
Chapter 8

The Schwarzschild Solution

8.1 Cartan’s structure equations

8.1.1 Curvature forms

This section deals with a generalisation of the connection coefficients,
and the torsion and curvature tensor components, to arbitrary bases.
This will prove enormously efficient in our further discussion of the
Schwarzschild solution.

Let M be a differentiable manifold, {ei} an arbitrary basis for vector fields
and {θi} an arbitrary basis for dual vector fields, or 1-forms.

Connection forms

In analogy to the Christoffel symbols, we introduce the connection
forms by

∇vei = ω
j
i (v)e j . (8.1)

Since ∇vei is a vector, ω j
i (v) ∈ R is a real number, and thus ω j

i ∈
∧1 is

a dual vector, or a one-form.

Since, by definition (3.2) of the Christoffel symbols

∇∂k∂ j = Γ
i
k j ∂i = ω

i
j(∂k)∂i (8.2)

in the coordinate basis {∂i}, we have in that particular basis,

ωi
j = Γ

i
k j dxk . (8.3)

Since 〈θi, e j〉 is a constant (which is either zero or unity if the basis is
orthonormal), we must have

0 = ∇v〈θi, e j〉 = 〈∇vθi, e j〉 + 〈θi,∇ve j〉
= 〈∇vθi, e j〉 + 〈θi, ωk

j(v)ek〉
= 〈∇vθi, e j〉 + ωi

j(v) . (8.4)
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112 8 The Schwarzschild Solution

From this result, we can conclude

∇vθi = −ωi
j(v)θ

j (8.5)

for the covariant derivative of θi in the direction of v. Without specifying
the vector v, we find the covariant derivative

∇θi = −θ j ⊗ ωi
j . (8.6)

Let now α ∈
∧1 be a one-form such that α = αiθ

i with arbitrary functions
αi. Then, the equations we have derived so far imply

∇vα = v(αi)θi + αi∇vθi = 〈dαi − αkω
k
i , v〉θi , (8.7)

where we have used the differential of the function αi, defined in (2.35)
by dαi(v) = v(αi), together with the notation 〈w, v〉 = w(v) for a vector v
and a dual vector w. More generally, this expression can be written as
the covariant derivative

∇α = θi ⊗ (dαi − αkω
k
i ) . (8.8)

Similarly, for a vector field x = xiei, we find

∇vx = 〈dxi + xkωi
k, v〉ei (8.9)

or
∇x = ei ⊗ (dxi + ωi

k xk) (8.10)

for the covariant derivative of the vector x.

?

Derive the expressions (8.9) and
(8.10) yourself, beginning with
(8.1).

8.1.2 Torsion and curvature forms

We are now in a position to use the connection forms for defining the
torsion and curvature forms.

Torsion and curvature forms

By definition, the torsion T (x, y) is a vector, which can be written in
terms of the torsion forms Θi as

T (x, y) = Θi(x, y)ei . (8.11)

Obviously, Θi ∈
∧2 is a two-form, such that Θi(x, y) ∈ R is a real

number.
In the same manner, we express the curvature by the curvature forms
Ωi

j ∈
∧2,

R̄(x, y)e j = Ω
i
j(x, y)ei . (8.12)

The next important step is now to realise that the torsion and curvature
2-forms satisfy Cartan’s structure equations:
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Figure 8.1 Élie Cartan (1869–1951), French mathematician. Source:
Wikipedia

Cartan’s structure equations

In terms of the connection forms ωi
j, the torsion forms Θi and the

curvature forms Ωi
j are determined by Cartan’s structure equations,

Θi = dθi + ωi
j ∧ θ j

Ωi
j = dωi

j + ω
i
k ∧ ω

k
j . (8.13)

Their proof is straightforward. To prove the first structure equation, we
insert the definition (3.45) of the torsion to obtain as a first step

Θi(x, y) = ∇xy − ∇yx − [x, y]

= ∇x(θi(y)ei) − ∇y(θi(x)ei) − θi([x, y])ei , (8.14)

where we have expanded the vectors x, y and [x, y] in the basis {ei}
according to x = 〈θi, x〉ei = θ

i(x)ei. Then, we continue by using the
connection forms,

Θi(x, y) = ∇x(θi(y)ei) − ∇y(θi(x)ei) − θi([x, y])ei

= xθi(y)ei + θ
i(y)ω j

i (x)e j − yθi(x)ei − θi(x)ω j
i (y)e j

− θi([x, y])ei

=
[
xθi(y) − yθi(x) − θi([x, y])

]
ei

+
[
θi(y)ω j

i (x) − θi(x)ω j
i (y)

]
e j . (8.15)
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According to (5.66), the first term can be expressed by the exterior
derivative of the θi, and since the second term is antisymmetric in x and
y, we can write this as

Θi(x, y) = dθi(x, y)ei + (ωi
j ∧ θ j)(x, y)ei , (8.16)

from which the first structure equation follows immediately.

The proof of the second structure equation proceeds similarly, using the
definition (3.51) of the curvature. Thus,

Ωi
j(x, y)ei = ∇x∇ye j − ∇y∇xe j − ∇[x,y]e j

= ∇x(ωi
j(y)ei) − ∇y(ωi

j(x)ei) − ωi
j([x, y])ei

= xωi
j(y)ei + ω

i
j(y)∇xei

− yωi
j(x)ei − ωi

j(x)∇yei − ωi
j([x, y])ei

=
[
xωi

j(y) − yωi
j(x) − ωi

j([x, y])
]

ei

+
[
ωi

j(y)ω
k
i (x) − ωi

j(x)ωk
i (y)

]
ek

= dωi
j(x, y)ei + (ωk

i ∧ ωi
j)(x, y)ek , (8.17)

which proves the second structure equation.

?

Carry out all steps of the deriva-
tions (8.15) and (8.17) yourself
and convince yourself that they
are correct. Now, let us use the curvature forms Ωi

j to define tensor components R̄i
jkl

by

Ωi
j ≡

1
2

R̄i
jkl θ

k ∧ θl , (8.18)

whose antisymmetry in the last two indices is obvious by definition,

R̄i
jkl = −R̄i

jlk . (8.19)

In an arbitrary basis {ei}, we then have

〈θi, R̄(ek, el)e j〉 = 〈θi,Ωs
j(ek, el)es〉 = Ωi

j(ek, el) = R̄i
jkl . (8.20)

Comparing this to the components of the curvature tensor in the coordi-
nate basis {∂i} given by (3.56) shows that the functions R̄i

jkl are indeed
the components of the curvature tensor in the arbitrary basis {ei}.

A similar operation shows that the functions T i
jk defined by

Θi ≡ 1
2

T i
jk θ

j ∧ θk (8.21)

are the elements of the torsion tensor in the basis {ei}, since

〈θi,T (e j, ek)〉 = 〈θi,Θs(e j, ek)es〉 = Θi(e j, ek) = T i
jk . (8.22)

Thus, Cartan’s structure equations allow us to considerably simplify the
computation of curvature and torsion for an arbitrary metric, provided
we find a base in which the metric appears simple (e.g. diagonal and
constant).
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Symmetry of the connection forms

We mention without proof that the connection ∇ is metric if and only if

ωi j + ω ji = dgi j , (8.23)

where the definitions

ωi j ≡ gikω
k
j and gi j ≡ g(ei, e j) (8.24)

were used, i.e. the gi j are the components of the metric in the arbitrary
basis {ei}.

8.2 Stationary and static spacetimes

Stationary spacetimes (M, g) are defined to be spacetimes which have
a time-like Killing vector field K. This means that observers moving
along the integral curves of K do not notice any change.

?

What exactly are Killing vector
fields? How are they defined, and
what do they mean?This definition implies that we can introduce coordinates in which the

components gμν of the metric do not depend on time. To see this, suppose
we choose a space-like hypersurface Σ ⊂ M and construct the integral
curves of K through Σ.

We further introduce arbitrary coordinates on Σ and carry them into M
as follows: let φt be the flow of K, p0 ∈ Σ and p = φt(p0), then the
coordinates of p are chosen as (t, x1(p0), x2(p0), x3(p0)). These are the
so-called Lagrange coordinates of p.

In these coordinates, K = ∂0, i.e. Kμ = δμ0. From the derivation of the
Killing equation (5.34), we further have that the components of the Lie
derivative of the metric are

(LKg)μν = Kλ∂λgμν + gλν∂μKλ + gμλ∂νKλ

= ∂0gμν = 0 , (8.25)

which proves that the gμν do not depend on time in these so-called
adapted coordinates.

We can straightforwardly introduce a one-form ω corresponding to the
Killing vector K by ω = K�. This one-form obviously satisfies

ω(K) = 〈K,K〉 � 0 . (8.26)

Suppose that we now have a stationary spacetime in which we have
introduced adapted coordinates and in which also g0i = 0. Then, the
Killing vector field is orthogonal to the spatial sections, for which t =
const. Then, the one-form ω is quite obviously

ω = g00 cdt = 〈K,K〉 cdt , (8.27)
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because K = ∂0. This then trivially implies the Frobenius condition

ω ∧ dω = 0 (8.28)

because the exterior derivative d satisfies d ◦ d ≡ 0.

Conversely, it can be shown that if the Frobenius condition holds, the one-
form ω can be written in the form (8.27). For a vector field v tangential
to a spacelike section defined by t = const., we have

〈K, v〉 = ω(v) = 〈K,K〉 cdt(v) = 〈K,K〉v(t) = 0 (8.29)

because t = const., and thus K is then perpendicular to the spatial section.
Thus, K = ∂0 and

g0i = 〈∂0, ∂i〉 = 〈K, ∂i〉 = 0 . (8.30)

Stationary and static spacetimes

Thus, in a stationary spacetime with time-like Killing vector field K,
the Frobenius condition (8.28) for the one-form ω = K� is equivalent
to the condition g0i = 0 in adapted coordinates. Such spacetimes are
called static. In other words, stationary spacetimes are static if and only
if the Frobenius condition holds.

In static spacetimes, the metric can thus be written in the form

g = g00(�x )c2dt2 + gi j(�x )dxidx j . (8.31)

8.3 The Schwarzschild solution

8.3.1 Form of the metric

Formally speaking, the Schwarzschild solution is a static, spherically
symmetric solution of Einstein’s field equations for vacuum spacetime.

From our earlier considerations, we know that a static spacetime is a
stationary spacetime whose (time-like) Killing vector field satisfies the
Frobenius condition (8.28).

As the spacetime is (globally) stationary, we know that we can introduce
spatial hypersurfaces Σ perpendicular to the Killing vector field which, in
adapted coordinates, is K = ∂0. The manifold (M, g) can thus be foliated
as M = R × Σ.

?

How does a product space com-
posed of two manifolds attains
the structure of a product mani-
fold. From (8.31), we then know that, also in adapted coordinates, the metric

acquires the form
g = −φ2 c2dt2 + h , (8.32)
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where φ is a smoothly varying function on Σ and h is the metric of
the spatial sections Σ. Under the assumption that K is the only time-
like Killing vector field which the spacetime admits, t is a uniquely
distinguished time coordinate, and we can write

− φ2 = 〈K,K〉 . (8.33)

The stationarity of the spacetime, expressed by the existence of the single
Killing vector field K, thus allows a convenient foliation of the spacetime
into spatial hypersurfaces or foils Σ and a time coordinate.

Furthermore, the spatial hypersurfaces Σ are expected to be spherically
symmetric. This means that the group SO(3) (i.e. the group of rotations
in three dimensions) must be an isometry group of the metric h. The
orbits of SO(3) are two-dimensional, space-like surfaces in Σ. Thus,
SO(3) foliates the spacetime (Σ, h) into invariant two-spheres.

Let the surface of these two-spheres be A, then we define a radial coordi-
nate for the Schwarzschild metric requiring

4πr2 = A (8.34)

as in Euclidean geometry. Moreover, the spherical symmetry implies
that we can introduce spherical polar coordinates (ϑ, ϕ) on one partic-
ular orbit of SO(3) which can then be transported along geodesic lines
perpendicular to the orbits. Then, the spatial metric h can be written in
the form

h = e2b(r)dr2 + r2
(
dϑ2 + sin2 ϑdϕ2

)
, (8.35)

where the exponential factor was introduced to allow a scaling of the
radial coordinate.

?

Why could it be useful to repre-
sent the coefficient of dr2 in h by
an exponential?Due to the stationarity of the metric and the spherical symmetry of the

spatial sections, 〈K,K〉 can only depend on r. We set

φ2 = −〈K,K〉 = e2a(r) . (8.36)

The full metric g is thus characterised by two radial functions a(r) and
b(r) which we need to determine. The exponential functions in (8.35)
and (8.36) are chosen to ensure that the prefactors ea and eb are always
positive.

The spatial sections Σ are now foliated according to

Σ = I × S 2 , I ⊂ R+ , (8.37)

with coordinates r ∈ I and (ϑ, ϕ) ∈ S 2.
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Metric for static, spherically-symmetric spacetimes

In the Schwarzschild coordinates (t, r, ϑ, ϕ), the metric of a static,
spherically-symmetric spacetime has the form

g = −e2a(r) c2dt2 + e2b(r)dr2 + r2(dϑ2 + sin2 ϑdϕ2) . (8.38)

The functions a(r) and b(r) are constrained by the requirement that the
metric should asymptotically turn flat, which means

a(r) → 0 , b(r) → 0 for r → ∞ . (8.39)

They must be determined by inserting the metric (8.38) into the vacuum
field equations, G = 0.

8.3.2 Connection and curvature forms

In order to evaluate Einstein’s field equations for the Schwarzschild
metric, we now need to compute the Riemann, Ricci, and Einstein
tensors. Traditionally, one would begin this step with computing all
Christoffel symbols of the metric (8.38). This very lengthy and error-
prone procedure can be considerably shortened using Cartan’s structure
equations (8.13) for the torsion and curvature forms Θi and Ωi

j.

To do so, we need to introduce a suitable basis, or tetrad {ei}, or alter-
natively a dual tetrad {θi}. Guided by the form of the metric (8.38), we
choose

θ0 = eacdt , θ1 = ebdr , θ2 = rdϑ , θ3 = r sinϑdϕ . (8.40)

In terms of these, the metric attains the simple diagonal, Minkowskian
form

g = gμν θ
μ ⊗ θν , gμν = diag(−1, 1, 1, 1) . (8.41)

Obviously, dg = 0, and thus (8.23) implies that the connection forms ωμν
need to be antisymmetric,

ωμν = −ωνμ . (8.42)

Given the dual tetrad {θμ}, we must take their exterior derivatives. For
this purpose, we apply the expression (??) and find, for dθ0,

dθ0 = dea ∧ cdt = −a′ea cdt ∧ dr . (8.43)

because dea = a′ea dr. Similarly, we find

dθ1 = 0 (8.44)
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because dr ∧ dr = 0, further

dθ2 = dr ∧ dϑ (8.45)

and
dθ3 = sinϑ dr ∧ dϕ + r cosϑ dϑ ∧ dϕ . (8.46)

Using (8.40), we can also express the coordinate differentials by the dual
tetrad,

cdt = e−aθ0 , dr = e−bθ1 , dϑ =
θ2

r
, dϕ =

θ3

r sinϑ
, (8.47)

so that we can write the exterior derivatives of the dual tetrad as

dθ0 = a′e−b θ1 ∧ θ0 , dθ1 = 0 , dθ2 =
e−b

r
θ1 ∧ θ2 ,

dθ3 =
e−b

r
θ1 ∧ θ3 + cotϑ

r
θ2 ∧ θ3 . (8.48) ?

Test by independent calculation
whether you can confirm the dif-
ferentials (8.48).Since the torsion must vanish, Θi = 0, Cartan’s first structure equation

from (8.13) implies
dθ μ = −ωμν ∧ θν . (8.49)

Connection forms

With (8.48), this suggests that the connection forms of a static,
spherically-symmetric metric are

ω0
1 = ω

1
0 =

a′θ0

eb , ω
0
2 = ω

2
0 = 0 , ω0

3 = ω
3
0 = 0 ,

ω2
1 = −ω1

2 =
θ2

reb , ω
3
1 = −ω

1
3 =
θ3

reb ,

ω3
2 = −ω

2
3 =

cotϑ θ3

r
. (8.50)

They satisfy the antisymmetry condition (8.42) and Cartan’s first struc-
ture equation (8.49) for a torsion-free connection.

?

Why can none of the connection
forms in (8.50) depend on ϕ?

For evaluating the curvature forms Ωμν , we first recall that the exterior
derivative of a one-form ω multiplied by a function f is

d( fω) = d f ∧ ω + f dω

= (∂i f )dxi ∧ ω + f dω (8.51)

according to the (anti-)Leibniz rule (??).

Thus, we have for dω0
1

dω0
1 = (a′e−b)′ dr ∧ θ0 + a′e−b dθ0

= (a′′e−b − a′b′e−b)e−b θ1 ∧ θ0 + (a′e−b)2 θ1 ∧ θ0

=: A θ0 ∧ θ1 (8.52)
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where we have used (8.47) and (8.48) and abbreviated A := (a′′ − a′b′ +
a′2)E with E := exp(−2b).

In much the same way and using this definition of E, we find

dω2
1 = −

b′E
r
θ1 ∧ θ2 ,

dω3
1 = −

b′E
r
θ1 ∧ θ3 + cotϑ

r2eb θ
2 ∧ θ3 ,

dω3
2 = −

1
r2 θ

2 ∧ θ3 . (8.53)

This yields the curvature two-forms according to (8.13).

Curvature forms of a static, spherically-symmetric metric

The curvature forms of a static, spherically-symmetric metric are

Ω0
1 = dω0

1 = −A θ0 ∧ θ1 = Ω1
0

Ω0
2 = ω

0
1 ∧ ω

1
2 = −

a′E
r
θ0 ∧ θ2 = Ω2

0

Ω0
3 = ω

0
1 ∧ ω

1
3 = −

a′E
r
θ0 ∧ θ3 = Ω3

0

Ω1
2 = dω1

2 + ω
1
3 ∧ ω3

2 =
b′E

r
θ1 ∧ θ2 = −Ω2

1

Ω1
3 = dω1

3 + ω
1
2 ∧ ω2

3 =
b′E

r
θ1 ∧ θ3 = −Ω3

1

Ω2
3 = dω2

3 + ω
2
1 ∧ ω1

3 =
1 − E

r2 θ2 ∧ θ3 = −Ω3
2 . (8.54)

?

Perform the calculations lead-
ing to the curvature forms (8.54)
yourself and see whether you can
confirm them.

The remaining curvature two-forms follow from antisymmetry since

Ωμν = gμλΩ
λ
ν = −Ωνμ , (8.55)

because of the (anti-)symmetries of the curvature.

8.4 Solution of the field equations

8.4.1 Components of the Ricci and Einstein tensors

The components of the curvature tensor are given by (8.20), and thus the
components of the Ricci tensor in the tetrad {eα} are

Rμν = R̄λμλν = Ω
λ
μ(eλ, eν) . (8.56)

Thus, the components of the Ricci tensor in the Schwarzschild tetrad are

R00 = Ω
1
0(e1, e0) + Ω2

0(e2, e0) + Ω3
0(e3, e0) = A +

2a′E
r
,

R11 = Ω
0
1(e0, e1) + Ω2

1(e2, e1) + Ω3
1(e3, e1) = −A +

2b′E
r

(8.57)
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and, with B := (b′ − a′)E/r,

R22 = Ω
0
2(e0, e2) + Ω1

2(e1, e2) + Ω3
2(e3, e2) =: B +

1 − E
r2

R33 = Ω
0
3(e0, e3) + Ω1

3(e1, e3) + Ω2
3(e2, e3) = R22 (8.58)

The Ricci scalar becomes

R = −2A + 4B + 2
1 − E

r2 , (8.59)

such that we can now determine the components of the Einstein tensor
in the tetrad {eα} :

Einstein tensor for a static, spherically-symmetric metric

The Einstein tensor of a static, spherically-symmetric metric has the
components

G00 = R00 −
R
2
g00 =

1
r2 − E

(
1
r2 −

2b′

r

)

G11 = −
1
r2 + E

(
1
r2 +

2a′

r

)
G22 = E (A − B) = G33 . (8.60)

All off-diagonal components of Gμν vanish identically.

?

Convince yourself of the compo-
nents (8.60) of the Einstein ten-
sor.

8.4.2 The Schwarzschild metric

The vacuum field equations now require that all components of the
Einstein tensor vanish. In particular, then,

0 = G00 +G11 =
2E
r

(a′ + b′) (8.61)

shows that a′ + b′ = 0. Since a + b → 0 asymptotically for r → ∞,
integrating a + b from r → ∞ indicates that a + b = 0 everywhere, or
b = −a.

After multiplying with r2, equation G00 = 0 itself implies that

E(1 − 2rb′) = 1 ⇔ (rE)′ = 1 . (8.62)

Therefore, (8.62) is equivalent to

rE = r +C ⇔ E = 1 +
C
r
, (8.63)

with an integration constant C to be determined.
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Figure 8.2 Karl Schwarzschild (1873–1916), German astronomer and
physicist. Source: Wikipedia

Since a = −b, this also allows to conclude that

e2a = E = 1 +
C
r
. (8.64)

The integration constant C is finally determined by the Newtonian limit.
We have seen before in (4.80) that the 0-0 element of the metric must be
related to the Newtonian gravitational potential as g00 = −(1 + 2Φ/c2) in
order to meet the Newtonian limit. The Newtonian potential of a point
mass M at a distance r is

Φ = −GM
r
. (8.65)

Together with (8.64), this shows that the Newtonian limit is reached by
the Schwarzschild solution if the integration constant C is set to

C = −2GM
c2 =: −2m with m =

GM
c2 ≈ 1.5 km

(
M
M


)
. (8.66)

Schwarzschild metric

We thus obtain the Schwarzschild solution for the metric,

ds2 = −
(
1 − 2m

r

)
c2dt2 +

dr2

1 − 2m
r

+ r2
(
dϑ2 + sin2 ϑdϕ2

)
. (8.67)

The Schwarzschild metric (8.67) has an (apparent) singularity at r = 2m
or

r = Rs ≡
2GM

c2 , (8.68)
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the so-called Schwarzschild radius. We shall clarify the meaning of this
singularity later.

In order to illustrate the geometrical meaning of the spatial part of
the Schwarzschild metric, we need to find a geometrical interpretation
for its radial dependence. Specialising to the equatorial plane of the
Schwarzschild solution, ϑ = π/2 and t = 0, we find the induced spatial
line element

dl2 =
dr2

1 − 2m/r
+ r2dϕ2 (8.69)

on that plane.

On the other hand, consider a surface of rotation in the three-dimensional
Euclidean space E3. If we introduce the adequate cylindrical coordinates
(r, φ, z) on E3 and rotate a curve z(r) about the z axis, we find the induced
line element

dl2 = dz2 + dr2 + r2dϕ2 =

(
dz
dr

)2

dr2 + dr2 + r2dϕ2

= (1 + z′2)dr2 + r2dϕ2 . (8.70)

We can now try and identify the two induced line elements from (8.69)
and (8.70) and find that this is possible if

z′ =
(

1
1 − 2m/r

− 1
)1/2

=

√
2m

r − 2m
, (8.71)

which is readily integrated to yield

z =
√

8m(r − 2m) + const. or z2 = 8m(r − 2m) , (8.72)

if we set the integration constant to zero.

This shows that the geometry on the equatorial plane of the spatial
section of the Schwarzschild solution can be identified with a rotational
paraboloid in E3. In other words, the dependence of radial distances on
the radius r is equivalent to that on a rotational paraboloid (cf. Fig. 8.3).

8.4.3 Birkhoff’s theorem

Suppose now we had started from a spherically symmetric vacuum
spacetime, but with explicit time dependence of the functions a and
b, such that the spacetime could either expand or contract. Then, a
repetition of the derivation of the connection and curvature forms, and
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Figure 8.3 Surface of rotation illustrating the spatial part of the Schwarz-
schild metric.

the components of the Einstein tensor following from them, had resulted
in the new components Ḡμν

Ḡ00 = G00 , Ḡ11 = G11

Ḡ22 = G22 − e−2a
(
ḃ2 − ȧḃ − b̈

)
= Ḡ33

Ḡ10 =
2ḃ
r

e−a−b (8.73)

and Ḡμν = 0 for all other components.

The vacuum field equations imply Ḡ10 = 0 and thus ḃ = 0, hence b must
be independent of time. From Ḡ00 = 0, we can again conclude (8.63),
i.e. b retains the same form as before. Similarly, since Ḡ00 + Ḡ11 =

G00 +G11, the requirement a′ + b′ = 0 must continue to hold, but now
the time dependence of a allows us to conclude only that

a = −b + f (t) , (8.74)

where f (t) is an otherwise unconstrained function of time only. Thus,
the line element then reads

ds2 = −e2 f

(
1 − 2m

r

)
c2dt2 + dl2 , (8.75)

where dl2 is the unchanged line element of the spatial sections.

Introducing the new time coordinate t′ by

t′ =
∫

e f dt (8.76)

converts (8.75) back to the original form (8.67) of the Schwarzschild
metric.
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Birkhoff’s theorem

This is Birkhoff’s theorem, which states that a spherically symmetric
solution of Einstein’s vacuum equations is necessarily static for r > 2m.




