
Chapter 5

Differential Geometry III

5.1 The Lie derivative

5.1.1 The Pull-Back

Following (2.28), we considered one-parameter groups of diffeomor-
phisms

γt : R × M → M (5.1)

such that points p ∈ M can be considered as being transported along
curves

γ : R→ M (5.2)

with γ(0) = p. Similarly, the diffeomorphism γt can be taken at fixed
t ∈ R, defining a diffeomorphism

γt : M → M (5.3)

which maps the manifold onto itself and satisfies γt ◦ γs = γs+t.

We have seen the relationship between vector fields and one-parameter
groups of diffeomorphisms before. Let now v be a vector field on M and
γ from (5.2) be chosen such that the tangent vector γ̇(t) defined by

(γ̇(t))( f ) =
d
dt

( f ◦ γ)(t) (5.4)

is identical with v, γ̇ = v. Then γ is called an integral curve of v.

If this is true for all curves γ obtained from γt by specifying initial points
γ(0), the result is called the flow of v.

The domain of definitionD of γt can be a subset of R×M. IfD = R×M,
the vector field is said to be complete and γt is called the global flow of v.

If D is restricted to open intervals I ⊂ R and open neighbourhoods
U ⊂ M, thus D = I × U ⊂ R × M, the flow is called local.
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64 5 Differential Geometry III

Pull-back

Let now M and N be two manifolds and φ : M → N a map from M
onto N. A function f defined at a point q ∈ N can be defined at a point
p ∈ M with q = φ(p) by

φ∗ f : M → R , (φ∗ f )(p) := ( f ◦ φ)(p) = f [φ(p)] . (5.5)

The map φ∗ “pulls” functions f on N “back” to M and is thus called
the pull-back.

Similarly, the pull-back allows to map vectors v from the tangent space
TpM of M in p onto vectors from the tangent space TqN of N in q. We
can first pull-back the function f defined in q ∈ N to p ∈ M and then
apply v on it, and identify the result as a vector φ∗v applied to f ,

φ∗ : TpM → TqN , v �→ φ∗v = v ◦ φ∗ , (5.6)

such that (φ∗v)( f ) = v(φ∗ f ) = v( f ◦ φ). This defines a vector from the
tangent space of N in q = φ(p).

Push-forward

The map φ∗ “pushes” vectors from the tangent space of M in p to the
tangent space of N in q and is thus called the push-forward.

In a natural generalisation to dual vectors, we define their pull-back φ∗

by
φ∗ : T ∗

q N → T ∗
pM , w �→ φ∗w = w ◦ φ∗ , (5.7)

such that (φ∗w)(v) = w(φ∗v) = w(v ◦ φ∗), where w ∈ T ∗
q N is an element of

the dual space of N in q. This operation “pulls back” the dual vector w
from the dual space in q = φ(p) ∈ N to p ∈ M.

The pull-back φ∗ and the push-forward φ∗ can now be extended to tensors.
Let T be a tensor field of rank (0, r) on N, then its pull-back is defined
by

φ∗ : T 0
r (N) → T 0

r (M) , T �→ φ∗T = T ◦ φ∗ , (5.8)

such that (φ∗T )(v1 . . . , vr) = T (φ∗v1, . . . , φ∗vr). Similarly, we can define
the pull-back of a tensor field of rank (r, 0) on N by

φ∗ : T r
0 (N) → T r

0 (M) , T �→ φ∗T (5.9)

such that (φ∗T )(φ∗w1, . . . , φ
∗wr) = T (w1, . . . , wr).

If the pull-back φ∗ is a diffeomorphism, which implies in particular that
the dimensions of M and N are equal, the pull-back and the push-forward
are each other’s inverses,

φ∗ = (φ∗)−1 . (5.10)
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Irrespective of the rank of a tensor, we now denote by φ∗ the pull-back
of the tensor and by φ∗ its inverse, i.e.

φ∗ : T r
s (N) → T r

s (M) ,
φ∗ : T r

s (M) → T r
s (N) . (5.11)

The important point is that if φ∗ : M → M is a diffeomorphism and T is
a tensor field on M, then φ∗T can be compared to T .

Symmetry transformations

If φ∗T = T , φ∗ is a symmetry transformation of T because T stays the
same even though it was “moved” by φ∗. If the tensor field is the metric
g, such a symmetry transformation of g is called an isometry.

5.1.2 The Lie Derivative

Lie derivative

Let now v be a vector field on M and γt be the flow of v. Then, for an
arbitrary tensor T ∈ T r

s , the expression

LvT := lim
t→0

γ∗t T − T
t

(5.12)

is called the Lie derivative of the tensor T with respect to v.

Caution While the covariant
derivative determines how vec-
tors and tensors change when
moved across a given manifold,
the Lie derivative determines how
these objects change upon trans-
formations of the manifold itself.
�

Note that this definition naturally generalises the ordinary derivative
with respect to “time” t. The manifold M is infinitesimally transformed
by one element γt of a one-parameter group of diffeomorphisms. This
could, for instance, represent an infinitesimal rotation of the two-sphere
S 2. The tensor T on the manifold after the transformation is pulled back
to the manifold before the transformation, where it can be compared to
the original tensor T before the transformation.

Obviously, the Lie derivative of a rank-(r, s) tensor is itself a rank-(r, s)
tensor. It is linear,

Lv(t1 + t2) = Lv(t1) +Lv(t2) , (5.13)

satisfies the Leibniz rule

Lv(t1 ⊗ t2) = Lv(t1) ⊗ t2 + t1 ⊗ Lv(t2) , (5.14)

and it commutes with contractions. So far, these properties are easy to
verify in particular after choosing local coordinates.
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The application of the Lie derivative to a function f follows directly
from the definition (5.4) of the tangent vector γ̇,

Lv f = lim
t→0

γ∗t f − f
t

= lim
t→0

( f ◦ γt) − ( f ◦ γ0)
t

=
d
dt

( f ◦ γ) = γ̇ f = v f = d f (v) . (5.15)

The additional convenient property

Lxy = [x, y] (5.16)

for vector fields y is non-trivial to prove.

Given two vector fields x and y, the Lie derivative further satisfies the
linearity relations

Lx+y = Lx +Ly , Lλx = λLx , (5.17)

with λ ∈ R, and the commutation relation

L[x,y] = [Lx,Ly] = Lx ◦ Ly − Ly ◦ Lx . (5.18)

If and only if two vector fields x and y commute, so do the respective
Lie derivatives,

[x, y] = 0 ⇔ Lx ◦ Ly = Ly ◦ Lx . (5.19)

If φ and ψ are the flows of x and y, the following commutation relation
is equivalent to (5.19),

φs ◦ ψt = ψt ◦ φs . (5.20)

Let t ∈ T 0
r be a rank-(0, r) tensor field and v1, . . . , vr be vector fields,

then

(Lxt)(v1, . . . , vr) = x(t(v1, . . . , vr))

−
r∑

i=1

t(v1, . . . , [x, vi], . . . , vr) . (5.21)

To demonstrate this, we apply the Lie derivative to the tensor product of
t and all vi and use the Leibniz rule (5.14),

?

Compute the Lie derivative of a
rank-(1, 0) tensor field.

Lx(t ⊗ v1 ⊗ . . . ⊗ vr) = Lxt ⊗ v1 ⊗ . . . ⊗ vr
+ t ⊗ Lxv1 ⊗ . . . ⊗ vr + . . .
+ t ⊗ v1 ⊗ . . . ⊗ Lxvr . (5.22)

Then, we take the complete contraction and use the fact that the Lie
derivative commutes with contractions, which yields

Lx(t(v1, . . . , vr)) = (Lxt)(v1, . . . , vr) (5.23)
+ t(Lxv1, . . . , vr) + . . . + t(v1, . . . ,Lxvr) .
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Inserting (5.16), we now obtain (5.21).

As an example, we apply (5.21) to a tensor of rank (0, 1), i.e. a dual
vector w:

(Lxw)(y) = xw(y) − w([x, y]) . (5.24)

One particular dual vector is the differential of a function f , defined in
(2.35). Inserting d f for w in (5.24) yields the useful relation

(Lxd f )(y) = xd f (y) − d f ([x, y])
= xy( f ) − [x, y]( f ) = yx( f )
= yLx f = dLx f (y) , (5.25)

and since this holds for any vector field y, we find

Lxd f = dLx f . (5.26)

Using the latter expression, we can derive coordinate expressions for the
Lie derivative. We introduce the coordinate basis {∂i} and its dual basis
{dxi} and apply (5.26) to dxi,

Lvdxi = dLvxi = dv(xi) = dv j∂ jxi = dvi = ∂ jv
i dx j . (5.27)

The Lie derivative of the basis vectors ∂i is

Lv∂i = [v, ∂i] = −(∂iv
j)∂ j , (5.28)

where (2.32) was used in the second step.

Example: Lie derivative of a rank-(1, 1) tensor field

To illustrate the components of the Lie derivative of a tensor, we take a
tensor t of rank (1, 1) and apply the Lie derivative to the tensor product
t ⊗ dxi ⊗ ∂x j,

Lv(t ⊗ dxi ⊗ ∂ j) = (Lvt) ⊗ dxi ⊗ ∂ j

+ t ⊗ Lvdxi ⊗ ∂ j + t ⊗ dxi ⊗ Lv∂ j , (5.29)

and now contract completely. This yields

Lvti
j = (Lvt)i

j + t(∂kv
idxk, ∂ j) − t(dxi, ∂ jv

k∂k)

= (Lvt)i
j + tk

j∂kv
i − ti

k∂ jv
k . (5.30)

Solving for the components of the Lie derivative of t, we thus obtain

(Lvt)i
j = v

k∂kti
j − tk

j∂kv
i + ti

k∂ jv
k , (5.31)

and similarly for tensors of higher ranks. �

In particular, for a tensor of rank (0, 1), i.e. a dual vector w,

(Lvw)i = v
k∂kwi + wk∂iv

k . (5.32)
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5.2 Killing vector fields

Killing vector fields

A Killing vector field K is a vector field along which the Lie derivative
of the metric vanishes,

LKg = 0 . (5.33)

This implies that the flow of a Killing vector field defines a symmetry
transformation of the metric, i.e. an isometry.

To find a coordinate expression, we use (5.31) to write

(LKg)i j = Kk∂kgi j + gk j∂iKk + gik∂ jKk

= Kk(∂kgi j − ∂igk j − ∂ jgik) + ∂i(gk jKk) + ∂ j(gikKk)
= ∇iK j + ∇ jKi = 0 , (5.34)

where we have identified the Christoffel symbols (3.74) in the last step.
This is the Killing equation.

?

Derive the Killing equation (5.34)
yourself.

Let γ be a geodesic, i.e. a curve satisfying

∇γ̇γ̇ = 0 , (5.35)

then the projection of a Killing vector K on the tangent to the geodesic γ̇
is constant along the geodesic,

∇γ̇〈γ̇,K〉 = 0 . (5.36)

This is easily seen as follows. First,

∇γ̇〈γ̇,K〉 = 〈∇γ̇γ̇,K〉 + 〈γ̇,∇γ̇K〉 = 〈γ̇,∇γ̇K〉 (5.37)

because of the geodesic equation (5.35).

Writing the last expression explicitly in components yields

〈γ̇,∇γ̇K〉 = gikγ̇
iγ̇ j∇ jKk = γ̇iγ̇ j∇ jKi , (5.38)

changing indices and using the symmetry of the metric, we can also
write it as

〈γ̇,∇γ̇K〉 = g jkγ̇
jγ̇i∇iKk = γ̇ jγ̇i∇iK j . (5.39)

Adding the latter two equations and using the Killing equation (5.34)
shows

2〈γ̇,∇γ̇K〉 = γ̇iγ̇ j
(
∇iK j + ∇ jKi

)
= 0 , (5.40)

which proves (5.36). More elegantly, we have contracted the symmetric
tensor γ̇iγ̇ j with the tensor ∇iK j which is antisymmetric because of the
Killing equation, thus the result must vanish.

Equation (5.36) has a profound meaning:
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Conservation laws from Killing vector fields

Freely-falling particles and light rays both follow geodesics. The
constancy of 〈γ̇,K〉 along geodesics means that each Killing vector
field gives rise to a conserved quantity for freely-falling particles and
light rays. Since a Killing vector field generates an isometry, this shows
that symmetry transformations of the metric give rise to conservation
laws.

5.3 Differential forms

5.3.1 Definition

Differential p-forms are totally antisymmetric tensors of rank (0, p). The
most simple example are dual vectors w ∈ T ∗

pM since they are tensors
of rank (0, 1). A general tensor t of rank (0, 2) is not antisymmetric, but
can be antisymmetrised defining the two-form

τ(v1, v2) ≡ 1
2

[t(v1, v2) − t(v2, v1)] , (5.41)

with two vectors v1, v2 ∈ V .

To generalise this operation for tensors of arbitrary ranks (0, r), we first
define the alternation operator by

(At)(v1, . . . , vr) :=
1
r!

∑
π

sgn(π)t(vπ(1), . . . , vπ(r)) , (5.42)

where the sum extends over all permutations π of the integer numbers
from 1 to r. The sign of a permutation, sgn(π), is negative if the permu-
tation is odd and positive otherwise.

?

As an exercise, explicitly apply
the alternation operator to a ten-
sor field of rank (0, 3).In components, we briefly write

(At)i1...ir = t[i1...ir] (5.43)

so that p-forms ω are defined by the relation

ωi1...ip = ω[i1...ip] (5.44)

between their components. For example, for a 2-form ω we have

ωi j = ω[i j] =
1
2

(
ωi j − ω ji

)
. (5.45)

The vector space of p-forms is denoted by
∧p. Taking the product of two

differential forms ω ∈
∧p and η ∈

∧q yields a tensor of rank (0, p + q)
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which is not antisymmetric, but can be antisymmetrised by means of the
alternation operator. The result

ω ∧ η ≡ (p + q)!
p!q!

A(ω ⊗ η) (5.46)

is called the exterior product . Evidently, it turns the tensor ω⊗ η ∈ T 0
p+q

into a (p + q)-form.

The definition of the exterior product implies that it is bilinear, associa-
tive, and satisfies

ω ∧ η = (−1)pq η ∧ ω . (5.47)

A basis for the vector space
∧p can be constructed from the basis {dxi},

1 ≤ i ≤ n, of the dual space V∗ by taking

dxi1 ∧ . . . ∧ dxip with 1 ≤ i1 < . . . < ip ≤ n , (5.48)

which shows that the dimension of
∧p is(

n
p

)
≡ n!

p!(n − p)!
(5.49)

for p ≤ n and zero otherwise. The skewed commutation relation (5.47)
implies

dxi ∧ dx j = −dx j ∧ dxi . (5.50)

Given two vector spaces V and W above the same field F, the Cartesian
product V × W of the two spaces can be turned into a vector space by
defining the vector-space operations component-wise. Let v, v1, v2 ∈ V
and w, w1, w2 ∈ W, then the operations

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) , λ(v, w) = (λv, λw) (5.51)

with λ ∈ F give V × W the structure of a vector space V ⊕ W which is
called the direct sum of V and W.

Vector space of differential forms

Similarly, we define the vector space of differential forms

∧
≡

n⊕
p=0

∧p
(5.52)

as the direct sum of the vector spaces of p-forms with arbitrary p ≤ n.

Recalling that a vector space V attains the structure of an algebra by
defining a vector-valued product between two vectors,

× : V × V → V , (v, w) �→ v × w , (5.53)
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we see that the exterior product ∧ gives the vector space
∧

of differential
forms the structure of a Grassmann algebra,

∧ :
∧

×
∧

→
∧
, (ω, η) �→ ω ∧ η . (5.54)

The interior product of a p-form ω with a vector v ∈ V is a mapping

V ×
∧p

→
∧p−1

, (v, ω) �→ ivω (5.55)

defined by
(ivω)(v1, . . . , vp−1) ≡ ω(v, v1, . . . , vp−1) (5.56)

and ivω = 0 if ω is 0-form (a number or a function).

Caution A Grassmann alge-
bra (named after Hermann Graß-
mann, 1809–1877) is an associa-
tive, skew-symmetric, graduated
algebra with an identity element.
�

5.3.2 The Exterior Derivative

For p-forms ω, we now define the exterior derivative as a map d,

d :
∧p

→
∧p+1

, ω �→ dω , (5.57)

with the following three properties:

(i) d is an antiderivation of degree 1 on
∧

, i.e. it satisfies

d (ω ∧ η) = dω ∧ η + (−1)pω ∧ dη (5.58)

for ω ∈
∧p and η ∈

∧
.

(ii) d ◦ d = 0.

(iii) For every function f ∈ F , d f is the differential of f , i.e. d f (v) =
v( f ) for v ∈ T M.

The exterior derivative is unique. By properties (i) and (ii), we directly
find

dω =
∑

i1<...<ip

dωi1...ip ∧ dxi1 ∧ . . . ∧ dxip (5.59)

for any p-form

ω =
∑

i1<...<ip

ωi1...ip dxi1 ∧ . . . ∧ dxip . (5.60)

According to (5.59), the components of the exterior derivative of a p-
form ω can be written as

(dω)i1...ip+1 = (p + 1) ∂[i1ωi2...ip+1] . (5.61)
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Since ωi2...ip+1 is itself antisymmetric, this last expression can be brought
into the form

(dω)i1...ip+1 =

p+1∑
k=1

(−1)k+1∂ikωi1,...,îk ,...ip+1
, (5.62)

with 1 ≤ i1 < . . . < ip < ip+1 ≤ n. Indices marked with a hat are left out.

The Lie derivative, the interior product and the exterior derivative are
related by Cartan’s equation

Lv = d ◦ iv + iv ◦ d . (5.63)?

Verify the expressions (5.61) and
(5.62). Cartan’s equation implies the convenient formula for the exterior deriva-

tive of a p-form ω

dω(v1, . . . , vp+1) =
p+1∑
i=1

(−1)i+1viω(v1, . . . , v̂i, . . . , vp+1) (5.64)

+
∑
i< j

(−1)i+ jω([vi, v j], v1, . . . , v̂i, . . . , v̂ j, . . . , vp+1) ,

where the hat over a symbol means that this object is to be left out.

Example: Exterior derivative of a 1-form

For an example, let us apply these relations to a 1-form ω = ωidxi. For
it, equation (5.59) implies

dω = dωi ∧ dxi = ∂ jωi dx j ∧ dxi (5.65)

while (5.64) specialises to

dω(v1, v2) = v1ω(v2) − v2ω(v1) − ω([v1, v2]) . (5.66)

With (5.61) or (5.62), we find the components

dωi j = ∂iω j − ∂ jωi (5.67)

of the exterior derivative of the 1-form. �

In R3, the expression (5.65) turns into

dω = (∂1ω2 − ∂2ω1) dx1 ∧ dx2 + (∂1ω3 − ∂3ω1) dx1 ∧ dx3

+ (∂2ω3 − ∂3ω2) dx2 ∧ dx3 . (5.68)

Closed and exact forms

A differential p-form α is called exact if a (p − 1)-form β exists such
that α = dβ. If dα = 0, the p-form α is called closed. Obviously, an
exact form is closed because of d ◦ d = 0.
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5.4 Integration

5.4.1 The Volume Form and the Codifferential

An atlas of a differentiable manifold is called oriented if for every pair
of charts h1 on U1 ⊂ M and h2 on U2 ⊂ M with U1 ∩ U2 � 0, the Jacobi
determinant of the coordinate change h2 ◦ h−1

1 is positive.

Volume form

An n-dimensional, paracompact manifold M is orientable if and only
if a C∞, n-form exists on M which vanishes nowhere. This is called a
volume form.
The canonical volume form on a pseudo-Riemannian manifold (M, g)
is defined by

η ≡
√
|g| dx1 ∧ . . . ∧ dxn . (5.69)

This definition is independent of the coordinate system because it
transforms proportional to the Jacobian determinant upon coordinate
changes.

Equation (5.69) implies that the components of the canonical volume
form in n dimensions are proportional to the n-dimensional Levi-Civita
symbol,

ηi1...in =
√
|g| εi1...in , (5.70)

which is defined such that it is +1 for even permutations of the i1, . . . , in,
−1 for odd permutations, and vanishes if any two of its indices are equal.
A very useful relation is

ε j1... jqk1...kpε j1... jqi1...ip = p!q! δk1
[i1
δk2

i2
. . . δ

kp

ip] , (5.71)

where the square brackets again denote the complete antisymmetrisation.
In three dimensions, one specific example for (5.71) is the familiar
formula

εi jkεklm = ε
ki jεklm = δ

i
lδ

j
m − δi

mδ
j
l . (5.72)

Note that p = 1 and q = 2 here, but the factor 2! = 2 is cancelled by the
antisymmetrisation.

Hodge star operator

The Hodge star operator (∗-operation) turns a p form ω into an (n− p)-
form (∗ω),

∗ :
∧p

→
∧n−p

, ω �→ ∗ω , (5.73)

which is uniquely defined by its application to the dual basis.

For the basis {dxi} of the dual space T ∗
pM,

∗(dxi1 ∧ . . . ∧ dxip) :=

√
|g|

(n − p)!
ε

i1...ip

ip+1...in
dxip+1 ∧ . . . ∧ dxin . (5.74)
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If the dual basis {ei} is orthonormal, this simplifies to

∗(ei1 ∧ . . . ∧ eip) = eip+1 ∧ . . . ∧ ein . (5.75)

In components, we can write

(∗ω)ip+1...in =
1
p!
ηi1...inω

i1...ip , (5.76)

i.e. (∗ω) is the volume form η contracted with the p-form ω. A straight-
forward calculation shows that

∗(∗ω) = sgn(g)(−1)p(n−p)ω . (5.77)?

Verify the statement (5.77).
Example: Hodge dual in three dimensions

For a 1-form ω = ωidxi in R3, we can use

∗dx1 = dx2 ∧ dx3 , ∗dx2 = dx3 ∧ dx1 , ∗dx3 = dx1 ∧ dx2 (5.78)

to find the Hodge-dual 2-form

∗ω = ω1dx2 ∧ dx3 − ω2dx1 ∧ dx3 + ω3dx1 ∧ dx2 , (5.79)

while the 2-form dω (5.68) has the Hodge dual 1-form

∗dω = (∂2ω3 − ∂3ω2)dx1 − (∂1ω3 − ∂3ω1)dx2

+ (∂1ω2 − ∂2ω1)dx3 = ε
jk

i ∂ jωkdxi . (5.80)

�

Codifferential

The codifferential is a map

δ :
∧p

→
∧p−1

, ω �→ δω (5.81)

defined by
δω ≡ sgn(g)(−1)n(p+1)(∗d∗)ω . (5.82)

d ◦ d = 0 immediately implies δ ◦ δ = 0.

By successive application of (5.71) and (5.62), it can be shown that the
coordinate expression for the codifferential is

(δω)i1...ip−1 =
1√
|g|
∂k

( √
|g|ωki1...ip−1

)
. (5.83)

Comparing this with (4.59), we see that this generalises the divergence
of ω. To see this more explicitly, let us work out the codifferential of a
1-form in R3 by first taking the exterior derivative of ∗ω from (5.79),

d∗ω = (∂1ω1 + ∂2ω2 + ∂3ω3) dx1 ∧ dx2 ∧ dx3 , (5.84)
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whose Hodge dual is

δω = ∂1ω1 + ∂2ω2 + ∂3ω3 . (5.85)

Example: Maxwell’s equations

The Faraday 2-form is defined by

F ≡ 1
2

Fμν dxμ ∧ dxν . (5.86)

Application of (5.62) shows that

(dF)λμν = ∂λFμν − ∂μFλν + ∂νFλμ
= ∂λFμν + ∂μFνλ + ∂νFλμ = 0 , (5.87)

i.e. the homogeneous Maxwell equations can simply be expressed by

dF = 0 . (5.88)

Similarly, the components of the codifferential of the Faraday form are,
according to (5.83) and (4.62)

(δF)μ =
1
√−g
∂ν
(√
−gFνμ

)
= ∇νFνμ = −

4π
c

jμ . (5.89)

Introducing further the current 1-form by j = jμdxμ, we can thus write
the inhomogeneous Maxwell equations as

δF = −4π
c

j . (5.90)

�

5.4.2 Integrals and Integral Theorems

The integral over an n-form ω, ∫
M
ω , (5.91)

is defined in the following way: Suppose first that the support U ⊂ M
of ω is contained in a single chart which defines positive coordinates
(x1, . . . , xn) on U. Then, if ω = f dx1 ∧ . . . ∧ dxn with a function
f ∈ F (U), ∫

M
ω =

∫
U

f (x1, . . . , xn)dx1 . . . dxn . (5.92)

Note that this definition is independent of the coordinate system be-
cause upon changes of the coordinate system, both f and the volume
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element dx1 . . . dxn change in proportion to the Jacobian determinant of
the coordinate change.

If the domain of the n-form ω is contained in multiple maps, the integral
(5.92) needs to be defined piece-wise, but the principle remains the same.

The integration of functions f ∈ F (M) is achieved using the canonical
volume form η, ∫

M
f ≡

∫
M

fη . (5.93)

Integral theorems

Stokes’ theorem can now be formulated as follows: let M be an n-
dimensional manifold and the region D ⊂ M have a smooth boundary
∂D such that D̄ ≡ D ∪ ∂D is compact. Then, for every n − 1-form ω,
we have ∫

D
dω =

∫
∂D
ω . (5.94)

Likewise, Gauss’ theorem can be brought into the form∫
D
δx�η =

∫
∂D
∗x� , (5.95)

where x ∈ T M is a vector field on M and x� is the 1-form belonging to
this vector field.

Caution Like � lowers a note
by a semitone in music, the � op-
erator lowers the index of vec-
tor components and thus turns
them into dual-vector compo-
nents. Analogously, � raises
notes by semitones in music, and
indices of dual-vector compo-
nents. �

Musical operators

Generally, the musical operators � and � are isomorphisms between the
tangent spaces of a manifold and their dual spaces given by the metric,

� : T M → T ∗M , v �→ v� , v�i = gi jv
j (5.96)

and similarly by the inverse of the metric,

� : T ∗M → T M , w �→ w� , (w�)i = gi jw j . (5.97)

The essence of the differential-geometric concepts introduced here are
summarised in Appendix B.




