
Chapter 3

Differential Geometry II

3.1 Connections and covariant derivatives

3.1.1 Linear Connections

The curvature of the two-dimensional sphere S 2 can be described by
embedding the sphere into a Euclidean space of the next-higher dimen-
sion, R3. However, (as far as we know) there is no natural embedding
of our four-dimensional curved spacetime into R5, and thus we need a
description of curvature which is intrinsic to the manifold.

There is a close correspondence between the curvature of a manifold and
the transport of vectors along curves.

Caution Whitney’s (strong)
embedding theorem states that
any smooth n-dimensional mani-
fold (n > 0) can be smoothly
embedded in the 2n-dimensional
Euclidean space R2n. Embed-
dings into lower-dimensional Eu-
clidean spaces may exist, but not
necessarily so. An embedding
f : M → N of a manifold M into
a manifold N is an injective map
such that f (M) is a submanifold
of N and M → f (M) is differen-
tiable. �

As we have seen before, the structure of a manifold does not trivially
allow to compare vectors which are elements of tangent spaces at two
different points. We will thus have to introduce an additional structure
which allows us to meaningfully shift vectors from one point to another
on the manifold.

Even before we do so, it is intuitively clear how vectors can be trans-
ported along closed paths in flat Euclidean space, say R3. There, the
vector arriving at the starting point after the transport will be identical to
the vector before the transport.

However, this will no longer be so on the two-sphere: starting on the
equator with a vector pointing north, we can shift it along a meridian to
the north pole, then back to the equator along a different meridian, and
finally back to its starting point on the equator. There, it will point into a
different direction than the original vector.

Curvature can thus be defined from this misalignment of vectors after
transport along closed curves. In order to work this out, we thus first
need some way for transporting vectors along curves.
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32 3 Differential Geometry II

We start by generalising the concept of a directional derivative from Rn

by defining a linear or affine connection or covariant differentiation on
a manifold as a mapping ∇ which assigns to every pair v, y of C∞ vector
fields another vector field ∇vy which is bilinear in v and y and satisfies

∇ f vy = f∇vy
∇v( f y) = f∇vy + v( f )y , (3.1)

where f ∈ F is a C∞ function on M.

Figure 3.1 Elwin Bruno Christoffel (1829–1900), German mathematician.
Source: Wikipedia

?

Why do the Christoffel symbols
suffice to specify the connection
completely? In a local coordinate basis {ei}, we can describe the linear connection by

its action on the basis vectors,

∇∂i(∂ j) ≡ Γk
i j ∂k , (3.2)

where the n3 numbers Γk
i j are called the Christoffel symbols or connec-

tion coefficients of the connection ∇ in the given chart.

Connection

A connection ∇ generalises the directional derivative of objects on a
manifold. The directional derivative of a vector y in the direction of
the vector v is the vector ∇vy. The connection is linear and satisfies the
product rule.

The Christoffel symbols are not the components of a tensor, which is
seen from their transformation under coordinate changes. Let xi and x′i
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be two different coordinate systems, then we have on the one hand, by
definition,

∇∂′a(∂
′
b) = Γ′cab ∂

′
c = Γ

′c
ab
∂xk

∂x′ c ∂k = Γ
′c
ab Jk

c ∂k , (3.3)

where Jk
c is the Jacobian matrix of the coordinate transform as defined in

(2.26). On the other hand, the axioms (3.1) imply, with f represented by
the elements Jk

i of the Jacobian matrix,

∇∂′a(∂
′
b) = ∇Ji

a∂i
(J j

b∂ j) = Ji
a∇∂i(J j

b∂ j)

= Ji
a

[
J j

b∇∂i∂ j + ∂iJ
j
b∂ j

]
= Ji

aJ j
bΓ

k
i j ∂k + Ji

a∂iJk
b∂k . (3.4)

Comparison of the two results (3.3) and (3.4) shows that

Γ′cab Jk
c = Ji

aJ j
bΓ

k
i j + Ji

a∂iJk
b , (3.5)

or, after multiplying with the inverse Jacobian matrix J′ck ,

Γ′cab = Ji
aJ j

bJ′ck Γ
k
i j + J′ck Ji

a∂iJk
b . (3.6)

While the first term on the right-hand side reflects the tensor transforma-
tion law (2.42), the second term differs from it.

3.1.2 Covariant derivative
Caution Indices separated by
a comma denote ordinary partial
differentiations with respect to
coordinates, y,i ≡ ∂iy. �Let now y and v be vector fields on M and w a dual vector field, then the

covariant derivative ∇y is a tensor field of rank (1, 1) which is defined
by

∇y(v, w) ≡ w[∇v(y)] . (3.7)

In a coordinate basis {∂i}, we write

y = yi∂i and ∇y ≡ yi
; j dx j ⊗ ∂i , (3.8)

and obtain the tensor components

yi
; j = ∇y(∂ j, dxi) = dxi

(
∇∂ j(y

k∂k)
)

= dxi
(
yk
, j∂k + y

kΓl
jk ∂l

)
= yk

, jδ
i
k + y

kΓl
jk δ

i
l

= yi
, j + y

kΓi
jk . (3.9)

?

Carry out the calculation in (3.9)
yourself and verify (3.11) for
a symmetric connection. How
many Christoffel symbols do you
need for a symmetric connection
on S 2?

An affine connection is symmetric if

∇vw − ∇wv = [v, w] , (3.10)

which a short calculation shows to be equivalent to the symmetry prop-
erty

Γk
i j = Γ

k
ji (3.11)

of the Christoffel symbols in a coordinate basis.
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3.2 Geodesics

3.2.1 Parallel transport and geodesics

Given a linear connection, it is now straightforward to introduce parallel
transport . To begin, let γ : I → M with I ⊂ R a curve in M with tangent
vector γ̇(t). A vector field v is called parallel along γ if

∇γ̇v = 0 . (3.12)

The vector ∇γ̇v is the covariant derivative of v along γ, and it is often
denoted by

∇γ̇v =
Dv
dt
=
∇v
dt
. (3.13)

In the coordinate basis {∂i}, the covariant derivative along γ reads

∇γ̇v = ∇ẋi∂i(v
j∂ j) = ẋi∇∂i(v

j∂ j)

= ẋi
[
v j∇∂i(∂ j) + ∂iv

j∂ j

]
=
(
v̇k + Γk

i j ẋiv j
)
∂k , (3.14)

and if this is to vanish identically, (3.12) and (3.14) imply the components

v̇k + Γk
i j ẋiv j = 0 . (3.15)?

Convince yourself of the results
(3.14) and (3.15). The existence and uniqueness theorems for ordinary differential equa-

tions imply that (3.15) has a unique solution once v is given at one point
along the curve γ(t). The parallel transport of a vector along a curve is
then uniquely defined.

If the tangent vector γ̇ of a curve γ is autoparallel along γ,

∇γ̇γ̇ = 0 , (3.16)

the curve is called a geodesic. In a local coordinate system, this condition
reads

ẍk + Γk
i j ẋi ẋ j = 0 . (3.17)

In flat Euclidean space, geodesics are straight lines. Quite intuitively, the
condition (3.16) generalises the concept of straight lines to manifolds.

Parallel transport and geodesics

A vector v is parallel transported along a curve γ if the geodesic equation

∇γ̇v = 0 (3.18)

holds. Geodesics are autoparallel curves,

∇γ̇γ̇ = 0 . (3.19)
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3.2.2 Normal Coordinates

Geodesics allow the introduction of a special coordinate system in the
neighbourhood of a point p ∈ M. First, given a point p = γ(0) and a
vector γ̇(0) ∈ TpM from the tangent space in p, the existence and unique-
ness theorems for ordinary differential equations ensure that (3.17) has a
unique solution, which implies that a unique geodesic exists through p
into the direction γ̇(0).

Obviously, if γv(t) is a geodesic with “initial velocity” v = γ̇(0), then
γv(at) is also a geodesic with initial velocity av = aγ̇(0), or

γav(t) = γv(at) . (3.20)

Thus, given some neighbourhood U ⊂ TpM of p = γ(0), unique
geodesics γ(t) with t ∈ [0, 1] can be constructed through p into any
direction v ∈ U, i.e. such that γ(0) = p and γ̇(0) = v ∈ U.

Using this, we define the exponential map at p,

expp : TpM ⊃ U → M , v �→ expp(v) = γv(1) , (3.21)

which maps any vector v from U ⊂ TpM into a point along the geodesic
through p into direction v at distance t = 1.

Now, we choose a coordinate basis {ei} of TpM and use the n basis
vectors in the exponential mapping (3.21). Then, the neighbourhood of
p can uniquely be represented by the exponential mapping along the
basis vectors, expp(xiei), and the xi are called normal coordinates.

Since expp(tv) = γtv(1) = γv(t), the curve γv(t) has the normal coordinates
xi = tvi, with v = viei. In these coordinates, xi is linear in t, thus ẍi = 0,
and (3.17) implies

Γk
i j v

iv j = 0 , (3.22)

and thus

Γk
i j + Γ

k
ji = 0 . (3.23)

If the connection is symmetric as defined in (3.11), the connection
coefficients must vanish,

Γk
i j = 0 . (3.24) ?

What could the exponential map
have to do with physics, in view
of the equivalence principle?Normal coordinates

Thus, at every point p ∈ M, local coordinates can uniquely be intro-
duced by means of the exponential map, the normal coordinates, in
which the coefficients of a symmetric connection vanish. This will turn
out to be important shortly.
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3.2.3 Covariant derivative of tensor fields

Extending the concept of the covariant derivative to tensor fields, we
start with a simple tensor of rank (1, 1) which is the tensor product of a
vector field v and a dual vector field w,

t = v ⊗ w , (3.25)

and we require that ∇x satisfy the Leibniz rule,

∇x(v ⊗ w) = ∇xv ⊗ w + v ⊗ ∇xw , (3.26)

and commute with the contraction,

C [∇x(v ⊗ w)] = ∇x[w(v)] . (3.27)

We now contract (3.26) and use (3.27) to find

C [∇x(v ⊗ w)] = C (∇xv ⊗ w) +C (v ⊗ ∇xw)
= w(∇xv) + (∇xw)(v)
= ∇x[w(v)] = xw(v) , (3.28)

where (3.1) was used in the final step (note that w(v) is a real-valued
function). Thus, we find an expression for the covariant derivative of a
dual vector,

(∇xw)(v) = xw(v) − w(∇xv) . (3.29)

Introducing the coordinate basis {∂i}, it is straightforward to show (and a
useful exercise!) that this result can be expressed as

(∇xw)(v) =
(
w j,i − Γk

i j wk

)
xiv j . (3.30)

Specialising x = ∂i, w = dx j and v = ∂k, hence xa = δa
i , wb = δ

j
b and

vc = δc
k, we see that this implies for the covariant derivatives of the dual

basis vectors dx j

(∇∂idx j)(∂k) = −Γ j
ik or ∇∂idx j = −Γ j

ik dxk . (3.31)?

Verify equations (3.30) and (3.31)
yourself. As before, we now define the covariant derivative ∇t of a tensor field

as a map from the tensor fields of rank (r, s) to the tensor fields of rank
(r, s + 1),

∇ : T r
s → T r

s+1 (3.32)

by setting

(∇t)(w1, . . . , wr, v1, . . . , vs, vs+1) ≡
(∇vs+1t)(w1, . . . , wr, v1, . . . , vs) , (3.33)

where the vi are vector fields and the w j dual vector fields.
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We find a general expression for ∇t, with t ∈ T r
s , by taking the tensor

product of t with s vector fields vi and r dual vector fields w j and applying
∇x to the result, using the Leibniz rule,

∇x (w1 ⊗ . . . ⊗ wr ⊗ v1 ⊗ . . . ⊗ vs ⊗ t)
= (∇xw1) ⊗ . . . ⊗ t + . . . w1 ⊗ . . . ⊗ (∇xv1) ⊗ . . . ⊗ t
+ w1 ⊗ . . . ⊗ (∇xt) , (3.34)

and then taking the total contraction, using that it commutes with the
covariant derivative, which yields

∇x [t(w1, . . . , wr, v1, . . . , vs)]
= t(∇xw1, . . . , wr, v1, . . . , vs) + . . . + t(w1, . . . , wr, v1, . . . ,∇xvs)
+ (∇xt)(w1, . . . , wr, v1, . . . , vs) . (3.35)

Therefore, the covariant derivative ∇xt of t is

(∇xt)(w1, . . . , wr, v1, . . . , vs)
= xt(w1, . . . , wr, v1, . . . , vs)
− t(∇xw1, . . . , vs) − . . . − t(w1, . . . ,∇xvs) . (3.36)

We now work out the last expression for the covariant derivative of a
tensor field in a local coordinate basis {∂i} and its dual basis {dx j} for the
special case of a tensor field t of rank (1, 1). The result for tensor fields
of higher rank are then easily found by induction.

We can write the tensor field t as

t = ti
j (∂i ⊗ dx j) , (3.37)

and the result of its application to w1 = dxa and v1 = ∂b is

t(dxa, ∂b) = ti
j dxa(∂i)dx j(∂b) = ta

b . (3.38)

Therefore, we can write (3.36) as

(∇xt)(dxa, ∂b) (3.39)

= xc∂cta
b − ti

j (∇xdxa)(∂i)dx j(∂b) − ti
j dxa(∂i)dx j(∇x∂b) .

According to (3.31), the second term on the right-hand side is

ti
j δ

j
bxc(∇∂cdxa)(∂i) = −xcti

b Γ
a
ci , (3.40)

while the third term is

ti
j δ

a
i xc(∇∂c∂b)(x j) = xcta

j Γ
k
cb ∂kx j = xcta

j Γ
j
cb . (3.41)

Summarising, the components of ∇xt are

ta
b;c = ta

b,c + Γ
a
ci ti

b − Γ
j
cb ta

j , (3.42)
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showing that the covariant indices are transformed with the negative, the
contravariant indices with the positive Christoffel symbols.

In particular, the covariant derivatives of tensors of rank (0, 1) (dual
vectors w) and of tensors of rank (1, 0) (vectors v) have components

wi;k = wi,k − Γ j
ki w j ,

vi;k = v
i
,k + Γ

i
k j v

j . (3.43)?

Convince yourself of the results
(3.42) and (3.43).

3.3 Curvature

3.3.1 The Torsion and Curvature Tensors

Torsion

The torsion T maps two vector fields x and y into another vector field,

T : T M × T M → T M , (3.44)

such that
T (x, y) = ∇xy − ∇yx − [x, y] . (3.45)

x

y

∇yx

∇xy
∇xy −∇yx

Figure 3.2 Torsion quantifies by how much parallelograms do not close.

Obviously, the torsion vanishes if and only if the connection is symmetric,
cf. (3.10).

The torsion is antisymmetric,

T (x, y) = −T (y, x) , (3.46)

and satisfies
T ( f x, gy) = fgT (x, y) (3.47)

with arbitrary C∞ functions f and g.
?

Confirm the statement (3.47).
The map

T ∗M × T M × T M → R , (w, x, y) → w[T (x, y)] (3.48)
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with w ∈ T ∗M and x, y ∈ T M is a tensor of rank (1, 2) called the torsion
tensor .

Caution In alternative, but
equivalent representations of gen-
eral relativity, the torsion does
not vanish, but the curvature
does. This is the teleparallel or
Einstein-Cartan version of gen-
eral relativity. �

According to (3.48), the components of the torsion tensor in the coordi-
nate basis {∂i} and its dual basis {dxi} are

T k
i j = dxk

[
T (∂i, ∂ j)

]
= Γk

i j − Γ
k

ji . (3.49)

Curvature

The curvature R̄ maps three vector fields x, y and v into a vector field,

R̄ : T M × T M × T M → T M , (3.50)

such that
R̄(x, y)v = ∇x(∇yv) − ∇y(∇xv) − ∇[x,y]v . (3.51)

v

u

u

v

x

∇ux

∇v∇ux

∇vx

∇u∇vx

R(u, v)x

Figure 3.3 Curvature quantifies by how much second covariant derivatives
do not commute.

Since the covariant derivatives ∇x and ∇y represent the infinitesimal
parallel transports along the integral curves of the vector fields x and y,
the curvature R̄ directly quantifies the change of the vector v when it is
parallel-transported around an infinitesimal, closed loop.

Exchanging x and y and using the antisymmetry of the commutator [x, y],
we see that R̄ is antisymmetric in x and y,

R̄(x, y) = −R̄(y, x) . (3.52)

Also, if f , g and h are C∞ functions on M,

R̄( f x, gy)hv = fgh R̄(x, y)v , (3.53)

which follows immediately from the defining properties (3.1) of the
connection.
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Curvature or Riemann tensor

Obviously, the map

T ∗M × T M × T M × T M → R , (w, x, y, v) = w[R̄(x, y)v] (3.54)

with w ∈ T ∗M and x, y, v ∈ T M defines a tensor of rank (1, 3). It is
called the curvature tensor or Riemann tensor.

To work out the components of R̄ in a local coordinate basis {∂i}, we first
note that

∇∂i(∇∂ j∂k) = ∇∂i

[
∇∂ j(∂k)

]
= ∇∂i

(
Γl

jk ∂l

)
= Γl

jk,i ∂l + Γ
l
jk Γ

m
il ∂m . (3.55)

Interchanging i and j yields the coordinate expression for ∇y(∇xv). Since
the commutator of the basis vectors vanishes, [∂i, ∂ j] = 0, the compo-
nents of the curvature tensor are

R̄i
jkl = dxi[R̄(∂k, ∂l)∂ j]

= Γi
l j,k − Γ

i
k j,l + Γ

m
l j Γ

i
km − Γm

k j Γ
i
lm . (3.56)

?

Verify the statement (3.53) and
the coordinate representation
(3.56). Ricci tensor

The Ricci tensor R is the contraction C1
3R̄ of the curvature tensor R̄. Its

components are

Rjl = R̄i
jil = Γ

i
l j,i − Γ

i
i j,l + Γ

m
l j Γ

i
im − Γm

i j Γ
i
lm . (3.57)

3.3.2 The Bianchi Identities

The curvature and the torsion together satisfy the two Bianchi identities.

Bianchi identities

The first Bianchi identity is∑
cyclic

[
R̄(x, y)z

]
=
∑
cyclic

{T [T (x, y), z] + (∇xT )(y, z)} , (3.58)

where the sums extend over all cyclic permutations of the vectors x, y
and z. The second Bianchi identity is∑

cyclic

{
(∇xR̄)(y, z) + R̄[T (x, y), z]

}
= 0 . (3.59)

They are important because they define symmetry relations of the curva-
ture and the curvature tensor. In particular, for a symmetric connection,
T = 0 and the Bianchi identities reduce to∑

cyclic

[
R̄(x, y)z

]
= 0 ,

∑
cyclic

(∇xR̄)(y, z) = 0 . (3.60)
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Figure 3.4 Gregorio Ricci-Curbastro (1853–1925), Italian mathematician.
Source: Wikipedia

Before we go on, we have to clarify the meaning of the covariant deriva-
tives of the torsion and the curvature. We have seen that T defines a
tensor field T̃ of rank (1, 2). Given a dual vector field w ∈ T ∗M, we
define the covariant derivative of the torsion T such that

w
[
∇vT (x, y)

]
= (∇vT̃ )(w, x, y) . (3.61)

Using (3.36), we can write the right-hand side as

(∇vT̃ )(w, x, y) = vT̃ (w, x, y) − T̃ (∇vw, x, y)
− T̃ (w,∇vx, y) − T̃ (w, x,∇vy) . (3.62)

The first two terms on the right-hand side can be combined using (3.29),

T̃ (∇vw, x, y) = ∇vw[T (x, y)] = vw[T (x, y)] − w[∇vT (x, y)]
= vT̃ (w, x, y) − w[∇vT (x, y)] , (3.63)

which yields

(∇vT̃ )(w, x, y) = w[∇vT (x, y)] − T̃ (w,∇vx, y) − T̃ (w, x,∇vy) (3.64)

or, dropping the common argument w from all terms,

(∇vT )(x, y) = ∇v[T (x, y)] − T (∇vx, y) − T (x,∇vy) . (3.65)

Similarly, we find that

(∇vR̄)(x, y) = ∇v[R̄(x, y)] − R̄(∇vx, y) − R̄(x,∇vy) − R̄(x, y)∇v . (3.66)
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For symmetric connections, T = 0, the first Bianchi identity is easily
proven. Its left-hand side reads

∇x∇yz − ∇y∇xz + ∇y∇zx − ∇z∇yx + ∇z∇xy − ∇x∇zy

− ∇[x,y]z − ∇[y,z]x − ∇[z,x]y

= ∇x(∇yz − ∇zy) + ∇y(∇zx − ∇xz) + ∇z(∇xy − ∇yx)
− ∇[x,y]z − ∇[y,z]x − ∇[z,x]y

= ∇x[y, z] − ∇[y,z]x + ∇y[z, x] − ∇[z,x]y + ∇z[x, y] − ∇[x,y]z
= [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 , (3.67)

where we have used the relation (3.10) and the Jacobi identity (2.33).
?

Convince yourself of the result
(3.67).

3.4 Riemannian connections

3.4.1 Definition and Uniqueness

Up to now, the affine connection ∇ has not yet been uniquely defined.
We shall now see that a unique connection can be introduced on each
pseudo-Riemannian manifold (M, g).

A connection is called metric if the parallel transport along any smooth
curve γ in M leaves the inner product of two autoparallel vector fields x
and y unchanged. This is the case if and only if the covariant derivative
∇ of g vanishes,

∇g = 0 . (3.68)

Because of (3.36), this condition is equivalent to the Ricci identity

xg(y, z) = g(∇xy, z) + g(y,∇xz) , (3.69)

where x, y, z are vector fields.

Caution In a third, equivalent
representation of general relativ-
ity, curvature and torsion both
vanish, but the metricity (3.68)
is given up. � It can now be shown that a unique connection ∇ can be introduced on

each pseudo-Riemannian manifold such that ∇ is symmetric or torsion-
free, and metric, i.e. ∇g = 0. Such a connection is called the Riemannian
or Levi-Civita connection.

Suppose first that such a connection exists, then (3.69) and the symmetry
of ∇ allow us to write

xg(y, z) = g(∇yx, z) + g([x, y], z) + g(y,∇xz) . (3.70)

Taking the cyclic permutations of this equation, summing the second and
the third and subtracting the first (3.70), we obtain the Koszul formula

2g(∇zy, x) = −xg(y, z) + yg(z, x) + zg(x, y) (3.71)
+ g([x, y], z) − g([y, z], x) − g([z, x], y) .
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Figure 3.5 Tullio Levi-Civita (1873–1941), Italian mathematician. Source:
Wikipedia

Since the right-hand side is independent of ∇, and g is non-degenerate,
this result implies the uniqueness of ∇. The existence of an affine,
symmetric and metric connection can be proven by explicit construction.

The Christoffel symbols for a Riemannian connection can now be deter-
mined specialising the Koszul formula (3.71) to the basis vectors {∂i} of
a local coordinate system. We choose x = ∂k, y = ∂ j and z = ∂i and use
that their commutator vanishes, [∂i, ∂ j] = 0, and that g(∂i, ∂ j) = gi j .

Then, (3.71) implies

2g(∇∂i∂ j, ∂k) = −∂kgi j + ∂ jgik + ∂ig jk , (3.72)

thus

gmkΓ
m

i j =
1
2

(
gik, j + g jk,i − gi j,k

)
. (3.73)

If (gi j) denotes the matrix inverse to (gi j), we can write

Γl
i j =

1
2
glk
(
gik, j + g jk,i − gi j,k

)
. (3.74)

Levi-Civita-connection

On a pseudo-Riemannian manifold (M, g) with metric g, a unique
connection exists which is symmetric and metric, ∇g = 0. It is called
Levi-Civita connection.
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3.4.2 Symmetries. The Einstein Tensor

In addition to (3.52), the curvature tensor of a Riemannian connection
has the following symmetry properties:

〈R̄(x, y)v, w〉 = −〈R̄(x, y)w, v〉 , 〈R̄(x, y)v, w〉 = 〈R̄(v, w)x, y〉 . (3.75)

The first of these relations is easily seen noting that the antisymmetry is
equivalent to

〈R̄(x, y)v, v〉 = 0 . (3.76)

From the definition of R̄ and the antisymmetry (3.52), we first have

〈v, R̄(x, y)v〉 = 〈v,∇x∇yv − ∇y∇xv − ∇[x,y]v〉 . (3.77)

Replacing y by ∇yv and z by v, the Ricci identity (3.69) allows us to write

〈v,∇x∇yv〉 = x〈∇yv, v〉 − 〈∇yv,∇xv〉 (3.78)

and, replacing x by y and both y and z by v,

〈∇yv, v〉 =
1
2
y〈v, v〉 . (3.79)

Hence, the first two terms on the right-hand side of (3.77) yield

〈v,∇x∇yv − ∇y∇xv〉 = 〈v, x〈∇yv, v〉 − y〈∇xv, v〉〉

=
1
2
〈v, xy〈v, v〉 − yx〈v, v〉〉

=
1
2
〈v, [x, y]〈v, v〉〉 . (3.80)

By (3.79), this is the negative of the third term on the right-hand side of
(3.77), which proves (3.76).

The symmetries (3.52) and (3.75) imply

R̄i jkl = −R̄ jikl = −R̄i jlk , R̄i jkl = R̄kli j , (3.81)

where R̄i jkl ≡ gimR̄m
jkl . Of the 44 = 256 components of the Riemann

tensor in four dimensions, the first symmetry relation (3.81) leaves
6×6 = 36 independent components, while the second symmetry relation
(3.81) reduces their number to 6 + 5 + 4 + 3 + 2 + 1 = 21.

In a coordinate basis, the Bianchi identities (3.60) for the curvature tensor
of a Riemannian connection read∑

( jkl)

R̄i
jkl = 0 ,

∑
(klm)

R̄i
jkl;m = 0 , (3.82)

where ( jkl) denotes the cyclic permutations of the indices enclosed in
parentheses. In four dimensions, the first Bianchi identity establishes one
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further relation between the components of the Riemann tensor which is
not covered yet by the symmetry relations (3.81), namely

R̄0123 + R̄0231 + R̄0312 = 0 , (3.83)

and thus leaves 20 independent components of the Riemann tensor.
These are ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R̄0101 R̄0102 R̄0103 R̄0112 R̄0113

R̄0202 R̄0203 R̄0212 R̄0213 R̄0223

R̄0303 R̄0312 R̄0313 R̄0323

R̄1212 R̄1213 R̄1223

R̄1313 R̄1323

R̄2323

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.84)

where R̄0123 is determined by (3.83).

Using the symmetries (3.81) and the second Bianchi identity from (3.82),
we can obtain an important result. We first contract

R̄i
jkl;m + R̄i

jlm;k + R̄i
jmk;l = 0 (3.85)

by multiplying with δk
i and use the symmetry relations (3.81) to find

Rjl;m + R̄ i
j ml;i − Rjm;l = 0 (3.86)

for the Ricci tensor. Next, we contract again by multiplying with g jm,
which yields

Rm
l;m + Ri

l;i − R;l = 0 , (3.87)

where Ri j are the components of the Ricci tensor and R = Ri
i is the

Ricci scalar or the scalar curvature. Renaming dummy indices, the last
equation can be brought into the form(

Ri
j −

R
2
δi

j

)
;i
= 0 , (3.88)

which is the contracted Bianchi identity. Moreover, the Ricci tensor can
easily be shown to be symmetric,

Ri j = Rji . (3.89)

We finally introduce the symmetric Einstein tensor by

Gi j ≡ Ri j −
R
2
gi j , (3.90)

which has vanishing divergence because of the contracted Bianchi iden-
tity,

Gi
j;i = 0 . (3.91)
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Riemann, Ricci, and Einstein tensors

The Ricci tensor is the only non-vanishing contraction of the Riemann
tensor. Its components are

Ri j = R̄a
ia j . (3.92)

The Ricci scalar is the only contraction (the trace) of the Ricci tensor,
R = Tr R. The Ricci tensor, the Ricci scalar and the metric together
define the Einstein tensor, which has the components

Gi j = Ri j −
R
2
gi j (3.93)

and is divergence-free, Gi
j;i = 0.




