
Chapter 9

Physics in the Schwarzschild

Spacetime

9.1 Orbits in the Schwarzschild spacetime

9.1.1 Lagrange function

According to (4.3), the motion of a particle in the Schwarzschild space-
time is determined by the Lagrangian

L =
√
−〈u, u〉 , (9.1)

where u = dx/dτ is the four-velocity. The proper-time differential dτ is
defined by (4.6) to satisfy

ds = cdτ =
√
−〈u, u〉 dτ . (9.2)

This choice thus requires that the four-velocity u be normalised,

〈u, u〉 = −c2 . (9.3)

Note that we have to differentiate and integrate with respect to the proper
time τ rather than the coordinate time t because the latter has no invariant
physical meaning. In the Newtonian limit, τ = t.

?

Recall the essential arguments for
the Lagrange function (9.1) and
its physical interpretation.The constant value of 〈u, u〉 allows that, instead of varying the action

S = −mc
∫ b

a

√
−〈u, u〉 dτ , (9.4)

we can just as well require that the variation of

S̄ =
1
2

∫ b

a
〈u, u〉 dτ (9.5)
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128 9 The Schwarzschild Spacetime

vanish. In fact, from δS = 0, we have

0 = −δ
∫ b

a

√
−〈u, u〉 dτ =

1
2

∫ b

a

δ〈u, u〉
√
−〈u, u〉

dτ

= δ

[
1
2c

∫ b

a
〈u, u〉 dτ

]
. (9.6)

because of the normalisation condition (9.3).

Thus, we can obtain the equation of motion just as well from the La-
grangian

L = 1
2
〈u, u〉 = 1

2
gμν ẋμ ẋν (9.7)

=
1
2

[
−(1 − 2m/r)c2ṫ2 +

ṙ2

1 − 2m/r
+ r2

(
ϑ̇2 + sin2 ϑ ϕ̇2

)]
,

where it is important to recall that the overdot denotes differentiation
with respect to proper time τ. In addition, (9.3) immediately implies
that 2L = −c2 for material particles, but 2L = 0 for light, which will be
discussed later.

The Euler-Lagrange equation for ϑ is

d
dτ
∂L
∂ϑ̇

− ∂L
∂ϑ
= 0 =

d
dτ

(
r2ϑ̇

)
− r2ϕ̇2 sinϑ cosϑ . (9.8)

Suppose the motion starts in the equatorial plane, ϑ = π/2 and ϑ̇ = 0.
Should this not be the case, we can always rotate the coordinate frame
so that this is satisfied. Then, (9.8) shows that

r2ϑ̇ = const. = 0 . (9.9)

Effective Lagrangian

Without loss of generality, we can thus restrict the discussion to motion
in the equatorial plane, which simplifies the Lagrangian to

L = 1
2

[
−(1 − 2m/r)c2ṫ2 +

ṙ2

1 − 2m/r
+ r2ϕ̇2

]
. (9.10)

?

Derive the Lagrangian (9.10)
yourself and convince yourself of
all steps taken.

9.1.2 Cyclic coordinates and equation of motion

Obviously, t and ϕ are cyclic, thus angular momentum

∂L
∂ϕ̇
= r2ϕ̇ ≡ L = const. (9.11)

and energy
∂L
∂ṫ
= −(1 − 2m/r)cṫ ≡ E = const. (9.12)
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are conserved. We exploit these conservation laws to eliminate

ϕ̇ =
L
r2 and cṫ = − E

1 − 2m/r
(9.13)

from the Lagrangian (9.10), use 2L = −1 and find

− c2 = −(1 − 2m/r)c2ṫ2 +
ṙ2

1 − 2m/r
+ r2ϕ̇2 =

ṙ2 − E2

1 − 2m/r
+

L2

r2 . (9.14)

Radial equation of motion

This first integral of the radial equation of motion can be cast into the
form

ṙ2 + V(r) = E2 , (9.15)

where V(r) is the effective potential

V(r) ≡
(
1 − 2m

r

) (
c2 +

L2

r2

)
. (9.16)

Note that the effective potential has (and must have) the dimension of a
squared velocity.

?

What form does the effective po-
tential have in Newtonian grav-
ity?

Since it is our primary goal to find the orbit r(ϕ), we use r′ = dr/dϕ =
ṙ/ϕ̇ to transform (9.15) to

ṙ2 + V(r) = ϕ̇2r′2 + V(r) =
L2

r4 r′2 + V(r) = E2 . (9.17)

Now, we substitute u ≡ 1/r and u′ = −r′/r2 = −u2r′ and find

L2u4 u′2

u4 + V(1/u) = L2u′2 + (1 − 2mu)
(
c2 + L2u2

)
= E2 (9.18)

or, after dividing by L2 and rearranging terms,

u′2 + u2 =
E2 − c2

L2 +
2mc2

L2 u + 2mu3 . (9.19)

Differentiation with respect to ϕ cancels the constant first term on the
right-hand side and yields

2u′u′′ + 2uu′ =
2mc2

L2 u′ + 6mu2u′ . (9.20) ?

Convince yourself by your own
calculation that you agree with
the result (9.20).Orbital equation

The trivial solution of this orbital equation is u′ = 0, which implies a
circular orbit. If u′ � 0, this equation can be simplified to read

u′′ + u =
mc2

L2 + 3mu2 . (9.21)

Note that this is the equation of a driven harmonic oscillator.
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The fact that t and ϕ are cyclic coordinates in the Schwarzschild space-
time can be studied from a more general point of view. Let γ(τ) be a
geodesic curve with tangent vector γ̇(τ), and let further ξ be a Killing
vector field of the metric. Then, we know from (5.36) that the projection
of the Killing vector field on the geodesic is constant along the geodesic,

∇γ̇〈γ̇, ξ〉 = 0 ⇒ 〈γ̇, ξ〉 = constant along γ (9.22)

Due to its stationarity and the spherical symmetry, the Schwarzschild
spacetime has the Killing vector fields ∂t and ∂ϕ. Thus,

〈γ̇, ∂t〉 = 〈γ̇t∂t, ∂t〉 = γ̇t〈∂t, ∂t〉 = g00γ̇
t = −

(
1 − 2m

r

)
cṫ = const. (9.23)

and

〈γ̇, ∂ϕ〉 = γ̇ϕ〈∂ϕ, ∂ϕ〉 = gϕϕγ̇ϕ = r2 sin2 ϑ ϕ̇ = r2ϕ̇ = const. , (9.24)

where we have used ϑ = π/2 without loss of generality. This reproduces
(9.11) and (9.12).

9.2 Comparison to the Kepler problem

9.2.1 Differences in the equation of motion

It is instructive to compare this to the Newtonian case. There, the
Lagrangian is

L = 1
2

(
ṙ2 + r2ϕ̇2

)
− Φ(r) , (9.25)

where Φ(r) is some centrally-symmetric potential and the dots denote
the derivative with respect to the coordinate time t now instead of the
proper time τ. In the Newtonian limit, τ = t. For later comparison of
results obtained in this and the previous sections, the overdots can here
also be interpreted as derivatives with respect to τ, as in the previous
section.

?

Why does the angle ϑ not appear
in the Lagrange function (9.25)?
Why can it be ignored here? Since ϕ is cyclic,

∂L
∂ϕ̇
= r2ϕ̇ ≡ L = const . (9.26)

The Euler-Lagrange equation for r is

d
dt
∂L
∂ṙ

− ∂L
∂r
= 0 = r̈ − rϕ̇2 +

dΦ
dr
. (9.27)

Since
ṙ =

dr
dt
= r′ϕ̇ = r′

L
r2 = −Lu′ , (9.28)
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we can write the second time derivative of r as

r̈ = −L
du′

dt
= −L

du′

dϕ
ϕ̇ = −Lu′′

L
r2 = −L2u2u′′ . (9.29)

Thus, the equation of motion (9.27) can be written as

− L2u2u′′ − r
L2

r4 +
dΦ
dr
= 0 (9.30)

or, after dividing by −u2L2,

u′′ + u =
1

L2u2

dΦ
dr
. (9.31)

?

Can you agree with the result
(9.31)?

Orbital equation in Newtonian gravity

In the Newtonian limit of the Schwarzschild solution, the potential and
its radial derivative are

Φ = −GM
r
,

dΦ
dr
=
GM
r2 = GMu2 = mc2u2 , (9.32)

so that the orbital equation becomes

u′′ + u =
mc2

L2 . (9.33)

Compared to this, the equation of motion in the Schwarzschild case (9.21)
has the additional term 3mu2. We have seen in (8.66) that m ≈ 1.5 km
in the Solar System. There, the ratio of the two terms on the right-hand
side of (9.21) is

3mu2

mc2/L2 =
3u2L2

c2 =
3r4ϕ̇2

r2c2 =
3
c2

(rϕ̇)2 =
3v2⊥
c2 ≈ 7.7 · 10−8 (9.34)

for the innermost planet Mercury. Here, v⊥ is the tangential velocity
along the orbit, v⊥ = rϕ̇.

9.2.2 Effective potential

The equation of motion (9.21) in the Schwarzschild spacetime can thus
be reduced to a Kepler problem with a potential which, according to
(9.31), is given by

1
L2u2

dΦ(r)
dr
=

mc2

L2 + 3mu2 (9.35)

or
dΦ(r)

dr
= mc2u2 + 3mL2u4 =

mc2

r2 +
3mL2

r4 , (9.36)
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Figure 9.1 Numerical solutions of the orbital equation (9.21) for test parti-
cles, for different values of the orbital eccentricity e. All lengths, including the
mass m = 0.025, are scaled by the orbital parameter p. The orbits shown
begin at u = 1 + e with u′ = 0. For e = 0.2 (left), two orbits are shown, and
twelve orbits for e = 0.9 (right).

which leads to

Φ(r) = −mc2

r
− mL2

r3 (9.37)

if we set the integration constant such that Φ(r) → 0 for r → ∞.

As a function of x ≡ r/Rs = r/2m, the effective potential V(r) from
(9.16) depends in an interesting way on L/(cRs) = L/(2mc ≡ λ). The
dimensionless function

v(x) :=
V(x)

c2 =

(
1 − 1

x

) (
1 +
λ2

x2

)
(9.38)

corresponding to the effective potential (9.16) asymptotically behaves as
v(x) → 1 for x → ∞ and v(x) → −∞ for x → 0.

For the potential to have a minimum, v(x) must have a vanishing deriva-
tive, v′(x) = 0. This is the case where

0 = v′(x) =
1
x2

(
1 +
λ2

x2

)
−
(
1 − 1

x

)
2λ2

x3 (9.39)

or, after multiplication with x4,

x2 − 2λ2x + 3λ2 = 0 ⇒ x± = λ2 ± λ
√
λ2 − 3 . (9.40)

Real solutions require λ ≥
√

3. If λ <
√

3, particles with E2 < 1 will
crash directly towards r = Rs.
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Figure 9.2 Dimensionless effective potential v(x) for a test particle in the
Schwarzschild spacetime for various scaled angular momenta λ.

Last stable orbit in the Schwarzschild metric

The last stable orbit, or more precisely the innermost stable circular
orbit or ISCO, must thus have λ =

√
3 and is therefore located at

x± = 3, i.e. at r = 6m = 3Rs, or three Schwarzschild radii. There, the
dimensionless effective potential is

v(x = 3) =
2
3

(
1 +

3
9

)
=

8
9
. (9.41)

For λ >
√

3, the effective potential has a minimum at x+ and a maximum
at x− which reaches the height v = 1 for λ = 2 at x− = 2 and is higher
for larger λ. This means that particles with E ≥ 1 and L < 2cRs will fall
unimpededly towards r = Rs.

9.3 Perihelion shift and light deflection

9.3.1 The perihelion shift

The treatment of the Kepler problem in classical mechanics shows that
closed orbits in the Newtonian limit are described by

u0(ϕ) =
1
p

(1 + e cosϕ) , (9.42)

where the parameter p is related to the angular momentum L by

p = a
(
1 − e2

)
=

L2

m
(9.43)

in terms of the semi-major axis a and the eccentricity e of the orbit.
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Assuming that the perturbation 3mu2 in the equation of motion (9.21) is
small, we can approximate it by 3mu2

0, thus

u′′ + u =
mc2

L2 +
3m
p2

(1 + e cosϕ)2 . (9.44)

The solution of this equation turns out to be simple because differential
equations of the sort

u′′ + u =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A
B cosϕ
C cos2 ϕ

, (9.45)

which are driven harmonic-oscillator equations, have the particular solu-
tions

u1 = A , u2 =
B
2
ϕ sinϕ , u3 =

C
2

(
1 − 1

3
cos 2ϕ

)
. (9.46)?

Verify the particular solutions
(9.46) of the driven harmonic os-
cillator equations (9.45). Orbits in the Schwarzschild spacetime

Since the unperturbed equation u′′ + u = mc2/L2 has the Keplerian
solution u = u0, the complete solution is thus the sum

u = u0 + u1 + u2 + u3 (9.47)

=
1
p

(1 + e cosϕ) +
3m
p2

[
1 + eϕ sinϕ +

e2

2

(
1 − 1

3
cos 2ϕ

)]
.

This solution of (9.44) has its perihelion at ϕ = 0 because the unperturbed
solution u0 was chosen to have it there. This can be seen by taking the
derivative with respect to ϕ,

u′ = − e
p

sinϕ +
3me
p2

[
sinϕ + ϕ cosϕ +

e
3

sin 2ϕ
]

(9.48)

and verifying that u′ = 0 at ϕ = 0, i.e. the orbital radius r = 1/u still has
an extremum at ϕ = 0.

We now use equation (9.48) in the following way. Starting at the perihe-
lion at ϕ = 0, we wait for approximately one revolution at ϕ = 2π + δϕ
and see what δϕ has to be for u′ to vanish again. Thus, the condition for
the next perihelion is

0 = − sin δϕ +
3m
p

[
sin δϕ + (2π + δϕ) cos δϕ +

e
3

sin 2δϕ
]

(9.49)

or, to first order in the small angle δϕ,

δϕ ≈ 3m
p

[
2δϕ + 2π +

2e
3
δϕ

]
. (9.50)
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Sorting terms, we find

δϕ

[
1 − 6m

p

(
1 +

e
3

)]
≈ 6πm

p
=

6πm
a(1 − e2)

(9.51)

for the perihelion shift δϕ.

Perihelion shift

Substituting the Schwarzschild radius from (8.68), we can write this
result as

δϕ ≈ 3πRs

a(1 − e2)
. (9.52)

This turns out to be −6 times the result (1.45) from the scalar theory of
gravity discussed in § 1.4.2, or

δϕ ≈ 43′′ (9.53)

per century for Mercury’s orbit, which reproduces the measurement
extremely well.

?

Can you confirm (9.51) begin-
ning with (9.49)?

9.3.2 Light deflection

For light rays, the condition 2L = −c2 that we had before for material
particles is replaced by 2L = 0. Then, (9.14) changes to

ṙ2 − E2

1 − 2m/r
+

L2

r2 = 0 (9.54)

or

ṙ2 +
L2

r2

(
1 − 2m

r

)
= E2 . (9.55)

Changing again the independent variable to ϕ and substituting u = 1/r
leads to the equation of motion for light rays in the Schwarzschild
spacetime

u′2 + u2 =
E2

L2 + 2mu3 , (9.56)

which should be compared to the equation of motion for material parti-
cles, (9.19). Differentiation finally yields the orbital equation for light
rays in the Schwarzschild spacetime.

?

Derive the orbital equation (9.56)
yourself.

Light rays in the Schwarzschild spacetime

Light rays (null geodesics) in the Schwarzschild spacetime follow the
orbital equation

u′′ + u = 3mu2 . (9.57)

Compared to u on the left-hand side, the term 3mu2 is very small. In the
Solar System,

3mu2

u
= 3mu =

3Rs

2r
≤ Rs

R

≈ 10−6 . (9.58)
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Figure 9.3 Numerical solutions of the orbital equation (9.57) for light rays,
compared to the Keplerian straight line, for different values of m. All lengths,
including the mass m, are scaled by the orbital parameter p. The orbits
shown begin at u = 1 with u′ = 0.

Thus, the light ray is almost given by the homogeneous solution of the
harmonic-oscillator equation u′′ + u = 0, which is u0 = A sinϕ + B cosϕ.
We require that the closest impact at u0 = 1/b be reached when ϕ = π/2,
which implies B = 0 and A = 1/b, or

u0 =
sinϕ

b
⇒ r0 =

b
sinϕ

. (9.59)

Note that this is a straight line in plane polar coordinates, as it should be!

Inserting this lowest-order solution as a perturbation into the right-hand
side of (9.57) gives

u′′ + u =
3m
b2 sin2 ϕ =

3m
b2

(
1 − cos2 ϕ

)
, (9.60)

for which particular solutions can be found using (9.45) and (9.46).
Combining this with the unperturbed solution (9.59) gives

u =
sinϕ

b
+

3m
b2 − 3m

2b2

(
1 − 1

3
cos 2ϕ

)
. (9.61)

?

Beginning with (9.60), confirm
the deflection angle (9.63). Given the orientation of our coordinate system, i.e. with the closest

approach at ϕ = π/2, we have ϕ ≈ 0 for a ray incoming from the left at
large distances. Then, sinϕ ≈ ϕ and cos 2ϕ ≈ 1, and (9.61) yields

u ≈ ϕ
b
+

2m
b2 . (9.62)

In the asymptotic limit r → ∞, or u → 0, this gives the angle

|ϕ| ≈ 2m
b
. (9.63)
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Deflection angle for light rays

The total deflection angle of light rays is then

α = 2|ϕ| ≈ 4m
b
= 2

Rs

b
≈ 1.74′′ . (9.64)

This is twice the result from our simple consideration leading to (4.90)
which did not take the field equations into account yet.

9.4 Spins in the Schwarzschild spacetime

9.4.1 Equations of motion

Let us now finally study how a gyroscope with spin s is moving along a
geodesic γ in the Schwarzschild spacetime. Without loss of generality,
we assume that the orbit falls into the equatorial plane ϑ = π/2, and we
restrict the motion to circular orbits.

Then, the four-velocity of the gyroscope is characterised by u1 = 0 = u2

because both r = x1 and ϑ = x2 are constant.

The equations that the spin s and the tangent vector u = γ̇ of the orbit
have to satisfy are

〈s, u〉 = 0 , ∇us = 0 , ∇uu = 0 . (9.65)

The first is because s falls into a spatial hypersurface perpendicular to
the time-like four-velocity u, the second because the spin is parallel
transported, and the third because the gyroscope is moving along a
geodesic curve.

We work in the same tetrad {θ μ} introduced in (8.40) that we used to
derive the Schwarzschild solution. From (8.9), we know that

(∇us)μ = 〈dsμ + sνωμν, u〉 = u(sμ) + ωμν(u)sν

= ṡμ + ωμν(u)sν = 0 , (9.66)

where the overdot marks the derivative with respect to the proper time τ.

With the connection forms in the Schwarzschild tetrad given in (8.50),
and taking into account that a = −b and cotϑ = 0, we find for the
components of ṡ

ṡ0 = −ω0
1(u)s1 = b′e−bu0s1 ,

ṡ1 = −ω1
0(u)s0 − ω1

2(u)s2 − ω1
3(u)s3 = b′e−bu0s0 +

e−b

r
u3s3 ,

ṡ2 = −ω2
1(u)s1 − ω2

3(u)s3 = 0 ,

ṡ3 = −ω3
1(u)s1 − ω3

2(u)s2 = −e−b

r
u3s1 , (9.67)
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where we have repeatedly used that

θ1(u) = u1 = 0 = u2 = θ2(u) (9.68)

and ω2
3 = 0 because cotϑ = 0.

Similarly, the geodesic equation ∇uu = 0, specialised to u1 = 0 = u2,
leads to

u̇0 = b′e−bu0u1 = 0 ,

u̇1 = −b′e−b(u0)2 − e−b

r
(u3)2 = 0 ,

u̇2 = 0 ,

u̇3 = −e−b

r
u1u3 = 0 . (9.69)

The second of these equations implies(
u0

u3

)2

= − 1
b′r
. (9.70)

?

What is the physical meaning of
equation (9.70)?

9.4.2 Spin precession

We now introduce a set of basis vectors orthogonal to u, namely

ē1 = e1 , ē2 = e2 , ē3 =
u3

c
e0 +

u0

c
e3 . (9.71)

The orthogonality of ē1 and ē2 to u is obvious because of u1 = 0 = u2,
and

〈u, ē3〉 = u3u0 + u0u3 = 0 (9.72)

shows the orthogonality of u and ē3. Recall that u0 = −u0, but u3 = u3

because the metric is g = diag(−1, 1, 1, 1) in this basis.

?

Carry out the calculations lead-
ing to equations (9.74) and (9.75)
yourself. Since the basis {ēi} spans the three-space orthogonal to u, the spin s of

the gyroscope can be expanded into this basis as s = s̄iēi. We find

s0 = 〈s̄iēi, e0〉 =
u3

c
s̄3 , s1 = s̄1 , s2 = s̄2 , s3 =

u0

c
s̄3 , (9.73)

which we can insert into (9.67) to find

u̇3 s̄3 + u3 ˙̄s3 = u3 ˙̄s3 = cb′e−bu0 s̄1 ,

˙̄s1 =

(
b′e−b +

e−b

r

)
u0u3

c
s̄3 ,

˙̄s2 = 0 ,

u̇0 s̄3 + u0 ˙̄s3 = u0 ˙̄s3 = −ce−b

r
u3 s̄1 . (9.74)
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Note that u̇μ = 0 for all μ according to (9.69). Using (9.69) and the
normalisation relation (u0)2 − (u3)2 = c2, we obtain

˙̄s1 = b′e−b

[
1 − (u0)2

(u3)2

]
u0u3

c
s̄3 = −cb′e−b u0

u3 s̄3 ,

˙̄s2 = 0 ,

˙̄s3 = cb′e−b u0

u3 s̄1 . (9.75)

From now on, we shall drop the overbar, understanding that the si denote
the components of the spin with respect to the basis ēi.

Next, we transform the time derivative from the proper time τ to the
coordinate time t. Since

u0 = θ0(u) = eacdt(u) = cṫ ea , (9.76)

we have

ṫ =
u0

c
e−a =

u0

c
eb , (9.77)

or
dsi

dt
=

ṡi

ṫ
=

cṡi

u0 e−b . (9.78)

Inserting this into (9.75) yields

ds1

dt
= −c2b′

u3 e−2bs3 ,
ds2

dt
= 0 ,

ds3

dt
=

c2b′

u3 e−2bs1 . (9.79)

Finally, using (8.40), we have

u3 = θ3(u) = r sinϑ dϕ(u) = ruϕ = rϕ̇ (9.80)

at ϑ = π/2, which yields the angular frequency

ω ≡ dϕ
dt
=
ϕ̇

ṫ
=

ce−b

r
u3

u0 , (9.81)

which can be rewritten by means of (9.70),

ω2 =

(
u3

u0

)2 e−2b

r2 = −
c2b′

r
e−2b =

c2

2r

(
e−2b

)′
. (9.82)

Now, since the exponential factor was

e−2b =

(
1 − 2m

r

)
⇒

(
e−2b

)′
=

2m
r2 , (9.83)

we obtain the well-known intermediate result

ω2 =
mc2

r3 =
GM
r3 , (9.84)
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which is Kepler’s third law.

Taking another time derivative of (9.79), we can use ṙ = 0 for circular
orbits and u̇3 = 0 from (9.69). Thus,

d2s1

dt2 = −
c2b′

u3 e−2b ds3

dt
= −c4b′2e−4b

(u3)2 s1 (9.85)

and likewise for s3. This is an oscillator equation for s1 with the squared
angular frequency

?

Verify the calculation leading to
the squared angular frequencyΩ2

in (9.86).
Ω2 =

c4b′2e−4b

(u3)2 = c2b′2e−4b (u0)2 − (u3)2

(u3)2

= c2b′2e−4b

(
−1 − 1

b′r

)
= −c2b′e−4b

r
(
1 + b′r

)
. (9.86)

Now, we use (9.82) to substitute the factor out front the final expression
and find the relation

Ω2 = ω2e−2b (1 + b′r
)

(9.87)

between the angular frequencies Ω and ω. From (8.62), we further know
that

rb′ =
1
2

(
1 − e2b

)
=

1
2

(
1 − 1

1 − 2m/r

)
= −m

r
1

1 − 2m/r
, (9.88)

thus

rb′ + 1 =
r − 3m
r − 2m

=
1 − 3m/r
1 − 2m/r

(9.89)

and

Ω2 = ω2e−2b 1 − 3m/r
1 − 2m/r

= ω2
(
1 − 3m

r

)
. (9.90)

In vector notation, we can write (9.79) as

d�s
dt
= �Ω × �s , �Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
Ω

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (9.91)

Recall that we have projected the spin into the three-dimensional space
perpendicular to the direction of motion. Thus, the result (9.91) shows
that �s precesses retrograde in that space about an axis perpendicular to
the plane of the orbit, since u2 = 0.

After a complete orbit, i.e. after the orbital time τ = 2π/ω, the projection
of �s onto the plane of the orbit has advanced by an angle

φ = Ωτ = 2π
Ω

ω
= 2π

√
1 − 3m

r
< 2π , (9.92)
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according to (9.90). The spin thus falls behind the orbital motion; its
precession is retrograde. The geodetic precession frequency is

ωs =
φ − 2π
τ
= ω

⎛⎜⎜⎜⎜⎜⎝
√

1 − 3m
r
− 1

⎞⎟⎟⎟⎟⎟⎠
≈ −

(
GM
r3

)1/2 3GM
2rc2 = −

3
2

(GM)3/2

c2r5/2 (9.93)

to first-order Taylor approximation in m/r, with ω from Kepler’s third
law (9.84).

Geodetic precession near the Earth

If we insert the Earth’s mass and radius here, MEarth = 5.97 · 1027 g and
REarth = 6.38 · 108 cm, we find a geodetic precession near the Earth of

ωs ≈ −
(
2.66 · 10−7

)′′
s−1

(REarth

r

)5/2

= −8.4′′ year−1
(REarth

r

)5/2

.

(9.94)
In this context, see also the Example box “Measurement of spin pre-
cession near the Earth” following the discussion of the Lense-Thirring
effect leading to (7.62).




