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This chapter discusses how knowledge is repre-
sented in our minds when we learn about new topics
in school and life. How do we encode and think
about subject matters in fields as diverse as psychol-
ogy, literature, art, history, biology, physics, mathe-
matics, and computer technology? The knowledge
representations and reasoning in these fields often
differ (Goldman et al., 2016). In psychology and
physics, we think like a scientist. We think about
hypotheses and how to test them by collecting data
in experiments. In mathematics, we puzzle over
formulas and proofs. In literature, we construct
imaginary worlds in our mind that may or may not
correspond to anything in the real world. In com-
puter technology, we think about procedures for
running programs that perform some practical task.
The representations and ground rules for thinking
are quite different in these different disciplines.

There are multiple ways to represent experiences
and topics of interest. Popular music is a great ex-
ample of this. Consider how people represent music
when they listen to songs such as Hey Jude by the
Beatles, Crazy in Love by Beyoncé, or Yankee Doo-
dle. Some have representations that focus on the
melody, others the lyrics, others the emotions, oth-
ers visual images, and others the rhythm and meter
that inspire dance or other forms of physical motion.
Most of us have mental representations with some
combination of these dimensions. There is no right
or wrong representation, but memory for the songs
is influenced by the nature of the representations

that people construct (Rubin, 1995). Psychologists
in the learning sciences investigate the nature of
the representations that we construct when we learn
new topics and use the knowledge when performing
tasks.

Mental representations of what we perceive are
not perfect copies of the world out there. The mental
representations we construct about the world are sim-
plifications that often have errors and distortions. As
an interesting exercise, draw from memory a floor-
plan of your home, with the various doors, windows,
and pieces of furniture. Then compare the sketch
with your actual home and note the differences. Or
if you prefer, sketch your town with the streets and
landmarks. Although you have experienced your
home and town for hundreds of thousands of days,
there are still distortions. Psychologists in the cog-
nitive sciences investigate theories about the prop-
erties of these mental representations and conduct
experiments to test the theories.

This chapter identifies some of the theories of
representation that cognitive and learning scientists
have developed. Their goal is to explain how chil-
dren and adults represent knowledge during learn-
ing. The focus of this chapter is on learning when
adults acquire subject matters in schools, the work-
force, and their personal lives. In contrast, Chapter 4
(“Concepts: Structure and Acquisition”) and Chap-
ter 17 (“Development of Human Thought”) take
on the development of representations in infants
and children. Our emphasis is also on deeper lev-
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els of comprehension and learning (Millis, Long,
Magliano, & Wiemer, 2019). A recent report by
the National Academy of Sciences, Engineering and
Medicine on How People Learn (volume 2, 2018)
contrasts six basic types of learning: habit forma-
tion and conditioning, observational learning, im-
plicit pattern learning, perceptual and motor learn-
ing, learning of facts, and learning by making infer-
ences from mental models. This chapter emphasizes
the learning of facts and making inferences from
mental models, although the other types of learning
are sometimes very relevant.

Instructional media and technology will play an
important role in this chapter because they dominate
the world we live in today. Media and technology
shape how we think and represent information. For
example, a few decades ago it would have taken days
to find an answer to a question as people walked to
libraries, to card catalogues, to stacks of books, and
searched pages and paragraphs for an answer. The
same question can now be answered in seconds on
the computer. We expect swift answers to questions
and get irritated by delays. A decade ago students
submitted essays for grading and waited for days
or weeks for a grade. Now essays can be graded
immediately with validity comparable to experts
(Foltz, 2016). We now live in a world of intelligent
tutoring systems that tailor learning to the individ-
ual student (Graesser, Hu, & Sottilare, 2018) and
computer environments where groups of people can
learn and solve problems together (Fiore & Wilt-
shire, 2016). We now live in a world where facts
need to be checked for misinformation and contra-
dictions (Rapp & Braasch, 2014) and technology
has the only major capacity to do so. We live in
a world of media, games, and adutainment. These
seductions appeal to our motivational and emotional
seductions and run the risk of competing with the
learning of important subject matter. All of these
advances in media and technology influence how we
represent and acquire knowledge.

5.1 Knowledge Components

This first approach to representing subject matter
knowledge consists of a list of knowledge com-

ponents. A knowledge component is much like
a sentence that expresses a particular idea that is
important to know about a topic. Example knowl-
edge components in psychology can be captured
in such expressions as “absence makes the heart
grow fonder” (as the opposite to “out of sight, out
of mind”), “team members in groups may not re-
spond because they expect other members to re-
spond”, or “correlation does not imply causation.”
An example in physics is “force equals mass times
acceleration” whereas an example in mathematics
is “the circumference of a circle is pi times the di-
ameter.” Some knowledge components are if-then
rules with contingencies: “If a person has XX chro-
mosomes, they are female; if a person has XY
chromosomes, they are male.” The subject matter
on a topic may consist of a long list of dozens
to hundreds of knowledge components. As stu-
dents learn a subject matter, students and teachers
do not know how well the performance on these
knowledge components is progressing. However,
computers can track this progress for individual
students in intelligent tutoring systems (Graesser,
2016; Koedinger, Corbett, & Perfetti, 2012) and
for individuals and groups in team learning (von
Davier, Zhu, & Kyllonen, 2017). When the com-
puter determines that enough of the knowledge com-
ponents have been learned by the student, the sys-
tem then decides that the student has mastered the
topic.

How does the student, instructor, or computer
know whether a knowledge component (KC) has
been mastered? The answer is debatable. Consider
once again the knowledge component “team mem-
bers in groups may not respond because they expect
other members to respond.” How would one know
whether this KC has been mastered by a learner?
There are many possible operational definitions. Can
the learner recite the KC in words that have the same
meaning as the KC? Does the learner send impor-
tant requests to individuals rather than groups in
social communication systems (knowing that there
may be diffusion of responsibility in groups)? Mas-
tery of some KC’s may be reflected in a number
of cognitive measures, such as response times to
requests, eye movements, and neuroscience indica-
tors (see Chapter 3, “Methods for Studying Human
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Thought”). Individual learners may differ in how
they behaviorally show mastery of a particular KC.
They may exhibit mastery in words, drawing figures,
gestures, problem solving, or other actions.

Mastery of knowledge components improves over
time if there is knowledge acquisition. Computers
can track this. Suppose a computer tracks whether
or not a student on a KC has a successful response
(1) or an unsuccessful response (0) over 8 episodes
of being assessed. The following sequence would re-
flect successful learning on assessment episode num-
ber 4: 00011111. The sequence 01010101 shows
no learning because the number of 1’s is the same
for the first four episodes and the second four. Prob-
abilistic learning is reflected in 00101011 because
there is only one 1 among the first four episodes but
three 1’s in the last four episodes. Mastery of a topic
is achieved when many of the KCs are mastered in
performance assessments.

5.2 The Representation of Knowledge
Components

The mastery of a knowledge component depends
how it is represented and how picky one is as to
whether it is mastered. A precise standard for a ver-
bal representation would be an exact match between
the expected knowledge component and the stu-
dent’s language. However, it is important to match
on meaning rather than precise language (Kintsch,
1998). There are many ways to articulate “team
members in groups may not respond because they
expect other members to respond” in particular con-
texts, such as “there is diffusion of responsibility in
the group”, “tell John personally because he expects
others on the team to handle the task”, or “the like-
lihood of a team member completing an assigned
task is lower than when an individual is assigned
the task.” How can one determine whether these
answers match the KC when they are worded so
differently? Computers have made major advances
in evaluating the accuracy of semantic matches in
a field called computational linguistics (Jurafsky &
Martin, 2008), but they are far from perfect. Expert
human judges have moderate agreement on whether

two sentences have the same or different meanings,
but they also do not always agree.

Multiple levels of language and discourse need
to be considered when deciding whether two verbal
expressions have the same meaning (Pickering &
Garrod, 2004; McNamara, Graesser, McCarthy, &
Cai, 2014). We need to consider whether the words
have the same or similar meaning. For example, the
phrase “team members in groups” is very similar in
meaning to “people in groups” in the example KC
but not to “sports in groups.” Syntax and word order
matter when interpreting meaning. The meaning
of the phrase “team members in groups” is quite
different in meaning than “to members group in
teams” and the nonsensical expression “groups team
in members.” The discourse context also needs to
be considered when deciding whether two sentences
have the same meaning. The expression “absence
makes the heart grow fonder” makes sense in a psy-
chology class when debating whether a romance will
survive after two lovers part for a few months. It
does not make sense when a student tries to explain
to an instructor why an exam was missed.

Mastery of a knowledge component is manifested
in its meaning rather than the precise surface struc-
ture (i.e., wording and syntax). People tend to re-
member in long-term memory the meaning of ideas
rather than the surface structure (Craik & Lockhart,
1972). Surface structure is normally short-lived, a
minute or less, whereas the semantic meaning lasts
a long time. Therefore, verbal memory assessments
of how well a student has mastered a subject matter
need to consider the meaning of the KCs rather than
the exact wording. An essay test that taps meaning
is superior to a test on reciting texts verbatim.

Mastery of a knowledge component is often man-
ifested nonverbally. Actions, facial expressions,
eye movements, pointing gestures, and other behav-
iors can signal mastery. Consider a KC that “some
chemical sprays from groundkeepers cause people
to sneeze.” When someone starts sneezing, this KC
is likely to have been mastered if the person gets up
and looks out the window, glares in contempt at the
groundkeeper, points to the groundkeeper, closes the
window, and/or puts on an allergy mask. There is no
need to articulate the KC in words.
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Figure 5.1: Four different types of knowledge structures: Taxonomic, spatial, causal, and goal-action procedures.

5.3 Knowledge Structures

Our description of the knowledge component repre-
sentation does not take into consideration the struc-
tural relations between ideas. This section em-
phasizes these relational connections. Four types
of structures are being discussed here to illustrate
the importance of relations. These are shown in
Figure 5.1: Taxonomic, spatial, goal-action proce-
dures, and causal structures. There are many other
types of knowledge structures, such as organiza-
tional charts of positions in a corporation and the
lineage in family trees. All of these knowledge
structures emphasize how knowledge is intercon-
nected and that ideas close to each other in the struc-
ture are more conceptually related than ideas far
away. When an idea is activated during learning, it
tends to activate its nearby neighbors in the structure
more than neighbors far away (Collins & Loftus,
1975).

There is a terminology that researchers use to talk
about these knowledge structures. Nodes are basic

ideas that can be expressed in a word, phrase or
sentence. As explained above, however, it is the
meaning rather than the surface structure that cap-
tures the essence of a node. Nodes are sometimes
assigned to epistemic categories, such as concept,
state, event, process, goal, or action. An arc is a
connection between two nodes. An arc is directed
(forward, backward, or bidirectional) and often as-
signed to categories (such as is-a, has-as-parts, prop-
erty, contains, cause, reason). A graph consists of a
set of nodes connected by arcs. Below we describe
some different kinds of graphs that are depicted in
Figure 5.1.

5.3.1 Taxonomic Structures

Taxonomic structures represent the concepts that
were discussed in Chapter 4, “Concepts: Structure
and Acquisition”. The concepts are organized in a
hierarchical structure that is connected by is-a arcs.
A robin is-a bird, a turkey is-a bird, a bird is-a an-
imal, an animal is-a living thing. These is-a arcs
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that are directly represented in the graph, but others
can be inferred by the principle of transitivity: a
robin is an animal, a turkey is an animal, a robin
is a living thing, a turkey is a living thing, and a
bird is a living thing. Each of these concept nodes
have distinctive properties, such as a robin has a red
breast, a turkey is eaten by humans, a bird can fly, an
animal breathes, and living things can move. These
properties can be inherited by transitive inference,
such as the following expressions: a robin can fly, a
robin breathes, a robin can move, a bird can move,
and so forth. There is some evidence that these in-
ferred expressions take a bit more time to judge as
true or false than the direct expressions (Collins &
Loftus, 1975).

5.3.2 Spatial Structures
Spatial structures have a hierarchy of regions that
are connected by is-in arcs (or the inverse contains
relation). As shown in Figure 5.1, Los Angeles is-in
California, San Diego is-in California, Reno is-in
Nevada, California is-in the western US, Nevada
is-in the western US, and the western US is-in the
USA. From these, we can derive via transitivity the
following inferences: Los Angeles is in the western
US, San-Diego is in the western US, Reno is in the
western US, Los Angeles is in the USA, and so on.
The locations within each region can also be con-
nected by relational arcs that specify north, south,
east, and west. We see in Figure 5.1 that Los Ange-
les is north-of San-Diego and California is west-of
Nevada. We can infer by transitivity that San Diego
is west of Reno. Most of these transitive inferences
are correct when we look at actual maps. However,
these inferences are not always correct (Stevens &
Coupe, 1978). For example, San Diego is actually
east of Reno rather than west of Reno according to
an actual map. Similarly, Seattle is actually north
of Toronto and El Paso is actually west of Denver.
Knowledge structures and these transitive inferences
are often accurate, but sometimes generate some in-
teresting errors. The knowledge structures also can
to some extent predict biases in distance. For ex-
ample, distances between cities within a region can
also, to some extent, seem closer than distances be-
tween cities from different regions. The distance

from Memphis to Jackson, Tennessee seems closer
than to Jackson, Mississippi, yet the actual distance
is the opposite.

5.3.3 Goal-action Procedures
Goal-action procedural structures are organized
into a hierarchy of nodes connected by “in order
to” arcs. The nodes refer to goals or desired states
that are organized hierarchically and that guide a
sequence of actions that achieve the goals if the pro-
cedure is successfully performed. Imagine you have
a goal of eating at a restaurant. The structure in
Figure 5.1 shows how this could be accomplished.
In order to eat at the restaurant, you need to get to
the restaurant and order your food. In order to get
to a restaurant, you need to drive your car and look
for the restaurant. This specific knowledge structure
in Figure 5.1 does not require careful deliberation to
plan and execute. The procedure becomes a routine
through experience and repetition. It would be ex-
hausting to plan through problem solving for each
step of every goal-action procedure you carry out
throughout the day. However, such problem solv-
ing (see Chapter 9) is needed when a person visits
another country.

The structure in Figure 5.1 is taken from the per-
spective of one person who needs food. However,
there are other people who have their own agenda,
such as the cook and the person at the counter. A
script is a structure that considers all of the people
who participate in the organized activity of a restau-
rant (Bower, Black, & Turner, 1979). The cook, the
person at the counter who collects money, and the
customer all have their own goal structures and per-
spectives. The script also has taxonomic structures
(cook → employee → person) and spatial structure
(table → restaurant → building).

These goal-action procedures and script struc-
tures explain a number of psychological phenomena.
Each goal-action node is broken down into subor-
dinate nodes that become much more detailed in
the activity. People tend to forget the lower-level
details of the actions and procedures (Bower et al.,
1979), which are often automatized from repetition
and experience (see Chapter 13, “Expertise”). Peo-
ple tend to notice obstacles to goals being accom-
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plished and may become frustrated, as everyone
who has waited for many minutes trying to order
food at a counter knows. When people visually ob-
serve scripts being enacted, they tend to notice event
boundaries (i.e., junctures, separations) after a goal
is achieved/interrupted, when there is a new spatial
setting, and when a new person enters a scene (Za-
cks, Speer, & Reynolds, 2009). When people read
stories, sentences take more time to read when they
introduce new goals, spatial settings, and characters
(Zwaan & Radvansky, 1998). These structures also
explain answers to questions. When asked, “Why
do you go to a restaurant?”, a good answer would go
up the structure (in order to eat food) but not down
the structure (in order to drive). When asked “how
do you go to a restaurant?”, a good answer would
be down the structure (you drive) but not up the
structure (you eat). Organized structures like these
explain a large body of data involving neuroscience,
cognition, behavior, emotion, and social interaction.

5.3.4 Causal Networks

Causal networks can be used to answer the ques-
tion, “What causes something to occur?” For exam-
ple, one could use causal networks to show the chain
of events that cause a volcanic eruption, cancer, the
winner of an election and other phenomenon in phys-
ical, biological, and technological systems (van den
Broek, 2010). In a causal network, nodes represent
events (or states, or processes) whereas arcs point
from one node to another if an event causes or en-
ables another event. For example, in Figure 5.1, we
have a causal network showing how heart disease
can be a result of a causally driven chain of events.
Some of these events are inspired by sociological
factors (getting a divorce) and psychobiological fac-
tors (smoking), whereas other events are entirely
products of biological systems (hardening of the
arteries). The events in the causal system that are
linked through enables arcs convey a weak sense of
causality, while the causes arcs indicate a stronger
sense of causality. Causal networks are complex.
They are not strictly hierarchical or follow a linear
order but can have many paths of connections and
loops.

The structures in Figure 5.1 are very systematic,
organized, and conceptually precise. The mental
structures are not that neat and tidy. One approach
to help people learn is to have them construct such
graphs during or after they comprehend text, digital
environments on the internet, conduct an experi-
ment, or perform some other activity. The activity
of constructing these conceptual graphs can help
them learn a subject matter even though they are not
likely to generate neat and tidy structures. Available
research has also revealed that nodes that are more
central in the structure (i.e., many arcs radiate from
them) are more important and better remembered
(Bower et al., 1979; van den Broek, 2010).

5.4 Associative Representations of
Knowledge

According to classical associationism, ideas vary in
how strongly associated they are with each other.
That is no doubt true, but the deep secret lies on
what can predict the strength of association. A word
like “evil” has likely strong associations to words
like “bad” (a functional synonym), “good” (an oppo-
site), “Halloween” (an event), “Knieval” (part of the
phrase evil Knievel, the dare devil), and “devil” inter-
esting etymology), but not to words like “smooth”,
“birthday”, and “Michael Jordan.”

What makes associations strong versus weak?
Strength of repetition is clearly one factor. The
strength of association between ideas increases with
the frequency of the ideas occurring together at the
same time and location. Another prediction is the
similarity of the ideas. The strength of association
between two ideas is stronger to the extent they are
similar in meaning. Positive outcomes is yet another
prediction: two ideas have stronger association to
the extent that they lead to positive outcomes (a
reward, a solution) rather than negative outcomes
(punishment, failure). In summary, repetition, sim-
ilarity, and reinforcement are major predictions of
the strength of association between two ideas.

These principles of associationism have been
known for at least two centuries. They are deeply en-
trenched in modern cognitive models of perception,
categorization, memory, judgment, and other auto-
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Figure 5.2: A neural network with an input layer, two hidden layers, and an output node.

mated processes of cognition. Neural networks
are a noteworthy class of models that implement
associationism (McClelland & Rumelhart, 1987).
Figure 5.2 presents an example of a neural network.
A neural network is a structure of nodes (analogous
to neurons) in multiple layers that are interconnected
by directed, weighted arcs that potentially activate
the nodes (positive weights) or inhibit the nodes
(negative weights). A node is fired (all-or-none) if
the arcs that feed into it receive enough activation,
with the sum of the activation being stronger than
the inhibition.

In order to illustrate the mechanisms of a neu-
ral network, consider a neural network that detects
whether or not a person’s face shows confusion. The
input layer of nodes would correspond to states,
events, or processes on parts of the face at particular
positions. For example, the right eyelid opens wide,
the mouth opens wide, or the left corner of the lip
contracts. Ekman and his colleagues developed a
facial action coding system that defines these fea-
tures for those who investigate facial expressions
(Ekman & Rosenberg, 2005). The output node is
activated if the set of activated input node features
show a pattern of confusion, but otherwise it is not
activated. There may also be one or more hidden lay-
ers of nodes that refer to intermediate states, events,
or processes. Exactly what these hidden nodes refer
to is not necessarily clear-cut and easy to interpret.

They could refer to higher order categories, such
as the overall amount of movement, positive versus
negative emotions, upper face parts versus lower
face parts, or angle of perspective. The hidden lay-
ers and nodes within these layers are statistically
derived characteristics that depend on a long history
of experiences that the individual person has had.
It is important to emphasize that these neural net-
works learn from experience. The nodes and arcs
are strengthened or otherwise altered with each ex-
perience. The networks capture the associationist
principles of repetition, similarity, reinforcement,
and contiguity of events in time and space.

Today neural networks are frequently used in ma-
chine learning and artificial intelligence to enable
computers to perceive people, objects, events, and
scenes, to guide robots in completing routine tasks,
and to solve some types of problems. In this “deep
learning” revolution, massive amounts of experi-
ences are fed into the computer during training of
the neural network, far more than a single person
would ever receive. As a consequence, the com-
puter outperforms humans in precisely defined tasks.
This has the potential to threaten the workforce for
some jobs that humans traditionally perform (El-
liot, 2017). These neural networks can handle only
specific tasks, however. A neural network for detect-
ing confusion would not be of much use to detect
surprise or boredom – they cannot generalize and
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transfer to other tasks. Nevertheless, it is widely
acknowledged that generalization and transfer are
also very difficult for humans to accomplish (Hattie
& Donoghue, 2016). Perhaps the human mind is lit-
tle more than a large collection of these specialized
neural networks. This is a debate in the cognitive
and learning sciences.

Another example of associative knowledge rep-
resentations is latent semantic analysis, LSA (Lan-
dauer, McNamara, Dennis, & Kintsch, 2007). LSA
is a statistical representation of word knowledge and
world knowledge that considers what words appear
together in documents, such as articles in books,
speeches, conversations, and other forms of verbal
communication. According to LSA, the meaning of
a word depends on the other words that accompany
it in real-world documents. The word riot often
occurs in the company of other particular words in
documents, such as crowd, dangerous, protest, po-
lice, and run. These words do not always occur with
the word riot of course, but they do with some co-
occurrence probability. These probabilities of words
with other words define a word’s meaning, which is
very different than word meanings in a dictionary
or thesaurus. LSA has been found to predict data
in many cognitive tasks such as priming (a word
automatically activates another word), judgments
of sentence similarity, inferences, and summariza-
tion of text (Landauer et al., 2007). LSA has also
been used in computer systems that automatically
grade student essays (Foltz, 2016) and tutor them in
natural language (Graesser, 2016).

5.5 The Body in Cognition

Proponents of embodied cognition believe that
mental representations are shaped and constrained
by the experience of being in a human body. Our
bodies influence what we perceive, our actions, and
our emotions. These embodied dimensions are often
incorporated in representations when we compre-
hend text (Zwaan, 2016) and influence how we learn
(Glenberg, Goldberg, & Zhu, 2011). Embodied rep-
resentations are constructed, for example, when you
read a novel and get lost in the story world. There
is a rich mental model of the spatial setting, the ac-

tions performed by characters, and their emotions.
Your experience is similar to watching a movie or
acting the parts yourself. Mental representations
are often colored with perceptual images, motoric
actions, and visceral emotions rather than being ab-
stract conceptualizations. The meaning of abstract
concepts (such as love) is often fortified by these
dimensions of perception, action, and emotion, such
as visual image of a wedding cake, a dance, or a first
kiss (Barsalou & Wiemer-Hastings, 2005). There is
substantial evidence that memory is improved for
verbal material when learners construct visual im-
ages in their mind (Clark & Paivio, 1991) or they
perform actions associated with the content.

The importance of embodied cognition in com-
prehension is obvious when you go someplace new
and ask for directions to a specific location, such
as the city hall. When you ask a stranger, “Where
is the city hall?” the helpful stranger nearly always
points in the right direction and launches several sen-
tences with landmarks, paths, and left-right-straight
comments, typically accompanied by hand gestures.
You get confused by the second sentence but politely
nod. Then you follow the suggested direction and
soon ask the next person. The problem is that there
is very little shared knowledge between you and the
stranger so you have no foundation for constructing
a precise embodied path to the destination. Embod-
ied representations are necessary for precise compre-
hension of important messages about the physical,
social, and digital worlds.

The importance of embodied representations on
reading comprehension has been confirmed in the
Moved by Reading program (Glenberg, Goldberg,
& Zhu, 2011). Readers who struggle with reading
comprehension experience difficulty constructing
an embodied representation of the text. Suppose
that students read a text about events that occur at a
tea party. This would be difficult to imagine if they
had no knowledge or experience with tea parties. In
Moved by Reading, the student is presented with an
image of a tea set on a computer screen and then
asked to act out a story on the content by pouring
tea, sipping tea, and performing other actions con-
veyed in the story. Students are also later asked to
imagine acting out the story so they will internalize
the strategy of constructing a mental model of the
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text. When compared to students who were asked to
simply reread the text, the students who were asked
to imagine manipulating the objects showed large
gains in comprehension and memory. One of the in-
teresting research questions is whether it is better to
physically perform the actions compared to digitally
moving images on a computer screen or to imagine
performing actions in the mind.

5.6 Conversations

People have learned by observing and participating
in conversations throughout most of the history of
personkind, especially prior to the invention of the
printing press and computer technologies. The se-
crets of family life and a person’s livelihood were
learned by holding conversations with members of a
family, a tutor, a mentor, a master, or a group of peo-
ple participating in the practical activities. Knowl-

edge representations are to some extent shaped by
these conversations that are observed, enacted, re-
membered, or otherwise internalized in the mind
(Vygotsky, 1978). Texts that are written in the style
of stories and oral conversation are read faster, com-
prehended better, and remembered better than tech-
nical text that is distant from conversation.

There is also solid evidence that one-on-one hu-
man tutoring helps to learn subject matter in courses
more than simply listening to lectures or reading
texts (Cohen, Kulik, & Kulik, 1982; VanLehn, 2011).
The individual tutor can find out the problems the
learner is facing, provide hints or direct assertions
on helping them, and answer their questions. Re-
searchers have developed intelligent tutoring sys-
tems that simulate human tutors (VanLehn, 2011),
including some systems like AutoTutor that hold
conversations with the student in natural language
(Graesser, 2016). These systems help students learn
subject matters like computer literacy, physics, and

Figure 5.3: This is a screenshot showing pedagogical agents used in an intelligent tutoring system (D’Mello, Lehman, Pekrun, &
Graesser, 2014). In this example, the tutor agent, Dr. Williams is on the left of the screen, and the peer agent, Chris, is on
the right of the screen. Reprinted from Learning and Instruction, 29, D’Mello, S., Lehman B., Pekrun, R., & Graesser, A.C.
Confusion can be beneficial for learning. 153-170. ©(2014), with permission from Elsevier.
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scientific reasoning about as good as human tutors,
both of which are better than conventional training
methods like reading texts and listening to lectures.

A promising approach to establish deeper knowl-
edge representations is to plant contradictions and
information that clashes with prior knowledge to
the point of the learner experiencing cognitive dise-
quilibrium. Cognitive disequilibrium occurs when
people face obstacles to goals, interruptions, con-
tradictions, incongruities, anomalies, impasses, un-
certainty, and salient contrasts. Cognitive conflicts
can provoke information-seeking behavior, which
engages the learner in inquiry, reasoning and deep
learning. Learning environments with computer
agents have been designed to stage contradictions
and debates, thereby inducing cognitive disequilib-
rium (D’Mello, Lehman, Pekrun, & Graesser, 2014).
These studies had tutor and peer agents engage with
the student in conversational trialogues while cri-
tiquing research studies in psychology, biology, and
chemistry. An example screenshot is shown in Fig-
ure 5.3. Most of the research studies had one or
more flaws with respect to scientific methodology.

For example, one case study described a new pill
that purportedly helps people lose weight, but the
sample size was small and there was no control
group. During the course of the three-way conver-
sation, the agents periodically expressed false infor-
mation and contradictions. Disagreements between
the agents and with what the student believed tended
to create cognitive disequilibrium, confusion, and
disagreement. During the course of the trialogue
conversation, the agents periodically asked students
for their views (e.g., “Do you agree that the control
group in this study was flawed?”). The students’
responses were coded on correctness and also the
vacillation in making decisions when asked a ques-
tion multiple times throughout a conversation. There
were also measures of confusion. The correctness
and confusion scores confirmed that the cognitive
disequilibrium that resulted from contradictions im-
proved learning, particularly among the students
who had enough knowledge and thinking to be con-
fused. That is, the experience of confusion, a signal
of thinking, played an important role in the deep
learning.

Table 5.1: Key affordances of learning technologies (National Academy of Sciences, Engineering, and Medicine, 2018). ©National
Academies Press. Reprinted with permision. https://www.nap.edu/catalog/24783/how-people-learn-ii-learners-contexts-a
nd-cultures

1. Interactivity. The technology systematically responds to the actions of the learner.

2. Adaptivity. The technology presents information that is contingent on the behavior,
knowledge, or characteristics of the learner.

3. Feedback. The technology gives the learner information about the quality of their
performance and how it could improve.

4. Choice. The technology gives learners options on what to learn and how to regu-
late their own learning.

5. Nonlinear access. The technology allows the learner to select or receive learning activities
in an order that deviates from a set order.

6. Linked representations. The technology provides quick connections between representations for
a topic that emphasizes different conceptual viewpoints, media, and
pedagogical strategies.

7. Open-ended learner input. The technology allows learners to express themselves through natural
language, drawing pictures, and other forms of open-ended communica-
tion.

8. Communication with other people. The learner communicates with one or more people or agents.
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5.7 Importance of Media and
Technology in Knowledge
Representation and Learning

Theories of distributed cognition assume that the
mind is shaped and constrained by the physical
world, technologies, and other people in their en-
vironment (Dror & Harnad, 2008; Hutchins, 1995).
An expert problem solver in a distributed world
needs to assess whether a technology, a social
community, the external physical world, or his/her
own analytical mind is best suited for achieving
particular steps in solving challenging problems.
Judgments are involved in the decisions you make
when you decide whether to trust your own an-

alytical judgment, the output of a computer pro-
gram, or a decision of a group. There are ques-
tions such as “Should I write down on a piece
of paper the groceries I need to buy or try to
memorize them?”; “Should I compute this square
root by hand or use a calculator?”; “Should I ask
my friends where to on vacation or decide that
for them?” These are decisions in a distributed
world.

Media and technology play a central role in
shaping cognitive representations in a distributed
world. It is important to take stock of how they
do so. Old-school media consisted of listening to
lectures, watching video presentations, and reading
books. For these media, the learners passively ob-

Table 5.2: Mayer’s (2009) Principles to Guide Multimedia Learning. Adapted from NAESM (2018). With permission from National
Academy of Sciences, Engineering, and Medicine, 2018. ©National Academies Press. https://www.nap.edu/catalog/24783
/how-people-learn-ii-learners-contexts-and-cultures

1. Coherence Principle People learn better when extraneous words, pictures and sounds are excluded
rather than included.

2. Signaling Principle People learn better when cues that highlight the organization of the essential
material are added.

3. Redundancy Principle People learn better from graphics and narration than from graphics, narration
and on-screen text.

4. Spatial Contiguity Principle People learn better when corresponding words and pictures are presented near
rather than far from each other on the page or screen.

5. Temporal Contiguity Principle People learn better when corresponding words and pictures are presented simul-
taneously rather than successively.

6. Segmenting Principle People learn better from a multimedia lesson is presented in user-paced segments
rather than as a continuous unit.

7. Pre-training Principle People learn better from a multimedia lesson when they know the names and
characteristics of the main concepts.

8. Modality Principle People learn better from graphics and narrations than from animation and on-
screen text.

9. Multimedia Principle People learn better from words and pictures than from words alone.

10. Personalization Principle People learn better from multimedia lessons when words are in conversational
style rather than formal style.

11. Voice Principle People learn better when the narration in multimedia lessons is spoken in a
friendly human voice rather than a machine voice.

12. Image Principle People do not necessarily learn better from a multimedia lesson when the
speaker’s image is added to the screen.
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serve or linearly consume the materials at their own
pace. However, the learning environments in today’s
world require learners to be more active by strate-
gically searching through hypermedia, constructing
knowledge representations from multiple sources,
performing tasks that create things, and interacting
with technologies or other people (Chi, 2009; Wiley
et al., 2009). From the standpoint of technology, it
is worthwhile taking stock of the characteristics of
learning environments that facilitate active, construc-
tive, interactive learning environments. Table 5.1
shows some of these characteristics that were iden-
tified by the National Academy of Sciences, Engi-
neering, and Medicine in the second volume of How
People Learn (NASEM, 2018). It is important to
consider these characteristics when selecting tech-
nologies to support the acquisition of knowledge rep-
resentations in different subject matters, populations,
and individual learners. All of these characteristics
have been implemented in learning technologies and
have shown some successes in improving knowledge
representations and learning.

Unfortunately, there is an abundance of commer-
cial technologies that are not well designed, are not
based on scientific principles of learning, and have
no evidence they improve learning. There are many
bells and whistles of multimedia in so many prod-
ucts (a lot of razzle dazzle), but under the hood

there is no substance in helping people learn and
build useful knowledge representations. We live in
a world replete with games and social media that
contribute to shallow rather than deep knowledge
representations.

It is important to consider the characteristics
of the learning technologies that support deeper
knowledge representations and learning (Millis et
al., 2019; NASEM, 2018). Mayer (2009) has also
identified 12 principles of multimedia learning that
improve knowledge representation and acquisition
(see Table 5.2). These principles are all based on
psychological theories and confirmed by data col-
lected in experiments.

The hope is that stakeholders and policy mak-
ers in education encourage learning environments
which support knowledge representations needed
in the 21st century. Citizens in the 21st century are
faced with complex technologies, social systems and
subject matters (National Research Council, 2012;
Levy & Murnane, 2006). Mastery of facts and rou-
tine procedures are necessary, but not sufficient for
participation in a world that demands deeper com-
prehension of technical material and more complex
problem solving, reasoning, information handling
and communication. Understanding the nature of
knowledge representations will be extremely impor-
tant in meeting this challenge.

Summary

1. People construct mental representations when they experience the social, physical, and digital
world. Our perceptions are not exact copies of the world, but are simplified with errors
and missing information. Learning and performance on tasks are influenced by how our
knowledge is represented.

2. This chapter has reviewed the different types of representations that have been proposed by
researchers in the cognitive and learning sciences who investigate adult learning of different
subject matters. The types of representations include (1) ensembles of knowledge components,
(2) knowledge structures, (3) associationistic neural networks, (4) embodied perceptions,
actions, and emotions, (5) conversation, and (6) distributed cognition with diverse multimedia
and technologies.

3. Knowledge of a specific subject matter is represented by a set of knowledge components
which express ideas relevant to the topic. Knowledge structures consist of nodes, which
represent concepts, states, events, goals or processes, and arcs that connect the nodes with
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different types of relations (e.g., is-a, has-a, contains, causes). Four example knowledge
structures were discussed: taxonomic, spatial, causal, and goal-action procedures.

4. Neural networks model associationistic representations with neuron nodes connected by
associative weights. The strengths of the associations are determined by repetition, similarity,
how often nodes co-occur in time, and positive versus negative outcomes.

5. Knowledge representations and acquisition are influenced by our human experience and how
we interact with our environment. Embodied representations capture perception, action, and
emotion. Conversational representations include the social discourse we observe and enact
with families, tutors, mentors, and groups.

6. Digital technologies will continue to shape and constrain the mental representations and
influence how people learn. These technologies are making information about topics more
distributed across people, times, locations, and media sources.

Review Questions

1. Sketch a map of your town or city, including major landmarks and streets, based on your
memory. Try to be as detailed as possible. After you finish, compare your sketch with an
actual map. What did you get right, what did you miss, and what errors did you make in your
mental representation?

2. Create a more complete knowledge structure of eating at a fast food restaurant that includes
all types of structures in Figure 5.1: taxonomic, spatial, goal-action procedure, and causal.

3. According to the text, there are computerized tutoring systems that help people learn as well
as human tutors. What sort of subject matters have representations that are very difficult for
computer tutors to simulate, and why?

4. One very abstract concept is “peace.” To what extent can this concept be represented by
embodied perception, action, and emotion? What features of peace would be impossible to
capture with embodied cognition?

5. Consider a class you are currently taking. Which of the characteristics in Table 5.1 are part of
the class activities? For any characteristics that are missing, how could they be incorporated
by changing the class activities?
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Hot Topic

Art Graesser

Our research, along with colleagues in the interdisciplinary Institute for In-
telligent Systems, investigates language, discourse and learning. Our primary
focus is on the mastery of deep knowledge rather than shallow knowledge
in adults. Examples of shallow knowledge are facts, definitions, and routine
procedures, whereas deep knowledge involves causal reasoning, justification
of claims with evidence, resolution of contradictions, precise quantification of
ideas, and problem solving (Graesser, 2015). The workforce in the 21st century
has an increased expectation to acquire deep knowledge to the extent that
routine tasks are handled by robots and other digital technologies. Unfortu-
nately, the process of deep learning is challenging because the material is
difficult, useful strategies are sometimes novel, and some of the accompanying
emotions are negative (such as confusion and frustration, D’Mello, Lehman,
Pekrun, & Graesser, 2014). Moreover, our current educational systems are

typically designed for acquiring shallow knowledge rather than deep knowledge.

Keith T. Shubeck

One approach to acquiring deep knowledge is to develop com-
puterized intelligent tutoring systems that help adults acquire deep
knowledge. These systems have pedagogical strategies that are
tailored to the knowledge, skills and abilities of individual stu-
dents. We have developed a system called AutoTutor (Graesser,
2016), where a student learns by having conversations with ani-
mated conversational agents (computer-generated avatars). AutoTu-
tor presents difficult questions or problems, often with associated
figures and diagrams; the student and AutoTutor have a multiturn
conversation to co-construct an answer/solution. AutoTutor has
been developed and tested on a number of difficult subject matters, such as computer literacy,
physics, electronics, scientific reasoning, and comprehension strategies. These conversational ITS
have shown significant learning gains on deep knowledge compared with pretests and control
conditions such as reading text. Some versions of AutoTutor implement “trialogues” that involve
a conversation between the student and two computer agents, a tutor and a peer (Graesser, Li, &
Forsyth, 2014). The two agents can model good social interaction, productive reasoning, and at
times argue with each other to show different perspectives and resolutions of conflicts (D’Mello et
al., 2014).

Anne M. Lippert

We have investigated other approaches to improve deep learning through
language and discourse (Graesser, 2015). These include investigating inference
generation and mental models during the comprehension of stories, technical
text, illustrated texts, hypertext, and hypermedia. We have developed computer
systems (available on the internet for free) that scale texts on difficulty (Coh-
Metrix, http:/ /cohmetrix.com) and questions on comprehension problems
(QUAID, http:/ /quid.cohmetrix.com). We have investigated collaborative
problem solving where groups of people in computer-mediated communication
tackle problems that individuals cannot solve alone. A curriculum for 21st-
century skills is destined to include discourse technologies that facilitate deeper
knowledge acquisition.
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Glossary

arcs In a knowledge structure, arcs are what con-
nect two different nodes and represent how
the nodes are related: is-a, has-a-part, prop-
erty of, contains, cause, reason. 74

causal networks A knowledge structure consist-
ing of event nodes that are connected by “en-
ables” arcs. 76

embodied cognition The idea that knowledge
and mental representations are influenced by
experiences of the human body (e.g., emotion,
perception, actions). 78

goal-action procedure A hierarchical knowledge
structure where nodes represent goals or de-
sired states which are connected by “in order
to” arcs. 75

graph The set of nodes that are connected by arcs.
74

knowledge component Describes a mental struc-
ture used by learners to understand a topic.
Any given topic may consist of many differ-
ent knowledge components. 72

knowledge structure Relational structure be-
tween concepts in a particular topic. De-
scribes how ideas are conceptually related in
terms of their proximity with each other. 74

neural network Structure of nodes organized in
multiple layers that are interconnected by arcs
that either activate or inhibit nodes given arc
direction and arc weight. 77

nodes In a knowledge structure, nodes are con-
cepts, states, events, processes, goals or ac-
tions of basic ideas that can be expressed by
words, phrases, or sentences. 74

script A structure that encompasses the goal-action
procedures of all participants in an organized
activity. 75

spatial structure A hierarchy of regions that are
connected by “is-in” or “contains” arcs. 75

taxonomic structure A hierarchical knowledge
structure in which concepts are connected by
“is-a” arcs. 74
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