
Chapter 10

Schwarzschild Black Holes

10.1 The singularity at r = 2m

10.1.1 Free fall towards the centre

Before we can continue discussing the physical meaning of the Schwarz-
schild metric, we need to clarify the nature of the singularity at the
Schwarzschild radius, r = 2m. Upon closer inspection, it seems to lead
to contradictory conclusions.

Let us begin with an astronaut falling freely towards the centre of the
Schwarzschild spacetime along a radial orbit. Since ϕ̇ = 0, the angular
momentum vanishes, L = 0, and the equation of motion (9.15) reads

ṙ2 + c2
(
1 − 2m

r

)
= E2 . (10.1)

Suppose the astronaut was at rest at r = R, then E2 = c2(1 − 2m/R) and
E2 < c2, and we have

ṙ2

c2 =

(
1 − 2m

R

)
−
(
1 − 2m

r

)
= 2m

(
1
r
− 1

R

)
, (10.2)

which yields [
2m

(
1
r
− 1

R

)]−1/2

dr = cdτ , (10.3)

where τ is the proper time.

This equation admits a parametric solution. Starting from

r =
R
2

(1 + cos η) , dr = −R
2

sin ηdη , (10.4)
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we first see that

1
r
− 1

R
=

2
R(1 + cos η)

− 1
R
=

1
R

(
1 − cos η
1 + cos η

)

=
1
R

(1 − cos η)2

sin2 η
, (10.5)

where we have used in the last step that 1 − cos η2 = sin2 η. This result
allows us to translate (10.3) into

√
R sin ηdr

√
2m(1 − cos η)

= − R
√

R

2
√

2m

sin2 ηdη
1 − cos η

= −
√

R3

8m
(1 + cos η)dη . (10.6)

Integrating, we find that this solves (10.3) if

cτ =

√
R3

8m
(η + sin η) , cdτ =

√
R3

8m
(1 + cos η) dη . (10.7)

At η = 0, the proper time is τ = 0 and r = R, i.e. the proper time starts
running when the free fall begins. Figure 10.1 shows the radial distance
r as a function of the proper time τ for R = 6m, i.e. for an astronaut
starting at rest at the innermost stable circular orbit.

?

Confirm the solution (10.7) for
the proper time by your own cal-
culation.

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10  12  14  16  18

ra
di

al
 d

is
ta

nc
e 
r/
m

proper time c /m

Figure 10.1 Radial distance r as a function of proper time τ for an astro-
naut falling towards the singularity of the Schwarzschild spacetime beginning
at rest at the innermost stable circular orbit, R = 6m.
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Free-fall time to the centre of a black hole

The centre r = 0 is reached when η = π, i.e. after the proper time

τ0 =
π

c

√
R3

8m
. (10.8)

This indicates that the observer falls freely within finite time “through”
the singularity at r = 2m without encountering any (kinematic) prob-
lem.

10.1.2 Problems with the Schwarzschild coordinates

However, let us now describe the radial coordinate r as a function of the
coordinate time t. Using (9.13), we first find

ṙ =
dr
dt

ṫ = −dr
dt

E/c
1 − 2m/r

. (10.9)

Next, we introduce a new, convenient radial coordinate r̄ such that
?

Before you read on, find the func-
tion r̄(r) yourself, given (10.10).

dr̄ =
dr

1 − 2m/r
. (10.10)

This condition can be integrated as follows,

dr
1 − 2m/r

=
r/2m − 1 + 1

r/2m − 1
dr = dr +

dr
r/2m − 1

= dr + 2m d ln
( r
2m

− 1
)
, (10.11)

giving

r̄ = r + 2m ln
( r
2m

− 1
)
. (10.12)

With this, we find

ṙ = − E/c
1 − 2m/r

dr
dt
= −E

c
dr̄
dt
, (10.13)

and thus, from the equation of motion (10.1),

E2

c2

(
dr̄
dt

)2

= E2 − c2
(
1 − 2m

r

)
. (10.14)

Approaching the Schwarzschild radius from outside, i.e. in the limit
r → 2m+, we have from (10.12)

lim
r→2m+

r̄ = lim
r→2m+

2m
[
1 + ln

( r
2m

− 1
)]
= −∞ , (10.15)
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However, in the same limit, the equation of motion says

E2

c2

(
dr̄
dt

)2

→ E2 , (10.16)

and thus
dr̄
dt
→ ±c . (10.17)

Of the two signs, we have to select the negative because of r̄ → −∞, as
(10.15) shows. Therefore, an approximate solution of the equation of
motion near the singularity is r̄ ≈ c(t−t0) with an arbitrary constant t0. To
be specific, we set t = 0 when r = 6m, the radius of the innermost stable
circular orbit defined in Sect. 9.2. There, r̄0 = 2m(3 + ln 2) according to
(10.12) and thus

r̄ ≈ −ct + 2m(3 + ln 2) . (10.18)

Substituting r for r̄,

−ct + 2m(3 + ln 2) = r + 2m ln
( r
2m

− 1
)

≈ 2m
[
1 + ln

( r
2m

− 1
)]
. (10.19)

Free-fall coordinate time to the centre of a black hole

Solving the approximate equation (10.19) for r, we find

ln
( r
2m

− 1
)
≈ − ct

2m
+ 2 + ln 2 (10.20)

or
r ≈ 2m

(
1 + 2e2−ct/2m

)
> 2m , (10.21)

showing that the orbital radius remains larger than the Schwarzschild
radius even for t → ∞. Thus, in coordinate time, the Schwarzschild
radius is never even reached!

Finally, radial light rays are described by radial null geodesics, thus
satisfying

0 = ds2 = −
(
1 − 2m

r

)
c2dt2 +

dr2

1 − 2m
r

(10.22)

or
dr
dt
= ±c

(
1 − 2m

r

)
, (10.23)

suggesting that the light cones become infinitely narrow as r → 2m+.
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Problems on the horizon

These results appear quite dissatisfactory or confusing: while a freely
falling observer reaches the Schwarzschild radius and even the centre
of the Schwarzschild spacetime after finite proper time, the coordinate
time becomes infinite even for reaching the Schwarzschild radius, and
the flattening of the light cones as one approaches the Schwarzschild
radius is entirely unwanted because causality cannot be assessed when
the light cone degenerates to a line.

10.1.3 Curvature at r = 2m

Moreover, consider the components of the Ricci tensor given in (8.57)
and (8.58) near the Schwarzschild radius. Since a = −b and

b = −1
2

ln
(
1 − 2m

r

)
= −a (10.24)

from (8.64), the required derivatives are

a′ =
m

r(r − 2m)
= −b′ , a′′ = − 2m(r − m)

r2(r − 2m)2 = −b′′ . (10.25)

Thus,

R00 = −
(
a′′ + 2a′2 +

2a′

r

) (
1 − 2m

r

)
= 0 = −R11 (10.26)

and

R22 = −
2a′

r

(
1 − 2m

r

)
+

1
r2

(
1 − e−2b

)
= −2m(r − 2m)

r3(r − 2m)
+

2m
r3 = 0 = R33 , (10.27)

i.e. the components of the Ricci tensor in the Schwarzschild tetrad remain
perfectly regular at the Schwarzschild radius!

10.2 The Kruskal continuation

10.2.1 Construction principle

We shall now try to remove the obvious problems with the Schwarzschild
coordinates by transforming (ct, r) to new coordinates (u, v), leaving ϑ
and ϕ, requiring that the metric can be written as

g = − f 2(u, v)(dv2 − du2) + r2(dϑ2 + sin2 ϑdϕ2) (10.28)
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with a function f (u, v) to be determined.

Provided f (u, v) � 0, radial light rays propagate as in a two-dimensional
Minkowski metric according to

dv2 = du2 ,

(
du
dv

)2

= 1 , (10.29)

which shows that the light cones remain undeformed in the new coordi-
nates.

Light cones in Kruskal coordinates

The Kruskal coordinates are constructed such that the light cones re-
main the same everywhere.

The Jacobian matrix of the transformation from the Schwarzschild coor-
dinates (ct, r, ϑ, ϕ) to the new coordinates (v, u, ϑ, ϕ) is

Jαβ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
vt ut 0 0
vr ur 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (10.30)

where subscripts denote derivatives here,

vt = ∂ctv , vr = ∂rv (10.31)

and likewise for u. The metric ḡ in the new coordinates,

ḡ = diag(− f 2, f 2, r2, r2 sin2 ϑ) , (10.32)

is transformed into the original Schwarzschild coordinates by

?

Beginning with ḡ, find the ma-
trix representation of the metric
g yourself and thus confirm the
following result (10.33). g = JḡJT (10.33)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
− f 2

(
v2t − u2

t

)
− f 2 (vtvr − utur) 0 0

− f 2 (vtvr − utur) − f 2
(
v2r − u2

r

)
0 0

0 0 r2 0
0 0 0 r2 sin2 ϑ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
which, by comparison with our requirement (10.28), yields the three
equations

−
(
1 − 2m

r

)
= − f 2

(
v2t − u2

t

)
,

1
1 − 2m/r

= − f 2
(
v2r − u2

r

)
,

0 = vtvr − utur . (10.34)

For convenience, we now fall back to the radial coordinates r̄ from
(10.12) and introduce the function

F(r̄) ≡ 1 − 2m/r
f 2(r)

, (10.35)
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assuming that f will turn out to depend on r only since any dependence
on time and on the angles ϑ and ϕ is forbidden in a static, spherically-
symmetric spacetime. Then,

vr̄ =
dr
dr̄
vr =

(
1 − 2m

r

)
vr (10.36)

and the same for u.
?

Repeat the calculation in (10.36)
with the coordinate u.

10.2.2 Transformation to Kruskal coordinates

The equations (10.34) then transform to

F(r̄) = v2t − u2
t , −F(r̄) = v2r̄ − u2

r̄ , vtvr̄ − utur̄ = 0 . (10.37)

Now, we add the two equations containing F(r̄) and then add and subtract
from the result twice the third equation from (10.37). This yields

(vt ± vr̄)2 = (ut ± ur̄)2 . (10.38)

Taking the square root of this equation, we can choose the signs. The
choice

vt + vr̄ = ut + ur̄ , vt − vr̄ = − (ut − ur̄) (10.39)

avoids that the Jacobian matrix could become singular, det J = 0.
?

Can you confirm that det J � 0
for the choice of sign in (10.39)?

Adding and subtracting the equations (10.39), we find

vt = ur̄ , ut = vr̄ . (10.40)

Taking partial derivatives once with respect to t and once with respect to
r̄ allows us to combine these equations to find the wave equations

vtt − vr̄r̄ = 0 , utt − ur̄r̄ = 0 , (10.41)

which are solved by any two functions h± propagating with unit velocity,

v = h+(r̄ + ct) + h−(r̄ − ct) , u = h+(r̄ + ct) − h−(r̄ − ct) , (10.42)

where the signs were chosen such as to satisfy the sign choice in (10.39).

Now, since

vt = h′+ − h′− , ut = h′+ + h′− ,
vr̄ = h′+ + h′− , ur̄ = h′+ − h′− , (10.43)

where the primes denote derivatives with respect to the functions’ argu-
ments, we find from (10.37)

F(r̄) =
(
h′+ − h′−

)2 − (h′+ + h′−
)2
= −4h′+h

′
− . (10.44)
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We start from outside the Schwarzschild radius, assuming r > 2m, where
also F(r̄) > 0 according to (10.35). The derivative of (10.44) with respect
to r̄ yields

F′(r̄) = −4
(
h′′+h′− + h′+h

′′
−
)

(10.45)

or, with (10.44),
F′

F
=

h′′+
h′+
+

h′′−
h′−
. (10.46)

the derivative of (10.44) with respect to time yields

0 = −4
(
h′′+h′− − h′+h

′′
−
)

⇒
h′′+
h′+

−
h′′−
h′−
= 0 . (10.47)

The sum of these two equations gives

(ln F)′ = 2(ln h′+)
′ . (10.48)

Now, the left-hand side depends on r̄, the right-hand side on the indepen-
dent variable r̄ + t. Thus, the two sides of this equation must equal the
same constant, which we call 2C:

(ln F)′ = 2C = 2(ln h′+)
′ . (10.49)

The left of these equations yields

ln F = 2Cr̄ + const. ⇒ F = const.e2Cr̄ , (10.50)

while the right equation gives

ln h′+ = C(r̄ + ct) + const. (10.51)

or
h+ = const.eC(r̄+ct) . (10.52)

For later convenience, we choose the remaining constants in (10.50) and
(10.52) such that

F(r̄) = C2e2Cr̄ , h+(r̄ + ct) =
1
2

eC(r̄+ct) , (10.53)

and (10.47) gives

h−(r̄ − ct) = −1
2

eC(r̄−ct) , (10.54)

where the negative sign must be chosen to satisfy both (10.44) and F > 0.

Working our way back, we find

u = h+(r̄ + ct) − h−(r̄ − ct) =
1
2

[
eC(r̄+ct) + eC(r̄−ct)

]
= eCr̄ cosh(Cct) =

( r
2m

− 1
)2mC

eCr cosh(Cct) , (10.55)
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using (10.12) for r̄. Similarly, we find

v =
( r
2m

− 1
)2mC

eCr sinh(Cct) , (10.56)

and the function f follows from (10.35),

f 2 =
1 − 2m/r

F
=

1 − 2m/r
C2 e−2Cr̄

=
1 − 2m/r

C2 e−2Cr exp
[
−4mC ln

( r
2m

− 1
)]

=
2m
rC2

( r
2m

− 1
)1−4mC

e−2Cr . (10.57)
Caution Note that we could
equally well choose h+ < 0 and
h− > 0 in (10.53) and (10.54).
This possible alternative choice is
important for our later discussion.
�

Figure 10.2 Martin D. Kruskal (1925–2006), US-American mathematician
and physicist. Source: Wikipedia

Now, since we want f to be non-zero and regular at r = 2m, we must
require 4mC = 1, which finally fixes the Kruskal transformation of the
Schwarzschild metric, found by Martin Kruskal in 1960. The coordi-
nates (v, u, ϑ, ϕ) are also called Kruskal-Szekeres coordinates, including
George (György) Szekeres (1911–2005), who found them independently
in 1961.
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Kruskal-Szekeres coordinates

The Kruskal-Szekeres coordinates (u, v) are related to the Schwarz-
schild coordinates (ct, r) by

u =
√

r
2m

− 1 er/4m cosh
( ct
4m

)
,

v =

√
r

2m
− 1 er/4m sinh

( ct
4m

)
, (10.58)

and the scale function f is

f 2 =
32m3

r
e−r/2m . (10.59)

We have (or rather, Martin Kruskal has) thus achieved our goal to replace
the Schwarzschild coordinates by others in which the Schwarzschild
metric remains prefectly regular at r = 2m. Appendix C shows how
space-times can be compactly represented in Penrose-Carter diagrams.

10.3 Physical meaning of the Kruskal contin-

uation

10.3.1 Regions in the Kruskal spacetime

Since cosh2(x) − sinh2(x) = 1, eqs. (10.58) imply

u2 − v2 =
( r
2m

− 1
)

er/2m ,
v

u
= tanh

( ct
4m

)
. (10.60)

This means u = |v| for r = 2m, which is reached for t → ±∞. Lines of
constant coordinate time t are straight lines through the origin in the (u, v)
plane with slope tanh(ct/4m), and lines of constant radial coordinate r
are hyperbolae.

The metric in Kruskal coordinates (10.28) is regular as long as r(u, v) > 0,
which is the case for

u2 − v2 > −1 , (10.61)

as (10.61) shows. The hyperbola limiting the regular domain in the
Kruskal manifold is thus given by v2 − u2 = 1. If (10.61) is satisfied, r is
uniquely defined, because the equation

ρ(x) ≡ (x − 1)ex = u2 − v2 > −1 (10.62)

is monotonic for x > 0:

ρ′(x) = ex(x − 1) + ex = xex > 0 (x > 0) . (10.63)



10.3 Physical meaning of the Kruskal continuation 153

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

v

u

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

v

u

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

v

u

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

v

u

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

v

u

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

v

u

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

v

u

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

v

u

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

v

u

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

v

u

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

v

u

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

I

II

III

IV

r =
 1,

 t =
 +

r = 1, t = -

v

u
Figure 10.3 Illustration of the Kruskal continuation in the u-v plane. The
Schwarzschild domain r > 2m is shaded in red and marked with I, the
forbidden region r < 0 is shaded in gray.

The domain of the original Schwarzschild solution is restricted to u > 0
and |v| < u (i.e. to the blue area I in Fig. 10.2), but this is a consequence of
our choice for the relative signs of h± in (10.54). We could as well have
chosen h+ < 0 and h− > 0, which would correspond to the replacement
(u, v) → (−u,−v).

The original Schwarzschild solution for r < 2m also satisfies Einstein’s
vacuum field equations. There, the Schwarzschild metric shows that r
then behaves like a time coordinate because grr < 0, and t behaves like a
spatial coordinate.

Looking at the definition of F(r̄) in (10.35), we see that r < 2m cor-
responds to F < 0, which implies that h+ and h− must have the same
(rather than opposite) signs because of (10.44). This interchanges the
functions u and v from (10.58), i.e. u → v and v→ u. Then, the condition
|v| < u derived for r > 2m changes to |v| > u.
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Domains in the Kruskal spacetime

In summary, the exterior of the Schwarzschild radius corresponds to
the domain u > 0, |v| < u, and its interior is bounded in the (u, v) plane
by the lines u > 0, |v| = u and v2 − u2 = 1.
Radial light rays propagate according to ds2 = 0 or dv = du, i.e. they
are straight diagonal lines in the (u, v) plane. This shows that light
rays can propagate freely into the region r < 2m, but there is no causal
connection from within r < 2m to the outside.

Non-static interior of the Schwarzschild horizon

The Killing vector field K = ∂t for the Schwarzschild spacetime outside
r = 2m becomes space-like for r < 2m, which means that the spacetime
cannot be static any more inside the Schwarzschild radius.

10.3.2 Eddington-Finkelstein coordinates

We now want to study the collapse of an object, e.g. a star. For this
purpose, coordinates originally introduced by Arthur S. Eddington and
re-discovered by David R. Finkelstein are convenient, which are defined
by

r = r′ , ϑ = ϑ′ , ϕ = ϕ′

ct = ct′ − 2m ln
(
± r

2m
∓ 1

)
(10.64)

in analogy to the radial coordinate r̄ from (10.12), where the upper
and lower signs in the second line are valid for r > 2m and r < 2m,
respectively.

?

What do the light cones look
like in the coordinates given in
(10.64)? Since

e±ct/4m = e±ct′/4m

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

r
2m − 1

)∓1/2
(r > 2m)(

− r
2m + 1

)∓1/2
(r < 2m)

, (10.65)

inserting these expressions into the Kruskal-Szekeres coordinates (10.58)
shows that they are related to the Eddington-Finkelstein coordinates by

u =
er/4m

2

(
ect′/4m +

r − 2m
2m

e−ct′/4m

)

v =
er/4m

2

(
ect′/4m − r − 2m

2m
e−ct′/4m

)
, (10.66)

such that
r − 2m

2m
er/2m = u2 − v2 , ect′/2m =

r − 2m
2m

u + v
u − v

. (10.67)

The first of these equations shows again that r can be uniquely determined
from u and v if u2 − v2 > −1. The second equation determines t′ uniquely
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Figure 10.4 Sir Arthur Stanley Eddington (1882–1944), British astrophysi-
cist. Source: Wikipedia

provided r > 2m and (u+v)/(u−v) > 0, or r < 2m and (u+v)/(u−v) < 0.
This is possible if v > −u.

Using

cdt = cdt′ − 2m
1

±r/2m ∓ 1
±dr
2m
= cdt′ − 2m

r
dr

1 − 2m/r
, (10.68)

we find

−
(
1 − 2m

r

)
c2dt2 = −

(
1 − 2m

r

)
c2dt′2 +

4mc
r

dt′dr − 4m2

r2

dr2

1 − 2m/r
,

(10.69)
and thus the line element of the metric in Eddington-Finkelstein coordi-
nates reads

ds2 = −
(
1 − 2m

r

)
c2dt′2 +

(
1 − 4m2

r2

)
dr2

1 − 2m/r

+
4mc

r
dt′dr + r2dΩ2 (10.70)

= −
(
1 − 2m

r

)
c2dt′2 +

(
1 +

2m
r

)
dr2 +

4mc
r

dt′dr + r2dΩ2 .

Thus, the metric acquires off-diagonal elements such that it no longer
depends on t′ and r separately.

For radial light rays, dΩ = 0 and ds2 = 0, which implies from (10.70)(
1 − 2m

r

)
c2dt′2 −

(
1 +

2m
r

)
dr2 − 4mc

r
dt′dr = 0 , (10.71)
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which can be factorised as[(
1 − 2m

r

)
cdt′ −

(
1 +

2m
r

)
dr
]

(cdt′ + dr) = 0 . (10.72)

Light cones in Eddington-Finkelstein coordinates

Light cones in Eddington-Finkelstein coordinates are defined either by

dr
dt′
= −c ⇒ r = −t′ + const. (10.73)

or by
dr
dt′
= c

r − 2m
r + 2m

. (10.74)

This shows that dr/dt′ → −c for r → 0, dr/dt′ = 0 for r = 2m, and
dr/dt′ = c for r → ∞. Due to the vanishing derivative of r with respect
to t′ at r = 2m, geodesics cannot cross the Schwarzschild radius from
inside, but they can from outside because of (10.73).
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Figure 10.5 Light cones in the Schwarzschild spacetime in Eddington-
Finkelstein coordinates. The blue lines mark outgoing, the red lines incoming
radial light rays. The blue ellipses emphasise the light cones.

10.4 Redshift approaching the

Schwarzschild radius

Suppose a light-emitting source (e.g. an astronaut with a torch) is falling
towards a (Schwarzschild) black hole, what does a distant observer see?
Let v and u be the four-velocities of the astronaut and the observer,
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respectively. Then according to (4.48) the redshift of the light from the
torch as seen by the observer is

1 + z =
νem

νobs
=
〈k, v〉
〈k, u〉

, (10.75)

where k is the wave vector of the light.

We transform to the retarded time ctret ≡ ct − r̄, with r̄ given by (10.12).
Then, (10.10) implies that

cdtret = cdt − dr
1 − 2m/r

, (10.76)

thus

c2dt2 = c2dt2
ret +

dr2

(1 − 2m/r)2 +
2c dtretdr
1 − 2m/r

(10.77)

and the line element of the Schwarzschild metric transforms to

ds2 = −
(
1 − 2m

r

)
c2dt2

ret − 2c dtretdr + r2dΩ2 . (10.78)

For radial light rays, dΩ = 0, this means

0 = −
(
1 − 2m

r

)
c2dt2

ret − 2c dtretdr , (10.79)

which is possible for outgoing light rays only if dtret = 0. This shows
that such light rays must propagate along r, or k ∝ ∂r, which is of course
a consequence of our using the retarded time tret. We set the amplitude
of k such that k = κ∂r. Since 〈∂r, ∂r〉 = 0 in the coordinates of the line
element (10.78), the null condition on k is satisfied for any κ.

For a distant observer at a fixed distance r � 2m, the line element (10.78)
simplifies to

ds2 ≈ −c2dt2
ret , (10.80)

which shows that the retarded time tret is also the distant observer’s
proper time.

Expanding now the astronaut’s velocity as

v = ṫret∂tret + ṙ∂r , (10.81)

we find
〈k, v〉 = κ〈∂r, v〉 = κ gtretrṫret = −κṫret (10.82)

because 〈∂r, ∂r〉 = 0 according to the metric with the line element (10.78).
The dots in these equations indicate derivatives with respect to the astro-
naut’s proper time.
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Far away from the black hole, the metric can be assumed to be Min-
kowskian. For a distant observer at rest, the four-velocity is u = ∂t. In
Minkowski coordinates, the wave vector of the light ray must be

k = κ (∂t + ∂r) , (10.83)

which is required by cdtret(k) = (cdt − dr)(k) = 0, valid for r � 2m,
together with k = κ∂r. Thus,

〈k, u〉 = 〈κ (∂t + ∂r) , ∂t〉 = −κ . (10.84)

This gives the redshift

1 + z ≈ ṫret = ṫ − ṙ/c
1 − 2m/r

. (10.85)

When restricted to radial orbits, ϕ̇ = 0 = L, the equation of motion (9.15)
is

ṙ2 + c2
(
1 − 2m

r

)
= E2 , (10.86)

where E was defined as

E = −cṫ
(
1 − 2m

r

)
, (10.87)

see (9.12). To be specific, we set the constant E such that the astronaut
is at rest at infinite radius, E2 = c2. Requiring that the astronaut’s proper
time increases with the coordinate time, ṫ > 0 and E < 0, hence we must
set E = −c. Since ṙ < 0 for the infalling astronaut,

ṙ = −c
√

1 − δ , (10.88)

with δ ≡ 1 − 2m/r.

The redshift (10.85) can now be written

1 + z =
1
δ

(
1 +

√
1 − δ

)
≈ 2
δ

(10.89)

to leading order close to the Schwarzschild radius, where δ→ 0+. We
have seen in (10.21) that the radial coordinate of the falling astronaut
is well approximated by r ≈ 2m(1 + 2e2−ct/2m) near the Schwarzschild
radius if the coordinate clock is set to zero at r = 6m. This enables us to
approximate δ by

δ = 1 − 2m
r
≈ r − 2m

2m
= 2e2−ct/2m (10.90)

and the redshift by
1 + z ≈ ect/2m−2 . (10.91)
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Redshift approaching the Schwarzschild horizon

Summarizing, this calculation shows that the astronaut’s redshift

1 + z ≈ 2
δ
= ect/2m−2 (10.92)

grows exponentially to infinity as he approaches the Schwarzschild
radius.

This resolves the apparent contradiction that, while the astronaut has
long reached the singularity as measured by his own watch, the distant
observer never even sees him reach the Schwarzschild radius: The signal
of the astronaut’s passing the Schwarzschild radius is infinitely delayed
and thus never reaches the distant observer.




