtt = −1 +
2mr − Q2

ρ2 =
a2 sin2 ϑ − Δ

ρ2 ,

gtϕ = −
2mr − Q2

ρ2 a sin2 ϑ = −r2 + a2 − Δ
ρ2 a sin2 ϑ ,

grr =
ρ2

Δ
, gϑϑ = ρ

2 , gϕϕ =
Σ2

ρ2 sin2 ϑ . (11.21)

Evidently, for a = 0 = Q, ρ = r, Δ = r2 − 2mr and Σ = r2 and we
return to the Schwarzschild solution (8.67). For a = 0, we still have
ρ = r and Σ = r2, but Δ = r2 − 2mr + Q2 as in (11.8), and we return to
the Reissner-Nordström solution (11.9). For Q = 0, we obtain the Kerr
solution for a rotating, uncharged black hole, and for a � 0 and Q � 0,
the solution is called Kerr-Newman solution, named after Roy Kerr and
Ezra Newman.

Figure 11.3 Roy Kerr (born 1934), New Zealand mathematician. Source:
Wikimedia Commons

Also without derivation, we quote that the vector potential of the rotating,
charged black hole is given by the 1-form

A = −qr
ρ2

(
cdt − a sin2 ϑdϕ

)
, (11.22)

from which we obtain the Faraday 2-form

?

Why is it plausible for A to have
the form (11.22)? Beginning
there, derive the Faraday-2-form
(11.23) yourself.
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F = dA =
q
ρ4

(
r2 − a2 cos2 ϑ

)
dr ∧

(
cdt − a sin2 ϑdϕ

)
+

2qra
ρ4 sinϑ cosϑdϑ ∧

[(
r2 + a2

)
dϕ − acdt

]
. (11.23)

For a = 0, this trivially returns to the field (11.1) for the Reissner-
Nordström solution. Sufficiently far away from the black hole, such that
a 	 r, we can approximate to first order in a/r and write

F =
q
r2 dr ∧

(
cdt − a sin2 ϑdϕ

)
+

2qa
r

sinϑ cosϑdϑ ∧ dϕ . (11.24)

The field components far away from the black hole can now be read off
the result (11.24). Using the orthonormal basis

et = ∂ct , er = ∂r , eϑ =
1
r
∂ϑ , eϕ =

1
r sinϑ

∂ϕ , (11.25)

we find in particular for the radial component Br of the magnetic field

Br = F(eϑ, eϕ) =
2qa
r3 cosϑ . (11.26)

In the limit of large r, the electric field thus becomes that of a point
charge q at the origin, and the magnetic field attains a characteristic
dipolar structure.

?

Find the remaining components
of the electromagnetic field of the
Kerr-Newman solution.The Biot-Savart law of electrodynamics implies that a charge q with

mass M on a circular orbit with angular momentum �L has the magnetic
dipole moment

�μ = g
q�L

2Mc
, (11.27)

where g is the gyromagnetic moment.

A magnetic dipole moment μ creates the dipole field

�B =
3(�μ · �er)�er − �μ

r3 , (11.28)

whose radial component is Br = �B · �er = 2�μ · �er/r3. A comparison of
the radial magnetic field from (11.26) with this expression reveals the
following interesting result:

Magnetic dipole moment of a charged, rotating black hole

The magnetic dipole moment of a charged, rotating black holes is

�μ = q�a =
q�L
Mc
= 2

q�L
2Mc

, (11.29)

showing that charged, rotating black holes have a gyromagnetic mo-
ment of g = 2.

?

What is the gyromagnetic mo-
ment of an electron?
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11.2.2 Schwarzschild horizon, ergosphere and Killing

horizon

By construction, the Kerr-Newman metric (11.21) has the two Killing
vector fields k = ∂t, expressing the stationarity of the solution, and
m = ∂ϕ, which expresses its axial symmetry.

Since the metric coefficients in adapted coordinates satisfy

gtt = 〈k, k〉 , gϕϕ = 〈m,m〉 , gtϕ = 〈k,m〉 , (11.30)

they have an invariant meaning which will now be clarified.

Let us consider an observer moving with r = const. and ϑ = const. with
uniform angular velocity ω. If her four-velocity is u, then

ω =
dϕ
dt
=
ϕ̇

ṫ
=

uϕ

ut (11.31)

for a static observer at infinity, whose proper time can be identified with
the coordinate time t. Correspondingly, we can expand the four-velocity
as

u = ut∂t + uϕ∂ϕ = ut
(
∂t + ω∂ϕ

)
= ut(k + ωm) , (11.32)

inserting the Killing vector fields. Let

|k + ωm| ≡ (− 〈k + ωm, k + ωm〉)1/2 (11.33)

define the norm of k + ωm, then the four-velocity is

u =
k + ωm
|k + ωm|

. (11.34)

Obviously, k+ωm is a time-like Killing vector field, at least at sufficiently
large distances from the black hole. Since then

〈k + ωm, k + ωm〉 = 〈k, k〉 + ω2〈m,m〉 + 2ω〈k,m〉
= gtt + ω

2gϕϕ + 2ωgtϕ < 0 , (11.35)

k + ωm becomes light-like for angular velocities

ω± =
−gtϕ ±

√
g2

tϕ − gttgϕϕ

gϕϕ
. (11.36)

If we define
Ω ≡ −

gtϕ

gϕϕ
= − 〈k,m〉

〈m,m〉
, (11.37)

we can write (11.36) as

ω± = Ω ±
√
Ω2 − gtt

gϕϕ
. (11.38)
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g freely
angular

For an interpretation of Ω, we note that freely-falling test particles on
radial orbits have zero angular momentum and thus 〈u,m〉 = 0. By
(11.34), this implies

0 = 〈k + ωm,m〉 = gtϕ + ωgϕϕ (11.39)

and thus
ω = −

gtϕ

gϕϕ
= Ω (11.40)

according to the definition (11.37). This shows that Ω is the angular
velocity of a test particle falling freely towards the black hole on a radial
orbit.

The minimum angular velocity ω− from (11.38) vanishes if and only if
gtt = 〈k, k〉 = 0, i.e. if the Killing vector field k turns light-like. With
(11.21), this is so where

0 = a2 sin2 ϑ − Δ = 2mr − r2 − Q2 − a2 cos2 ϑ , (11.41)

i.e. at the radius

r0 = m +
√

m2 − Q2 − a2 cos2 ϑ . (11.42)

Static limit in Kerr spacetime

The radius r0 marks the static limit of Kerr spacetime: for an observer at
this radius to remain static with respect to observers at infinity (i.e. with
respect to the “fixed stars”), she would have to move with the speed of
light. At smaller radii, observers cannot remain static against the drag
of the rotating black hole.

We have seen in (4.48) that the light emitted by a source with four-
velocity us is seen by an observer with four-velocity uo with a redshift

νo

νs
=
〈k̃, uo〉
〈k̃, us〉

, (11.43)

where k̃ is the wave vector of the light.

Observers at rest in a stationary spacetime have four-velocities propor-
tional to the Killing vector field k,

u =
k

√
−〈k, k〉

, hence k =
√
−〈k, k〉 u . (11.44)

We have seen in (5.36) that the projection of a Killing vector K on a
geodesic γ is constant along that geodesic, ∇γ̇〈γ̇,K〉 = 0. The light ray
propagating from the source to the observer is a null geodesic with γ̇ = k̃,
hence

∇k̃〈k̃, k〉 = 0 (11.45)
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and 〈k̃, k〉s = 〈k̃, k〉o. Using this in a combination of (11.43) and (11.44),
we obtain

νo

νs
=
〈k̃, k〉o
〈k̃, k〉s

√
−〈k, k〉s√
−〈k, k〉o

=

√
−〈k, k〉s√
−〈k, k〉o

. (11.46)

For an observer at rest far away from the black hole, 〈k, k〉o ≈ −1, and
the redshift becomes

1 + z =
νs

νo
≈ 1
√
−〈k, k〉s

= (−gtt)−1/2 , (11.47)

which tends to infinity as the source approaches the static limit.

The minimum and maximum angular velocities ω± from (11.38) both
become equal to Ω for

Ω2 =

(
gtϕ

gϕϕ

)2

=
gtt

gϕϕ
⇒ g2

tϕ − gttgϕϕ = 0 . (11.48)

This equation means that the Killing field ξ ≡ k + Ωm turns light-like,

〈ξ, ξ〉 = 〈k, k〉 + 2Ω〈k,m〉 + Ω2〈m,m〉

= gtt + 2Ωgtϕ + Ω
2gϕϕ = gtt − 2

g2
tϕ

gϕϕ
+
g2

tϕ

gϕϕ

=
gttgϕϕ − g2

tϕ

gϕϕ
= 0 . (11.49)

Interestingly, writing the expression from (11.48) with the metric coeffi-
cients (11.21) leads to the simple result

g2
tϕ − gttgϕϕ = Δ sin2 ϑ , (11.50)

so that the condition (11.48) is equivalent to

0 = Δ = r2 − 2mr + Q2 + a2 , (11.51)

which describes a spherical hypersurface with radius

rH = m +
√

m2 − Q2 − a2 , (11.52)

for which we choose the larger of the two solutions of (11.51).

By its definition (11.37), the angular velocity Ω on this hypersurface H
can be written as

ΩH = −
gtϕ

gϕϕ

∣∣∣∣∣∣
H

=
a(2mr − Q2)

Σ2

∣∣∣∣∣∣
H

=
a(2mrH − Q2)

(r2
H + a2)2

, (11.53)

since Σ2 = (r2 + a2)2 because of Δ = 0 at rH. Because of (11.51), the
numerator is a(r2

H + a2), and we find the following remarkable result:
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Angular frequency of H

The hypersurface H is rotating with the constant angular velocity

ΩH =
a

r2
H + a2

, (11.54)

like a solid body.

Since the hypersurface H is defined by the condition Δ = 0, its normal
vectors are given by

gradΔ = dΔ� , dΔ = 2(r − m)dr . (11.55)

Thus, the norm of the normal vectors is

〈gradΔ, gradΔ〉 = 4grr(r − m)2 , (11.56)

now, according to (11.21), grr ∝ Δ = 0 on the hypersurface, showing
that H is a null hypersurface. Because of this fact, the tangent space to
the null hypersurface H at any of its points is orthogonal to a null vector,
and hence it does not contain time-like vectors.

Killing horizon and ergosphere

The surface H is called a Killing horizon. The hypersurface defined
by the static limit is time-like, which means that it can be crossed in
both directions, in contrast to the horizon H. The region in between
the static limit and the Killing horizon is the ergosphere, in which k is
space-like and no observer can be prevented from following the rotation
of the black hole.

-2

-1

 0

 1

 2

-2 -1  0  1  2

 0  1  2

z/
m

x/m

r/m

ergosphere
static limit

horizon

Figure 11.4 Static limit, horizon, and ergosphere for a Kerr black hole with
a = 0.75.

Formally, the Kerr solution is singular where Δ = 0, but this singularity
can be lifted by a transformation to coordinates similar to the Eddington-
Finkelstein coordinates for a Schwarzschild black hole.
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11.3 Motion near a Kerr black hole

11.3.1 Kepler’s third law

We shall now assume q = 0 and consider motion on a circular orbit in
the equatorial plane. Thus ṙ = 0 and ϑ = π/2, and

Δ = r2 − 2mr + a2 and ρ = r , (11.57)

further

?

If a particle starts orbiting in
the equatorial plane, does it stay
there? Σ2 =

(
r2 + a2

)2
− a2Δ = r4 + a2r2 + 2ma2r , (11.58)

and the coefficients of the metric (11.21) become

gtt = −1 +
2m
r
, gtϕ = −

2ma
r
,

grr =
r2

Δ
, gϑϑ = r2 ,

gϕϕ =
Σ2

r2 = r2 + a2 +
2ma2

r
. (11.59)

Since ϑ̇ = 0 and ṙ = 0, the Lagrangian reduces to

2L = −
(
1 − 2m

r

)
c2ṫ2 − 4mac

r
ṫϕ̇ +

(
r2 + a2 +

2ma2

r

)
ϕ̇2 . (11.60)

By the Euler-Lagrange equation for r and due to ṙ = 0, we have

d
dt
∂L
∂ṙ
= 0 =

∂L
∂r
, (11.61)

which yields, after multiplying with r2/ṫ2,

− mc2 + 2macω + (r3 − ma2)ω2 = 0 (11.62)

where we have introduced the angular frequency ω according to (11.31).

Kepler’s third law

Noticing that

r3 − ma2 = (r3/2 − m1/2a)(r3/2 + m1/2a) , (11.63)

we can write the solutions as

ω± = ±
cm1/2

r3/2 ± m1/2a
. (11.64)

This is Kepler’s third law for a Kerr black hole: The angular velocity
of a test particle depends on whether it is co-rotating with or counter-
rotating against the black hole.
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Figure 11.5 Trajectories of test particles in the equatorial plane of the Kerr
metric. All orbits begin at r = 10m and ϕ = 0. Top: Orbits with angular
momentum L = 0 for a = 0.5 and a = 0.9. Bottom: orbits with angular
momenta L = ±2 for a = 0.99.

11.3.2 Accretion flow onto a Kerr black hole

We now consider a stationary, axially-symmetric flow of a perfect fluid
onto a Kerr black hole. Because of the symmetry constraints, the Lie
derivatives of all physical quantities in the direction of the Killing vector
fields k = ∂t and m = ∂ϕ need to vanish.

As in (11.32), the four-velocity of the flow is

u = ut(k + ωm) . (11.65)

We introduce

e ≡ −〈u, k〉 = −ut , j ≡ 〈u,m〉 = uϕ , l ≡ j
e
= −

uϕ
ut

(11.66)

and use

uϕ = gtϕut + gϕϕuϕ = ut
(
gtϕ + gϕϕω

)
ut = gttut + gtϕuϕ = ut

(
gtt + gtϕω

)
(11.67)

to see that

l = −
gtϕ + ωgϕϕ

gtt + ωgtϕ
⇔ ω = −

gtϕ + lgtt

gϕϕ + lgtϕ
. (11.68)
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Moreover, by the definition of l in (11.66) and ω in (11.31), and using
〈u, u〉 = utut + uϕuϕ = −c2, we see that

ωl = −
uϕuϕ
utut

⇒ utut =
c2

ωl − 1
. (11.69)

Finally, using (11.67) and (11.69), we have

− u2
t = −utut(gtt + gtϕω) = c2 gtt + gtϕω

1 − ωl
. (11.70)

If we substitute ω from (11.68) here, we obtain after a short calculation

e2 = u2
t = c2

g2
tϕ − gttgϕϕ

gϕϕ + 2lgtϕ + l2gtt
. (11.71)

?

Repeat the calculations leading
to (11.76) and (11.78) in compo-
nents. Why can (11.77) be called
a perpendicular projector? Can
you confirm the non-relativistic
limit (11.79)?

It is shown in the In-depth box “Ideal hydrodynamics in general relativity”
on page 175 that the relativistic Euler equation reads(

ρc2 + p
)
∇uu = −c2dp� − u(p)u , (11.80)

where ρc2 and p are the density and the pressure of the ideal fluid.
Applying this equation to the present case of a stationary flow, we first
observe that

0 = Lu p = u(p) , (11.81)

thus the second term on the right-hand side of (11.80) vanishes.

Next, we introduce the dual vector u� belonging to the four-velocity u.
In components, (u�)μ = gμνuν = uμ. Then, from (5.32),(

Luu�
)
μ
= uν∂νuμ + uν∂μuν = uν∇νuμ + uν∇μuν , (11.82)

where we have employed the symmetry of the connection ∇. This shows
that

Luu� = ∇uu� . (11.83)

Now, we introduce f ≡ 1/ut and compute L f uu� in two different ways.
First, a straightforward calculation beginning with (5.24) shows that

L f xw = fLxw + w(x)d f . (11.84)

Specialising this result to x = u and w = u� gives

L f uu� = fLuu� − c2d f = f∇uu� − c2d f , (11.85)

making use of (11.83) in the last step.
?

Can you confirm (11.84)?
On the other hand, f u = u/ut = k+ωm because of (11.65), which allows
us to write

L f uu� = Lku�︸︷︷︸
=0

+Lωmu� . (11.86)
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In depth: Ideal hydrodynamics in general relativity

The relativistic continuity and Euler equations

Relativistic hydrodynamics begins with the vanishing divergence of the
energy-momentum tensor, ∇·T = 0, demanded by Einstein’s equations.
Specialising the energy-momentum tensor to that of an ideal fluid with
energy density ρc2, pressure p and four-velocity u,

T =
(
ρ +

p
c2

)
u ⊗ u + pg−1 , (11.72)

we first find

0 =
[
u
(
ρ +

p
c2

)
+

(
ρ +

p
c2

)
∇ · u

]
u +

(
ρ +

p
c2

)
∇uu + dp� . (11.73)

The first terms in brackets are proportional to the four-velocity u. Pro-
jecting ∇ · T on u, and taking 〈u, u〉 = −c2 into account, leads to

0 = −
[
u
(
ρc2 + p

)
+
(
ρc2 + p

)
∇ · u

]
+

(
ρ +

p
c2

)
〈u,∇uu〉 + u(p) .

(11.74)
Now, since the connection is metric,

∇u〈u, u〉 = 0 = 2〈∇uu, u〉 , (11.75)

and (11.74) turns into the relativistic continuity equation

u
(
ρc2

)
+
(
ρc2 + p

)
∇ · u = 0 . (11.76)

If we project (11.73) instead into the three-space perpendicular to u by
applying the perpendicular projector

π⊥ := �4 + c−2u ⊗ u� , (11.77)

the terms proportional to u drop out by construction. Further using
(11.75) once more, we retain the relativistic Euler equation(

ρc2 + p
)
∇uu + c2dp� + u(p)u = 0 . (11.78)

In the non-relativistic limit, equations (11.76) and (11.78) simplify to
the familiar expressions

∂tρ + �∇ ·
(
ρ�v
)
= 0 ,

∂t�v +
(
�v · �∇

)
�v +
�∇P
ρ
= 0 . (11.79)
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Applying (11.83) once more gives

Lωmu� = ωLmu� + u�(m)dω . (11.87)

Since the Lie derivative of u� in the direction m must vanish because of
the axisymmetry, this means

L f uu� = Lωmu� = u�(m)dω = 〈u,m〉dω = jdω . (11.88)

Equating this to (11.85) gives

f∇uu� = c2d f + jdω . (11.89)

However, we know from (11.69) that

f =
(
ut)−1

=
ut(ωl − 1)

c2 =
e(1 − ωl)

c2 . (11.90)

Inserting this into (11.89) yields

e(1 − ωl)
c2 ∇uu� = (1 − ωl)de − eldω − eωdl + jdω

= (1 − ωl)de − eωdl , (11.91)

where we have used el = j in the final step. Thus,

∇uu� = c2
(
d ln e − ωdl

1 − ωl

)
. (11.92)

Returning with this result to Euler’s equation (11.80), we obtain

dp
ρc2 + p

= −d ln e +
ωdl

1 − ωl
, (11.93)

which shows that surfaces of constant pressure are given by

ln e −
∫
ωdl

1 − ωl
= const. (11.94)

Setting dl = 0, i.e. defining a surface of constant l, makes the second
term on the left-hand side vanish. In this case, find from (11.71)

gϕϕ + 2lgtϕ + l2gtt

g2
tϕ − gttgϕϕ

=
c2

e2 = const. (11.95)
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Accretion tori

We now insert the metric coefficients (11.21) for the Kerr-Newman
solution to obtain the surfaces of constant pressure and constant l.
Assuming further a = 0, we obtain the isobaric surfaces of the accretion
flow onto a Schwarzschild black hole. With

gtt = −1 +
2m
r
, gϕϕ = r2 sin2 ϑ , gtϕ = 0 , (11.96)

we find
r

r − 2m
− l2

r2 sin2 ϑ
= const. (11.97)

This describes toroidal surfaces around black holes, the so-called ac-
cretion tori.
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Figure 11.6 Accretion torus around a Schwarzschild black hole. The
constants l and e were set to l = 0.45 and e = 0.95 c here.

11.4 Entropy and temperature of a black hole

It was realised by Stephen Hawking, Roger Penrose and Demetrios
Christodoulou that the area of a possibly charged and rotating black hole,
defined by

A := 4πα := 4π
(
r2
+ + a2

)
(11.98)

cannot shrink. Here, r+ is the positive branch of the two solutions of
(11.51),

r± = m ±
√

m2 − Q2 − a2 . (11.99)

This led Jacob Bekenstein (1973) to the following consideration. If A
cannot shrink, it reminds of the entropy as the only other quantity known
in physics that cannot shrink. Could the area A have anything to do
with an entropy that could be assigned to a black hole? In fact, this is
much more plausible than it may appear at first sight. Suppose radiation
disappears in a black hole. Without accounting for a possible entropy of
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Figure 11.7 Jacob D. Bekenstein (1947–2015), Israeli-US-American physi-
cist. Source: Wikipedia

the black hole, its entropy would be gone, violating the second law of
thermodynamics. The same holds for gas accreted by the black hole: Its
entropy would be removed from the outside world, leaving the entropy
there lower than before.

If, however, the increased mass of the black hole led to a suitably in-
creased entropy of the black hole itself, this violation of the second law
could be remedied.

Analogy between area and entropy

Any mass and angular momentum swallowed by a black hole leads to
an increase of the area (11.98), which makes it appear plausible that
the area of a black hole might be related to its entropy.

Following Bekenstein (1973), we shall now work out this relation.

Beginning with the scaled area α = r2
+ + a2 from (11.98), we have

dα = 2
(
r+dr+ + �a · d�a

)
. (11.100)

Inserting r+ from (11.99) and using that

r+ − r− =: δr = 2
√

m2 − Q2 − a2 , (11.101)

we find directly

dα = 2
[
r+δr + 2r+m

δr
dm − 2r+Q

δr
dQ +

(
1 − 2r+
δr

)
�a · d�a

]
. (11.102)
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The coefficients of dm and d�a can be further simplified. Noting that

δr + 2m = r+ − r− + (r+ + r−) = 2r+ (11.103)

and
δr − 2r+ = − (r+ + r−) = −2m , (11.104)

we can bring (11.102) into the form

dα =
4r2
+

δr
dm − 4r+Q

δr
dQ − 2m

δr
�a · d�a . (11.105)

Now, we need to take into account that the scaled angular momentum a
can change by changing the angular momentum L or the mass m. From
the definition (11.20), we have

d�a =
G
c3

⎛⎜⎜⎜⎜⎝d�L
m
−
�L

m2 dm
⎞⎟⎟⎟⎟⎠ = G

c3

d�L
m
− �adm

m
. (11.106)

Substituting this expression for da in (11.105), we find

dα =
4α
δr

dm − 4r+Q
δr

dQ − 4G
c3

�a · d�L
δr
, (11.107) ?

Confirm equation (11.107) by
your own calculation.Solving equation (11.107) for dm yields

dm = Θdα + ΦdQ + �Ω · d�L (11.108)

with the definitions

Θ :=
δr
4α
, Φ :=

r+Q
α
, �Ω :=

G
c3

�a
α
. (11.109)

This reminds of the first law of thermodynamics if we tentatively asso-
ciate m with the internal energy, α with the entropy and the remaining
terms with external work.

Let us now see whether a linear relation between the entropy S and the
area α will lead to consistent results. Thus, assume S = γα with some
constant γ to be determined. Then, a change δα will lead to a change
δS = γδα in the entropy.

Bekenstein showed that the minimal change of the effective area is twice
the squared Planck length (1.5), thus

δα =
2�G
c3 . (11.110)

On the other hand, he identified the minimal entropy change of the black
hole with the minimal change of the Shannon entropy, which is derived
from information theory and is

δS = kB ln 2 , (11.111)
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where the Boltzmann constant kB was inserted to arrive at conventional
units for the entropy. This could e.g. correspond to the minimal informa-
tion loss when a single particle disappears in a black hole. Requiring

kB ln 2 = δS = γδα = γ
2�G
c3 (11.112)

fixes the constant γ to

γ =
ln 2
2

kBc3

�G
. (11.113)

?

Look up Bekenstein’s arguments
leading to the normalisation
(11.113) of the black-hole en-
tropy (Bekenstein, J., Black
Holes and Entropy. Phys. Rev.
D 7 (1973) 2333).

Bekenstein entropy

The Bekenstein entropy of a black hole is

S =
ln 2
8π

c3kB

�G
A , (11.114)

where A is the area of the black hole.

The quantity Θ defined in (11.109) must then correspond to the tempera-
ture of the black hole. From (11.108), we have on the one hand

Θ =

(
∂m
∂α

)
Q,L
. (11.115)

If the association of a temperature should be consistent, it must on the
other hand agree with the thermodynamic definition of temperature,

1
T
=

(
∂S
∂E

)
V
. (11.116)

For E, we can use the mass or rather

E = Mc2 =
mc4

G
. (11.117)

Then, (
∂S
∂E

)
V
=
G
c4

(
∂S
∂m

)
Q,L
=

ln 2
2

kB

�c

(
∂α

∂m

)
Q,L
. (11.118)

Inserting (11.115) now leads to an expression for the temperature.

Black-hole temperature

The analogy between the area of a black hole and entropy implies that
black holes can be assigned the temperature

T =
2

ln 2
�c
kB
Θ =

2π
ln 2
�c
kB

δr
A
. (11.119)



11.4 Entropy and temperature of a black hole 181

This result leads to a remarkable conclusion. If black holes have a
temperature, they will radiate and thus lose energy or its mass equiva-
lent. They can therefore evaporate. By the Stefan-Boltzmann law, the
luminosity radiated by a black body of area A and temperature T is

L = σAT 4 , σ =
π2k4

B

60�3c2 . (11.120)

For an uncharged and non-rotating black hole, δr = 2m and A = 16πm2,
thus its temperature is

T =
1

4 ln 2
�c

kBm
=

1
4 ln 2

�c3

kBGM
. (11.121)

Defining the Planck temperature by

TPl :=
MPlc2

kB
= 1.42 · 1032 K (11.122)

in terms of the Planck mass MPl = 2.2 · 10−5 g from (1.4), we can write

T =
TPl

4 ln 2
MPl

M
. (11.123)

For a black hole of solar mass, M = M
 = 2.0 · 1033 g, the temperature is

T = 5.6 · 10−7 K . (11.124)




