
Chapter 6

Einstein’s Field Equations

6.1 The physical meaning of curvature

6.1.1 Congruences of time-like geodesics

Having walked through the introductory chapters, we are now ready
to introduce Einstein’s field equations, i.e. the equations describing the
dynamics of the gravitational field. Einstein searched for these equations
essentially between early August 1912, when he moved back from
Prague to Zurich, and November 25, 1915, when he published them in
their final form, meanwhile in Berlin. We shall give a heuristic argument
for the form of the field equations, which should not be mistaken for a
derivation, and later show that these equations follow from a suitable
Lagrangian.

First, however, we shall investigate into the physical role of the curvature
tensor. As we have seen, gravitational fields can locally be transformed
away by choosing normal coordinates, in which the Christoffel symbols
(the connection coefficients) all vanish. By its nature, this does not
hold for the curvature tensor which, as we shall see, is related to the
gravitational tidal field. Thus, in this sense, the gravitational tidal field
has a more profound physical significance as the gravitational field itself.

Let us begin with a congruence of geodesics. This is a bundle of time-like
geodesics imagined to run through every point of a small environment
U ⊂ M of a point p ∈ U.

Caution Note that the proper
time cannot be used for parame-
terising light rays. In Chapter 13,
an affine parameter will be intro-
duced instead. �

Let the geodesics be parameterised by the proper time τ along them,
and introduce a curve γ transversal to the congruence, parameterised
by a curve parameter λ. Transversal means that the curve γ is nowhere
parallel to the congruence.
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78 6 Einstein’s Field Equations

When normalised, the tangent vector to one of the time-like geodesics
can be written as

u = ∂τ with 〈u, u〉 = −1 . (6.1)

Since it is tangent to a geodesic, it is parallel-transported along the
geodesic,

∇uu = 0 . (6.2)

Similarly, we introduce a unit tangent vector v along the curve γ,

v = γ̇ = ∂λ . (6.3)

Since the partial derivatives with respect to the curve parameters τ and
λ commute, so do the vectors u and v, and thus v is Lie-transported (or
Lie-invariant) along u,

0 = [u, v] = Luv . (6.4)

γ

u

v

Figure 6.1 Geodesic bundle with tangent vector u of the fiducial geodesic,
the curve γ towards a neighbouring geodesic, and tangent vector v = γ̇.

Now, we project v on u and define a vector n which is perpendicular to u,

n = v + 〈v, u〉u , (6.5)

which does indeed satisfy 〈n, u〉 = 0 because of 〈u, u〉 = −1. This vector
is also Lie-transported along u, as we shall verify now.
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First, we have

Lun = [u, n] = [u, v] + [u, 〈v, u〉u]
= u(〈v, u〉)u = (∂τ〈v, u〉)u , (6.6)

where (6.4) was used in the first step. Since 〈u, u〉 = −1, we have

0 = ∂λ〈u, u〉 = v〈u, u〉 = 2〈∇vu, u〉 , (6.7)

if we use the Ricci identity (3.69).

?

Go through all steps leading from
(6.6) to (6.9) and convince your-
self of them.But the vanishing commutator between u and v and the symmetry of the

connection imply ∇vu = ∇uv, and thus

∂τ〈u, v〉 = u〈u, v〉 = 〈∇uu, v〉 + 〈u,∇uv〉 = 〈u,∇vu〉 = 0 , (6.8)

where the Ricci identity was used in the second step, the geodesic prop-
erty (6.2) in the third, and (6.7) in the last. Returning to (6.6), this proves
that n is Lie-transported,

Lun = 0 . (6.9)

The perpendicular separation vector between neighbouring geodesics of
the congruence is thus Lie-invariant along the congruence.

6.1.2 The curvature tensor and the tidal field

Now, we take the second derivative of v along u,

∇2
uv = ∇u∇uv = ∇u∇vu = (∇u∇v − ∇v∇u)u , (6.10)

where we have used again that u and v commute and that u is a geodesic.
With [u, v] = 0, the curvature (3.51) applied to u and v reads

R̄(u, v)u = (∇u∇v − ∇v∇u)u . (6.11)

Jacobi equation

In this way, we see that the second derivative of v along u is determined
by the curvature tensor through the Jacobi equation

∇2
uv = R̄(u, v)u . (6.12)

Let us now use this result to find a similar equation for n. First, we
observe that

∇un = ∇uv + ∇u (〈v, u〉u) = ∇uv + (∂τ〈v, u〉)u = ∇uv (6.13)

because of (6.8). Thus ∇2
un = ∇2

uv and

∇2
un = R̄(u, v)u . (6.14)
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We then use

R̄(u, n) = R̄(u, v + 〈u, v〉u) = R̄(u, v) + 〈u, v〉R̄(u, u) = R̄(u, v) (6.15)

to arrive at the desired result:

Equation of geodesic deviation

The separation vector n between neighbouring geodesics obeys the
equation

∇2
un = R̄(u, n)u . (6.16)

This is called the equation of geodesic deviation because it describes
directly how the separation between neighbouring geodesics evolves
along the geodesics according to the curvature.

Finally, let us introduce a coordinate basis {ei} in the subspace perpen-
dicular to u which is parallel-transported along u. Since n is confined to
this subspace, we can write

n = niei (6.17)

and thus

∇un = (uni)ei + (ni∇u)ei =
dni

dτ
ei . (6.18)

Since u is normalised and perpendicular to the space spanned by the
triad {ei}, we can form a tetrad from the ei and e0 = u. The equation of
geodesic deviation (6.16) then implies

d2ni

dτ2 ei = R̄(e0, nje j)e0 = njR̄(e0, e j)e0 = njR̄i
00 j ei . (6.19)

Thus, defining a matrix K by

d2ni

dτ2 = R̄i
00 j n j ≡ Ki

jn
j , (6.20)

we can write (6.19) in matrix form

d2�n
dτ2 = K�n . (6.21)

Note that K is symmetric because of the symmetries (3.81) of the curva-
ture tensor.

Moreover, the trace of K is

Tr K = R̄i
00i = R̄μ00μ = −R00 = −Rμνuμuν , (6.22)

where we have inserted R̄0
000 = 0 and the definition of the Ricci tensor

(3.57).
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Let us now compare this result to the motion of test bodies in Newtonian
theory. At two neighbouring points �x and �x + �n, we have the equations
of motion

ẍi = − (∂iΦ)|�x (6.23)

and, to first order in a Taylor expansion,

ẍi + n̈i = − (∂iΦ)|�x+�n ≈ − (∂iΦ)|�x − (∂i∂ jΦ)
∣∣∣
�x

n j . (6.24)

Subtracting (6.23) from (6.24) yields the evolution equation for the
separation vector.

Relative acceleration in Newtonian gravity

In Newtonian gravity, the separation vector between any two particle
trajectories changes due to the tidal field according to

n̈i = −(∂i∂ jΦ)nj . (6.25)

This equation can now be compared to the result (6.21).

Taking into account that

d2ni

dτ2 =
n̈i

c2 = −
(
∂i∂ jΦ

c2

)
nj , (6.26)

we see that the matrix K in Newton’s theory is

K(N)
i j = −

∂i∂ jΦ

c2 , (6.27)

and its trace is

Tr K(N) = −
�∇2Φ

c2 = −
ΔΦ

c2 , (6.28)

i.e. the negative Laplacian of the Newtonian potential, scaled by the
squared light speed.

Tidal field and curvature

The essential results of this discussion are the correspondences

R̄i
0 j0 ↔

∂i∂ jΦ

c2 (6.29)

and

Rμνuμuν ↔
�∇2Φ

c2 . (6.30)

These confirm the assertion that the curvature represents the gravita-
tional tidal field, describing the relative accelerations of freely-falling
test bodies; (6.29) and (6.30) will provide useful guidance in guessing
the field equations.
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6.2 Einstein’s field equations

6.2.1 Heuristic “derivation”

We start from the field equation from Newtonian gravity, i.e. the Poisson
equation

4πGρ = �∇2Φ = −c2 Tr K(N) . (6.31)

The density ρ can be expressed by the energy-momentum tensor T . For
an ideal fluid, we have

T = (ρc2 + p)u� ⊗ u� + pg , (6.32)

from which we find because of 〈u, u〉 = −1

T (u, u) = ρc2 . (6.33)

Moreover, its trace is

Tr T = −ρc2 + 3p ≈ −ρc2 (6.34)

because p 	 ρc2 under Newtonian conditions (the pressure is much less
than the energy density).

?

Write equations (6.32) and (6.33)
in components. At what level are
the indices? Hence, let us take a constant λ ∈ R, put

ρc2 = λT (u, u) + (1 − λ) Tr T g(u, u) (6.35)

and insert this into the field equation (6.31), using (6.22) for the trace of
K. We thus obtain

R(u, u) =
4πG
c4

[
λT + (1 − λ) Tr T g

]
(u, u) . (6.36)

Since this equation should hold for any observer and thus for arbitrary
four-velocities u, we find

R =
4πG
c4

[
λT + (1 − λ) Tr T g

]
, (6.37)

where λ ∈ R remains to be determined.

We take the trace of (6.37), obtain

Tr R = R = 4πG
c4 [λ + 4(1 − λ)] Tr T (6.38)

and combine this with (6.37) to assemble the Einstein tensor (3.90),

G = R − R
2
g

=
4πG
c4

(
λT − 2 − λ

2
Tr T g

)
. (6.39)
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We have seen in (3.91) that the Einstein tensor G satisfies the contracted
Bianchi identity

∇ ·G = 0 . (6.40)

Likewise, the divergence of the energy-momentum tensor must vanish
in order to guarantee local energy-momentum conservation,

∇ · T = 0 . (6.41)

These two conditions are generally compatible with (6.39) only if we
choose λ = 2, which specifies the field equations.

Einstein’s field equations

Einstein’s field equations, published on November 25th, 1915, relate
the Einstein tensor G to the energy-momentum tensor T as

G =
8πG
c4 T . (6.42)

An equivalent form follows from (6.37),

R =
8πG
c4

(
T − 1

2
Tr T g

)
. (6.43)

?

Convince yourself that equations
(6.42) and (6.43) are equivalent.

6.2.2 Uniqueness

In the appropriate limit, Einstein’s equations satisfy Newton’s theory by
construction and are thus one possible set of gravitational field equations.
A remarkable theorem due to David Lovelock (1938–) states that they are
the only possible field equations under certain very general conditions.

It is reasonable to assume that the gravitational field equations can be
written in the form

D[g] = T , (6.44)

where the tensor D[g] is a functional of the metric tensor g and T is
the energy-momentum tensor. This equation says that the source of the
gravitational field is assumed to be expressed by the energy-momentum
tensor of all matter and energy contained in spacetime. Now, Lovelock’s
theorem states:
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Lovelock’s theorem

If D[g] depends on g and its derivatives only up to second order, then
it must be a linear combination of the Einstein and metric tensors,

D[g] = αG + βg , (6.45)

with α, β ∈ R. This absolutely remarkable theorem says that G must be
of the form

G = κT − Λg , (6.46)

with κ and Λ are constants. The correct Newtonian limit then requires
that κ = 8πGc−4, and Λ is the “cosmological constant” introduced by
Einstein for reasons which will become clear later.

?

Express the coefficients α and β
in terms of κ and Λ.

6.3 Lagrangian formulation

6.3.1 The action of general relativity

The remarkable uniqueness of the tensor D shown by Lovelock’s theo-
rem lets us suspect that a Lagrangian formulation of general relativity
should be possible starting from a scalar constructed from D, most nat-
urally its contraction TrD, which is simply proportional to the Ricci
scalar R if we ignore the cosmological term proportional to Λ for now.

Writing down the action, we have to take into account that we require an
invariant volume element, which we obtain from the canonical volume
form η introduced in (5.69). Then, according to (5.92) and (5.93), we
can represent volume integrals as∫

M
η =

∫
U

√
−g d4x , (6.47)

where
√−g is the square root of the determinant of g, and U ⊂ M admits

a single chart. Recall that, if we need to integrate over a domain covered
by multiple charts, a sum over the domains of the individual charts is
understood.

Thus, we suppose that the action of general relativity in a compact region
D ⊂ M with smooth boundary ∂D is

S GR[g] =
∫

D
R[g]η =

∫
D
R[g]

√
−g d4x . (6.48)

6.3.2 Variation of the action

Working out the variation of this action with respect to the metric com-
ponents gμν, we write explicitly

R = gμνRμν (6.49)
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and thus

δS GR =

∫
D
δ
(
gμνRμν

√
−g
)

d4x (6.50)

=

∫
D
δRμν gμν

√
−g d4x +

∫
D

Rμνδ
(
gμν

√
−g
)

d4x .

We evaluate the variation of the Ricci tensor first, using its expression
(3.57) in terms of the Christoffel symbols. Matters simplify considerably
if we introduce normal coordinates, which allow us to ignore the terms
in (3.57) which are quadratic in the Christoffel symbols. Then, the Ricci
tensor specialises to

Rμν = ∂αΓαμν − ∂νΓαμα , (6.51)

and its variation is

δRμν = ∂α(δΓαμν ) − ∂ν(δΓαμα ) . (6.52)

Although the Christoffel symbols do not transform as tensors, their
variation does, as the transformation law (3.6) shows. Thus, we can
locally replace the partial by the covariant derivatives and write

δRμν = ∇α(δΓαμν ) − ∇ν(δΓαμα ) , (6.53)

which is a tensor identity, called the Palatini identity, and thus holds in
all coordinate systems everywhere. It implies

gμνδRμν = ∇α
(
gμνδΓαμν − gμαδΓνμν

)
, (6.54)

where the indices α and ν were swapped in the last term. Thus, the
variation of the Ricci tensor, contracted with the metric, can be expressed
by the divergence of a vector W,

gμνδRμν = ∇αWα , (6.55)

whose components Wα are defined by the term in parentheses on the
right-hand side of (6.54).

From Cramer’s rule in the form (4.55), we see that

δg =
∂g

∂gμν
δgμν = gg

μνδgμν . (6.56)

Moreover, since gμνgμν = const. = 4, we conclude

gμνδgμν = −gμνδgμν . (6.57)

Using these expressions, we obtain for the variation of
√−g

δ
√
−g = − δg

2
√−g

=
ggμνδg

μν

2
√−g

= −
√−g

2
gμνδg

μν , (6.58)
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or, in terms of the canonical volume form η,

δη = −1
2
gμνδg

μν η =
1
2
gμνδgμν η . (6.59)

Now, we put (6.58) and (6.55) back into (6.50) and obtain

δS GR =

∫
D
∇αWαη +

∫
D

(
Rμν −

R
2
gμν

)
δgμνη

=

∫
D

Gμνδgμνη +
∫

D
∇αWαη

!
= 0 . (6.60)

Varying gμν only in the interior of D, the divergence term vanishes by
Gauß’ theorem, and admitting arbitrary variations δgμν implies

Gμν = 0 . (6.61)

Vacuum field equations from a variational principle

Including the cosmological constant and using (6.58) once more, we
see that Einstein’s vacuum equations, G + Λg = 0, follow from the
variational principle

δ

∫
D

(R − 2Λ) η = 0 . (6.62)

Caution Notice that we have
ignored a possible boundary term
here which needs to be taken into
account if the manifold has a
boundary. It has become known
as the Gibbons-Hawking-York
boundary term, which plays a
central role e.g. in calculations
of black-hole entropy. �

The complete Einstein equations including the energy momentum tensor
cannot yet be obtained here because no matter or energy contribution to
the Lagrange density has been included yet into the action.

6.4 The energy-momentum tensor

6.4.1 Matter fields in the action

In order to include matter (where “matter” summarises all kinds of matter
and non-gravitational energy) into the field equations, we assume that
the matter fields ψ are described by a Lagrangian L depending on ψ, its
gradient ∇ψ and the metric g,

L(ψ,∇ψ, g) , (6.63)

where ψ may be a scalar or tensor field.

The field equations are determined by the variational principle

δ

∫
D
Lη = 0 , (6.64)
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where the Lagrangian is varied with respect to the fields ψ and their
derivatives ∇ψ. Thus,

δ

∫
D
Lη =

∫
D

(
∂L
∂ψ
δψ +

∂L
∂∇ψ
δ∇ψ

)
η = 0 . (6.65)

As usual, we can express the second term by the difference

∂L
∂∇ψ
δ∇ψ = ∇ ·

(
∂L
∂∇ψ
δψ

)
−
(
∇ · ∂L
∂∇ψ

)
δψ , (6.66)

of which the first term is a divergence which vanishes according to Gauß’
theorem upon volume integration. Combining (6.66) with (6.65), and
allowing arbitrary variations δψ of the matter fields, then yields the
Euler-Lagrange equations for the matter fields,

∂L
∂ψ

− ∇ · ∂L
∂∇ψ

= 0 . (6.67)

Example: Lagrangian of a scalar field

To give an example, suppose we describe a neutral scalar field ψ with
the Lagrangian

L = −1
2
〈∇ψ,∇ψ〉 − m2

2
ψ2 = −1

2
∇μψ∇μψ −

m2

2
ψ2 , (6.68)

where mψ2/2 is a mass term with constant parameter m. The Euler-
Lagrange equations then imply the field equations(

−� + m2
)
ψ =

(
−∇μ∇μ + m2

)
ψ = 0 , (6.69)

which can be interpreted as the Klein-Gordon equation for a particle
with mass m. �

Similarly, we can vary the action with respect to the metric, which
requires care because the Lagrangian may depend on the metric explicitly
and implicitly through the covariant derivatives ∇ψ of the fields, and
the canonical volume form η depends on the metric as well because of
(6.59). Thus,

δ

∫
D
Lη =

∫
D

[
(δL)η +Lδη

]
=

∫
D

(
δL − 1

2
gμνLδgμν

)
η . (6.70)

6.4.2 Field equations with matter

If the Lagrangian does not implicitly depend on the metric, we can write

δL = ∂L
∂gμν
δgμν . (6.71)
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If there is an implicit dependence on the metric, we can introduce normal
coordinates to evaluate the variation of the Christoffel symbols,

δΓαμν =
1
2
gασ

(
∇νδgσμ + ∇μδgσν − ∇σδgμν

)
, (6.72)

which is a tensor, as remarked above, whence (6.72) holds in all co-
ordinate frames everywhere. The derivatives can then be moved away
from the variations of the metric by partial integration, and expressions
proportional to δgμν remain.

Energy-momentum tensor

Thus, it is possible to write the variation of the action with respect to
the metric in the form

δ

∫
D
Lη = −1

2

∫
D

Tμνδgμνη , (6.73)

in which the tensor T is the energy-momentum tensor. If there are no
implicit dependences on the metric, its components are

Tμν = −2
∂L
∂gμν

+Lgμν . (6.74)

?

Derive the energy-momentum
tensor for the matter field de-
scribed by the Lagrangian (6.68).

Example: Energy-momentum tensor of the electromagnetic

field

Let us show by an example that this identification does indeed make
sense. We start from the Lagrangian of the free electromagnetic field,

L = − 1
16π

FαβFαβ = −
1

16π
FαβFγδgαγgβδ . (6.75)

We know from (4.23) that the covariant derivatives in the field ten-
sor F can be replaced by partial derivatives, thus there is no implicit
dependence on the metric. Then, the variation δL is

δL = − 1
8π

FμαFνβgαβδgμν (6.76)

With (6.70), this implies

δ

∫
D
Lη = 1

8π

∫
D

(
FμαFαν +

1
4

FαβFαβgμν

)
δgμνη (6.77)

and, from (6.73), the familiar energy-momentum tensor

T μν =
1

4π

(
FμλFνλ −

1
4
gμνFαβFαβ

)
(6.78)

of the electromagnetic field. �
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Therefore, Einstein’s field equations and the matter equations follow
from the variational principle

δ

∫
D

(
R − 2Λ +

16πG
c4 L

)
η = 0 (6.79)

Since, as we have seen before, the variation of the first two terms yields
G + Λg, and the variation of the third term yields minus one-half of the
energy-momentum tensor, −T/2. In components, the variation yields

Gμν =
8πG
c4 Tμν − Λgμν . (6.80)

This shows that the cosmological constant can be considered as part of
the energy-momentum tensor,

Tμν → Tμν + TΛμν , TΛμν ≡ −
Λc4

8πG
gμν . (6.81)

6.4.3 Equations of motion

Suppose spacetime is filled with an ideal fluid whose pressure p can
be neglected compared to the energy density ρc2. Then, the energy-
momentum tensor (6.32) can be reduced to

T = ρc2 u� ⊗ u� . (6.82)

Conservation of the fluid can be expressed in the following way: the
amount of matter contained in a domain D of spacetime must remain the
same, even if the domain is mapped into another domain φt(D) by the
flow φt of the vector field u with the time t. Thus∫

D
ρη =

∫
φt(D)
ρη . (6.83)

This expression just says that, if the domain D is mapped along the flow
lines of the fluid flow, it will encompass a constant amount of material
independent of time t.

?

Convince yourself recalling the
definition of the pull-back that
(6.84) is correct.Now, we can use the pull-back to write∫

φt(D)
ρη =

∫
D
φ∗t (ρη) , (6.84)

and take the limit t → 0 to see the equivalence of (6.83) and (6.84) with
the vanishing Lie derivative of ρη along u,

Lu(ρη) = 0 . (6.85)
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The Leibniz rule (5.14) yields

(Luρ)η + ρLuη = 0 . (6.86)

Due to (5.15), the first term yields

(Luρ)η = (uρ)η = (ui∂iρ)η = (ui∇iρ)η = (∇uρ)η . (6.87)

For the second term, we can apply equation (5.30) for the components
of the Lie derivative of a rank-(0, 4) tensor, and use the antisymmetry of
η to see that

Luη = (∇μuμ)η = (∇ · u)η . (6.88)

Accordingly, (6.86) can be written as

0 = (∇uρ + ρ∇ · u) η = ∇ · (ρu)η , (6.89)

or
∇μ(ρuμ) = 0 . (6.90)

?

Give a physical interpretation of
equation (6.90). What does it
mean? At the same time, the divergence of T must vanish, hence

0 = ∇νT μν = ∇ν (ρuμuν) = ∇ν (ρuν) uμ + ρuν∇νuμ . (6.91)

The first term vanishes because of (6.90), and the second implies

uν∇νuμ = 0 ⇔ ∇uu = 0 . (6.92)

In other words, the flow lines have to be geodesics. For an ideal fluid, the
equation of motion thus follows directly from the vanishing divergence
of the energy-momentum tensor, which is required in general relativity
by the contracted Bianchi identity (3.91).




