
Chapter 4

Physical Laws in External

Gravitational Fields

4.1 Motion of particles

4.1.1 Action for particles in gravitational fields

In special relativity, the action of a free particle was

S = −mc2
∫ b

a
dτ = −mc

∫ b

a
ds = −mc

∫ b

a

√
−ημνdxμdxν , (4.1)

where we have introduced the Minkowski metric ημν = diag(−1, 1, 1, 1).
This can be rewritten as follows: first, we parameterise the trajectory of
the particle as a curve γ(τ) and write the four-vector dx = udτ with the
four-velocity u = γ̇. Second, we use the notation (2.48)

?

Verify that the action (4.1)
implies the correct, specially-
relativistic equations of motion.

η(u, u) = 〈u, u〉 (4.2)

to cast the action into the form

S = −mc
∫ b

a

√
−〈u, u〉 dτ . (4.3) Caution Note that the actions

(4.1) and (4.4) contain an inter-
pretation of geometry in terms of
physics: the line element of the
metric is identified with proper
time. �

In general relativity, the metric η is replaced by the dynamic metric g.
We thus expect that the motion of a free particle will be described by the
action

S = −mc
∫ b

a

√
−〈u, u〉 dτ = −mc

∫ b

a

√
−g(u, u) dτ . (4.4)
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4.1.2 Equations of motion

To see what this equation implies, we now carry out the variation of S
and set it to zero,

δS = −mc δ
∫ b

a

√
−g(u, u) dτ = 0 . (4.5)

Since the curve is assumed to be parameterised by the proper time τ, we
must have

cdτ = ds =
√
−〈u, u〉 dτ , (4.6)

which implies that the four-velocity u must satisfy

〈u, u〉 = −c2 . (4.7)

This allows us to write the variation (4.5) as

δS =
mc
2

∫ b

a
dτ

[
∂λgμνδxλ ẋμ ẋν + 2gμνδẋμ ẋν

]
= 0 . (4.8)

We can integrate the second term by parts to find

2
∫ b

a
dτ gμνδẋμ ẋν = −2

∫ b

a
dτ

d
dτ

(
gμν ẋν

)
δxμ (4.9)

= −2
∫ b

a
dτ

(
∂λgμν ẋλ ẋν + gμν ẍν

)
δxμ .

Interchanging the summation indices λ and μ and inserting the result
into (4.8) yields

(
∂λgμν − 2∂μgλν

)
ẋμ ẋν − 2gλν ẍν = 0 (4.10)

or, after multiplication with gαλ,

ẍα +
1
2
gαλ

(
2∂μgλν − ∂λgμν

)
ẋμ ẋν = 0 . (4.11)?

Convince yourself that (4.11)
is correct and agrees with the
geodesic equation. Comparing the result (4.11) to (3.17) and recalling the symmetry of

the Christoffel symbols (3.74), we arrive at the following important
conclusion:

Motion of freely falling particles

The trajectories extremising the action (4.4) are geodesic curves. Freely
falling particles thus follow the geodesics of the spacetime.
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4.2 Motion of light

4.2.1 Maxwell’s Equations in a Gravitational Field

As an example for how physical laws can be carried from special to gen-
eral relativity, we now formulate the equations of classical electrodynam-
ics in a gravitational field. For a summary of classical electrodynamics,
see Appendix A.

In terms of the field tensor F, Maxwell’s equations read

∂λFμν + ∂μFνλ + ∂νFλμ = 0 ,

∂νFμν =
4π
c

jμ , (4.12)

where jμ is the current four-vector. The homogeneous equations are
identically satisfied introducing the potentials Aμ, in terms of which the
field tensor is

Fμν = ∂μAν − ∂νAμ . (4.13)

We can impose a gauge condition, such as the Lorenz gauge

∂μAμ = 0 , (4.14)

which allows to write the inhomogeneous Maxwell equation in the form

�Aμ = −4π
c

jμ (4.15)

of the d’Alembert equation.

Indices are raised with the (inverse) Minkowski metric,

Fμν = ημαηνβFαβ . (4.16)

Finally, the equation for the Lorentz force can be written as

m
duμ

dτ
=

q
c

Fμν uν , (4.17)

where uμ = dxμ/dτ is the four-velocity.

Moving to general relativity, we first replace the partial by covariant
derivatives in Maxwell’s equations and find

∇λFμν + ∇μFνλ + ∇νFλμ = 0 ,

∇νFμν =
4π
c

jμ . (4.18)

However, it is easy to see that the identity

∇λFμν + cyclic ≡ ∂λFμν + cyclic (4.19)
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holds because of the antisymmetry of the field tensor F and the symmetry
of the connection ∇.

Indices have to be raised with the inverse metric g−1 now,

Fμν = gμαgνβFαβ . (4.20)

Equation (4.17) for the Lorentz force has to be replaced by

m
(
duμ

dτ
+ Γ

μ
αβ uαuβ

)
=

q
c

Fμν uν . (4.21)

We thus arrive at the following general rule:

Porting physical laws into general relativity

In the presence of a gravitational field, the physical laws of special
relativity are changed simply by substituting the covariant derivative
for the partial derivative, ∂ → ∇, by raising indices with gμν instead
of ημν and by lowering them with gμν instead of ημν, and by replacing
the motion of free particles along straight lines by the motion along
geodesics.

Note that this is a rule, not a law, because ambiguities may occur in
presence of second derivatives, as we shall see shortly.

We can impose a gauge condition such as the generalised Lorenz gauge

∇μAμ = 0 , (4.22)

but now the inhomogeneous wave equation (4.15) becomes more com-
plicated. We first note that

Fμν = ∇μAν − ∇νAμ ≡ ∂μAν − ∂νAμ (4.23)

identically. Inserting (4.23) into the inhomogeneous Maxwell equation
first yields

∇ν (∇μAν − ∇νAμ) = 4π
c

jμ , (4.24)

but now the term ∇ν∇μAν does not vanish despite the Lorenz gauge
condition because the covariant derivatives do not commute.

Caution Applying the rule
given above, it has to be taken
into account that covariant deriva-
tives do not generally commute.
�

Instead, we have to use(
∇μ∇ν − ∇ν∇μ

)
Aα = Rαβμν Aβ (4.25)

by definition of the curvature tensor, and thus

∇ν∇μAν = ∇μ∇νAν + Rμβ Aβ = Rμβ Aβ (4.26)

inserting the Lorenz gauge condition.



4.2 Motion of light 51

Electromagnetic wave equation in a curved spacetime

Thus, the inhomogeneous wave equation for an electromagnetic field
in general relativity reads

∇ν∇νAμ − Rμν Aν = −4π
c

jμ . (4.27)

Had we started directly from the wave equation (4.15) from special
relativity, we would have missed the curvature term! This illustrates
the ambiguities that may occur applying the rule ∂ → ∇ when second
derivatives are involved.

4.2.2 Geometrical Optics

We now study how light rays propagate in a gravitational field. As
usual in geometrical optics, we assume that the wavelength λ of the
electromagnetic field is very much smaller compared to the scale L of
the space within which we study light propagation. In a gravitational
field, which causes spacetime to curve on another scale R, we have to
further assume that λ is also very small compared to R, thus

λ 	 L and λ 	 R . (4.28)

Example: Geometrical optics in curved space

An example could be an astronomical source at a distance of several
million light-years from which light with optical wavelengths travels to
the observer. The scale L would then be of order 1024 cm or larger, the
scale R would be the curvature radius of the Universe, of order 1028 cm,
while the light would have wavelengths of order 10−6 cm. �

Consequently, we introduce an expansion of the four-potential in terms
of a small parameter ε ≡ λ/min(L,R) 	 1 and write the four-potential
as a product of a slowly varying amplitude and a quickly varying phase,

Aμ = Re
{
(aμ + εbμ)eiψ/ε

}
, (4.29)

where the amplitude is understood as the two leading-order terms in the
expansion, and the phase ψ carries the factor ε−1 because it is inversely
proportional to the wave length. The real part is introduced because the
amplitude is complex.

As in ordinary geometrical optics, the wave vector is the gradient of
the phase, thus kμ = ∂μψ. We further introduce the scalar amplitude
a ≡ (aμa∗μ)1/2, where the asterisk denotes complex conjugation, and the
polarisation vector eμ ≡ aμ/a.
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We first impose the Lorenz gauge and find the condition

Re
{[
∇μ(aμ + εbμ) + (aμ + εbμ)

i
ε

kμ

]
eiψ/ε

}
= 0 . (4.30)

To leading order (ε−1), this implies

kμaμ = 0 , (4.31)

which shows that the wave vector is perpendicular to the polarisation
vector. The next-higher order yields

∇μaμ + ikμbμ = 0 . (4.32)

Next, we insert the ansatz (4.29) into Maxwell’s equation (4.27) in
vacuum, i.e. setting the right-hand side to zero. This yields

Re
{[
∇ν∇ν(aμ + εbμ) +

2i
ε

kν∇ν(aμ + εbμ)

+
i
ε

(aμ + εbμ)∇νkν −
1
ε2 kνkν(aμ + εbμ)

− Rμν (aν + εbν)
]

eiψ/ε
}
= 0 . (4.33)

To leading order (ε−2), this implies

kνkν = 0 , (4.34)

which yields the general-relativistic eikonal equation

gμν∂μψ∂νψ = 0 . (4.35)

Trivially, (4.34) implies

0 = ∇μ(kνkν) = 2kν∇μkν . (4.36)

Recall that the wave vector is the gradient of the scalar phase ψ. The
second covariant derivatives of ψ commute,

∇μ∇νψ = ∇ν∇μψ (4.37)

as is easily seen by direct calculation, using the symmetry of the connec-
tion. Thus,

∇μkν = ∇νkμ , (4.38)

which, inserted into (4.36), leads to

kν∇νkμ = 0 or ∇kk = 0 . (4.39)

In other words, we arrive at the following important result:
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Light rays in curved spacetime

In the limit of geometrical optics, Maxwell’s equations imply that light
rays follow null geodesics.

The next-higher order (ε−1) gives

2i
(
kν∇νaμ +

1
2

aμ∇νkν
)
− kνkνbμ = 0 (4.40)

and, with (4.34), this becomes

kν∇νaμ +
1
2

aμ∇νkν = 0 . (4.41)

We use this to derive a propagation law for the amplitude a. Obviously,
we can write

2akν∂νa = 2akν∇νa = kν∇ν(a2) = kν
(
a∗μ∇νaμ + aμ∇νa∗μ

)
. (4.42)

By (4.41), this can be transformed to

kν (a∗μ∇νaμ + aμ∇νa∗μ) = −
1
2
∇νkν(a∗μaμ + aμa∗μ) = −a2∇νkν . (4.43)

Combining (4.43) with (4.42) yields

kν∂νa = −
a
2
∇νkν , (4.44)

which shows how the amplitude is transported along light rays: the
change of the amplitude in the direction of the wave vector is proportional
to the negative divergence of the wave vector, which is a very intuitive
result.

?

Why and in what sense is the re-
sult (4.44) called intuitive here?
What does it mean?Finally, we obtain a law for the propagation of the polarisation. Using

aμ = aeμ in (4.41) gives

0 = kν∇ν(aeμ) +
1
2

aeμ∇νkν

= akν∇νeμ + eμ
(
kν∂νa +

a
2
∇νkν

)
= akν∇νeμ , (4.45)

where (4.44) was used in the last step. This shows that

kν∇νeμ = 0 or ∇ke = 0 , (4.46)

or in other words:

Transport of polarisation

The polarisation of electromagnetic waves is parallel-transported along
light rays.
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4.2.3 Redshift

Suppose now that a light source moving with four-velocity us is sending
a light ray to an observer moving with four-velocity uo, and another light
ray after a proper-time interval δτs. The phases of the first and second
light rays be ψ1 and ψ2 = ψ1 + δψ, respectively.

Clearly, the phase difference measured at the source and at the observer
must equal, thus

uμs (∂μψ)sδτs = δψ = uμo(∂μψ)oδτo . (4.47)

Using kμ = ∂μψ, and assigning frequencies νs and νo to the light rays
which are indirectly proportional to the time intervals δτs and δτo, we
find

νo

νs
=
δτs

δτo
=
〈k, u〉o
〈k, u〉s

, (4.48)

which gives the combined gravitational redshift and the Doppler shift of
the light rays. Any distinction between Doppler shift and gravitational
redshift has no invariant meaning in general relativity.

?

Beginning with (4.48), can you
derive the specially-relativistic
Doppler formula?

4.3 Energy-momentum (non-)conservation

4.3.1 Contracted Christoffel Symbols

From (3.74), we see that the contracted Christoffel symbol can be written
as

Γμμν =
1
2
gμα

(
gαν,μ + gμα,ν − gμν,α

)
. (4.49)

Exchanging the arbitrary dummy indices α and μ and using the symmetry
of the metric, we can simplify this to

Γμμν =
1
2
gμαgμα,ν . (4.50)

We continue by using Cramer’s rule from linear algebra, which states
that the inverse of a matrix A has the components

(A−1)i j =
C ji

det A
, (4.51)

where the C ji are the cofactors (signed minors) of the matrix A. Thus,
the cofactors are

C ji = det A(A−1)i j . (4.52)

The determinant of A can be expressed using the cofactors as

det A =
n∑

j=1

C jiA ji (4.53)
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for any fixed i, where n is the dimension of the (square) matrix A. This
so-called Laplace expansion of the determinant follows after multiplying
(4.52) with the matrix Ajk.

?

Using (4.51) and (4.53), calculate
the inverse and the determinant
of 2 × 2 and 3 × 3 matrices.By definition of the cofactors, any cofactor C ji does not contain the

element Aji of the matrix A. Therefore, we can use (4.52) and the
Laplace expansion (4.53) to conclude

∂ det A
∂Aji

= C ji = det A(A−1)i j . (4.54)

The metric is represented by the matrix gμν, its inverse by gμν. We abbre-
viate its determinant by g here. Cramer’s rule (4.52) then implies that
the cofactors of gμν are Cμν = g gμν, and we can immediately conclude
from (4.54) that

∂g

∂gμν
= ggμν (4.55)

and thus

∂λg =
∂g

∂gμν
∂λgμν = gg

μν∂λgμν . (4.56)

Contracted Christoffel symbols

Comparing this with the expression (4.50) for the contracted Christoffel
symbol, we see that

ggμνgμν,λ = 2gΓμμλ ,

Γ
μ
μλ =

1
2
gμνgμν,λ =

1
2g
g,λ =

1
√−g
∂λ
√
−g , (4.57)

which is a very convenient expression for the contracted Christoffel
symbol, as we shall see.

4.3.2 Covariant Divergences

The covariant derivative of a vector with components vμ has the compo-
nents

∇νvμ = ∂νvμ + Γμνα vα . (4.58)

Using (4.57), the covariant divergence of this vector can thus be written

∇μvμ = ∂μvμ +
1
√−g
vμ∂μ

√
−g = 1

√−g
∂μ(

√
−g vμ) . (4.59)

Similarly, for a tensor A of rank (2, 0) with components Aμν, we have

∇νAμν = ∂νAμν + Γμαν Aαν + Γννα Aμα . (4.60)
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Again, by means of (4.57), we can combine the first and third terms on
the right-hand side to write

∇νAμν =
1
√−g
∂ν(

√
−gAμν) + Γμαν Aαν . (4.61)

Tensor divergences

If the tensor Aμν is antisymmetric, the second term on the right-hand
side of the divergence (4.61) vanishes because then the symmetric
Christoffel symbol Γμαν is contracted with the antisymmetric tensor Aαν.
If Aμν is symmetric, however, this final term remains, with important
consequences.

4.3.3 Charge Conservation

Since the electromagnetic field tensor Fμν is antisymmetric, (4.61) im-
plies

∇νFμν =
1
√−g
∂ν(

√
−gFμν) . (4.62)

On the other hand, replacing the vector vμ by ∇νFμν in (4.59), we see that

∇μ∇νFμν =
1
√−g
∂μ(

√
−g∇νFμν) =

1
√−g
∂μ∂ν(

√
−gFμν) , (4.63)

where we have used (4.62) in the final step. But the partial derivatives
commute, so that once more the antisymmetric tensor Fμν is contracted
with the symmetric symbol ∂μ∂ν. Thus, the result must vanish, allowing
us to conclude

∇μ∇νFμν = 0 . (4.64)

However, by Maxwell’s equation (4.18),

∇μ∇νFμν =
4π
c
∇μ jμ , (4.65)

which implies, by (4.59)

∂μ(
√
−g jμ) = 0 . (4.66)

Charge conservation

Equation (4.66) is the continuity equation of the electric four-current,
implying charge conservation. We thus see that the antisymmetry of
the electromagnetic field tensor is necessary for charge conservation.
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4.3.4 Energy-Momentum “Conservation”

In special relativity, energy-momentum conservation can be expressed
by the vanishing four-divergence of the energy-momentum tensor T ,

∂νT μν = 0 . (4.67)

Example: Energy conservation in an electromagnetic field

For example, the energy-momentum tensor of the electromagnetic field
is, in special relativity

T μν =
1

4π

[
−FμλFνλ +

1
4
ημνFαβFαβ

]
, (4.68)

and for μ = 0, the vanishing divergence (4.67) yields the energy con-
servation equation

∂

∂t

⎛⎜⎜⎜⎜⎝ �E2 + �B2

8π

⎞⎟⎟⎟⎟⎠ + �∇ · [ c
4π

(�E × �B)
]
= 0 , (4.69)

in which the Poynting vector

�S =
c

4π

(
�E × �B

)
(4.70)

represents the energy current density. �

According to our general rule for moving results from special relativity
to general relativity, we can replace the partial derivative in (4.67) by the
covariant derivative,

∇νT μν = 0 , (4.71)

and obtain an equation which is covariant and thus valid in all reference
frames. Moreover, we would have to replace the Minkowski metric η in
(4.68) by the metric g if we wanted to consider the energy-momentum
tensor of the electromagnetic field.

From our general result (4.61), we know that we can rephrase (4.71) as

1
√−g
∂ν(

√
−gT μν) + Γμλν T λν = 0 . (4.72)

If the second term on the left-hand side was absent, this equation would
imply a conservation law. It remains there, however, because the energy-
momentum tensor is symmetric. In presence of this term, we cannot
convert (4.72) to a conservation law any more. This result expresses the
following important fact:
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Energy non-conservation

Energy is not generally conserved in general relativity. This is not
surprising because energy can now be exchanged with the gravitational
field.

4.4 The Newtonian limit

4.4.1 Metric and Gravitational Potential

Finally, we want to see under which conditions for the metric the Newto-
nian limit for the equation of motion in a gravitational field is reproduced,
which is

�̈x = −�∇Φ (4.73)

to very high precision in the Solar System.

We first restrict the gravitational field to be weak and to vary slowly with
time. This implies that the Minkowski metric of flat space is perturbed
by a small amount,

gμν = ημν + hμν , (4.74)

with |hμν| 	 1.

Moreover, we restrict the consideration to bodies moving much slower
than the speed of light, such that

dxi

dτ
	 dx0

dτ
≈ 1 . (4.75)

?

Does it matter with respect to
which coordinate frame the ve-
locity is assumed to be much less
than the speed of light?

Under these conditions, the geodesic equation for the i-th spatial coordi-
nate reduces to

d2xi

c2dt2 ≈
d2xi

dτ2 = −Γ
i
αβ

dxα

dτ
dxβ

dτ
≈ −Γi

00 . (4.76)

By definition (3.74), the remaining Christoffel symbols read

Γi
00 = h i

0 ,0 −
1
2

h ,i
00 ≈ −1

2
h ,i

00 (4.77)

due to the assumption that the metric changes slowly in time so that
its time derivative can be ignored compared to its spatial derivatives.
Equation (4.76) can thus be reduced to

d2�x
dt2 ≈ c2

2
�∇h00 , (4.78)

which agrees with the Newtonian equation of motion (4.73) if we identify

h00 ≈ −
2Φ
c2 + const. (4.79)
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The constant can be set to zero because both the deviation from the
Minkowski metric and the gravitational potential vanish at large distance
from the source of gravity. Therefore, the metric in the Newtonian limit
has the 0-0 element

g00 ≈ −1 − 2Φ
c2 . (4.80)

4.4.2 Gravitational Light Deflection

Based on this result, we might speculate that the metric in Newtonian
approximation could be written as

g = diag
[
−
(
1 +

2Φ
c2

)
, 1, 1, 1

]
. (4.81)

We shall now work out the gravitational light deflection by the Sun in
this metric, which was one of the first observational tests of general
relativity.

Since light rays propagate along null geodesics, we have

∇kk = 0 or kν∂νkμ + Γ
μ
νλ kνkλ = 0 , (4.82)

where k = (ω/c,�k) is the wave four-vector which satisfies

〈k, k〉 = 0 thus ω = c|�k| , (4.83)

which is the ordinary dispersion relation for electromagnetic waves
in vacuum. We introduce the unit vector �e in the direction of �k by
�k = |�k|�e = ω�e/c.

Assuming that the gravitational potential Φ does not vary with time,
∂0Φ = 0, the only non-vanishing Christoffel symbols of the metric (4.81)
are

Γ0
0i ≈

1
c2∂iΦ ≈ Γi

00 . (4.84)

For μ = 0, (4.82) yields(
1
c
∂t + �e · �∇

)
ω + ω

�e · �∇Φ
c2 = 0 , (4.85)

which shows that the frequency changes with time only because the light
path can run through a spatially varying gravitational potential. Thus, if
the potential is constant in time, the frequencies of the incoming and the
outgoing light must equal.

Using this result, the spatial components of (4.82) read(
1
c
∂t + �e · �∇

)
�e =

d�e
cdt
= − 1

c2

[
�∇ − �e(�e · �∇)

]
Φ = −

�∇⊥Φ
c2 ; (4.86)
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in other words, the total time derivative of the unit vector in the direc-
tion of the light ray equals the negative perpendicular gradient of the
gravitational potential.

For calculating the light deflection, we need to know the total change
of �e as the light ray passes the Sun. This is obtained by integrating
(4.86) along the actual (curved) light path, which is quite complicated.
However, due to the weakness of the gravitational field, the deflection
will be very small, and we can evaluate the integral along the unperturbed
(straight) light path.

Caution Note that this approx-
imation is conceptually identi-
cal to Born’s approximation in
quantum-mechanical scattering
problems. � We choose a coordinate system centred on the Sun and rotated such that

the light ray propagates parallel to the z axis from −∞ to ∞ at an impact
parameter b. Outside the Sun, its gravitational potential is

Φ

c2 = −
GM


c2r
= − GM


c2
√

b2 + z2
. (4.87)

The perpendicular gradient of Φ is

�∇⊥Φ =
∂Φ

∂b
�eb =

GM b
c2(b2 + z2)3/2�eb , (4.88)

where �eb is the radial unit vector in the x-y plane from the Sun to the
light ray.

Light deflection in (incomplete) Newtonian approximation

Thus, under the present assumptions, the deflection angle is

δ�e = −�eb

∫ ∞

−∞
dz

GMb
c2(b2 + z2)3/2 = −

2GM
c2b
�eb . (4.89)

Evaluating (4.89) at the rim of the Sun, we insert M
 = 2 · 1033 g and
R
 = 7 · 1010 cm to find

|δ�e | = 0.87′′ . (4.90)

For several reasons, this is a remarkable result. First, it had already been
derived by the German astronomer Soldner in the 19th century who had
assumed that light was a stream of material particles to which celestial
mechanics could be applied just as well as to planets. Before general
relativity, a strict physical meaning could not be given to the trajectory
of light in the presence of a gravitational field because the interaction
between electromagnetic fields and gravity was entirely unclear. The
statement of general relativity that light propagates along null geodesics
for the first time provided a physical law for the propagation of light rays
in gravitational fields.

Second, the result (4.90) is experimentally found to be incorrect. In
fact, the measured value is twice as large. This is a consequence of our
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assumption that the metric in the Newtonian limit is given by (4.81),
while the line element in the complete Newtonian limit is

ds2 = −
(
1 +

2Φ
c2

)
c2dt2 +

(
1 − 2Φ

c2

)
d�x 2 . (4.91)




