
Chapter 7

Weak Gravitational Fields

7.1 Linearised theory of gravity

7.1.1 Linearised field equations

We begin our study of solutions for the field equations with situations in
which the metric is almost Minkowskian, writing

gμν = ημν + hμν , (7.1)

where hμν is considered as a perturbation of the Minkowski metric ημν
such that

|hμν| 	 1 . (7.2)

This condition is excellently satisfied e.g. in the Solar System, where

|hμν| ≈
Φ

c2 ≈ 10−6 . (7.3)
?

How can you most easily confirm
the estimate (7.3) for the Solar
System and other astronomical
objects?

Note that small perturbations of the metric do not necessarily imply
small perturbations of the matter density, as the Solar System illustrates.
Also, the metric perturbations may change rapidly in time.

First, we write down the Christoffel symbols for this kind of metric.
Starting from (3.74) and ignoring quadratic terms in hμν, we can write

Γαμν =
1
2
ηαβ

(
∂νhμβ + ∂μhβν − ∂βhμν

)
=

1
2

(
∂νhαμ + ∂μh

α
ν − ∂αhμν

)
. (7.4)

Next, we can ignore the terms quadratic in the Christoffel symbols in the
components of the Ricci tensor (3.56) and find

Rμν = ∂λΓλμν − ∂νΓλλμ . (7.5)
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92 7 Weak Gravitational Fields

Inserting (7.4) yields

Rμν =
1
2

(
∂λ∂νhλμ + ∂λ∂μh

λ
ν − ∂λ∂λhμν − ∂μ∂νhλλ

)
=

1
2

(
∂λ∂νhλμ + ∂λ∂μh

λ
ν − �hμν − ∂μ∂νh

)
, (7.6)

where we have introduced the d’Alembert operator and abbreviated the
trace of the metric perturbation,

� = ∂λ∂λ , h ≡ hλλ . (7.7)

Caution Note that the
d’Alembert operator is the
square of the ordinary partial
derivative here, not the covariant
derivative. Is this appropriate,
and if so, why? �

The Ricci scalar is the contraction of Rμν,

R = ∂λ∂μhλμ − �h , (7.8)

and the Einstein tensor is

Gμν =
1
2

(
∂λ∂νhλμ + ∂λ∂μh

λ
ν − ημν∂λ∂σhλσ

− ∂μ∂νh − �hμν + ημν�h
)
. (7.9)

Neglecting terms of order |hμν|2, the contracted Bianchi identity reduces
to

∂νGμν = 0 , (7.10)

which, together with the field equations, implies

∂νT μν = 0 . (7.11)

One could now insert the Minkowski metric in T μν, search for a first
solution h(0)

μν of the linearised field equations and iterate replacing ημν
by ημν + h(0)

μν in T μν to find a corrected solution h(1)
μν , and so forth. This

procedure is useful as long as the back-reaction of the metric on the
energy-momentum tensor is small.

If we specialise (7.11) for pressure-less dust and insert (6.82), we find
the equation of motion

uν∂νuμ = 0 , (7.12)

which means that the fluid elements follow straight lines.

?

Compare (7.12) to the geodesic
equation for the motion of fluid
particles.

7.1.2 Wave equation for metric fluctuations

The field equations simplify considerably when we substitute

γμν ≡ hμν −
1
2
ημν h (7.13)



7.2 Gauge transformations 93

for hμν. Since γ ≡ γμμ = −h, we can solve (7.13) for hμν and insert

hμν = γμν −
1
2
ημν γ (7.14)

into (7.9) to obtain the linearised field equations

∂λ∂νγλμ + ∂
λ∂μγλν − ημν∂λ∂σγλσ − �γμν =

16πG
c4 Tμν . (7.15)

7.2 Gauge transformations

7.2.1 Diffeomorphism invariance

Diffeomorphism invariance

Let φ be a diffeomorphism of M, such that φ : M → N in diffeomor-
phic way. Since φ is then bijective and smoothly differentiable and
has a smoothly differentiable inverse, M and N can be considered as
indistinguishable abstract manifolds. The manifolds M and N then
represent the same physical spacetime. In particular, the metric g on
M is then physically equivalent to the pulled-back metric φ∗g. This dif-
feomorphism invariance is a fundamental property of general relativity.

?

In particular, the diffeomorphism
invariance of general relativity
implies that coordinate systems
can have no physical significance.
Use your own words to explain
why this is so.

In particular, this holds for a one-parameter group φt of diffeomorphisms
which represents the (local) flow of some vector field v. By the definition
of the Lie derivative, we have, to first order in t,

φ∗g = g + tLvg . (7.16)

Now, set g = η + h and define the infinitesimal vector ξ ≡ tv. Then, the
transformation (7.16) implies

h → φ∗h = h + tLvη + tLvh = h +Lξη +Lξh . (7.17)

For weak fields, the third term on the right-hand side can be neglected.
Using (5.31), we see that

(Lξη)μν = ηλν∂μξλ + ημλ∂νξλ = ∂μξν + ∂νξμ . (7.18)

We thus find the following important result:

Gauge transformations of weak metric perturbations

The weak metric perturbation hμν admits the gauge transformation

hμν → hμν + ∂μξν + ∂νξμ . (7.19)

This gauge transformation changes the tensor γμν as

γμν → γμν + ∂μξν + ∂νξμ − ημν∂λξλ . (7.20)
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7.2.2 Hilbert gauge

We can now arrange matters to enforce the Hilbert gauge

∂νγ
μν = 0 . (7.21)

The gauge transformation (7.20) implies that the divergence of γμν is
transformed as

∂νγ
μν → ∂νγμν + ∂ν∂μξν + �ξμ − ∂μ∂λξλ = ∂νγμν + �ξμ , (7.22)

such that, if (7.21) is not satisfied yet, it can be achieved by choosing for
ξμ a solution of the inhomogeneous wave equation

�ξμ = −∂νγμν , (7.23)

which, as we know from electrodynamics, can be obtained by means of
the retarded Green’s function of the d’Alembert operator.

?

How are the retarded and the
advanced Green’s functions con-
structed in electrodynamics? Re-
mind yourself of the essential
steps.

Wave equation for metric perturbations

Enforcing the Hilbert gauge in this way simplifies the linearised field
equation (7.15) dramatically,

�γμν = −16πG
c4 T μν . (7.24)

These equations are formally identical to Maxwell’s equations in Lorenz
gauge, and therefore admit the same solutions. Defining the Green’s
function of the d’Alembert operator � by

�G(x, x′) = �G(t, t′, �x, �x ′) = −4πδD(t − t′, �x − �x ′) (7.25)

and using x0 = ct instead of t, we find the retarded Greens function

G(x, x′) =
1

|�x − �x ′|
δD

(
x0 − x′ 0 − |�x − �x ′|

)
. (7.26)

Using it, we arrive at the particular solution

γμν(x) =
4G
c4

∫ Tμν
(
x0 − |�x − �x ′|, �x ′

)
|�x − �x ′|

d3x′ (7.27)

for the linearised field equation. Of course, arbitrary solutions of the
homogeneous (vacuum) wave equation can be added.

Thus, similar to electrodynamics, the metric perturbation consists of the
field generated by the source plus wave-like vacuum solutions propagat-
ing at the speed of light.
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7.3 Nearly Newtonian gravity

7.3.1 Newtonian approximation of the metric

A nearly Newtonian source of gravity can be described by the approxi-
mations T00 � |T0 j| and T00 � |Ti j|, which express that mean velocities
are small, and the rest-mass energy dominates the kinetic energy. Then,
we can also neglect retardation effects and write

γ00(�x ) =
4G
c2

∫
ρ(�x ′) d3x′

|�x − �x ′|
= −4

Φ(�x )
c2 , (7.28)

where Φ(�x ) is the ordinary Newtonian gravitational potential. All other
components of the metric perturbation γμν vanish,

γ0 j = 0 = γi j . (7.29)

Then, the full metric

gμν = ημν + hμν = ημν +
(
γμν −

1
2
ημνγ

)
(7.30)

has the components

g00 = −
(
1 +

2Φ
c2

)
, g0 j = 0 , gi j =

(
1 − 2Φ

c2

)
δi j , (7.31)

creating the line element

ds2 = −
(
1 +

2Φ
c2

)
c2dt2 +

(
1 − 2Φ

c2

)
(dx2 + dy2 + dz2) . (7.32)

Far away from a source with mass M, the monopole term −GM/r domi-
nates the gravitational potential Φ in (7.28). Thus, we find:

?

What does it mean to say that the
monopole term dominates the po-
tential? Which other terms could
contribute?Metric in the Newtonian limit

In the Newtonian limit, the weakly perturbed metric of a mass M has
the line element

ds2 = −
(
1 − 2GM

rc2

)
c2dt2 +

(
1 +

2GM
rc2

) (
dx2 + dy2 + dz2

)
. (7.33)

7.3.2 Gravitational lensing and the Shapiro delay

Two interesting conclusions can be drawn directly from (7.32). Since
light follows null geodesics, light propagation is characterised by ds2 = 0
or (

1 +
2Φ
c2

)
c2dt2 =

(
1 − 2Φ

c2

)
d�x 2 , (7.34)
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which implies that the light speed in a (weak) gravitational field is

c′ =
|d�x |
dt
=

(
1 +

2Φ
c2

)
c (7.35)

to first order in Φ.

Since Φ ≤ 0 if normalised such that Φ→ 0 at infinity, c′ ≤ c, which we
can express by the index of refraction for a weak gravitational field,

n =
c
c′
= 1 − 2Φ

c2 . (7.36)

Index of refraction of a gravitational field

A weak gravitational field with Newtonian gravitational potential Φ
has the effective index of refraction

n = 1 − 2Φ
c2 ≥ 1 . (7.37)

This can be used to calculate light deflection using Fermat’s principle,
which asserts that light follows a path along which the light-travel time
between a fixed source and a fixed observer is extremal, thus

δ

∫
dt = δ

∫
dx
c′

⇒ δ

∫
n(�x )|d�x | = 0 . (7.38)

Introducing a curve parameter λ, we can write �x = �x(λ), thus |d�x | =
(�̇x 2)1/2dλ and

δ

∫
n
(
�x
) (
�̇x 2
)1/2

dλ = 0 , (7.39)

where the overdot denotes derivation with respect to λ.

The variation leads to the Euler-Lagrange equation

∂L
∂�x

− d
dλ
∂L

∂�̇x
= 0 with L ≡ n

(
�x
) (
�̇x 2
)1/2
. (7.40)

Thus, we find (
�̇x 2
)1/2 �∇n − d

dλ

[
n�̇x
(
�̇x 2
)−1/2

]
= 0 . (7.41)

We can simplify this expression by choosing the curve parameter such
that �̇x is a unit vector �e, hence

�∇n −
(
�e · �∇n

)
�e − n�̇e = 0 . (7.42)?

Perform the calculation yourself
leading from (7.39) to (7.42). The first two terms are the component of �∇n perpendicular to �e, and �̇e is

the change of direction of the tangent vector along the light ray. Thus,

�̇e = �∇⊥ ln n = − 2
c2
�∇⊥Φ (7.43)
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to first order in Φ. The total deflection angle is obtained by integrating �̇e
along the light path.

As a second consequence, we see that the light travel time along an
infinitesimal path length dl is

dt =
dl
c′
= n

dl
c
=

(
1 − 2Φ

c2

)
dl
c
. (7.44)

Shapiro delay

Compared to light propagation in vacuum, there is thus a time delay

Δ(dt) = dt − dl
c
= −2Φ

c3 dl , (7.45)

which is called the Shapiro delay.

?

How could the Shapiro delay be
measured?

Example: Time delay in a gravitationally-lensed quasar

Gravitational bending of light can lead to multiple light paths, or null
geodesics, leading from a single source to the observer. Then, the
observer sees the source multiply imaged. If the source is variable,
the Shapiro delay, together with the different geometrical lengths of
the light paths, leads to a measureable time shift between the images:
shifted copies of the light curves are then seen in the individual images.
Many such time delays caused by gravitational lensing have been ob-
served. A recent example is the time delay of (111.3±3) days measured
in the doubly-imaged quasar SDSS 1206 + 4332. Such measurements
are important for cosmology because the allow determinations of the
Hubble constant, i.e. the relative expansion rate of the Universe. �

7.3.3 The gravitomagnetic field

At next order in powers of c−1, the current terms in the energy-momentum
tensor appear, but no stresses yet. That is, we now approximate Ti j = 0
and use the field equations

�γi j = 0 , �γ0μ = −
16πG

c4 T0μ . (7.46)

?

How could boundary conditions
be taken into account in solving
equation (7.46)? Which bound-
ary conditions could be appro-
priate? Compare with electrody-
namics.

Now, we set Aμ ≡ γ0μ/4 and obtain the Maxwell-type equations

�Aμ = −
4π
c2 jμ , (7.47)

where the current density jμ ≡ GT0μ/c2 was introduced. According to
our earlier result (7.28), A0 = −Φ/c2. This similarity to electromagnetic
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theory naturally leads to the introduction of “electric” and “magnetic”
components of the gravitational field.

Suppose now that the field is quasi-stationary, so that time derivatives
of the metric γμν can be neglected. Then, �∇2γi j = 0 everywhere because
Ti j = 0 was assumed, thus γi j = 0, and the potentials Aμ determine the
field completely. They are

A0 = −
Φ

c2 , Ai =
G
c4

∫
T0i(�x ′ ) d3x′

|�x − �x ′ |
, (7.48)

and the components of the metric g are, according to (7.30),

g00 = −1 + 2A0 , g0i = γ0i = 4Ai , gi j = (1 + 2A0)δi j . (7.49)

Gravitomagnetic potential

Matter currents create a magnetic gravitational potential similar to the
electromagnetic vector potential.

The most direct approach to the equations of motion starts from the
variational principle (4.5), or

δ

∫ (
−gμν ẋμ ẋν

)1/2
dt = 0 , (7.50)

where the dot now denotes the derivative with respect to the coordinate
time t. The radicand is

c2 − 2c2A0 − 8c�A ·�v −�v 2 , (7.51)

where we have neglected terms of order Φ�v 2 since the velocities are
assumed to be small compared to the speed of light.

Using (7.51), we can reduce the least-action principle (7.51) to the
Euler-Lagrange equations with the effective Lagrangian

L = �v
2

2
+ A0c2 + 4c�A ·�v . (7.52)

We first find

∂L
∂�v
= �v + 4c�A ⇒ d

dt
∂L
∂�v
=

d�v
dt
+ 4c(�v · �∇)�A . (7.53)

Using the vector identity
?

Convince yourself of the vector
identity (7.54).

�∇(�a · �b) = (�a · �∇)�b + (�b · �∇)�a + �a × �∇ × �b + �b × �∇ × �a , (7.54)

we further obtain

∂L
∂�x
= c2�∇A0 + 4c

[
(�v · �∇)�A +�v × (�∇ × �A)

]
, (7.55)
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from which we obtain the equations of motion

d�v
dt
≡ �f = c2�∇A0 + 4c�v × (�∇ × �A) , (7.56)

in which the (specific) force term on the right-hand side corresponds to
the Lorentz force in electrodynamics.

Let us consider now a small body characterised by its density suspended
in a gravitomagnetic field; “small” means that the field can be considered
constant across it. It experiences the torque about its centre-of-mass

�M =
∫

d3x �x × ρ �f (7.57)

= −c2�∇A0 ×
∫

d3x �xρ + 4c
∫

d3x �x ×
(
�j × �B

)
,

where �j = ρ�v is the matter current density and �B = �∇ × �A is the gravit-
omagnetic field. With the coordinates’ being centred on the centre-of-
mass, the first term vanishes. A non-trivial calculation carried out in the
In-depth box “Spin in a gravitomagnetic field” shows that the second
term gives

�M = 2c
(∫

d3x �x × �j
)
× �B = 2c�s × �B , (7.58)

where �s is the intrinsic angular momentum of the body, i.e. its spin.

?

Can you prove (7.64) in the In-
depth box “Spin in a gravitomag-
netic field” with partial integra-
tion in one of the two terms? Do
you need any further conditions
for doing so?

Thus, the body’s spin changes according to

�̇s = �M = 2c�s × �B . (7.59)

Let us now orient the coordinate frame such that �B = B�e3, i.e. B1 = 0 =
B2. Then,

ṡ1 = 2cBs2 , ṡ2 = −2cs1B . (7.60)

Introducing σ = s1 + is2 turns this into the single equation

σ̇ = −2cBiσ , (7.61)

which is solved by the ansatz σ = σ0 exp(iωt) if ω = −2cB. This shows
that:

Lense-Thirring effect

A spinning body in a gravitomagnetic field will experience spin preces-
sion with the angular frequency

�ω = −2c�B = −2c�∇ × �A , (7.62)

which is called the Lense-Thirring effect.
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Example: Measurement of spin precession near the Earth

On April 20th, 2004, the satellite Gravity Probe B was launched in order
to measure the combined geodetic and Lense-Thirring precessions of
four spinning quartz spheres. For the orbit of the satellite, general
relativity predicts a geodetic precession of −6606.1 mas yr−1 and a
Lense-Thirring precession of −39.2 mas yr−1. The data taken between
August 28th, 2004, and August 14th, 2005, were analysed until mid-
2011 and resulted in a geodetic precession of (−6601.8±18.3) mas yr−1

(cf. Eq. 9.94) and a Lense-Thirring precession of (−37.2±7.2) mas yr−1,
confirming the predictions, albeit less precisely than planned (Phys.
Rev. Lett. 106 (2011) 221101). �

7.4 Gravitational waves

7.4.1 Polarisation states

As shown in (7.24), the linearised field equations in vacuum are

�γμν = 0 , (7.69)

if the Hilbert gauge condition (7.21) is enforced,

∂νγ
μν = 0 . (7.70)

Within the Hilbert gauge class, we can further require that the trace of
γμν vanish,

γ = γμμ = 0 . (7.71)

To see this, we return to the gauge transformation (7.20), which implies

γ → γ + 2∂μξμ − 4∂μξμ = γ − 2∂μξμ , (7.72)

i.e. if γ � 0, we can choose the vector ξμ such that

2∂μξμ = γ . (7.73)

Moreover, (7.22) shows that the Hilbert gauge condition remains pre-
served if ξμ satisfies the d’Alembert equation

�ξμ = 0 (7.74)

at the same time. It can be generally shown that vector fields ξμ can be
constructed which indeed satisfy (7.74) and (7.74) at the same time. If
we arrange things in this way, (7.14) shows that then hμν = γμν.

?

How would you construct a solu-
tion to both equations (7.73) and
(7.73)? All functions propagating with the light speed satisfy the d’Alembert

equation (7.69). In particular, we can describe them as superpositions of
plane waves

γμν = hμν = Re
(
εμνei〈k,x〉

)
(7.75)
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In depth: Spin in a gravitomagnetic field

On the precession frequency of angular momentum

We begin by noting that �x × (�j × �B) � (�x × �j) × �B because the vector
product is not associative, but rather satisfies the Jacobi identity (2.33).
The double vector product can be expressed by two scalar products,

�x ×
(
�j × �B

)
=
(
�x · �B

)
�j −

(
�x · �j

)
�B , (7.63)

which is also known as the Grassmann identity. For a body rotating
with an angular frequency �ω, the matter-current density is �j = ρ�ω × �x,
thus �x ⊥ �j, making the second term on the right-hand side of (7.63)
vanish. For evaluating the first term, it is important to realise that
�∇ · �j = 0, which is guaranteed here by the continuity equation. Then,
for arbitrary functions f and g,∫

d3x
(

f�j · �∇g + g�j · �∇ f
)
= 0 . (7.64)

The proof is straightforward, integrating the second term by parts.
Setting f = xi and g = xk in (7.64) gives∫

d3x (xi jk + xk ji) = 0 (7.65)

and thus allows us to write∫
d3x

(
�x · �B

)
ji = Bk

∫
d3x xk ji =

1
2

Bk

∫
d3x (xk ji − xi jk) (7.66)

or ∫
d3x

(
�x · �B

)
�j =

1
2

∫
d3x

[(
�B · �x

)
�j −

(
�B · �j

)
�x
]
. (7.67)

Reading the Grassmann identity (7.63) backwards finally enables us to
bring the right-hand side of (7.67) into the form∫

d3x
(
�x · �B

)
�j =

1
2
�B ×

∫
d3x �j × �x︸��������︷︷��������︸
=−�s

=
1
2
�s × �B , (7.68)

as used in (7.58).
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with amplitudes given by the so-called polarisation tensor εμν. They
satisfy the d’Alembert equation if

k2 = 〈k, k〉 = kμkμ = 0 . (7.76)

The Hilbert gauge condition then requires

0 = ∂νhμν ⇒ kνεμν = 0 , (7.77)

and (7.71) is satisfied if the trace of εμν vanishes,

εμμ = 0 . (7.78)

The five conditions (7.78) and (7.78) imposed on the originally ten inde-
pendent components of εμν leave five independent components. Without
loss of generality, suppose the wave propagates into the positive z direc-
tion, then

kμ = (k, 0, 0, k) , (7.79)

and (7.77) implies
ε0μ = ε3μ ; (7.80)

specifically,

ε00 = ε30 = ε03 = ε33 and ε01 = ε31 , ε02 = ε32 , (7.81)

while (7.78) means

− ε00 + ε11 + ε22 + ε33 = 0 . (7.82)

Since ε33 = ε00, this last equation means

ε11 + ε22 = 0 . (7.83)

Therefore, all components of εμν can be expressed by five of them, as
follows:

εμν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε00 ε01 ε02 ε00

ε01 ε11 ε12 ε01

ε02 ε12 −ε11 ε02

ε00 ε01 ε02 ε00

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (7.84)

Now, a gauge transformation belonging to a vector field

ξμ = Re
(
iεμei〈k,x〉

)
(7.85)

which keeps the metric perturbation hμν trace-less,

∂μξ
μ = 0 , (7.86)

changes the polarisation tensor according to

εμν → εμν + kμεν + kνεμ (7.87)
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for the k vector specified in (7.79), we thus have

ε00 → ε00 + 2kε0 , ε01 → ε01 + kε1 , ε02 → ε02 + kε2 ,

ε11 → ε11 , ε12 → ε12 . (7.88)

The condition (7.86) implies that kμεμ = 0, hence ε0 = ε3. We can then
use (7.88) to make ε00, ε01 and ε02 vanish, and only the gauge-invariant
components ε11 and ε12 are left. Then

εμ =
1
2k

(
−ε00,−2ε01 − 2ε02,−ε00

)
(7.89)

fixes the gauge transformation, and the polarisation tensor is reduced to

εμν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0
0 ε11 ε12 0
0 ε12 −ε11 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (7.90)

?

Carry out all steps yourself lead-
ing from (7.77) to (7.90).

Gauge-invariant polarisation states

As for electromagnetic waves, there are only two gauge-invariant, lin-
early independent polarisation states for gravitational waves.

?

How are polarisation states of
electromagnetic waves being de-
scribed? Recall the Stokes pa-
rameters and their meaning.

Under rotations about the z axis by an arbitrary angle φ, the polarisation
tensor changes according to

ε′μν = RμαR
ν
βε
αβ , (7.91)

where R is the rotation matrix with the components

R(φ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0
0 cos φ sin φ 0
0 − sin φ cos φ 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (7.92)

Carrying out the matrix multiplication yields

ε′11 = ε11 cos 2φ + ε12 sin 2φ

ε′12 = −ε11 sin 2φ + ε12 cos 2φ . (7.93)

Defining ε± ≡ ε11 ∓ iε12, this can be written as

ε′± = e±2iφε± , (7.94)

which shows that the two polarisation states ε± have helicity ±2, and
thus that they correspond to left and right-handed circular polarisation.
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7.4.2 Generation of gravitational waves

We return to (7.27) to see how gravitational waves can be emitted. From
the start, we introduce the two simplifications that the source is far away
and changing with a velocity small compared to the speed-of-light. Then,
we can replace the distance |�x − �x ′ | by

|�x − �x ′ | ≈ |�x | = r (7.95)

because “far away” means that the source is small compared to its
distance. Moreover, we can approximate the retarded time coordinate x0

as follows:

x0 − |�x − �x ′ | = x0 −
√

(�x − �x ′ )2 = x0 −
√
�x 2 + �x ′2 − 2�x · �x ′

≈ x0 − r + �x ′ · �er , (7.96)

where �er is the unit vector in radial direction. Then, we obtain

γμν(t, �x ) = −4G
rc4

∫
Tμν

(
t − r − �x ′ · �er

c
, �x ′

)
d3x′ . (7.97)

Under the assumption of slow motion, we can further ignore the direc-
tional dependence of the retarted time, thus approximate �x ′ · �er = 0, and
write

γμν(t, �x ) = −4G
rc4

∫
Tμν

(
t − r

c
, �x ′

)
d3x′ . (7.98)

While this is already the essential result, a sequence of transformations
of the right-hand side now leads to further important insight.

By means of the local conservation law ∂νT μν = 0, we can begin by
simplifying the integral on the right-hand side of (7.98):

0 =
∫

xk∂νT μνd3x =
1
c
∂t

∫
xkT 0μd3x +

∫
xk∂lT lμd3x

=
1
c
∂t

∫
xkT 0μd3x −

∫
T lμδk

l d
3x , (7.99)

where the second term on the right-hand side was partially integrated, as-
suming that boundary terms vanish (i.e. enclosing the source completely
in the integration boundary). Thus, we see that the volume integral over
the energy-momentum tensor can be written as a time derivative,∫

T kμd3x =
1
c
∂t

∫
xkT 0μd3x . (7.100)

From Gauß’ theorem, we infer that the volume integral over the diver-
gence of a vector field equals the integral of the vector field over the
boundary of the volume and must vanish if the field disappears on the
surface, ∫

∂ j

(
T j0xlxk

)
d3x = 0 . (7.101)
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This result, together with ∂νT μν = 0, enables us to write

1
c
∂t

∫
T 00xlxkd3x =

∫
∂ν
(
T ν0xlxk

)
d3x =

∫
T ν0∂ν

(
xlxk

)
d3x

=

∫
T ν0

(
δk
νx

l + xkδl
ν

)
d3x

=

∫ (
T k0xl + T l0xk

)
d3x . (7.102)

Taking a further partial time derivative of (7.102) and using (7.100)
results in

1
2c2∂

2
t

∫
(T 00xkxl)d3x =

1
2c
∂t

∫
(T k0xl + T l0xk)d3x (7.103)

=
1
2

∫
(T kl + T lk)d3x =

∫
T kld3x .

The spatial components of the metric perturbation γμν thus turn out to be
given by the second time derivative

γ jk(t, �x) = −2G
rc6∂

2
t

∫
T 00

(
t − r

c
, �x ′

)
x′ jx′kd3x′ . (7.104)

?

Convince yourself of all the steps
leading from (7.99) to (7.103).
Verify that the expression (7.104)
for the metric perturbation has
the correct units.

If we further use that the T 00 component of the energy-momentum tensor
is well approximated by the matter density if the source’s material is
moving slowly, we arrive at the main result of this sequence of transfor-
mations:

Source of gravitational waves

Wave-like metric perturbations in vacuum are created by the second
time derivative of a matter distribution with density ρ,

γ jk(t, �x) = −2G
rc4∂

2
t

∫
ρ
(
t − r

c
, �x ′

)
x′ jx′kd3x′ . (7.105)

?

Why can electromagnetic waves
be created by a time-dependent
dipole moment instead?

Finally, we can further simplify the physical interpretation of this result
by introducing the source’s quadrupole tensor, which is defined by

Qjk =

∫ (
3x jxk − r2δ jk

)
ρ(�x )d3x . (7.106)

It allows us to rewrite the metric perturbation from (7.105) as

γ jk = −
2G

3rc4

[
∂2

t Q jk

(
t − r

c
, �x
)
+ δ jk∂

2
t

∫
r′2ρ

(
t − r

c
, �x ′

)
d3x ′

]
.

(7.107)

?

Calculate the quadrupole mo-
ment of a binary star with compo-
nents having masses M1 and M2,
orbiting each other on a circular
orbit with radius r.

Generation of gravitational waves

In order to generate gravitational waves, a mass distribution needs to
have a quadrupole moment with a non-vanishing second time derivative.
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7.4.3 Energy transport by gravitational waves

The energy current density of electromagnetic waves is given by the
time-space components T 0i

GW of their energy-momentum tensor. The
01-component, i.e. the energy current density propagating into the x1

direction, can be shown to be

T 01
GW =

c3

32πG

〈
2γ̇2

23 +
1
2

(γ̇22 − γ̇33)2
〉
, (7.108)

which can be written with the help of (7.107) as

T 01
GW =

G
72πr2c5

〈
2
...
Q2

23 +
1
2

(...
Q22 −

...
Q33

)2〉
, (7.109)

showing one of the rare cases of a third time derivative in physics.
?

Does the expression (7.109) have
the correct units?

The transversal quadrupole tensor is

QT =

(
Q22 Q23

Q32 Q33

)
(7.110)

because the direction of propagation was chosen as the x1 axis. Defining
the transversal trace-free quadrupole tensor by

QTT := QT − I
2

Tr QT =
1
2

(
Q22 − Q33 2Q23

2Q23 −(Q22 − Q33)

)
, (7.111)

we see that an invariant expression for the right-hand side of (7.109) is
given by

Tr
(
QTTQTT

)
=

1
2

(Q22 − Q33)2 + 2Q2
23 , (7.112)

and thus the energy current density in gravitational waves has the com-
ponents

T 0i
GW =

G
72πr2c5

〈
Tr
(
QTTQTT

)〉
. (7.113)

Einstein’s quadrupole formula

A final integration over a sphere with radius r yields Einstein’s famous
quadrupole formula for the gravitational-wave “luminosity”,

LGW =
G

5c5

〈
Tr
(...
Q2)〉

. (7.114)
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Example: First direct detection of gravitational waves

On September 14th, 2015, the LIGO interferometers at Hanford
(Washington, USA) and Livingston (Louisiana, USA) registered the
gravitational-wave signal summarised in Fig. 7.1. The figure shows that
the frequency f increased from ≈ 50 Hz to ≈ 100 Hz within ≈ 40 ms.
Inserting f ≈ 75 Hz and ḟ ≈ 50 Hz/0.04 s ≈ 1250 Hz s−1 into the for-
mula (7.128) derived in the In-depth box “The chirp mass of a binary
star” for the chirp mass M gives

M ≈ 30 M
 . (7.115)

For two equal masses m1 = m2 =: m, M = 2m and μ = m/2, thus

M = m
21/5 , m ≈ 1.15M ≈ 35 M
 . (7.116)

At an orbital frequency of ω = π f ≈ 240 Hz, Kepler’s third law (7.123)
requires the two masses to be separated by

R ≈
(
2Gm
ω2

)1/3

≈ 550 km , (7.117)

less than a thousandth of the Solar radius. No ordinary stars could ever
come as close. Objects of mass m closer than R must be black holes.
The merging black-hole binary became known as GW150914.
Inserting the quadrupole tensor (7.122) into (7.105) leads to

∣∣∣γ jk
∣∣∣ ≤ 4

(
GM
rc2

) (
Gμ
Rc2

)
(7.118)

which, for equal masses, turns into the intuitive expression

∣∣∣γ jk
∣∣∣ ≤ R2

s

Rr
(7.119)

in terms of the Schwarzschild radius Rs = 2Gm/c2. With Rs ≈ 100 km
for m ≈ 35 M
 and |γ jk| � 10−21, the distance of the merging black
holes can be estimated to be

r ≈ 2 · 1027 cm ≈ 600 Mpc . (7.120)

�
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In depth: The chirp mass of a binary star

A Newtonian estimate
Two stars of masses m1,2 separated by a distance R orbit their centre-of-
mass at distances R1,2 with an angular frequency ω. They obey Kepler’s
third law,

ω2 =
GM
R3 , M := m1 + m2 . (7.121)

Assuming circular orbits with radii Ri = miR/M according to the
definition of the centre-of-mass, their quadrupole tensor is

Q = μR2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos2 ωt sinωt cosωt 0
sinωt cosωt sin2 ωt 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ − 1
3
�3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (7.122)

where μ := m1m2/M is the reduced mass. Straightforward calculation
gives

Tr
(...
Q2)
= 32ω6μ2R4 , (7.123)

leading us with (7.114) to the gravitational-wave luminosity

LGW =
32G
5 c5 ω

6μ2R4 . (7.124)

According to the virial theorem, the total energy of the binary star is

E = −1
2

Epot =
1
2
Gm1m2

R
=

1
2
GμM

R
. (7.125)

Its absolute time derivative must equal the gravitational-wave luminos-
ity, |Ė| = LGW. Since R ∝ ω−2/3 from (7.121),

Ṙ
R
= −2

3
ω̇

ω
(7.126)

and thus
|Epot| =

1
3
GμM

R
ω̇

ω
. (7.127)

Equating this to (7.124), using (7.121) to eliminate the radius via the
angular frequency, taking into account that the frequency f of the
gravitational waves emitted by the binary is f = ω/π, and sorting terms
leads to the chirp mass

M :=
(
M2/3μ

)3/5
=

c3

8G

(
5

3π8/3

ḟ
f 11/3

)3/5

. (7.128)

Although this estimate is based on three grossly simplifying assump-
tions: Newtonian gravity, circular orbits, and negligible energy loss per
orbit, the qualitative expression for the chirp mass and its numerical
value are close to the relativistic result in leading-order calculation.
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Figure 7.1 Wave forms and frequency diagrams of the gravitational-wave
signals registered on September 14th, 2015, by the LIGO interferometers
at Hanford and Livingston (USA). This was the first direct detection of
a gravitational wave. The figure shows the strain |γ jk| measured by the
two interferometers, the reconstruction of the signal by comparison to the
signal expected from a merging black-hole binary, and the frequency of the
gravitational waves as a function of time. Since the frequency is increasing
during the event, an acoustic representation resembles a chirp. Source:
Wikipedia






