
Chapter 1

Introduction

1.1 The idea behind general relativity

There was no need for general relativity when Einstein started working
on it. There was no experimental data signalling any failure of the
Newtonian theory of gravity, except perhaps for the minute advance of
the perihelion of Mercury’s orbit by 43′′ per century, which researchers
at the time tried to explain by perturbations not included yet into the
calculations of celestial mechanics in the Solar System.

Essentially, Einstein found general relativity because he was deeply
dissatisfied with some of the concepts of the Newtonian theory, in par-
ticular the concept of an inertial system, for which no experimental
demonstration could be given.

After special relativity, he was convinced quite quickly that trying to
build a relativistic theory of gravitation led to conclusions which were in
conflict with experiments. Action at a distance is impossible in special
relativity because the absolute meaning of space and time had to be
given up. The most straightforward way to combine special relativity
with Newtonian gravity seemed to start from Poisson’s equation for the
gravitational potential and to add time derivatives to it so as to make it
relativistically invariant.

However, it was then unclear how the law of motion should be modified
because, according to special relativity, energy and mass are equiva-
lent and thus the mass of a body should depend on its position in a
gravitational field.

This led Einstein to a result which raised his suspicion. In Newtonian
theory, the vertical acceleration of a body in a vertical gravitational
field is independent of its horizontal motion. In a special-relativistic
extension of Newton’s theory, this would no longer be the case: the
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vertical gravitational acceleration would depend on the kinetic energy of
a body, and thus not be independent of its horizontal motion.

Figure 1.1 Albert Einstein (1879–1955) during a lecture in Vienna, 1921.
Source: Wikipedia

This was in striking conflict with experiment, which says that all bodies
experience the same gravitational acceleration. At this point, the equiva-
lence of inertial and gravitational mass struck Einstein as a law of deep
significance. It became the heuristic guiding principle in the construction
of general relativity.

Freely falling frames of reference

This line of thought leads to the fundamental concept of general rela-
tivity. It says that it must be possible to introduce local, non-rotating,
freely-falling frames of reference in which gravity is locally “trans-
formed away”.

The directions of motion of different freely-falling reference frames will
generally not be parallel: Einstein elevators released at the same height
above the Earth’s surface but over different locations will fall towards
the Earth’s centre and thus approach each other.

Space-time as a manifold

Replacing inertial frames by freely falling, non-rotating frames of ref-
erences leads to the idea that spacetime is a four-dimensional manifold
instead of the “rigid”, four-dimensional Euclidean space.
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Figure 1.2 Einstein elevators: The left elevator is thought to be placed
outside a gravitational field, but accelerated upwards with an acceleration
−�g; the right elevator is placed at rest in a gravitational field with gravitational
acceleration �g directed downwards. According to the equivalence principle,
their occupants cannot distinguish these situations from each other.

As will be explained in the following two chapters, manifolds can locally
be mapped onto Euclidean space. In a freely-falling reference frame,
special relativity must hold, which implies that the Minkowskian metric
of special relativity must locally be valid. The same operation must
be possible in all freely-falling reference frames individually, but not
globally, as is illustrated by the example of the Einstein elevators falling
towards the Earth.

Thus, general relativity considers the metric of the spacetime manifold as
a dynamical field. The necessity to match it with the Minkowski metric
in freely-falling reference frames means that the signature of the metric
must be (−,+,+,+) or (+,−,−,−). A manifold with a metric which is
not positive definite is called pseudo-Riemannian, or Lorentzian if the
metric has the signature of the Minkowski metric.

The lecture starts with an introductory chapter describing the funda-
mental characteristics of gravity, their immediate consequences and the
failure of a specially-relativistic theory of gravity. It then introduces in
two chapters the mathematical apparatus necessary for general relativity,
which are the basics of differential geometry, i.e. the geometry on man-
ifolds. After this necessary mathematical digressions, we shall return
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to physics when we discuss the motion of test particles in given gravita-
tional fields in Chap. 4 and later introduce Einstein’s field equations in
Chap. 6.

1.2 Fundamental properties of gravity

1.2.1 Scales

The first remarkable property of gravity is its weakness. It is by far
the weakest of the four known fundamental interactions. To see this,
compare the gravitational and electrostatic forces acting between two
protons at a distance r. We have

gravity
electrostatic force

=

⎛⎜⎜⎜⎜⎝Gm2
p

r2

⎞⎟⎟⎟⎟⎠ (e2

r2

)−1

=
Gm2

p

e2 = 8.1 · 10−37 ! (1.1)

Caution We are using Gaus-
sian cgs units throughout, in
which the electrostatic potential
of a charge q is simply

Φ(r) = −q
r
.

In these units, the elementary
charge is

e = 4.80 · 10−10 g1/2 cm3/2

s
.

�

This leads to an interesting comparison of scales. In quantum physics, a
particle of mass m can be assigned the Compton wavelength

λ =
�

mc
, (1.2)

where Planck’s constant h is replaced by � merely for conventional
reasons. We ask what the mass of the particle must be such that its
gravitational potential energy equals its rest mass mc2, and set

Gm2

λ

!
= mc2 . (1.3)

The result is the Planck mass,

m = MPl =

√
�c
G
= 2.2 · 10−5 g = 1.2 · 1019 GeV

c2 , (1.4)

which, inserted into (1.2), yields the Planck length

λPl =

√
�G
c3 = 1.6 · 10−33 cm (1.5)

and the Planck time

tPl =
λPl

c
=

√
�G
c5 = 5.3 · 10−44 s . (1.6)

As Max Planck noted already in 19001, these are the only scales for
mass, length and time that can be assigned an objective meaning.

1Über irreversible Strahlungsvorgänge, Annalen der Physik 306 (1900) 69
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The Planck mass is huge in comparison to the mass scales of elementary
particle physics. The Planck length and time are commonly interpreted
as the scales where our “classical” description of spacetime is expected
to break down and must be replaced by an unknown theory combining
relativity and quantum physics.

Using the Planck mass, the ratio from (1.1) can be written as

Gm2
p

e2 =
1
α

m2
p

M2
Pl

, (1.7)

where α = e2/�c ≈ 1/137 is the fine-structure constant.

Dominance of gravity

These comparisons suggest that gravity will dominate all other inter-
actions once the mass of an object is sufficiently large. A mass scale
important for the astrophysics of stars is set by the ratio

MPl
M2

Pl

m2
p
= 1.7 · 1038 MPl = 3.7 · 1033 g , (1.8)

which is almost two solar masses.

We shall see at the end of this lecture that stellar cores of this mass
cannot be stabilised against gravitational collapse.

1.2.2 The Equivalence Principle

The observation that inertial and gravitational mass cannot be experi-
mentally distinguished is a highly remarkable finding. It is by no means
obvious that the ratio between any force exerted on a body and its conse-
quential acceleration should have anything to do with the ratio between
the gravitational force and the body’s acceleration in a gravitational field.

The experimentally well-established fact that inertial and gravitational
mass are the same at least within our measurement accuracy was raised
to a guiding principle by Einstein, the principle of equivalence, which
can be formulated in several different ways.

Principle of equivalence

The weaker and less precise statement is that the motion of a test
body in a gravitational field is independent of its mass and composition,

which can be cast into the more precise form that in an arbitrary gravi-
tational field, no local non-gravitational experiment can distinguish a
freely falling, non-rotating system from a uniformly moving system in
absence of the gravitational field.
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The latter is Einstein’s Equivalence Principle, which is the heuristic
guiding principle for the construction of general relativity.

It is important to note the following remarkable conceptual advance:
Newtonian mechanics starts from Newton’s axioms, which introduce
the concept of an inertial reference frame, saying that force-free bodies
in inertial systems remain at rest or move at constant velocity, and that
bodies in inertial systems experience an acceleration which is given by
the force acting on them, divided by their mass.

Firstly, inertial systems are a deeply unsatisfactory concept because
they cannot be realised in any strict sense. Approximations to inertial
systems are possible, but the degree to which a reference frame will
approximate an inertial system will depend on the precise circumstances
of the experiment or the observation made.

Secondly, Newton’s second axiom is, strictly speaking, circular in the
sense that it defines forces if one is willing to accept inertial systems,
while it defines inertial systems if one is willing to accept the relation
between force and acceleration. A satisfactory, non-circular definition of
force is not given in Newton’s theory. The existence of inertial frames is
postulated.

Caution Note that Newton as-
sumed the existence of absolute
space and time. Strictly speak-
ing, therefore, the problem of in-
ertial frames did not exist when
he founded classical mechanics.
�

Special relativity replaces the rigid Newtonian concept of absolute space
and time by a spacetime which carries the peculiar light-cone struc-
ture imprinted by the universality of the speed of light demanded by
Maxwell’s electrodynamics. Newtonian spacetime can be considered as
the Cartesian product R×R3. An instant t ∈ R in time uniquely identifies
the three-dimensional Euclidean space of all simultaneous events.

Of course, it remains possible in special relativity to define simultane-
ous events, but the three-dimensional hypersurface in four-dimensional
Euclidean space R4 identified in this way depends on the motion of the
observer relative to another observer. Independent of their relative mo-
tion, however, is the light-cone structure of Minkowskian spacetime. The
future light cone encloses events in the future of a point p in spacetime
which can be reached by material particles, and its boundary is defined
by events which can be reached from p by light signals. The past light
cone encloses events in the past of p from which material particles can
reach p, and its boundary is defined by events from which light signals
can reach p.

Yet, special relativity still makes use of the concept of inertial reference
frames. Physical laws are required to be invariant under transformations
from the Poincaré group, which translate from one inertial system to
another.



1.3 Consequences of the equivalence principle 7

Flexible light-cone structure

General relativity keeps the light-cone structure of special relativity,
even though its rigidity is given up: the orientation of the light cones
can vary across spacetime.

Thus, the relativity of distances in space and time remains within the
theory. However, it is one of the great achievements of general relativ-
ity that it finally replaces the concept of inertial systems by something
else which can be experimentally demonstrated: the principle of equiva-
lence replaces inertial systems by non-rotating, freely-falling frames of
reference.

1.3 Consequences of the equivalence

principle

Without any specific form of the theory, the equivalence principle imme-
diately allows us to draw conclusions on some of the consequences any
theory must have which is built upon it. We discuss two here to illustrate
its general power, namely the gravitational redshift and gravitational
light deflection.

1.3.1 Gravitational Redshift

We enter an Einstein elevator which is at rest in a gravitational field at t =
0. The elevator is assumed to be small enough for the gravitational field
to be considered as homogeneous within it, and the (local) gravitational
acceleration be g.

According to the equivalence principle, the downward gravitational
acceleration felt in the elevator cannot locally be distinguished from a
constant upward acceleration of the elevator with the same acceleration g.
Adopting the equivalence principle, we thus assume that the gravitational
field is absent and that the elevator is constantly accelerated upward
instead.

At t = 0, a photon is emitted by a light source at the bottom of the
elevator, and received some time Δt later by a detector at the ceiling. The
time interval Δt is determined by

h +
g

2
Δt2 = cΔt , (1.9)

where h is the height of the elevator. This equation has the solution

Δt± =
1
g

[
c ±

√
c2 − 2gh

]
=

c
g

⎡⎢⎢⎢⎢⎢⎣1 −
√

1 − 2gh
c2

⎤⎥⎥⎥⎥⎥⎦ ≈ h
c

; (1.10)
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the other branch makes no physical sense.

When the photon is received at the ceiling, the ceiling moves with the
velocity

Δv = gΔt ≈ gh
c

(1.11)

compared to the floor when the photon was emitted. The photon is thus
Doppler shifted with respect to its emission, and is received with the
longer wavelength

λ′ ≈
(
1 +
Δv

c

)
λ ≈

(
1 +
gh
c2

)
λ . (1.12)

The gravitational acceleration is given by the gravitational potential Φ
through

g = |�∇Φ| ⇒ gh ≈ ΔΦ , (1.13)

where ΔΦ ≈ |�∇Φ| h is the change in Φ from the floor to the ceiling of the
elevator.

Gravitational redshift

The equivalence principle demands a gravitational redshift of

z ≡ λ
′ − λ
λ

≈ ΔΦ
c2 (1.14)

of a light ray passing the potential difference ΔΦ.

�gh

w
v = 0

Δv = 1
2gt

2

Figure 1.3 Two Einstein elevators, both outside a gravitational field and
accelerated upwards with acceleration �g. When the photon reaches the
top of the elevator (left) or while the light ray crosses it (right), the elevator
is accelerated to the velocity Δv = gt2/2. This leads to redshift (left) and
aberration (right).
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1.3.2 Gravitational Light Deflection

Similarly, it can be concluded from the equivalence principle that light
rays should be curved in gravitational fields. To see this, consider again
the Einstein elevator from above which is at rest in a gravitational field
g = |�∇Φ| at t = 0.

As before, the equivalence principle asserts that we can consider the
elevator as being accelerated upwards with the acceleration g.

Suppose now that a horizontal light ray enters the elevator at t = 0 from
the left and leaves it at a time Δt = w/c to the right, if w is the horizontal
width of the elevator.

As the light ray leaves the elevator, the elevator’s velocity has increased
to

Δv = gΔt =
|�∇Φ|w

c
(1.15)

such that, in the rest frame of the elevator, it leaves at an angle

Δα =
Δv

c
=
|�∇Φ|w

c2 (1.16)

downward from the horizontal because of the aberration due to the finite
light speed.

Light deflection by gravitational fields

Since the upward accelerated elevator corresponds to an elevator at
rest in a downward gravitational field, this leads to the expectation that
light will be deflected towards gravitational fields.

Although it is possible to construct theories of gravity which obey the
equivalence principle and do not lead to gravitational light deflection,
the bending of light in gravitational fields is by now a well-established
experimental fact.

1.4 Futile attempts

1.4.1 Gravitational Redshift

We have seen before that the equivalence principle implies a gravitational
redshift, which has been demonstrated experimentally. We must thus
require from a theory of gravity that it does lead to gravitational redshift.

Suppose we wish to construct a theory of gravity which retains the
Minkowski metric ημν. In such a theory, how ever it may look in detail,
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the proper time measured by observers moving along a world line x μ(λ)
from λ1 to λ2 is

Δτ =

∫ λ2

λ1

dλ
√
−ημν ẋ μ ẋ ν , (1.17)

where the minus sign under the square root appears because we choose
the signature of ημν to be (−1, 1, 1, 1).

Now, let a light ray propagate from the floor to the ceiling of the elevator
in which we have measured gravitational redshift before. Specifically, let
the light source shine between coordinates times t1 and t2. The emitted
photons will propagate to the receiver at the ceiling along world lines
which may be curved, but must be parallel because the metric is constant.
The time interval within which the photons arrive at the receiver must
thus equal the time interval t2 − t1 within which they left the emitter.
Thus there cannot be gravitational redshift in a theory of gravity in flat
spacetime.

1.4.2 A Scalar Theory of Gravity and the Perihelion

Shift

Let us now try and construct a scalar theory of gravity starting from the
field equation

�φ = −4πGT , (1.18)

where φ is the gravitational potential and T = T μμ is the trace of the
energy-momentum tensor. Note that φ is made dimensionless here by
dividing the Newtonian gravitational potential Φ by c2.

In the limit of weak fields and non-relativistic matter, this reduces to
Poisson’s equation

�∇2Φ = 4πGρ , (1.19)

since then the time derivatives in d’Alembert’s operator and the pressure
contributions to T can be neglected.

Let us further adopt the Lagrangian

L(x μ, ẋ μ) = −mc
√
−ημν ẋ μ ẋ ν (1 + φ) , (1.20)

which is the ordinary Lagrangian of a free particle in special relativity,
multiplied by the factor (1 + φ). This is the only possible Lagrangian
that yields the right weak-field (Newtonian) limit.

We can write the square root in (1.20) as

√
−ημν ẋ μ ẋ ν =

√
c2 −�v 2 = c

√
1 − �β 2 , (1.21)
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where �β = �v/c is the velocity in units of c. The weak-field limit of (1.20)
for non-relativistic particles is thus

L(x μ, ẋ μ) ≈ −mc2
(
1 − �v

2

2c2

)
(1 + φ) ≈ −mc2 +

m
2
�v 2 − mc2φ , (1.22)

which is the right expression in Newtonian gravity.

The equations of motion can now be calculated inserting (1.20) into
Euler’s equations,

d
dt
∂L
∂ẋα
=
∂L
∂xα
. (1.23)

On the right-hand side, we find

∂L
∂xα
= −mc2

√
1 − β2 ∂φ

∂xα
. (1.24)

On the left-hand side, we first have

∂L
∂ẋα
=

1
c
∂L
∂βα
=

mcβα√
1 − β2

(1 + φ) , (1.25)

and thus

d
dt
∂L
∂ẋα
= mc(1 + φ)

⎛⎜⎜⎜⎜⎜⎜⎝ β̇α√
1 − β2

+
βα �β · �̇β

(1 − β2)3/2

⎞⎟⎟⎟⎟⎟⎟⎠
+

mcβα√
1 − β2

φ̇ . (1.26)

We shall now simplify these equations assuming that the potential is
static, φ̇ = 0, and that the motion is non-relativistic, β 	 1. Then, (1.26)
becomes

d
dt
∂L
∂�v

≈ mc(1 + φ)�̇β
(
1 +
β2

2

)
≈ m(1 + φ)�̈x , (1.27)

and (1.24) turns into

∂L
∂�x

≈ −mc2
(
1 − β

2

2

)
�∇φ ≈ −mc2�∇φ . (1.28)

The equation of motion thus reads, in this approximation,

(1 + φ)�̈x = −c2�∇φ (1.29)

or

�̈x = −c2�∇φ(1 − φ) = −c2�∇
(
φ − φ

2

2

)
. (1.30)

Compared to the equation of motion in Newtonian gravity, therefore, the
potential is augmented by a quadratic perturbation.
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For a static potential and non-relativistic matter, the potential is given by
Poisson’s equation.

We now proceed to work out the perihelion shift expected for planetary
orbits around the Sun in such a theory of gravity. As we know from the
discussion of Kepler’s problem in classical mechanics, the radius r and
the polar angle ϕ of such orbits are characterised by

dr
dϕ
=

mr2

L

√
2
m

(E − VL) , (1.31)

where VL is the effective potential energy

VL = V +
L2

2mr2 , (1.32)

and L is the (orbital) angular momentum. Thus,

dr
dϕ
=

r2

L

√
2m(E − V) − L2

r2 . (1.33)

Caution Recall that the equa-
tion of motion (1.31) follows
from the conservation laws of
angular-momentum,

ϕ̇ =
L

mr2 ,

and energy,

ṙ2 =
2
m

(E − VL(r)) .

�

The perihelion shift is the change in ϕ upon integrating once around the
orbit, or integrating twice from the perihelion radius r0 to the aphelion
radius r1,

Δϕ = 2
∫ r1

r0

dr
dϕ
dr
. (1.34)

Inverting (1.33), it is easily seen that (1.34) can be written as

Δϕ = −2
∂

∂L

∫ r1

r0

dr

√
2m(E − V) − L2

r2 . (1.35)
?

Confirm (1.35) by carrying out
the calculation yourself. Now, we split the potential energy V into the Newtonian contribution V0

and a perturbation δV 	 V and expand the integrand to lowest order in
δV , which yields

Δϕ ≈ −2
∂

∂L

∫ r1

r0

dr
√

A0

(
1 − mδV

A0

)
(1.36)

where the abbreviation

A0 ≡ 2m(E − V0) − L2

r2 (1.37)

was inserted for convenience.

We know that orbits in Newtonian gravity are closed, so that the first
term in the integrand of (1.36) must vanish. Thus, we can write

Δϕ ≈ 2
∂

∂L

∫ r1

r0

dr
mδV
√

A0
. (1.38)



1.4 Futile attempts 13

Next, we transform the integration variable from r to ϕ, using that

dr
dϕ

≈ r2

L

√
A0 (1.39)

to leading order in δV , according to (1.31). Thus, (1.38) can be written
as

Δϕ ≈ ∂
∂L

2m
L

∫ π

0
dϕ r2δV . (1.40)

Finally, we specialise the potential energy. Since Poisson’s equation for
the gravitational potential remains valid, we have

V0 = mc2φ = −GM
m
r
, (1.41)

where M
 is the Sun’s mass, and following (1.30), the potential perturba-
tion is

δV = mc2φ
2

2
=

mc2

2
V2

0

m2c4 =
G2M2


m
2c2r2 . (1.42)

Inserting this into (1.40) yields the perihelion shift

Δϕ =
∂

∂L
m
L
πG2M2


m
c2 = −

πG2M2

m2

c2L2 . (1.43)

The angular momentum L can be expressed by the semi-major axis a
and the eccentricity e of the orbit,

L2 = GM
m2a(1 − e2) , (1.44)

which allows us to write (1.43) in the form

Δϕ = − πGM


ac2(1 − e2)
. (1.45)

For the Sun, M
 = 2 · 1033 g, thus

GM


c2 = 1.5 · 105 cm . (1.46)

For Mercury, a = 5.8 · 1012 cm and the eccentricity e = 0.2 can be
neglected because it appears quadratic in (1.45). Thus, we find

Δϕ = −8.1 · 10−8 radian = −0.017′′ (1.47)

per orbit. Mercury’s orbital time is 88 d, i.e. it completes about 415
orbits per century, so that the perihelion shift predicted by the scalar
theory of gravity is

Δϕ100 = −7′′ (1.48)

per century.

This turns out to be wrong: Mercury’s perihelion shift is six times as
large, and not even the sign is right. Therefore, our scalar theory of
gravity fails in its first comparison with observations, showing that we
have to walk along a different route.




