
Chapter 2

Differential Geometry I

2.1 Differentiable manifolds

By the preceding discussion of how a theory of gravity may be con-
structed which is compatible with special relativity, we are led to the con-
cept of a spacetime which “looks like” Minkowskian spacetime locally,
but may globally be curved. This concept is cast into a mathematically
precise form by the introduction of a manifold.

Manifolds

An n-dimensional manifold M is a topological Hausdorff space with a
countable base, which is locally homeomorphic to Rn. This means that
for every point p ∈ M, an open neighbourhood U of p exists together
with a homeomorphism h which maps U onto an open subset U′ of Rn,

h : U → U′ . (2.1)

Caution A topological space
is a set M together with a collec-
tion T of open subsets Ti ⊂ M
with the properties (i) ∅ ∈ T and
M ∈ T ; (ii) ∩n

i=1Ti ∈ T for any
finite n; (iii) ∪n

i=1Ti ∈ T for any
n. In a Hausdorff space, any two
points x, y ∈ M with x � y can
be surrounded by disjoint neigh-
bourhoods. �A trivial example for an n-dimensional manifold is the Rn itself, on

which h may be the identity map id. Thus, h is a specialisation of a map
φ from one manifold M to another manifold N, φ : M → N.

The homeomorphism h is called a chart or a coordinate system in the
language of physics. U is the domain or the coordinate neighbourhood
of the chart. The image h(p) of a point p ∈ M under the chart h is
expressed by the n real numbers (x1, . . . xn), the coordinates of p in the
chart h.

Caution A homeomorphism
(not to be confused with a homo-
morphism) is a bijective, contin-
uous map whose inverse is also
continuous. �

A set of charts hα is called an atlas of M if the domains of the charts
cover M completely.

Charts and atlases

Charts are homeomorphisms from an n-dimensional manifold M into
R

n. A an atlas is a collection of charts whose domains cover M com-
pletely.

15



16 2 Differential Geometry I

Example: The sphere as a manifold

An example for a manifold is the n-sphere S n, for which the two-sphere
S 2 is a particular specialisation. It cannot be continuously mapped to
R

2, but pieces of it can.
We can embed the two-sphere into R3 and describe it as the point set

S 2 =
{
(x1, x2, x3) ∈ R3

∣∣∣ (x1)2 + (x2)2 + (x3)2 = 1
}

; (2.2)

then, the six half-spheres U±
i defined by

U±
i =

{
(x1, x2, x3) ∈ S 2

∣∣∣ ± xi > 0
}

(2.3)

can be considered as domains of maps whose union covers S 2 com-
pletely, and the charts can be the projections of the half-spheres onto
open disks

Di j =
{
(xi, x j) ∈ R2

∣∣∣ (xi)2 + (x j)2 < 1
}
, (2.4)

such as
f +1 : U+1 → D23 , f +1 (x1, x2, x3) = (x2, x3) . (2.5)

Thus, the six charts f ±i , i ∈ {1, 2, 3}, together form an atlas of the
two-sphere. See Fig. 2.1 for an illustration. �

Let now hα and hβ be two charts, and Uαβ ≡ Uα ∩ Uβ � ∅ be the
intersection of their domains. Then, the composition of charts hβ ◦ h−1

α

exists and defines a map between two open sets in Rn which describes
the change of coordinates or a coordinate transform on the intersection
of domains Uα and Uβ. An atlas of a manifold is called differentiable
if the coordinate changes between all its charts are differentiable. A
manifold, combined with a differentiable atlas, is called a differentiable
manifold.

Using charts, it is possible to define differentiable maps between mani-
folds. Let M and N be differentiable manifolds of dimension m and n,
respectively, and φ : M → N be a map from one manifold to the other.
Introduce further two charts h : M → M′ ⊂ Rm and k : N → N′ ⊂ Rn

whose domains cover a point p ∈ M and its image φ(p) ∈ N. Then, the
combination k ◦ φ ◦ h−1 is a map from the domain M′ to the domain
N′, for which it is clear from advanced calculus what differentiability
means. Unless stated otherwise, we shall generally assume that coordi-
nate changes and maps between manifolds are C∞, i.e. their derivatives
of all orders exist and are continuous.

Differentiable atlases and maps

An atlas is differentiable if all of its coordinate changes are differen-
tiable. Differentiable maps between manifolds are defined by means of
differentiable charts.
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Example: A differentiable atlas for the 2-sphere

To construct an example for a differentiable atlas, we return to the two-
sphere S 2 and the atlas of the six projection charts A = { f ±1 , f ±2 , f ±3 }
described above and investigate whether it is differentiable. For doing
so, we arbitrarily pick the charts f +3 and f +1 , whose domains are the
“northern” and “eastern” half-spheres, respectively, which overlap on
the “north-eastern” quarter-sphere. Let therefore p = (p1, p2, p3) be a
point in the domain overlap, then

f +3 (p) = (p1, p2) , f +1 (p) = (p2, p3) ,

( f +3 )−1(p1, p2) =
(
p1, p2,

√
1 − (p1)2 − (p2)2

)
,

f +1 ◦ ( f +3 )−1(p1, p2) =
(
p2,

√
1 − (p1)2 − (p2)2

)
, (2.6)

which is obviously differentiable. The same applies to all other coor-
dinate changes between charts of A, and thus S 2 is a differentiable
manifold.
As an example for a differentiable map, let φ : S 2 → S 2 be a map
which rotates the sphere by 45◦ around its z axis. Let us further choose
a point p on the positive quadrant of S 2 in which all coordinates are
positive. We can combine φ with the charts f +3 and f +1 to define the
map

(
f +1 ◦ φ ◦ ( f +3 )−1

)
(p1, p2) =

(
p1 + p2

√
2
,
√

1 − (p1)2 − (p2)2

)
, (2.7)

which is also evidently differentiable. �
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(p1, p2) ∈ D12

p ∈ U+
3

Figure 2.1 Example for a chart, explained in the text: the point p on the
half-sphere U+3 the two-sphere is projected into the domain D12 ⊂ R2.

Finally, we introduce product manifolds in a straightforward way. Given
two differentiable manifolds M and N of dimension m and n, respectively,
we can turn the product space M × N consisting of all pairs (p, q) with
p ∈ M and q ∈ N into an (m + n)-dimensional manifold as follows: if
h : M → M′ and k : N → N′ are charts of M and N, a chart h× k can be
defined on M × N such that

h × k : M × N → M′ × N′ , (h × k)(p, q) =
[
h(p), k(q)

]
. (2.8)

In other words, pairs of points from the product manifold are mapped to
pairs of points from the two open subsets M′ ⊂ Rm and N′ ⊂ Rn.

2.2 The tangent space

2.2.1 Tangent vectors

Now we have essentially introduced ways how to construct local coordi-
nate systems, or charts, on a manifold, how to change between them, and
how to use charts to define what differentiable functions on the manifold
are. We now proceed to see how vectors can be introduced on a manifold.
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Example: Product manifold

Many manifolds which are relevant in General Relativity can be ex-
pressed as product manifolds of the Euclidean spaceRm with spheres S n.
For example, we can construct the product manifold R × S 2 composed
of the real line and the two-sphere. Points on this product manifold can
be mapped onto R × R2 for instance using the identical chart id on R
and the chart f +3 on the “northern” half-sphere of S 2,

(id × f +3 ) : R × S 2 → R × D12 , (p, q) → (p, q2, q3) . (2.9)

�

Recall the definition of a vector space: a set V , combined with a field
(Körper in German) F, an addition,

+ : V × V → V , (v, w) �→ v + w , (2.10)

and a multiplication,

· : F × V → V , (λ, v) �→ λv , (2.11)

is an F-vector space if V is an Abelian group under the addition + and
the multiplication is distributive and associative. In other words, a vector
space is a set of elements which can be added and multiplied with scalars
(i.e. numbers from the field F).

?

What are the defining properties
of a field?

On a curved manifold, this vector space structure is lost because it is
not clear how vectors at different points on the manifold should be
added. However, it still makes sense to define vectors locally in terms of
infinitesimal displacements within a sufficiently small neighbourhood of
a point p, which are “tangential” to the manifold at p.

This leads to the concept of the tangential space of a manifold, whose
elements are tangential vectors, or directional derivatives of functions.
We denote by F the set of C∞ functions f from the manifold into R.

Example: Functions on a manifold

Examples for functions on the manifold S 2 → R could be the average
temperature on Earth or the height of the Earth’s surface above sea
level. �
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Tangent space

Generally, the tangent space TpM of a differentiable manifold M at a
point p is the set of derivations of F (p). A derivation v is a map from
F (p) into R,

v : F (p) → R , (2.12)

which is linear,
v(λ f + μg) = λv( f ) + μv(g) (2.13)

for f , g ∈ F (p) and λ, μ ∈ R, and satisfies the product rule (or Leibniz
rule)

v( fg) = v( f )g + f v(g) . (2.14)

See Fig. 2.2 for an illustration of the tangent space to a 2-sphere.

p

TpM

Figure 2.2 Illustration of the tangent space TpM at point p on the 2-sphere.

Note that this definition immediately implies that the derivation of a
constant vanishes: let h ∈ F be a constant function, h(p) = c for all
p ∈ M, then v(h2) = 2cv(h) from (2.14) and v(h2) = v(ch) = cv(h) from
(2.13), which is possible only if v(h) = 0.

Together with the real numbers R and their addition and multiplication
laws, TpM does indeed have the structure of a vector space, with

(v + w)( f ) = v( f ) + w( f ) and (λv)( f ) = λv( f ) (2.15)

for v, w ∈ TpM, f ∈ F and λ ∈ R.

2.2.2 Coordinate basis

We now construct a basis for the vector space TpM, i.e. we provide a
complete set {ei} of linearly independent basis vectors. For doing so,
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let h : U → U′ ⊂ Rn be a chart with p ∈ U and f ∈ F (p) a function.
Then, f ◦ h−1 : U′ → R is C∞ by definition, and we introduce n vectors
ei ∈ TpM, 1 ≤ i ≤ n, by

ei( f ) :=
∂

∂xi ( f ◦ h−1)
∣∣∣∣∣
h(p)
, (2.16)

where xi are the usual cartesian coordinates of Rn.

The function ( f ◦ h−1) is applied to the image h(p) ∈ Rn of p under the
chart h, i.e. ( f ◦ h−1) “carries” the function f from the manifold M to the
locally isomorphic manifold Rn.

To show that these vectors span TpM, we first state that for any C∞

function F : U′ → R defined on an open neighbourhood U′ of the origin
of Rn, there exist n C∞ functions Hi : U′ → R such that

F(x) = F(0) +
n∑

i=1

xiHi(x) . (2.17)

Note the equality! This is not a Taylor expansion. This is easily seen
using the identity

F(x) − F(0) =
∫ 1

0

d
dt

F(tx1, . . . , txn)dt

=

n∑
i=1

xi
∫ 1

0
DiF(tx1, . . . , txn)dt , (2.18)

where Di is the partial derivative with respect to the i-th argument of F.
Thus, it suffices to set

Hi(x) =
∫ 1

0
DiF(tx1, . . . , txn)dt (2.19)

to prove (2.17). For x = 0 in particular, we find

Hi(0) =
∫ 1

0

∂F
∂xi

∣∣∣∣∣
0

dt =
∂F
∂xi

∣∣∣∣∣
0
. (2.20)

Now we substitute F = f ◦ h−1 and choose a chart h : U → U′ such that
h(q) = x and h(p) = 0, i.e. q = h−1(x). Then, we first obtain from (2.17)

f (q) = f (p) +
n∑

i=1

(xi ◦ h)(q) (Hi ◦ h)(q) , (2.21)

and from (2.20)

Hi(0) = (Hi ◦ h)(p) =
∂

∂xi ( f ◦ h−1)
∣∣∣∣∣
h(p)
= ei( f ) . (2.22)
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Next, we apply a tangent vector v ∈ TpM to (2.21),

v( f ) = v[ f (p)] +
n∑

i=1

[
v(xi ◦ h) (Hi ◦ h)|p + (xi ◦ h)|p v(Hi ◦ h)

]

=

n∑
i=1

v(xi ◦ h) ei( f ) , (2.23)

where we have used that v applied to the constant f (p) vanishes, that
(xi ◦ h)(p) = 0 and that Hi(0) = ei( f ) according to (2.22). Thus, setting
vi = v(xi ◦ h), we find that any v ∈ TpM can be written as a linear
combination of the basis vectors ei. This also demonstrates that the
dimension of the tangent space TpM equals that of the manifold itself.

Coordinate basis of TpM

The basis {ei}, which is often simply denoted as {∂/∂xi} or {∂i}, is called
a coordinate basis of TpM. Vectors v ∈ TpM can thus be written as

v = viei = v
i∂i . (2.24)

If we choose a different chart h′ instead of h, we obtain of course a
different coordinate basis {e′i}. Denoting the i-th coordinate of the map
h′ ◦ h−1 with x′, the chain rule applied to f ◦ h−1 = ( f ◦ h′−1) ◦ (h′ ◦ h−1)
yields

ei =

n∑
j=1

∂x′ j

∂xi e′j =: J′ j
i e′j . (2.25)

which shows that the two different coordinate bases are related by the
Jacobian matrix of the coordinate change, which has the elements
J′ j

i = ∂x
′ j/∂xi. Its inverse has the elements Ji

j = ∂x
i/∂x′ j.

This relates the present definition of a tangent vector to the traditional
definition of a vector as a quantity whose components transform as

v′i = v(xi ◦ h′) =
n∑

j=1

v je j(xi ◦ h′) =
n∑

j=1

∂x′i

∂x j v
j = J′ij v

j . (2.26)

Repeating the construction of a tangent space at another point q ∈ M,
we obtain a tangent space TqM which cannot be identified in any way
with the tangent space TpM given only the structure of a differentiable
manifold that we have so far.

Consequently, a vector field is defined as a map v : p �→ vp which assigns
a tangent vector vp ∈ TpM to every point p ∈ M. If we apply a vector
field v to a C∞ function f , its result (v( f ))(p) is a number for each point p.
The vector field is called smooth if the function (v( f ))(p) is also smooth.

Since we can write v = vi∂i with components vi in a local coordinate
neighbourhood, the function v( f ) is

(v( f ))(p) = vi(p)∂i f (p) , (2.27)
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and thus it is called the derivative of f with respect to the vector field v.

2.2.3 Curves and infinitesimal transformations

We can give a geometrical meaning to tangent vectors as “infinitesimal
displacements” on the manifold. First, we define a curve on M through
p ∈ M as a map from an open interval I ⊂ R with 0 ∈ I into M,

γ : I → M , (2.28)

such that γ(0) = p.

Next, we introduce a one-parameter group of diffeomorphisms γt as a
C∞ map,

γt : R × M → M , (2.29)

such that for a fixed t ∈ R, γt : M → M is a diffeomorphism and, for all
t, s ∈ R, γt ◦ γs = γt+s. Note the latter requirement implies that γ0 is the
identity map.

Caution A diffeomorphism is
a continuously differentiable, bi-
jective map with a continously
differentiable inverse. �For a fixed t, γt maps points p ∈ M to other points q ∈ M in a dif-

ferentiable way. As an example on the two-sphere S 2, γt could be the
map which rotates the sphere about an (arbitrary) z axis by an angle
parameterised by t, such that γ0 is the rotation by zero degrees.

We can now associate a vector field v to γt as follows: For a fixed
point p ∈ M, the map γt : R → M is a curve as defined above which
passes through p at t = 0. This curve is called an orbit of γt. Then, we
assign to p the tangent vector vp to this curve at t = 0. Repeating this
operation for all points p ∈ M defines a vector field v on M which is
associated with γt and can be considered as the infinitesimal generator
of the transformations γt.

Example: Transformation of S 2

In our example on S 2, we fix a point p on the sphere whose orbit under
the map γt is a part of the “latitude circle” through p. The tangent
vector to this curve in p defines the local “direction of motion” under
the rotation expressed by γt. Applying this to all points p ∈ S 2 defines
a vector field v on S 2. �

Conversely, given a vector field v on M, we can construct curves through
all points p ∈ M whose tangent vectors are vp. This is most easily seen
in a local coordinate neighbourhood, h(p) = (x1, . . . xn), in which the
curves are the unique solutions of the system

dxi

dt
= vi(x1, . . . xn) (2.30)

of ordinary, first-order differential equations. Thus, tangent vectors can
be identified with infinitesimal transformations of the manifold.
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Given two vector fields v, w and a function f on M, we can define the
commutator of the two fields as

[v, w]( f ) = vw( f ) − wv( f ) . (2.31)

In coordinates, we can write v = vi∂i and w = w j∂ j, and the commutator
can be written as

[v, w] =
(
vi∂iw

j − wi∂iv
j
)
∂ j . (2.32)

It can easily be shown to have the following properties (where v, w, x are
vector fields and f , g are functions on M):

[v + w, x] = [v, x] + [w, x]
[v, w] = −[w, v]

[ f v, gw] = fg[v, w] + f v(g)w − gw( f )v
[v, [w, x]] + [x, [v, w]] + [w, [x, v]] = 0 , (2.33)

where the latter equation is called the Jacobi identity.

2.3 Dual vectors and tensors

2.3.1 Dual space

We had introduced the tangent space T M as the set of derivations of
functions F on M, which were certain linear maps from F into R. We
now introduce the dual vector space T ∗M to T M as the set of linear
maps

T ∗M : T M → R (2.34)

from T M into R. Defining addition of elements of T ∗M and their multi-
plication with scalars in the obvious way, T ∗M obtains the structure of a
vector space; the elements of T ∗M are called dual vectors.

Let now f be a C∞ function on M and v ∈ T M an arbitrary tangent
vector. Then, we define the differential of f by

d f : T M → R , d f (v) = v( f ) . (2.35)

It is obvious that, by definition of the dual space T ∗M, d f is an element
of T ∗M and thus a dual vector. Choosing a coordinate representation,
we see that

d f (v) = vi∂i f . (2.36)

Specifically letting f = xi be the i-th coordinate function, we see that

dxi(∂ j) = ∂ jxi = δi
j , (2.37)



2.3 Dual vectors and tensors 25

which shows that the n-tuple {e∗i} = {dxi} forms a basis of T ∗M, which
is called the dual basis to the basis {ei} = {∂i} of the tangent space T M.

Dual vectors

Dual vectors map vectors to the real numbers. If {∂i} is a coordinate ba-
sis of T M, the dual basis of T ∗M is given by the coordinate differentials
{dxi}. Dual vectors can thus be written as

w = widxi . (2.38)

Starting the same operation leading from T M to the dual space T ∗M
with T ∗M instead, we arrive at the double-dual vector space T ∗∗M as the
vector space of all linear maps from T ∗M → R. It can be shown that
T ∗∗M is isomorphic to T M and can thus be identified with T M.

2.3.2 Tensors

Tensors T of rank (r, s) can now be defined as multilinear maps

T : T ∗M × . . . × T ∗M︸����������������︷︷����������������︸
r

×T M × . . . × T M︸��������������︷︷��������������︸
s

→ R , (2.39)

in other words, given r dual vectors and s tangent vectors, T returns a
real number, and if all but one vector or dual vector are fixed, the map is
linear in the remaining argument. If a tensor of rank (r, s) is assigned to
every point p ∈ M, we have a tensor field of rank (r, s) on M.

Tensors

Tensors of rank (r, s) are multilinear maps of r dual vectors and s
vectors into the real numbers.

According to this definition, tensors of rank (0, 1) are simply dual vectors,
and tensors of rank (1, 0) are elements of V∗∗ and can thus be identified
with tangent vectors.

Example: Tensor field of rank (1, 1)

For one specific example, a tensor of rank (1, 1) is a bilinear map from
T ∗M × T M → R. If we fix a vector v ∈ T M, T (·, v) is a linear map
T ∗M → R and thus an element of T ∗∗M, which can be identified with
a vector. In this way, given a vector v ∈ T M, a tensor of rank (1, 1)
produces another vector ∈ T M, and vice versa for dual vectors. Thus,
tensors of rank (1, 1) can be seen as linear maps from T M → T M, or
from T ∗M → T ∗M. �

With the obvious rules for adding linear maps and multiplying them with
scalars, the set of tensors T r

s of rank (r, s) attains the structure of a vector
space of dimension nr+s.
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Given a tensor t of rank (r, s) and another tensor t′ of rank (r′, s′), we can
construct a tensor of rank (r + r′, s + s′) called the outer product t ⊗ t′ of
t and t′ by simply multiplying their results on the r + r′ dual vectors wi

and the s + s′ vectors v j, thus

(t ⊗ t′)(w1, . . . , wr+r′ , v1, . . . , vs+s′) = (2.40)

t(w1, . . . , wr, v1, . . . , vs) t′(wr+1, . . . , wr+r′ , vs+1, . . . , vs+s′) .

In particular, it is thus possible to construct a basis for tensors of rank
(r, s) out of the bases {ei} of the tangent space and {e∗ j} of the dual space
by taking the tensor products. Thus, a tensor of rank (r, s) can be written
in the form

t = ti1...ir
j1... js

(
∂i1 ⊗ . . . ⊗ ∂ir

)
⊗
(
dx j1 ⊗ . . . ⊗ dx js

)
, (2.41)

where the numbers ti1...ir
j1... js

are its components with respect to the coordinate
system h.

The transformation law (2.25) for the basis vectors under coordinate
changes implies that the tensor components transform as

t′i1...irj1... js
= J′i1k1

. . . J′irkr
Jl1

j1
. . . Jls

js
tk1...kr
l1...ls
, (2.42)

a property which is often used to define tensors in the first place.

Contraction

The contraction Ci
jt of a tensor of rank (r, s) is a map which reduces

both r and s by unity,

Ci
jt : T r

s → T r−1
s−1 , Ci

jt = t(. . . , e∗k, . . . , ek, . . .) , (2.43)

where {ek} and {e∗k} are bases of the tangent and dual spaces, as before,
and the summation over all 1 ≤ k ≤ n is implied. The basis vectors e∗k

and ek are inserted as the i-th and j-th arguments of the tensor t.

Expressing the tensor in a coordinate basis, we can write the tensor in
the form (2.41), and thus its contraction with respect to the ia-th and
jb-th arguments reads

Cia
jb

t = ti1...ir
j1... js

dxik(∂ jk)(
∂i1 ⊗ . . . ⊗ ∂ia−1 ⊗ ∂ia+1 ⊗ . . . ⊗ ∂ir

)(
dx j1 ⊗ . . . ⊗ dx jb−1 ⊗ dx jb+1 ⊗ . . . ⊗ dx js

)
= ti1...ia−1ikia+1...ir

j1... jb−1ik jb+1... js(
∂i1 ⊗ . . . ⊗ ∂ia−1 ⊗ ∂ia+1 ⊗ . . . ⊗ ∂ir

)(
dx j1 ⊗ . . . ⊗ dx jb−1 ⊗ dx jb+1 ⊗ . . . ⊗ dx js

)
. (2.44)
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Example: Tensor contraction

For a simple example, let v ∈ T M be a tangent vector and w ∈ T ∗M a
dual vector, and t = v ⊗ w a tensor of rank (1, 1). Its contraction results
in a tensor of rank (0, 0), i.e. a real number, which is

Ct = C(v ⊗ w) = dxk(v)w(∂k) = vkwk . (2.45)

At the same time, this can be written as

Ct = C(v ⊗ w) = w(v) (2.46)

= (w jdx j)(vi∂i) = w jv
idx j(∂i) = w jv

i∂ix j = w jv
iδ

j
i = wiv

i .

In this sense, the contraction amounts to applying the tensor (partially)
“on itself”. �

2.4 The metric

We need some way to define and measure the “distance” between two
points on a manifold. A metric is introduced via the infinitesimal squared
distance between two neighbouring points on the manifold.

We have seen above that tangent vectors v ∈ TpM are closely related to
infinitesimal displacements around a point p on the manifold. Moreover,
the infinitesimal squared distance between two neighbouring points p
and q should be quadratic in the displacement leading from one point to
the other. Thus, we construct the metric g as a bi-linear map

g : T M × T M → R , (2.47)

which means that the g is a tensor of rank (0, 2). The metric thus assigns
a number to two elements of a vector field T M on M. The metric g
thus defines to two vectors their scalar product, which is not necessarily
positive. We abbreviate the scalar product of two vectors v, w ∈ T M by

g(v, w) ≡ 〈v, w〉 . (2.48)

In addition, we require that the metric be symmetric and non-degenerate,
which means

g(v, w) = g(w, v) ∀ v, w ∈ TpM ,
g(v, w) = 0 ∀ v ∈ TpM ⇔ w = 0 . (2.49)

Metric

A metric is a rank-(0, 2) tensor field which is symmetric and non-
degenerate.

In a coordinate basis, the metric can be written in components as

g = gi j dxi ⊗ dx j . (2.50)
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The line element ds is the metric applied to an infinitesimal distance
vector dx with components dxi,

ds2 = g(dx, dx) = gi jdxidx j . (2.51)

Given a coordinate basis {ei}, the metric g can always be chosen such
that

g(ei, e j) = 〈ei, e j〉 = ±δi j , (2.52)

where the number of positive and negative signs is independent of the
coordinate choice and is called the signature of the metric. Positive-
(semi-) definite metrics, which have only positive signs, are called Rie-
mannian, and pseudo-Riemannian metrics have positive and negative
signs.

Figure 2.3 Georg Friedrich Bernhard Riemann (1826–1866), German
mathematician. Source: Wikipedia

Example: Minkowski metric

Perhaps the most common pseudo-Riemannian metric is the Minkowski
metric known from special relativity, which can be chosen to have the
signature (−,+,+,+) and has the line element

ds2 = −c2dt2 + (dx1)2 + (dx2)2 + (dx3)2 . (2.53)

A metric with the same signature as for the spacetime is called
Lorentzian. �

Given a tangent vector v, the metric can also be seen as a linear map
from T M into T ∗M,

g : T M → T ∗M , v �→ g(·, v) . (2.54)
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This is an element of T ∗M because it linearly maps vectors into R. Since
the metric is non-degenerate, the inverse map g−1 also exists, and the
metric can be used to establish a one-to-one correspondence between
vectors and dual vectors, and thus between the tangent space T M and its
dual space T ∗M.




