
A Solutions of exercises

In this section solutions are collected for the exercises at the end of the individual chapters.
These are not to be understood as ”‘blue-print”’ solutions but rather as suggestions in
sketchy form for stimulating the reader’s own work.

A.1 Chapter 1

Solution A.1.1: a) Follows directly from

0 ≤
(√

ε a± 1

2
√
ε
b
)2

, a, b ∈ R, ε ∈ R+.

b) The function f(x) = x−1 is for x > 0 convex and
∑n

i=1 xiλi is a convex linear
combination. Hence, by a geometric argument, one may conclude the asserted estimate.

c) For n = 0 the statement is obvious. For n ∈ N observe that there are exactly three
local extrema, for x = 0 (maximum), x = 1 (maximum), and xmin = 1

1+n
(minimum).

Furthermore,

x2min(1− xmin)
2n =

1

(1 + n)2

(
1− 1

1 + n

)2n

=
1

(1 + n)2
n2n

(1 + n)2n
≤ 1

(1 + n)2
.

Solution A.1.2: a) Multiplying out yields

‖x+ y‖2 + ‖x− y‖2 = (x+ y, x+ y) + (x− y, x− y)

= (x, x) + (y, y) + (x, y) + (y, x) + (x, x) + (y, y)− (x, y)− (y, x)

= 2 ‖x‖2 + 2 ‖y‖2.

b) Let x, y ∈ R
n be arbitrary and (without loss of generality) ‖x‖ = ‖y‖ = 1.

0 ≤ (x− y, x− y) = ‖x‖2 + ‖y‖2 − 2 (x, y) = 2− 2 (x, y).

Similarly

0 ≤ (x+ y, x+ y) = ‖x‖2 + ‖y‖2 + 2 (x, y) = 2 + 2 (x, y),

i. e., |(x, y)| ≤ 1.

c) The properties of a scalar product follow immediately from those of the Euclidean
scalar product and those assumed for the matrix A .

i) Yes. Let 〈·, ·〉 be an arbitrary scalar product and let {ei}1≤i≤n be a Cartesian basis of
Rn, such that any x, y ∈ Rn have the respresentations x =

∑
i xiei, y =

∑
i xiei ∈ Rn.

Define a matrix A ∈ Rn×n by aij := 〈ej , ei〉. Then, there holds (Ax, y) =
∑

ij aijxjyi =∑
ij xjyi〈ej, ei〉 = 〈x, y〉 . Furthermore, A is obviously symmetric and positive definite

due to the same properties of the scalar product < ·, · >.
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210 Solutions of exercises

ii) The following statements are equivalent:

1. < ·, · > : C × C → C is a (Hermitian) positive definite sesquilinear form (i.e. a
scalar product).

2. There exists a (Hermitian) positive definite matrix A ∈ Cn×n such that 〈x, y〉 =
(Ax, y), x, y ∈ Cn.

Solution A.1.3: a) The identity becomes obvious by replacing x by x̃ := x‖x‖−1.

b) There holds, for x ∈ Rn \ 0:

‖Ax‖2 = ‖Ax‖2
‖x‖ ‖x‖2 ≤ sup

y∈Rn

‖Ay‖2
‖y‖2 ‖x‖ = ‖A‖2‖x‖2.

c) There holds

‖AB‖2 = sup
x∈Rn

‖ABx‖2
‖x‖2 ≤ sup

x∈Rn

‖A‖2‖Bx‖2
‖x‖2 ≤ sup

x∈Rn

‖A‖2‖B‖2‖x‖2
‖x‖2 = ‖A‖2‖B‖2.

This relation is not true for any matrix norm. As a counter example, employ the elemen-
twise maximum norm ‖A‖max := maxi,j=1,··· ,n |aij | to(

1 1

0 0

)
·
(
1 0

1 0

)
=

(
2 0

0 0

)
.

d) Let λ be any eigenvalue of A and x a corresponding eigenvector. Then,

|λ| = ‖λx‖2
‖x‖2 =

‖Ax‖2
‖x‖2 ≤ ‖A‖2.

Conversely, let {ai, i = 1, · · · , n} ⊂ Cn be an ONB of eigenvectors of A and x =∑
i xia

i ∈ Cn be arbitrary. Then,

‖Ax‖2 =
∥∥A(∑

i

xia
i
)∥∥

2
=
∥∥∑

i

λixia
i
∥∥
2
≤ max

i
|λi|

∥∥∑
i

xia
i
∥∥
2
| = max

i
|λi| ‖x‖2,

and consequently,
‖Ax‖2
‖x‖2 ≤ max

i
|λi|.

e) There holds

‖A‖22 = max
x∈Cn\0

‖Ax‖22
‖x‖22

= max
x∈Cn\0

(ĀTAx, x)2
‖x‖22

≤ max
x∈Cn\0

‖ĀTAx‖2
‖x‖2 = ‖ĀTA‖2.

and ‖ĀTA‖2 ≤ ‖ĀT‖2‖A‖2 = ‖A‖22 (observe that ‖A‖2 = ‖ĀT‖2 due to ‖Ax‖2 =
‖ĀT x̄‖2, x ∈ Cn).
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Solution A.1.4: a) See the description in the text.

b) Let A ∈ Rn×n be symmetric and positive definite. Then, there exists an ONB
{a1, . . . , an} of eigenvectors of A such that with the (regular) matrix B = [a1 . . . an]
there holds A = BDB−1 with D = diagi(λi) (λi > 0 the eigenvalues of A). Now define

A1/2 := B diagi
(
λ
1/2
i

)
B−1.

This is well defined and independent of the concrete choice of B.

c) Let A ∈ Cn×n be positive definite, i. e., x̄TAx ∈ R+, x ∈ Cn. Then, A is necessarily
Hermitian since for x, y ∈ C arbitrary there holds:{

(x+ y)TA(x+ y) ∈ R,

(x+ iy)TA(x+ iy) ∈ R

=⇒
{

x̄TAx+ ȳTAy + (x̄TAy + ȳTAx) ∈ R,

x̄TAx+ ȳTAy + i (x̄TAy − ȳTAx) ∈ R.

Setting x = ei and y = ej , we see that aij + āji ∈ R and i(aij − āji) ∈ R, i.e.,

Re(aji + aij) + iIm(aji + aij) ∈ R,

iRe(aji − aij) + Im(aji − aij) ∈ R.

Hence, aij = Re aij + iIm aij = Re aji − iIm aji = Re āji + iIm āji = āji.
Remark: The above argument only uses that x̄TAx ∈ R, x ∈ Cn.

Solution A.1.5: a) ‖v‖∞ = max1≤i≤n |vi| and ‖v‖1 =
∑n

i=1 |vi|.
b) The “spectrum” Σ(A) is defined as Σ(A) := {λ ∈ C, λ eigenvalue of A}.
c) The “Gerschgorin circles” Ki ⊂ C, i=1, . . . , n , are the closed discs
Ki :=

{
x ∈ C, |x− aii| ≤

∑
j =i aij

}
.

d) ρ(A) = max1≤i≤n{|λi|, λi eigenvalue of A}.
e) κ2(A) = ‖A‖2‖A−1‖2 = max1≤i≤n σi/min1≤i≤n σi, where σi are the “singular values”
of A , i. e., the square roots of the (nonnegative) eigenvalues of ĀTA).

Solution A.1.6: a) aii ∈ R follows directly from the property aii = āii of a Hermitian
matrix. Positiveness follows via testing by ei, which yields aii = ēTi Aei > 0.

b) The trace of a matrix is invariant under coordinate transformation, i. e. similarity
transformation (may be seen by direct calculation

∑
ijk bijajkbki =

∑
i aii or by applying

the product formula for determinants to the characteristic polynomial. Observing that a
Hermitian matrix is similar to a diagonal matrix with its eigenvalues on the main diagonal
implies the asserted identity.

c) Assume that A is singular. Then ker(A) �= ∅ and there exists x �= 0 such that Ax = 0,
i. e., zero is an eigenvalue of A. But this contradicts the statement of Gerschgorin’s Lemma
which bounds all eigenvalues away from zero due to the strict diagonal dominance. If
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all diagonal entries aii > 0 , then also by Gerschgorin’s lemma all Gerschgorin circles
(and consequently all eigenvalues) are contained in the right complex half-plane. If A
is additionally Hermitian, all these eigenvalues are real and positive and A consequently
positive definite.

Solution A.1.7: Define

S := lim
n→∞

Sn, Sn =

n∑
s=0

Bs.

S is well defined due to the fact that {Sn}n∈N is a Cauchy sequence with respect to the
matrix norm ‖ · ‖ (and, by the norm equivalence in finite dimensional normed spaces,
with respect to any matrix norm). By employing the triangle inequality, using the matrix
norm property and the limit formula for the geometric series, one proofs that

‖S‖ = lim
n→∞

‖Sn‖ = lim
n→∞

∥∥ n∑
s=0

Bs
∥∥ ≤ lim

n→∞

n∑
s=0

‖B‖s = lim
n→∞

1− ‖B‖n+1

1− ‖B‖ =
1

1− ‖B‖ .

Furthermore, Sn (I −B) = I −Bn+1 and due to the fact that multiplication with I −B
is continuous,

I = lim
n→∞

(
Sn(I −B)

)
=
(
lim
n→∞

Sn

)
(I −B) = S(I − B).

Solution A.1.8: To proof the statement, we use a so-called “deformation argument”.
For t ∈ [0, 1] define the matrix

A(t) = (1− t)diagi(aii) + t A.

Obviously A(0) is a diagonal matrix with eigenvalues λi(0) = aii. Now observe that the
“evolution” of the ith eigenvalue λi(t) is a continuous function in t (This follows from
the fact that a root t0 of a polynomial pα is locally arbitrarily differentiable with respect
to its coefficients – a direct consequence of the implicit function theorem employed to
p(α, t) = pα(t) and a special treatment of multiple roots).

Furthermore, the Gerschgorin circles of A(t), 0 ≤ t ≤ 1 have all the same origin, only
the radii are strictly increasing. So, Gerschgorin’s Lemma implies that the image of the
function t → λi(t) lies entirely in the union of all Gerschgorin circles of A(1). And due
to the fact that it is continous obviously in the connected component containing aii.

Solution A.1.9: (i)⇒(ii): Suppose that A and B commute. First observe that for an
arbitrary eigenvector z of B with eigenvalue λ there holds:

ABz − BAz = 0 ⇒ BAz = λAz.

So, Az is either 0 or also an eigenvector of B with eigenvalue λ. Due to the fact that
B is Hermitian there exists an orthonormal basis {vi}ni=1 of eigenvectors of B . So we
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can transfrom B by a change of basis to a diagonal matrix. Furthermore, by virtue of
the observation above, A has block diagonal structure with respect to this basis, where a
single block solely acts on an eigenspace Eλ(B) for a specific eigenvalue λ of B. Due to the
fact that A is also hermitian, we can diagonalize A

∣∣
Eλ(B)

with respect to this subspace

by another change of basis. Now observe that the diagonal character of B
∣∣
Eλ(B)

= λI

will be preserved.

(ii)⇒(i): Let O = {vi}ni=1 be the common basis of eigenvectors of A and B , one checks
that

ABvi = λAi λ
B
i vi = λBi λ

A
i vi = BAvi, i = 1, . . . , n.

Consequently, ABx = BAx, x ∈ Kn, and therefore AB = BA.

(i)⇔(iii): For any two Hermitian matrices A and B there holds BA = B̄T ĀT = ABT

and the asserted equivalence follows immediately.

Solution A.1.10: i) Let A ∈ Kn×n be an arbitrary, regular matrix and define ϕ(x, y) :=
(Ax,Ay)2. It is clear that ϕ is a sesquilinear form. Furthermore symmetry and positivity
follow directly from the corresponding property of ( . ). For definiteness observe that
(Ax,Ax) = 0 ⇒ Ax = 0 ⇒ x = 0 due to the regularity of A.

ii) The earlier result does not contradict (i) because there holds

(Ax,Ay)2 = (x, ĀTAy)2,

and ĀTA is a hermitian matrix.

Solution A.1.11: i) Let λ1 and λ2 be two pairs of eigenvalues with eigenvectors v1

and v2. It holds:

0 = (v1, Av2)− (v1, Av2) = (v1, Av2)− (Av1, v2) = (λ2 − λ1)(v
1, v2).

So, if λ1 �= λ2 it must hold that (v1, v2) = 0. Yes, this result is true in general for normal
matrices (over C) and—more generally—known as the “spectral theorem for normal op-
erators” (see [Bosch, Lineare Algebra, p. 266, Satz 7.5/8], for details).

ii) Let v be an eigenvector for the eigenvalue λmax. There holds:

max
x∈Kn\{0}

(Ax, x)2
‖x‖22

≥ (Av, v)2
‖v‖22

= λmax(A),

Conversely, for arbitrary x ∈ Kn \ {0} there exists a representation x =
∑

i xi vi with
respect to an orthonormal basis {vi}, so that

(Ax, x)2
‖x‖22

=
(A

∑
i xivi,

∑
i xivi)2

‖x‖22
=

∑
i λix

2
i∑

i x
2
i

≤ λmax(A)

The corresponding equality for λmin(A) follows by a similar argument. λmin(A) ≤
λmax(A) is obvious.
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Solution A.1.12: i) We use the definition (c) from the text for the ε-pseudo-spectrum.
Let z ∈ σε(A) and accordingly v ∈ Kn, ‖v‖ = 1 , satisfying ‖(A− zI)v‖ ≤ ε . Then,

‖(A−1 − z−1I)v‖ = ‖z−1A−1(zI − A)v)‖ ≤ |z|−1‖A−1‖ε.

This proves the asserted relation.

ii) To prove the asserted relation, we again use the definition (c) from the text for the
ε-pseudo-spectrum. Accordingly, for z ∈ σε(A

−1) with |z| ≥ 1 there exists a unit vector
v ∈ K

n, ‖v‖ = 1 , such that

ε ≥ ‖(zI − A−1)v‖ = |z|‖(A− z−1I)A−1v‖.

Hence, setting w := ‖A−1v‖−1A−1v ∈ K
n with ‖w‖ = 1 , we obtain

‖(A− z−1I)w‖ ≤ |z|−1‖A−1v‖−1ε.

Hence, observing that

‖A−1v‖ = ‖(A−1 − zI)v + zv‖ ≥ ‖zv‖ − ‖(A−1 − zI)v‖ ≥ |z| − ε,

we conclude that
‖(A− z−1I)w‖ ≤ ε

|z|(|z| − ε)
≤ ε

1− ε
.

This completes the proof.

A.2 Chapter 2

Solution A.2.1: a) An example for a symmetric, diagonally dominant matrix that is
indefinite is

A =

(
−2 1

1 2

)
.

On the other hand, a symmetric, positive definite but not (strictly) diagonally dominant
matrix is given by

B =

⎛
⎜⎜⎝
3 2 2

2 3 2

2 2 3

⎞
⎟⎟⎠ ,

or typically system matrices arising from higher order difference approximations, e. g. the
“stretched” 5-point stencil for the Laplace problem in 1D:
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Bn =
1

12h

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

30 −16 1

−16 30 −16 1

1 −16 30 −16 1
. . .

1 −16 30 −16 1

1 −16 30 −16

1 −16 30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×n.

Note: To prove that the above Bn ∈ Rn×n is positive definite, compute det(Bk) > 0 for
k = 1, · · · , 3 and derive a recursion formula of the form

det(Bk+1) = 30 det(Bk)± · · ·det(Bk−1)± · · ·det(Bk−2)

so that det(Bk+1) > 0 follows by induction.

b) Apply the Gerschgorin lemma to the adjoint transpose ĀT . This yields that 0 /∈
σ(ĀT ) , i. e., ĀT is regular. Then, also A is regular.

c) All eigenvalues of the symmetric matrix A are real. Further, all Gerschgorin circles
have their centers on the positive real half axis. Hence the strict diagonal dominance
implies that all eigenvalues must be positive.

Solution A.2.2: The result of the first k− 1 elimination steps is a block matrix A(k−1)

of the form

A(k−1) =

[
R

k−1 ∗
0 A

k−1

]
, with A

k−1 ∈ R
(n−k)×(n−k) pos. def. (by induction).

The k-th elimination step reads:

a
(k)
ij = a

(k−1)
ij − a

(k−1)
ik a

(k−1)
kj

a
(k−1)
kk

, i, j = k, . . ., n.

i) The main diagonal elements of positive definite matrices are positive, a
(k−1)
jj > 0 . For

the diagonal elements it follows by symmetry:

a
(k)
ii = a

(k−1)
ii − a

(k−1)
ik a

(k−1)
ki

a
(k−1)
kk

= a
(k−1)
ii − |a(k−1)

ik |2
a
(k−1)
kk

≤ a
(k−1)
ii , i = k, . . ., n.

ii) The element with maximal modulus of a positive definite matrix A
(k−1)

lies on the
main diagonal,

max
k≤i,j≤n

|a(k−1)
ij | ≤ max

k≤i≤n
|a(k−1)

ii |.
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The submatrix A
(k)

obtained in the k-th step is again positive definite. Hence the result
(i) implies

max
k≤i,j≤n

|a(k)ij | ≤ max
k≤i≤n

|a(k)ii | ≤ max
k≤i≤n

|a(k−1)
ii | ≤ max

k≤i,j≤n
|a(k−1)

ij |.

Since in the k-th elimination step the first k−1 rows are not changed anymore induction
with respect to k = 1, . . ., n yields:

max
1≤i,j≤n

|rij| = max
1≤i,j≤n

|a(n−1)
ij | ≤ max

1≤i,j≤n
|a(0)ij | ≤ max

1≤i,j≤n
|aij|.

Solution A.2.3: i) Let

L := {L ∈ R
n×n, L regular, lower-left triangular matrix mit lii = 1},

R := {R ∈ R
n×n, L regular upper-right triangular matrix}.

We have to show the following group properties for the matrix multiplication ◦ :
(G1) Closedness: L1, L2 ∈ L ⇒ L1 ◦ L2 ∈ L .
(G2) Associative law: L1, L2, L3 ∈ L ⇒ L1 ◦ (L2 ◦ L3) = (L1 ◦ L2) ◦ L3 .
(G3) Neutral element I : L ∈ L ⇒ L ◦ I = L .
(G4) Inverse: L ∈ L ⇒ ∃L−1 ∈ L : L ◦ L−1 = I .

(G1) follows by computation. (G2) and (G3) follow from the properties of matrix multi-
plication. (G4) is seen through determination of the inverse by simultaneous elimination:⎡

⎢⎢⎣
1 0 1 0

. . .
. . .

0 1 ∗ 1

⎤
⎥⎥⎦ ⇒ L−1 =

⎡
⎢⎢⎣

1 0
. . .

∗ 1

⎤
⎥⎥⎦ ∈ L.

The group L is not abelian as the following 3× 3 example shows:⎡
⎢⎢⎣

1 0 0

1 1 0

0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0

0 1 0

0 −1 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0

1 1 0

0 −1 1

⎤
⎥⎥⎦ �=

⎡
⎢⎢⎣

1 0 0

2 1 0

−1 −1 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0

1 1 0

0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0

1 1 0

−1 −1 1

⎤
⎥⎥⎦ .

The argument for R is analogous. The group R is also not abelian as the following 2×2
example shows:[

1 1

0 1

][
−1 1

0 1

]
=

[
−1 2

0 1

]
�=
[
−1 0

0 1

]
=

[
−1 1

0 1

][
1 1

0 1

]
.

ii) For proving the uniqueness of the LR-decompositiong let for a regular matrix A ∈ Rn×n

two LR-decompositiongs A = L1R1 = L2R2 be given. Then, by (i) L1, L2 ∈ L as well
as R1, R2 ∈ R and consequently

R1R
−1
2︸ ︷︷ ︸

∈ R

= L−1
1 L2︸ ︷︷ ︸
∈ L

= diag(dii).
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With L1 (and L2 ) also the inverse L−1
1 has ones on the main diagonal. Hence dii = 1

which finally implies R1 = R2 and L2 = L1 .

Solution A.2.4: Let A be a band matrix with ml = mr =: m (Make a sketch of this
situation.)

i) The k-th elimination step

a
(k)
ij = a

(k−1)
ij − a

(k−1)
ik

a
(k−1)
kk

a
(k−1)
kj , b

(k)
i = b

(k−1)
i − a

(k−1)
ik

a
(k−1)
kk

b
(k−1)
k , i, j = k + 1, . . ., k +m,

requires essentially m divisions and m2 multiplications and additionas. Hence alltogether

Nband = nm2 +O(nm) a. op.,

for the n − 1 steps of the forward elimination for computing the matrix R and si-
multanously of the matrix L . For the sparse model matrix, we have Nband = 108 +
O(106) a. op. in contrast to N = 1

3
1012 +O(108) a. op. for a full matrix.

ii) If A is additionally symmetric (and positive definite) one obtaines the Cholesky de-
composition from the LR decomposition by

A = L̃L̃T , L̃ = LD1/2, D = diag(rii).

Because of the symmetry of all resulting rduced submatrices only the elements on the
main diagonal and the upper diagonals need to be computed. This reduces the work to
Nband = 1

2
nm2+O(nm) a. Op. , i. e., for the model matrix to Nband = 1

2
108+O(106) a. op.,

and Nband = 1
2
1016 +O(1012) a. op., respectively.

Solution A.2.5: a) The first step of the Gaussian elimination applied on the extended
matrix [A|b] produces:⎡

⎢⎢⎢⎢⎢⎣
1 3 −4 1

3 9 −2 1

4 12 −6 1

2 6 2 1

⎤
⎥⎥⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎢⎢⎣

1 3 −4 1

0 0 10 −2

0 0 10 −3

0 0 10 −1

⎤
⎥⎥⎥⎥⎥⎦ .

The linear system is not solvable because of rankA = 2 �= 3 = rank [A|b] . Observe in
particular, that A does not have full rank.

b) A straightforward calculation leads to the following normal equation:

⎡
⎢⎢⎣

1 3 4 2

3 9 12 6

−4 −2 −6 2

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣

1 3 −4

3 9 −2

4 12 −6

2 6 2

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 3 4 2

3 9 12 6

−4 −2 −6 2

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎥⎦ .
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Hence, ⎡
⎢⎢⎣

30 90 −30

90 270 −90

−30 −90 60

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

10

30

−10

⎤
⎥⎥⎦ .

Because of RankA = 2 < 3, the kernel of the matrix ATA ∈ R3×3 is one dimensional.
Gaussian elimination:⎡

⎢⎢⎣
30 90 −30 10

90 270 −90 30

−30 −90 60 −10

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣

30 90 −30 10

0 0 0 0

0 0 30 0

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣

3 9 0 1

0 0 0 0

0 0 1 0,

⎤
⎥⎥⎦

and the solution can be characetized by x = (1
3
− 3t, t, 0)T , t ∈ R .

c) The system of normal equations is solvable but the solution is not unique.

d) No. Due to the fact that A does not have full rank, the matrix ATA ∈ R3×3 cannot
be one-to-one, and can consequently be only semi-definite. (Counter example: x =
(−3, 1, 0)T is a non trivial element of the kernel of ATA.)

A.3 Chapter 3

Solution A.3.1: i) For the maximal absolute column sum it holds

‖B‖1 = max
j=1,2,3

3∑
i=1

|aij | = 0.9 < 1.

This implies convergence due to the fact that spr(B) ≤ ‖B‖1 < 1 and, hence, the iteration
is contractive. (Observe that the maximal absolute row sum does not imply convergence
because ‖B||∞ = 1.4 > 1 .) The limit z = limt→∞ xt fullfills z = B z + c . Hence,

z = (I −B)−1c.

ii) Let λi be the eigenvalues of B . It holds

3∏
i=1

λi = det(B) = −1.

This implies that at least for one of the eigenvalues there must hold |λ| ≥ 1. So, for
the choice (ii) the fixed point iteration cannot be convergent in general: In particular, if
x0 − x happens to be an eigenvector corresponding to the above eigenvalue λ it holds

‖xt − x‖ = ‖Bt(x0 − x)|| = ‖λt(x0 − x)|| = |λ|t‖x0 − x‖ �→ 0 (t→∞).

Solution A.3.2: For a general fixed point iteration xt+1 = Bxt + c the following error
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estimate holds true in case of convergence to a limit z:

‖xt − z‖ ≤ spr(B)t‖x0 − z‖.

It follows by induction that in order to reduce the initial error by at least a factor of ε it
is necessary to perform the following number of iterations:

t =

⌈
log10(ε)

log10(spr(B))

⌉
.

For the Jacobi- and Gauss-Seidel-Matrix it holds

J =

[
0 1/3

1/3 0

]
, H1 =

[
0 −1/3

0 1/9

]
,

hence, spr(J) = 1/3 and spr(H1) = 1/9 . Therefore, the necessary number of iterations
is

tJ =

⌈
6

log10(3)
+ 1

⌉
= 13, and tH1 =

⌈
6

log10(9)

⌉
= 7, respectively.

Solution A.3.3: We restate the two definitions of “irreducibility”:

a) (With the help of the hint): A matrix A ∈ Rn×n is called “irreducible” if for every
partition J,K of {1, . . ., n} =: Nn with J ∪K = Nn and J ∩K = ∅ , so that ajk = 0
for all j ∈ J and all k ∈ K, it holds that either K = ∅ or J = ∅.
b) A matrix A ∈ Rn×n is called “irreducible” if for every pair of indices j, k ∈ Nn there
exists a set of indices {i1, . . . , im} ∈ Nn such that aj,i1 �= 0, ai1,i2 �= 0, . . . , aim−1,im �= 0,
aim,k �= 0.

i) (a) ⇒ (b): Let A be irreducible in the sense of (a). Furthermore, let i ∈ Nn be an
arbitrary index. Let J be the set of all indices l ∈ Nn , with the property that there
exists a sequence of indicies {i1, . . . , im} ∈ Nn such that all ai,i1 , . . . , aim,l �= 0 . Define
its complement K := Nn \ J . In order to prove (b) we have to show that J = Nn , or
that K = ∅, respectively.
First of all, it holds that i ∈ J , so J is not empty. Furthermore, observe that for all
p ∈ K it must hold that al,p = 0 for all l ∈ J , otherwise there would exist a sequence from
i to p by expanding an arbitrary sequence ai,i1, . . . , aim,l from i to l (which exists by
virtue of l ∈ J) by al,p. So by irreducibility in the sense of (a) it must hold that K = ∅.
ii) (b) ⇒ (a): Let A be irreducible in the sense of (b). Let {J,K} be an arbitrary
partition in the sense of (a). Then for arbitrary index pairs {j, k} ∈ J ×K there exists
a sequence {i1, . . ., im} ∈ Nn with aj,i1 �= 0, . . . , aim,k �= 0 . Inductively, because of
aiμ,iν �= 0, it follows that iμ ∈ J for μ = 1, . . . , m, and finally (because of aim,k �= 0) also
k ∈ J in contradiction to the original choice {j, k} ∈ J ×K. So it must hold that either
J = ∅ or K = ∅.

Solution A.3.4: a) In case of the matrix A1 , the iteration matrices for the Jacobi and
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Gauss-Seidel methods are

J = −D−1(L+R) =

⎡
⎢⎢⎣

0 0.5 −1

−0.5 0 1

−1 −1 0

⎤
⎥⎥⎦ , H1 = −(D + L)−1R =

⎡
⎢⎢⎣

0 0.5 −1

0 −0.25 1.5

0 −0.25 −0.5

⎤
⎥⎥⎦

The eigenvalues λi of J fulfill λ1λ2λ3 = det(J) = −1 , hence spr(J) ≥ 1 . Therefore, the
Jacobi iteration cannot be convergent in general. The matrix H1 has the characteristic
polynomial χ(λ) = −λ(λ2 + 3

4
λ + 1

2
) and the eigenvalues λ1 = 0, λ2/3 = ±1/

√
2 .

Consequently, spr(H1) < 1 and the Gauss-Seidel method is convergent.

b) The matrix A2 fulfills the weak row sum criterion and is irreducible. Hence, the
Jacobi- and Gauss-Seidel methods converge

Solution A.3.5: First, we determine the iteration matrix: It holds[
1 0

−ωa 1

]−1

=

[
1 0

ωa 1

]
.

Hence,

xt =

[
1 0

ωa 1

][
1− ω ωa

0 1− ω

]
xt−1 + ω

[
1 0

ωa 1

]
b,

and therefore:

Bω =

[
1− ω ωa

ωa(1− ω) ω2a2 + 1− ω

]
.

Consequently, it is det(Bω − λI) = −λω2a2 + (1− ω − λ)2 .

a) With ω = 1 it is

det(B1 − λI) = −λa2 + λ2 ⇒ spr(B1) = a2,

thereby, for |a| < 1 the system is convergent.

b) In case of a = 1
2
it holds

λ1,2 = 1− ω + 1
8
ω2 ± 1

2
ω
√
1− ω + 1

16
ω2.

In case of 1− ω + 1
16
ω2 ≥ 0 , and ω ≤ 8− 4

√
3 = 1.07179677. . . , respectively, both roots

are real valued. For any other choice of ω they are complex. Therefore:

spr(Bω) =

{
1− ω + 1

8
ω2 + 1

2
ω
√
1− ω + 1

16
ω2, 0 ≤ ω ≤ 8− 4

√
3,

ω − 1, 8− 4
√
3 < ω ≤ 2.
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Evaluating the formula for the stated values:

ω 0.8 0.9 1.0 1.1 1.2 1.3 1.4

spr(Bω) 0.476 0.376 0.25 0.1 0.2 0.3 0.4

The graph of the function ρ(ω) := spr(Bω), 0 ≤ ω ≤ 2, starts with ρ(0) = 1 ; it has a
minimum at ωopt := 8− 4

√
3 with a sharp, down-pointing cusp, behind that it increases

linear to ρ(2) = 1 .

0

0.2

0.4

0.6

0.8

1

1 ωopt 2
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Graph of the spectral radius spr(Hω) plotted over ω ∈ [0, 2]

Solution A.3.6: Let T be a matrix consisting of a (row wise) ONB of A. It holds

T−1A0T = I, T−1A1T =

⎛
⎜⎜⎝
λ1

. . .

λd,

⎞
⎟⎟⎠

and

T−1AkT = T−1AT · T−1AT · · · T−1AT =

⎛
⎜⎜⎝
λk1

. . .

λkd

⎞
⎟⎟⎠ ∀k ∈ N.

So, by virtue of linearity,

T−1p(A)T =

⎛
⎜⎜⎝
p(λ1)

. . .

p(λd)

⎞
⎟⎟⎠

for an arbitrary polynomial p. So, the spectral radius of p(A) is exactly maxi=1,...,n |p(λi)|.
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Solution A.3.7: a) It holds

Xt = g(Xt−1), g(X) := X(I −AC) + C.

Hence,
‖g(X)− g(Y )‖ = ‖(X − Y )(I − AC)‖ ≤ ‖X − Y || ‖I − AC‖.

Therefore, if ‖I − AC‖ =: q < 1, then g is a contraction. The corresponding fixed-
point iteration converges for every initial value X0. The limit Z fulfills the equation
Z = Z(I − AC) + C or ZAC = C . This is equivalent to Z = A−1.

So, if q < 1 the fixed point iteration converges for every initial value X0 ∈ Rn×n to the
limit A with the a priori error estimate

‖Xt −A−1‖ ≤ qt‖X0 − A−1‖, t ∈ N.

b) We have
Xt = g(Xt−1), g(X) := X(2I − AX).

Let Z be an arbitrary fixed point of g . It necessarily fulfills the equation Z = Z(2I−AZ)
or Z = ZAZ . Suppose that Z is regular, then Z = A−1 . Note that this assumption is
essential because the singular matrix Z = 0 is always a valid fixed point of g . To prove
convergence (under a yet to be stated assumption) we observe that:

Xt − Z = 2Xt−1 −Xt−1AXt−1 − Z

= −Xt−1AXt−.1 + ZA︸︷︷︸
= I

Yt−1 +Xt−1 AZ︸︷︷︸
= I

− ZA︸︷︷︸
= I

Z

= −(Xt−1 − Z)A(Xt−1 − Z).

This implies
‖Xt − Z‖ ≤ ‖A‖ ‖Xt−1 − Z‖2.

So, for Z = A−1 and under the condition that

‖X0 − Z‖ < 1

‖A‖
the iteration converges quadratically to Z:

‖A‖ ‖Xt − Z‖ ≤ (‖A‖ ‖Xt−1 − Z‖)2 ≤ . . . ≤ (‖A‖ ‖X0 − Z‖)2t → 0 (t→∞).

This iteration is exactly Newton’s method for calculating the inverse of a matrix.

Remark: It is sufficient to choose a starting value X0 that fulfills the convergence
criterion (for the preconditioner C ) in (a):

1 > ‖I − AX0‖ = ‖A‖ ‖A−1 −X0‖ ⇐⇒ ‖A−1 −X0‖ < 1

‖A‖ ,

so, also the criterion of (b) is fulfilled.
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Solution A.3.8: Let J be the Jordan normal form of B and T a corresponding trans-
formation matrix such that

T−1BT = J.

Let p(X) = α0 + α1X + α2X
2 + · · ·+ αkX

k be an arbitrary polynomial. Then,

T−1p(B)T = α0 + α1T
−1BT + α2(T

−1BT )2 + · · ·+ αk(T
−1BT )k = p(J).

Furthermore, observe that multiplication (or addition) of upper triangular matrices yields
another upper triangular matrix, whose diagonal elements are formed by elementwise
multiplication (or addition) of the corresponding diagonal elements of the multiplicands.
Consequently, p(J) is an upper triangular matrix of the form

p(J) =

⎛
⎜⎜⎜⎜⎜⎝
p(λ1)

p(λ2) ∗
0

. . .

p(λn)

⎞
⎟⎟⎟⎟⎟⎠ ,

where λi are the eigenvalues of B. Hence,

χp(J)(λ) = det
(
p(J)− λI

)
=

∏
1≤i≤n

(p(λi)− λ),

which proves the assertion.

Solution A.3.9: In case of a symmetric matrix A, the Jacobi methods reads

xt = −D−1(L+ LT )xt−1 +D−1b,

with the iteration matrix
B = −D−1(L+ LT ).

The idea of the Chebyshev acceleration is now to construct a sequence of improved approx-
imations yt−x = pt(B)(x0−x) (instead of the ordinary fixed point iteration xt = Btx0 )
by a smart choice of polynomials

pt(z) =
t∑

s=0

γts z
s, pt(1) = 1.

It holds
‖yt − x‖2 ≤ ‖pt(B)‖2 ‖x0 − x‖2,

with ‖pt(B)‖2 = maxλ∈σ(B) |p(λ)|. So, the optimal choice for the polynomial pt(z) would
be the solution of the minimzation problem

min
p∈Pt,p(1)=1

max
λ∈σ(B)

|p(λ)|.



224 Solutions of exercises

Unfortunately, this is practically impossible because σ(B) is usually unknown. But,
under the assumption that the Jacobi method is already convergent it holds that

max
λ∈σ(B)

|p(λ)| ∈ [−1 + δ, 1− δ],

due to the fact that the resulting iteration matrix B is similar to a symmetric matrix

D−1/2(L+ LT )D−1/2.

This motivates the modified optimization problem

min
p∈Pt,p(1)=1

max
|x|≤1−δ

|p(x)|.

This optimization problem can be solved analytically. The solutions are given by rescaled
Chebyshev polynomials:

pt(x) := Ct(x) =
Tt
(

x
1−δ

)
Tt
(
1 + δ

2−2δ

) .
Solution A.3.10: a) No, the damped Richardson equation cannot be made convergent in
general. A necessary (and sufficient) condition for convergence of the damped Richardson
equation (applied to a symmetric coefficient matrix) for arbitrary starting values is that

spr

([
I O

O I

]
− θ

[
A B

BT O

])
< 1.

For this to hold true, it is necessary that the eigenvalues of the coefficient matrix are
sufficiently small – this can be controlled by θ and is therefore not a problem – and that
all eigenvalues are positive. But this does not need to be the case, consider, e. g.,

A =

(
1 0

0 1

)
, B =

(
−1

0

)
.

In this case the coefficient matrix ⎛
⎜⎜⎝

1 0 −1

0 1 0

−1 0 0

⎞
⎟⎟⎠

has two positive and one negative eigenvalue λ1 = 1, λ2,3 =
1
2
±

√
5
2
.

b) With A = (aij), B = (bij) and employing the fact that A is symmetric and positive
definite it holds
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(
BTAB)il =

∑
jk

bjiajkbkl =
∑
jk

bklakjbkl =
(
BTAB)li 1 ≤ i, j ≤ m,

xTBTABx ≥ ‖Bx‖2 ≥ 0 ∀x ∈ R
m.

So, BTAB is symmetric, positive semidefinite. If B : R
m → R

n is a one to one mapping
(because m ≤ n), then, xTBTABx = 0 implies ‖Bx‖ = 0. This in turn implies x = 0.
Therefore, if B has full rank, then BTAB is positive definite.

The Chebyshev acceleration is most efficiently realized by using the two step recursion
formula:

ξt = 2
μt

ρ μt+1

Hsym
1 ξt−1 − μt−1

μt+1

ξt−1 + 2
μt

ρ μt+1

ζ

μt+1 =
2

ρ
μt − μt−1

starting from the initial values ξ0 = y0, y1 = Hsym
1 y0 + ζ , μ0 = 1 and μ1 = 1/ρ.

Hereby, the symmetrized Gauß-Seidel iteration matrix reads

Hsym
1 = (D + LT )−1L (D + L)−1LT

and the corresponding right hand side of the iterative procedure is

ζ = BTA−1b− c.

We assume that we have an efficient method in estimating the additive splitting

BTA−1B = L+D + LT

and that an estimate ρ ∈ (0, 1) with σ(Hsym
1 ) ∈ (−ρ, ρ) is readily available.

Solution A.3.11: One step of the Gauß-Seidel method reads

x̂
(1)
j =

1

ajj

(
bj −

∑
k<j

ajkx̂
(1)
k +

∑
k>j

ajkx
(0)
k

)
.

Due to the specific choice of decent directions r(t) = et+1 in the coordinate relaxation,

there holds x
(t+1)
j = x

(t)
j for j �= t + 1. Consequently, it suffices to show that in the step

t→ t + 1 the (t + 1)-th component is set to the correct value. Inserting the step length

αt+1 =
g
(t)
t+1

at+1,t+1
=

1

at+1,t+1

(
bt+1 −

∑
k

at+1,kx
(t)
k

)
into the iteration procedure gives
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x
(t+1)
t+1 = x

(t)
t+1 +

bt+1

at+1,t+1
− 1

at+1,t+1

∑
k

at+1,kx
(t)
k

=
1

at+1,t+1

(
bt+1 −

∑
k<t+1

at+1,kx
(t)
k −

∑
k>t+1

at+1,kx
(t)
k

)
.

(1.3.1)

By induction it follows that x
(t)
k = x̂

(1)
k for k < t + 1. Furthermore, x

(t)
k = x

(0)
k for

k > t + 1, so that:

x
(t+1)
t+1 =

1

at+1,t+1

(
bt+1 −

∑
k<t+1

at+1,kx̂
(1)
k −

∑
k>t+1

at+1,kx
(0)
k

)
. (1.3.2)

Solution A.3.12: The CG method applied to the normal equation reads: Given an
initial value x0 and an initial decent direction

d(0) = AT (b− Ax0) = −g(0)

iterate by the prescription

αt =
(g(t), g(t))

(Ad(t), Ad(t))
, y(t+1) = y(t) + αtd

(t), g(t+1) = g(t) + αtA
TAd(t),

βt =
(g(t+1), g(t+1))

(g(t), g(t))
, d(t+1) = −g(t+1) + βtd

(t).

Remarkably, by efficiently storing and reusing intermediate computational results, there
is only one additional matrix-vector multiplication involved in contrast to the original CG
method – the term ATAd(t) has to be computed instead of Ad(t).

The convergence speed, however, is linked to the eigenvalues of ATA by the result (given
in the text) that in order to reduce the error by a factor of ε about

t(ε) ≈ 1

2

√
κ ln

(2
ε

)
steps are required. Now,

κ = cond2(A
TA) =

maxλ∈σ(ATA) |λ|
minλ∈σ(ATA) |λ|

=
maxs∈S(A) |s|2
mins∈S(A) |s|2 ,

with the set of singular values S(A) of A. This implies that for symmetric A the relation
κ(ATA) = κ(A)2 holds and therefore a much slower convergence speed has to be expected.

Solution A.3.13: The asymptotic convergence speed

lim sup
t→∞

(‖xt − x‖
‖x0 − x‖

)1/t

for the different methods in terms of κ = cond2(A) = Λ/λ (with Λ maximal absolute
eigenvalue and λ minimal absolute eigenvalue) are as follows:
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Gauß-Seidel: spr(H1) = spr(J)2 =
(
1− 1

κ

)2

= 1− 2
1

κ
+O(1

κ

2)
,

Optimal SOR: spr(Hopt) =
1−√

1− spr(J)2

1 +
√
1− spr(J)2

= 1−
√
8

1√
κ
+O(1

κ

)
,

Gradient method:
(1− 1/κ

1 + 1/κ

)
= 1− 2

1

κ
+O(1

κ

2)
,

CG method:
(1− 1/

√
κ

1 + 1/
√
κ

)
= 1− 2

1√
κ
+O(1

κ

)
.

Solution A.3.14: The CG method applied to the Schur complement

BTA−1By = BTA−1b− c

reads: Given an initial value y0 and an initial decent direction

d(0) = BTA−1(b− By0)− c = −g(0)

iterate by the prescription

αt =
(g(t), g(t))

(A−1Bd(t), Bd(t))
, y(t+1) = y(t) + αtd

(t), g(t+1) = g(t) + αtB
TA−1Bd(t),

βt =
(g(t+1), g(t+1))

(g(t), g(t))
, d(t+1) = −g(t+1) + βtd

(t).

Observe that in each step it is only necessary to compute two matrix vector products
(one with B and one with BT ) and one matrix vector product with A−1 when eval-
uating A−1Bd(t). This can be done with the help of an iterative method, e. g. with a
preconditioned Richardson method (as introduced in the text)

ξt = ξt−1 + C−1(b− Aξt−1).

Different choices for the preconditioner C−1 are now possible, e. g. by choosing C =
1
ω
(D + ωL) with A = L +D + R, one ends up with the SOR method. In practice, it is

crucial to have a preconditioner that has good orthogonality preserving features, so one
might use another Krylov space method as a preconditioner instead.

Solution A.3.15: There holds(
1− 1/κ

1 + 1/κ

)t(ε)

≤ ε ⇐⇒
(
κ− 1

κ+ 1

)t(ε)

≤ ε ⇐⇒
(
κ+ 1

κ− 1

)t(ε)

≥ 1

ε
.

Now, without loss of generality, both bases are greater than 1, so that

⇐⇒
(
κ+ 1

κ+ 1

)
t(ε) ≥ log

(1
ε

)
.
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Finally, observe that log
(
κ+1
κ−1

)
= 2

{
1
κ
+ 1

3
1
κ3 + · · ·} ≥ 2 1

κ
. Hence,

⇐= 2
1

κ
t(ε) ≥ log

(1
ε

)
.

The corresponding result for the CG method follows by replacing κ with
√
κ.

Solution A.3.16: The matrix C can be written in the form C = KKT with the help
of

K =
1√

(2− ω)ω

( 1

ω
D + L

)
D−1/2.

A close look reveals that the iteration matrix HSSOR
ω of the SSOR method can be ex-

pressed in terms of C and A :

HSSOR
ω = I − C−1A.

In view of spr(HSSOR
ω ) < 1, the inverse C−1 can be viewed as an approximation to A−1

that is suitable for preconditioning.

Solution A.3.17: For the model problem matrix A it holds that spr(A) < 1. Hence,
the inverse (I − J)−1 is well defined and the Neumann series converges:

(I − J)−1 =

∞∑
k=0

Jk.

Furthermore, with J = I −D−1A it follows that (I − J)−1 = DA−1. Then,

A−1 = D−1

∞∑
k=0

Jk.

Finally, observe that the multiplication of two arbitrary matrices with non-negative entries
yields another matrix with non-negative entries. Therefore the matrices Jk = D−k(−L−
R)k are elementwise non-negative. So, A−1 viewed as the sum of elementwise non-negative
matrices has the same property.

Solution A.3.18: i) The stated inequality is solely a result of the special choice of x0 +
Kt(d

0;A) as affine subspace for the optimization problem – it holds:

x0 +Kt(d
0, A) = x0 + span

{
A0d0, · · · , At−1d0

}
=
{
x0 + p(A)d0 : p ∈ Pt−1

}
.

Furthermore, d0 = g0 = Ax0 − b = A(x0 − x) , so

x0 +Kt(d
0, A) =

{
x0 + Ap(A)(x0 − x) : p ∈ Pt−1

}
.

Hence, it follows that
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‖Axtgmres − b‖2 = min
p∈Pt−1

‖A[I + Ap(A)](x0 − x)‖2 = min
p∈Pt,p(0)=1

‖p(A)A(x0 − x)‖2
≤ min

p∈Pt,p(0)=1
‖p(A)‖2 ‖A(x0 − x)‖2 .

ii) Due to the fact that A is symmetric and positive definite there exists an orthonormal
basis {oi} of eigenvectors of A with corresponding eigenvalues {λi}. Let y ∈ Rn be an
arbitrary vector with y =

∑
i yioi for suitable coefficients yi . It holds

‖p(A)y‖ = ‖p(A)
∑
i

yioi‖2 = ‖
∑
i

p(λi)yioi‖2 ≤ sup
i
|p(λi)| ‖

∑
i

yioi‖2 = sup
i
|p(λi)| ‖y‖2.

We conclude that ‖p(A)‖2 ≤ supi |p(λi)| and consequently (Let λ be the smallest and Λ
be the biggest eigenvalue of A ):

‖Axtgmres − b‖2 ≤ min
p∈Pt,p(0)=1

max
i

|p(λi)| ‖A(x0 − x)‖2
≤ min

p∈Pt,p(0)=1
max
λ≤μ≤Λ

|p(μ)| ‖A(x0 − x)‖2.

But this is (up to the different norms) the very same inequality that was derived for the
CG method. So, with the same line of reasoning one derives

‖Axtgmres − b‖2 ≤
(√

κ− 1√
κ+ 1

)t

‖A(x0 − x)‖2.

iii) Similarly to (ii):

‖p(A)y‖2 = ‖T−1Tp(A)T−1Ty‖2 = ‖T−1p(D)Ty‖2 ≤ ‖T−1‖2 ‖p(D)‖2 ‖T‖2 ‖y‖2.

Furthermore, ‖p(D)‖2 = maxi |λi| , so one concludes that

‖p(A)‖2 ≤ κ2(T )max
i

|λi|.

The difficulty of this result lies in the fact that the λi are generally complex valued, so
some a priori asumption has to be made in order to control maxi |λi|.

Solution A.3.19: a) It holds

λmax = 6 + 2× 3 cos
(
(1− h)π

) ≈ 12,

λmin = 6− 2× 3 cos(hπ),

and hence,

cond2(A) ≈ 4

π2h2
.

In analogy to the text, it holds that the eigenvalues of the Jacobi iteration matrix J =
I −D−1A are given by
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μijk =
1

2

(
cos[ihπ] + cos[jhπ] + cos[khπ]

)
, i, j, k = 0, . . . , m.

Consequently,

spr(J) = 1− π2

2
h2 +O(h4).

b) Due to the fact that the matrix A is consistently ordered, it holds

spr(H1) = ρ2 = 1− π2h2 +O(h4),

spr(Hωopt) =
1−

√
1− ρ2

1 +
√

1− ρ2
=

1− πh+O(h2)

1 + πh+O(h2)
= 1− 2πh+O(h2).

The number of required iterations T∗(ε) ≈ ln(ε)/ ln(spr(∗)) is thus

TJ(ε) ≈ − 2

π2h2
ln(ε) ≈ 18 665, TH1(ε) ≈ − 1

π2h2
ln(ε) ≈ 9 333,

THωopt
(ε) ≈ − 1

2πh
ln(ε) ≈ 147,

and for the gradient and CG method:

TG(ε) = −1

2
κ ln(ε) ≈ − 2

π2h2
ln(ε) ≈ 18 665,

TCG(ε) = −1

2

√
κ ln(ε/2) ≈ − 1

πh
ln(ε/2) ≈ 316.

c) A matrix vector multiplication with A needs roughly 7h−3 a. op.. With that one
concludes that the number of required a. op. for Jacobi, Gauß-Seidel and SOR method
is approximately 8h−3. Similarly the workload for the gradient method is 11h−3 a. op.,
whereas the CG method needs 12h−3 a. op.

A.4 Chapter 4

Solution A.4.1: There holds z0 =
∑n

i=1 αiw
i and zt = ‖Atz0‖−1

2 Atz0 and therefore

λt = (Azt, zt)2 =
(At+1z0, Atz0)2

‖Atz0‖22
=

∑n
i=1 |αi|2 λ2t+1

i∑n
i=1 |αi|2 λ2ti

=
(λn)

2t+1
{|αn|2 +

∑n−1
i=1 |αi|2

(
λi

λn

)2t+1 }
(λn)2t

{
|αn|2 +

∑n−1
i=1 |αi|2

(
λi

λn

)2t }
= λn

|αn|2 +
∑n−1

i=1 |αi|2
(
λi

λn

)2t
+
∑n−1

i=1 |αi|2
(
λi

λn

)2t( λi

λn
− 1

)
|αn|2 +

∑n−1
i=1 |αi|2

(
λi

λn

)2t
= λn + λn

∑n−1
i=1 |αi|2

(
λi

λn

)2t( λi

λn
− 1

)
|αn|2 +

∑n−1
i=1 |αi|2

(
λi

λn

)2t =: λn + λnEt.
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The error term on the right can be estimated as follows:

|Et| ≤
(λn−1

λn

)2t
∑n−1

i=1 |αi|2
|αn|2 =

(λn−1

λn

)2t‖z0‖22
|αn|2 .

Hence,

|λt − λn| ≤ |λn|‖z
0‖22

|αn|2
(λn−1

λn

)2t

.

Solution A.4.2: Let μi := (λi − λ)−1 be the eigenvalues of the matrix (A − λI)−1 .
Further, we note that μmax = (λmin − λ)−1 . The corresponding iterates generated by the
inverse iteration are μt = (λt − λ)−1 with λt := 1/μt + λ . We begin with the identity

zt =
z̃t

‖z̃t‖2 =
(A− λt−1I)−1zt−1

‖(A− λt−1I)−1zt−1‖2 =
(A− λt−1I)−1(A− λt−2I)−1zt−2

‖(A− λt−1I)−1(A− λt−2I)−1zt−2‖2
= · · · =

∏t−1
j=0(A− λjI)−1z0

‖∏t−1
j=0(A− λjI)−1z0‖2

,

from which we conclude

μt =
(
(A− λt−1I)−1zt, zt

)
2

=

(
(A− λt−1I)−1

∏t−1
j=0(A− λjI)−1z0,

∏t−1
j=0(A− λjI)−1z0

)
2

‖∏t−1
j=0(A− λjI)−1z0‖22

=

∑n
i=1 |αi|2(λi − λt−1)−1

∏t−1
j=0(λi − λj)−2∑n

i=1 |αi|2
∏t−1

j=0(λi − λj)−2
.

Next,

μt =
|α1|2(λ1 − λt−1)−1

∏t−1
j=0(λ1 − λj)−2 +

∑n
i=2 |αi|2(λi − λt−1)−1

∏t−1
j=0(λi − λj)−2

|α1|2
∏t−1

j=0(λ1 − λj)−2 +
∑n

i=2 |αi|2
∏t−1

j=0(λi − λj)−2

=
(λ1 − λt−1)−1

∏t−1
j=0(λ1 − λj)−2∏t−1

j=0(λ1 − λj)−2

|α1|2 +
∑n

i=2 |αi|2
(
λ1−λt−1

λi−λt−1

)∏t−1
j=0

(
λ1−λj

λi−λj

)2
|α1|2 +

∑n
i=2 |αi|2

∏t−1
j=0

(
λ1−λj

λi−λj

)2
=

1

λ1 − λt−1

|α1|2 +
∑n

i=2 |αi|2
(
λ1−λj

λi−λj

)2
+
∑n

i=2 |αi|2
∏t−1

j=0

(
λ1−λj

λi−λj

)2(
1− (

λ1−λt−1

λi−λt−1

))
|α1|2 +

∑n
i=2 |αi|2

∏t−1
j=0

(
λ1−λj

λi−λj

)2
=

1

λ1 − λt−1
+

1

λ1 − λt−1

∑n
i=2 |αi|2

∏t−1
j=0

(
λ1−λj

λi−λj

)2(
1− λ1−λt−1

λi−λt−1

)
|α1|2 +

∑n
i=2 |αi|2

∏t−1
j=0

(
λ1−λj

λi−λj

)2
=:

1

λ1 − λt−1
+

1

λ1 − λt−1
Et.



232 Solutions of exercises

The error term on the right-hand side can be estimates as follows:

|Et| ≤
∑n

i=2 |αi|2
∏t−1

j=0

∣∣λ1−λj

λi−λj

∣∣2∣∣1− λ1−λt−1

λi−λt−1

∣∣
|α1|2 +

∑n
i=2 |αi|2

∏t−1
j=0

(
λ1−λj

λi−λj

)2
≤

t−1∏
j=0

∣∣∣λ1 − λj

λ2 − λj

∣∣∣2∑n
i=2 |αi|2
|α1|2 =

t−1∏
j=0

∣∣∣λ1 − λj

λ2 − λj

∣∣∣2‖z0‖22|α1|2 .

This yields ∣∣∣μt − 1

λ1 − λt−1

∣∣∣ ≤ 1

λ1 − λt−1

t−1∏
j=0

∣∣∣λ1 − λj

λ2 − λj

∣∣∣2‖z0‖22|α1|2 .

Observing μt = (λt − λt−1)−1 or λt = 1/μt + λt−1,

∣∣∣ 1

λt − λt−1
− 1

λ1 − λt−1

∣∣∣ = ∣∣∣ λ1 − λt−1 − λt + λt−1

(λt − λt−1)(λ1 − λt−1)

∣∣∣ = ∣∣∣ λ1 − λt

(λt − λt−1)(λ1 − λt−1)

∣∣∣,
we obtain the desired estimate

|λ1 − λt| ≤ |λt − λt−1|
t−1∏
j=0

∣∣∣λ1 − λj

λ2 − λj

∣∣∣2‖z0‖22|α1|2 .

Solution A.4.3: It suffices to prove the following two statements about the QR-iteration.
The assertion then follows by induction.

1. Let A be a Hessenberg matrix and A = QR its QR-decomposition. Then, Ã = RQ
is also a Hessenberg matrix.

2. Let A be a symmetric matrix and A = QR its QR-decomposition. Then, Ã = RQ
is also a symmetric matrix.

The QR decomposition of a Hessenberg matrix A can be expressed as

Gn−1Gn−2 · · · G1A = R

with

Gi =

⎛
⎜⎜⎝
Ii−1 0

G̃i

0 In−i−1

⎞
⎟⎟⎠ ,

and an orthogonal component G̃i ∈ R2×2 that eliminates the lower left off diagonal entry
of the block

G̃i

(
∗i,i ∗i,i+1

ai+1,i ai+1,i+1

)
=

(
∗ ∗
0 ∗

)
.
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Apart from eliminating the entry ai+1,i, the orthogonal matrix Gi only acts on the upper
right part of the (intermediate) matrix. Consequently, R is an upper triangular matrix
and it holds

Ã = RQ = RGT
1G

T
2 · · ·GT

n−1.

Similarly, it follows by induction that multiplication with GT
i from the right only intro-

duces at most one (lower-left) off-diagonal element at position ∗i+1,i, so Ã is indeed a
Hessenberg matrix.

Now, let A be symmetric. It holds QR = A = AT = RTQT and consequently R =
QTRTQT . We conclude that

Ã = RQ = QTRTQTQ = (RQ)T = ÃT .

Solution A.4.4: Let A = Q̃R̃ be an arbitrary QR-decomposition of A . Define a unitary
matrix H = diag(hi) ∈ Cn×n by hi =

r̄ii
|rii| and set R = HR̃, Q = Q̃H̄ .

Now, observe that ĀTA = R̄T Q̄TQR = R̄TR is the Cholesky decomposition of the real
valued, symmetric and positive definite matrix ĀTA . Since the Cholesky decomposition
(with positive diagonal) is uniquely determined it follows that R is unique and hence also
Q = AR−1.

Solution A.4.5: i) From the definition of Km it follows

Km+1 = span{q, AKm}.

Now, if Km = Km+1 = span{q, AKm} one sees by induction that repeated applications
of this procedure yield the same space again, hence Kn = Km ∀n ≥ m. On the other
hand, given the fact that Km−1 �= Km it must hold Ki �= Ki+1 for i = 1, . . . , m − 1.
Otherwise, this would already imply Km−1 = Km which is a contradiction.

It holds dimK1 = 1 because q �= 0. Furthermore, Km is generated by m vectors.
Therefore, one sees by induction that dimKi = i as long as Ki �= Ki−1 , i. e. for
2 ≤ i ≤ m.

ii) Let λ ∈ σ(QmTAQm) be arbitrary. Then, there exists an eigenvector v ∈ Cm \ {0}
with QmTAQmv = λv. Multiplication of Qm from the left and utilizing

QmQmT . =
m∑
i=1

qi (qi, .) = projKm
.

yields
projKm

AQmv = λQmv.

But by definition of m it holds that Km is A-invariant, i. e. AKm ⊂ Km , hence
projKm

(AQmv) = AQmv and therefore λ ∈ σ(A).

In case of m = n there is Km = Cn . Consequently, Qm ∈ Cn×n is a regular matrix and
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the matrices A and QmTAQm are similar; specifically

σ(QmTAQm) = σ(A).

Solution A.4.6: Let {v1, . . . , vm} ∈ Rn be a linearly independent set of vectors. The
classical Gram-Schmidt orthogonalization procedure reads: For i = 1, . . . , m:

α) ũi := vi −
i−1∑
j=1

(uj, vi)uj,

β) ui := ũi/‖ũi‖.

The modified Gram-Schmidt orthogonalization procedure takes the form: For i = 1, . . . , m:

α) ũi,1 := vi,

ũi,k := ũi,k−1 − (uk−1, ũi,k−1)uk−1, for k = 2, . . . , i,

β) ui := ũi,i/‖ũi,i‖.

i) For the modified Gram-Schmidt algorithm we can assume by induction that

ũi,k−1 = vi − proj〈u1,...,uk−2〉(vi),

hence

ũi,k = ũi,k−1 − (uk−1, ũi,k−1)uk−1

= vi − proj〈u1,...,uk−2〉(vi)− projuk−1(ũi,k−1)

= vi − proj〈u1,...,uk−2〉(vi)− projuk−1(vi)

= vi −
k−1∑
j=1

(uj, vi)uj.

ii) By rewriting step (α) of the classical algorithm in the form

α) ũi,1 := vi,

ũi,k := ũi,k−1 − (uk−1, vi)uk−1, for k = 2, . . . , i,

one observes that the algorithmic complexity of both variants are exactly the same. Both
consist of i − 1 scalar-products (with n a. op.) with vector scaling and vector addition
(with n a. op.) in step (α) which sums up to

m∑
i=1

(i− 1) (n+ n) = nm(m− 1) a. op.

as well as m normalization steps with roughly 2n a. op. in (β). In total nm(m + 1)
a. op..
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Solution A.4.7: The result by the classical Gram-Schmidt algorithm is:

Q̃ =

⎡
⎢⎢⎣

1 0 0

ε 0
√
2
2

ε −1
√
2
2

⎤
⎥⎥⎦ ,

with ‖Q̃T Q̃− I‖∞ =
√
2 (1

2
+ ε) . The result by the modified Gram-Schmidt algorithm is:

Q̃ =

⎡
⎢⎢⎣

1 0 0

ε 0 −1

ε −1 0

⎤
⎥⎥⎦ ,

with ‖Q̃T Q̃− I‖∞ ≈ 2 ε .

Solution A.4.8: i) With the help of the Taylor expansion of the cosine:

|λijkk − λhijk| =∣∣∣(i2 + j2 + k2)π2 − h−2

{
6− 6− (i2 + j2 + k2)π2h2

2!
− (i4 + j4 + k4)π4h4

4!
−O(h6)

} ∣∣∣
=

(i4 + j4 + k4)π4h2

4!
+O(h4) ≤ 1

4!
λ2ijkh

2 +O(h4) ≤ 1

12
λ2ijkh

2 (for h sufficiently small).

ii) The maximal eigenvalue λmax that can be reliably computed with a relative tolerance
TOL fulfills the relation

1

12
λmaxh

2 ≈ TOL =⇒ λmax ≈ 12TOL

h2
.

The number of reliably approximateable eigenvalues (not counting multiplicities) is the
cardinality of the set

{
i2 + j2 + k2 : (i2 + j2 + k2) ≤ λmax

π2
, i, j, k ∈ N, 1 ≤ i, j, k ≤ m

}
.

For the concrete choice of numbers this leads to:

#
{
i2 + j2 + k2 : (i2 + j2 + k2) ≤ 19, i, j, k ∈ N

}
,

whose cardinality can be counted by hand:

#
{
(1, 1, 1), (2, 1, 1), (2, 2, 1), (2, 2, 2), (3, 1, 1), (3, 2, 1), (3, 2, 2), (3, 3, 1), (4, 1, 1)

}
= 9.

iii) The number of reliably approximateable eigenvalues (counting multiplicities) is the
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cardinality of the set{
(i, j, k) ∈ N

3 : (i2 + j2 + k2) ≤ λmax

π2
, 1 ≤ i, j, k ≤ m

}
.

For large numbers a reasonably large subset is given by

{
(i, j, k) ∈ N

3 : 1 ≤ i, j, k ≤
√
λmax√
3π

}
,

which has the cardinality ⌊√λmax√
3 π

⌋3
=
⌊4√TOL

π h

⌋3
.

Therefore, h must be chosen such that

⌊4√TOL

π h

⌋3
≥ 1.000 ⇐⇒ h ≤ 6

√
10−3

10 π
≈ 6.0× 10−3.

Approximately 7-times uniform refinement in 3D, i. e., nh ≈ h−3 ≈ 4.6× 106.

Solution A.4.9: i) The inverse iteration for determining the smallest eigenvalue (with
shift λ = 0 ) reads

Az̃t = zt−1, zt = ‖z̃t‖−1z̃t, t = 1, 2, . . .

with intermediate guesses μt = (A−1zt, zt) for the smallest eigenvalue. One iteration of
the inverse iteration consists of 1 solving step consisting of cn a. op and a normalization
step of roughly 2n a. op. Determining the final guess for the eigenvalue needs another
solving step and a scalar product, in total (c + 1)n a. op. So, for 100 iteration steps we
end up with

(101 c+ 201)n a. op.

The Lanczos algorithm reads: Given initial q0 = 0, q1 = ‖q‖−1q, β1 = 0 compute for
1 ≤ t ≤ m− 1:

rt = A−1qt, αt = (rt, qt), st = rt − αtq
t − βtq

t−1

βt+1 = ‖st‖, qt+1 = st/βt+1,

and a final step rm = A−1qm, αm = (rm, qm). This procedure takes cn a. op. for the
matrix vector product with additional 5n a. op. per round. In total (respecting initial
and final computations):

(101 c+ 501)n a. op.

The Lanczos algorithm will construct a tridiagonal matrix Tm (with m = 100 in our
case) of which we still have to compute the eigenvalues with the help of the QR method:

B(0) = Tm,

B(i) = Q(i)R(i), B(i+1) = R(i)Q(i).
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From a previous exercise we already know that the intermediate B(i) will retain the
tridiagonal matrix property, so that a total workload of O(m) a. op. per round of the
QR method can be assumed. For simplicity, we assume that the number of required QR
iterations (to achieve good accuracy) also scales with O(m). Then, the total workload of
QR method is O(m2) a. op.

ii) Assume that it is possible to start the inverse iteration with a suitable guess for each
of the 10 desired eigenvalues. Still, it is necessary to do the full 100 iterations for each
eigenvalue independently, resulting in

10 (101 c+ 201)n a. op.

The Lanczos algorithm, in contrast, already approximates the first 10 eigenvalues simul-
taneoulsy for the choice m = 100 (see results of the preceding exercise). Hence, we end
up with the same number of a. op.:

(101 c+ 501)n a. op.

(except for some possibly higher workload in the QR iteration). Given the fact that c is
usually o moderate size somewhere around 5, the Lanczos algorithm clearly wins.

Solution A.4.10: i) Let A ∈ C
n×n, x, b ∈ C

n. It is equivalent:

Ax = b

⇐⇒ (ReA + i ImA)(Rex+ i Im x) = Re b+ i Im b

⇐⇒
{

ReARex− ImA Im x = Re b
−ReA Imx− ImARex = −Im b

⇐⇒
(

ReA ImA

−ImA ReA

)(
Re x

−Im x

)
=

(
Re b

−Im b

)
.

ii) For all three properties it holds that they are fullfilled by the block-matrix Ã if and
only if the correspondig complex valued matrix A has the analogous property (in the
complex sense):

a) From the above identity we deduce that the complex valued linear system of equations
(in the first line) is uniquely solvable for arbitrary b ∈ Cn if and only if the same holds
true for the real valued linear equation (in the last line) for arbitrary (Re b, Im b) ∈ R

2n.
Thus Ã is regular iff A is regular.

b) Observe that

Ã symmetric

⇐⇒ ImA = −ImAT and ReA = ReAT

⇐⇒ ReA+ ImA = ReA− ImAT

⇐⇒ A = ĀT .
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c) For arbitrary x ∈ Cn it holds

Re
(
x̄T Ax

)
> 0

⇐⇒ Re xT ReARe x+ Im xT ReA Im x− Im xT ImARex− Re xT ImA Im x > 0

⇐⇒
(

Rex

−Im x

)T (
ReA ImA

−ImA ReA

)(
Re x

−Im x

)
> 0.

Solution A.4.11: The statement follows immediately from the equivalent definition

σε(T ) =
{
z ∈ C : σmin(zI − T ) ≤ ε

}
, with

σmin(T ) := min
{
λ1/2 : λ ∈ σ(T̄ TT )

}
and by the observation that similar matrices yield the same set of eigenvalues:

σmin(T ) = min
{
λ1/2 : λ ∈ σ(T̄ TT )

}
= min

{
λ1/2 : λ ∈ σ(Q̄T T̄ TQQ̄TTQ)

}
= min

{
λ1/2 : λ ∈ σ

(
(Q̄TTQ)

T
(Q̄TTQ)

)}
= σmin(Q

−1TQ).

A.5 Chapter 5

Solution A.5.1: Let ai be an arbitrary nodal point and ϕi
h be the corresponding nodal

basis function. Its support consists of 6 triangles T1, · · · , T6:

Outside of ∪6
i=1Ti the function ϕi

h is zero. Due to the fact that ϕi
h is continuous and

cellwise linear, its gradient is cellwise defined and constant with values

∇ϕi
h

∣∣∣
K1

=
1

h

(
1

1

)
, ∇ϕi

h

∣∣∣
K2

=
1

h

(
0

1

)
,

∇ϕi
h

∣∣∣
K3

=
1

h

(−1

0

)
, ∇ϕi

h

∣∣∣
K4

=
1

h

(−1

−1

)
,

∇ϕi
h

∣∣∣
K5

=
1

h

(
0

−1

)
, ∇ϕi

h

∣∣∣
K6

=
1

h

(
1

0

)
,



A.5 Chapter 5 239

where h denotes the length of the catheti of the triangles. With these preliminaries it
follows immediately that

bi =

6∑
μ=1

|Kμ|
3

3∑
j=1

f(aj)ϕ
i
h(aj) = 6

1

6
h2f(ai) = h2f(ai).

For the stiffness matrix aij = (∇ϕi
h,∇ϕj

h), we have to consider three distinct cases: a)
where ai = aj , b) where ai and aj are endpoints of a cathetus, and c) where they are
endpoints of a hypotenuse:

a) aii =
6∑

μ=1

|Kμ|
3

3∑
ν=1

(∇ϕi
h(aν),∇ϕi

h(aν)
)
=

1

6
h2 3 (2 + 1 + 1 + 2 + 1 + 1) h−2 = 4.

b) aij =
6∑

μ=1

|Kμ|
3

3∑
ν=1

(∇ϕi
h(aν),∇ϕj

h(aν)
)
=

1

6
h2 3 (−1− 1) h−2 = −1.

c) aij =
6∑

μ=1

|Kμ|
3

3∑
ν=1

(∇ϕi
h(aν),∇ϕj

h(aν)
)
=

1

6
h2 3 0 = 0.

In summary, the stencil has the form⎛
⎜⎜⎝

0 −1

−1 4 −1

−1 0

⎞
⎟⎟⎠ .

This is, up to a factor of h−2 exactly the stencil of the finite different discretization
described in the text.

Solution A.5.2: The principal idea for the convergence proof of the two-grid algorithm
was to prove a contraction property for

e
(t+1)
L = ZGL(ν)e

(t)
L , ZGL(ν) =

(
A−1

L − pLL−1A
−1
L−1r

L−1
L

)
ALS

ν
L

This was done with the help of a so called smoothing property,

‖ALS
ν
L‖ ≤ csν

−1h−2
L ,

and an approximation property,∥∥A−1
L − pLL−1A

−1
L−1r

L−1
L

∥∥ ≤ cah
2
L.

The first property is completely independent of the choice of restriction that is used. The
second, however, poses major difficulties for our choice of restriction: In analogy to the
proof given in the text let ψL ∈ VL be arbitrary. Now, vL := A−1

L ψL is the solution of
the variational problem
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a(vL, ϕL) = (ψL, ϕL) ∀ϕL ∈ VL,

and similarly vL−1 := pLL−1A
−1
L−1r

L−1
L ψL is the solution of

a (vL−1, ϕL−1) = (rL−1
L ψL, ϕL−1) ∀ϕL−1 ∈ VL−1.

Let v and ṽ be the solutions of the corresponding continuous problems:

a(v, ϕ) = (ψL, ϕ) ∀ϕ ∈ V,

a (ṽ, ϕ) = (rL−1
L ψL, ϕ) ∀ϕ ∈ V.

We can employ the usual a priori error estimate (for the Ritz-projection):

‖vL − vL−1‖ ≤ ‖vL − v‖+ ‖vL−1 − ṽ‖+ ‖v − ṽ‖
≤ ch2

(‖ψL‖+ ‖rL−1
L ψL‖

)
+ ‖v − ṽ‖.

Furthermore, exploiting the finit dimensionality of the spaces involved it is possible to
bound ‖rL−1

L ψL‖ in terms of ‖ψL‖, i. e.,

‖rL−1
L ψL‖ ≤ c‖ψL‖.

But, now, rL−1
L is not the L2-projection. So we have to assume that in general

(rL−1
L ψL, ϕL−1) �= (ψL, ϕL−1) ,

and hence v �= ṽ. This is a problem because a necessary bound of the form

‖v − ṽ‖ ≤ ch2L ‖ψL‖ .

does not hold in general.

Solution A.5.3: This time, the problem when trying to convert the proof to the given
problem arises in the smoothing property. The proof of the approximation property does
not need symmetry. We still have an inverse property of the form ‖AL‖ ≤ ch−2. So, it
remains to show that

‖SL‖ ≤ c < 1

for SL = IL − θAL with a constant c that is independent of L. Because AL is not
symmetric, it is not possible to copy the arguments (that utilize spectral theory) from the
text. We proceed differently: First of all observe that for all uL ∈ VL it holds that

(ALuL, uL) = a(uL, uL) = ‖∇u‖2 + (∂1u, u)

= ‖∇u‖2 + 1

2

∫
Ω

∂1(u
2) dx

= ‖∇u‖2 + 1

2

∫
∂Ω

n1u
2 ds

= ‖∇u‖2.
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Hence, AL is positive definite – or, equivalently, for all (complex valued) eigenvalues λi,
i = 1, ..., NL of AL it holds:

Reλi > 0 i = 1, ..., NL.

The eigenvalues of SL = IL − θAL are 1− θλi, i = 1, ..., NL. Furthermore,

|1− θλ| = |1− θReλ− θImλ| = {
(1− θReλ)2 + θ2(Imλ)2

}1/2

=
{
1− 2θReλ+ θ2(Imλ)2 + (Reλ)2)

} 1
2

So finally, the choice

θ < min
i=1,...,NL

2Reλi
|λi|2 ,

leads to
spr(SL) = max

i=1...NL

|1− θλi| < c < 1.

with a constant c independent of L. The smoothing property now follows with the
general observation that for every ε > 0 there exists an (operator, or induced matrix)
norm ‖ · ‖∗ with

‖SL‖∗ ≤ c+ ε.

The question remains whether this extends to an L independent convergence rate in the
norm ‖ · ‖.

Solution A.5.4: Applying one step of the Richardson iteration x̄n+1 = x̄n+θ(b−ALx̄
n)

needs essentially one matrix vector multiplication with a complexity of 9NL a. op. (due to
the fact that at most 9 matrix entries per row are non-zero). Together with the necessary
addition processes Sν

L needs 11 νNL a. op.
Calculating the defect dl = fl − Alx

l needs another 10NL a. op. For the L2 projektion
onto the coarser grid, we need to calculate

d̃l−1 := rl−1
l dl.

This can be done very efficiently: Let {ϕl
i} be the nodal basis on level l. The i-th

component of the L2 projection of d̃l−1 is given by

d̃l−1
i = (rl−1

l dl, ϕl−1
i ) = (dl, ϕl−1

i ).

Due to the fact that Vl−1 ⊂ Vl, it is possible to express ϕl−1
i as

ϕl−1
i =

Nl∑
j=1

μijϕ
l
j,

where at most 9 values μij are non trivial. This reduces the computation of the L2

projection to
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d̃l−1
i =

Nl∑
j=1

μij(d
l, ϕl

i) =

Nl∑
j=1

μijd
l
i

and needs 9Nl a. op.. Contrary to this, the prolongation is relatively cheap with roughly
2Nl a. op. (interpolating intermediate values, neglecting the one in the middle and the
boundary, . . . ). Additionally, we account another Nl a. op. for adding the correction. In
total:

(2 · 11 + 10 + 9 + 2 + 1)Nl = 44Nl a. op. on level l.

The dimension of the subspaces behaves roughly like

Nl−k ≈ 2−2kNl.

Within a V-cycle all operations have to be done exactly once on every level, hence (ne-
glecting the cost for solving on the coarsest level) we end up with:

l∑
k=0

44Nl−k =

l∑
k=0

44

22k
Nl =

4

3
44Nl

(
1− 2−(2k+2)

) ≤ 4

3
44Nl a. op..

Within a W-cycle, we have to do 2k steps on level l − k. This leads to

l∑
k=0

2k44Nl−k =
l∑

k=0

44

2k
Nl = 2 · 44Nl

(
1− 2−k−1

) ≤ 2 · 44Nl a. op.

A.5.1 Solutions for the general exercises

Solution A.5.5: a) If there exists a regular T ∈ R
n×n and a diagonal matrix D ∈ R

n×n

such that
T−1AT = D.

b) A matrix A = (aij) is diagonally dominant if there holds

n∑
j=1,j =i

|aij | ≤ |aii|, i = 1, . . . , n.

c) A matrix A ∈ Cn×n is called normal if ĀTA = AĀT . Yes, if A is Hermitian, it is
automatically normal.

d) The Rayleigh quotient is defined as (Av, v)2/‖v‖22 for a given vector v �= 0 . It can be
used to calculate an eigenvalue approximation from a given eigenvector approximation.

e) cond2 = ‖A‖2‖A−1‖2 = |σmax|/|σmin| , where ‖ · ‖2 is the matrix norm induced by
‖ · ‖2 : Cn → R

+
0 , and σmin and σmax are the smallest and largest singular value of A .

g) A Gerschgorin circle is a closed disc, denoted by K̄ρ(aii) , and associated with a row (or
column) of a matrix by the diagonal value aii and the absolute sum of the off-diagonal
elements ρ =

∑
j =i |aij| (or ρ =

∑
j =i |aji| , respectively). The union of all Gerschgorin
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circles of a matrix has the property that it contains all eigenvalues of the matrix.

h) The restriction rl−1
l : Vl → Vl−1 is used to transfer an intermediate value vl ∈ Vl to

the next coarser level Vl−1 , typically a given finite element function to the next coarser
mesh. The prolongation operator pll−1 : Vl−1 → Vl does the exact opposite. It transfers
an intermediate result from Vl−1 to the next finer level.

i) Given an arbitrary b ∈ Cn it is defined as

Km(b;A) = span
{
b, Ab, . . . , Am−1b

}
.

j) It refers to the damping parameter θ ∈ (0, 1] in the Richardson iteration:

x(k+1) = x(k) + ω
(
b− Ax(k)

)
.

k) The difference lies in the evaluation of the term

ũk = vk −
k−1∑
i=1

(vk, ui) ui.

In the classical Gram-Schmidt method this is done in a straight forward manner, in the
modified version a slightly different algorithm is used:

ũk,1 := vk, ũk,i := ũk,i−1 − (ui−1, ũk,i−1)ui−1, for i = 2, . . . , k,

with uk = ũk,k/|ũk,k|. Both algorithms are equivalent in exact arithmetic, but the latter
is much more stable in floating point arithmetic.

Solution A.5.6: i) The matrix A1 fulfils the weak row-sum criterion. Therefore the
Jacobi and Gauß-Seidel methods converge. Furthermore, A1 is symmetric and positive
definite (because it is regular and diagonally dominant), hence the CG method is appli-
cable.

ii) For A2 the Jacobi matrix reads

J =

⎛
⎜⎜⎝

0 1
2

−1
2

1
2

0 1
2

−1
2

1
2

0

⎞
⎟⎟⎠

with eigenvalues fulfilsλ1 = −1, fulfilsλ2,3 = ±√2/2. Hence, no convergence in gen-
eral. The Gauß-Seidel matrix is

H1 =
1

8

⎛
⎜⎜⎝
0 4 −4

0 2 2

0 −1 3

⎞
⎟⎟⎠
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with eigenvalues fulfilsλ1 = 0, fulfilsλ2,3 = − 5
16
± i

√
7

16
. Hence, the Gauß-Seidel iteration

does converge. A2 is symmetric and positive definite (because it is regular and diagonally
dominant).

iii) The matrix A3 is not symmetric, so the CG method is not directly applicable. For
the Jacobi method:

J =

⎛
⎜⎜⎝
0 1

2
−1

2
1
2

0 1
2

1
2

1
2

0

⎞
⎟⎟⎠ ,

with corresponding eigenvalues fulfilsλ1 = 0, fulfilsλ2,3 = ±1
2
. Hence, the method

does converge. Similarly for the Gauß-Seidel method:

H1 =
1

8

⎛
⎜⎜⎝
0 4 −4

0 2 2

0 3 −1

⎞
⎟⎟⎠ ,

with eigenvalues fulfilsλ1 = 0, fulfilsλ2,3 = − 1
16
±

√
33
16

. The method does converge.

Solution A.5.7: Given a diagonal matrix D = diag(d, 1, 1) it holds

D−1AD =

⎛
⎜⎜⎝

1 10−3d−1 10−4d−1

10−3d 2 10−3

10−4d 10−3 3

⎞
⎟⎟⎠ .

Now, we choose d ∈ R in such a way that the Gerschgorin circle defined by the first
column has minimal radius but is still disjunct from the other two Gerschgorin circles.
Therefore, a suitable choice of d must fulfil (the first two Gerschgorin circles must not
touch):

1 + 1.1× 10−3 d < 2− 10−3 − 10−3 d−1.

Solving this quadratic inequality leads to a necessary condition d > 0.001001 (and . . . ),
hence d = 0.0011 is a suitable choice. This improves the radius of the first Gerschgorin
circle to

ρ1 = (1.1× 10−3)2 = 1.21× 10−6 : K1.21×10−6(1).

Similarly, for the third Gerschgorin circle and with the choice D = diag(1, 1, d) :

3− 1.1× 10−3 d > 2 + 10−3 + 10−3 d−1.

This is the same inequality as already discussed. Therefore:

ρ3 = (1.1× 10−3)2 = 1.21× 10−6 : K1.21×10−6(3).

For the second eigenvalue and with the choice D = diag(1, d, 1) :
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2− 2× 10−3 d > 1 + 10−4 + 10−3 d−1, and

2 + 2× 10−3 d < 3− 10−4 − 10−3 d−1,

with an inequality of the form

d >
22

9999 +
√
99979201

≈ 0.0011 . . .

and an (obviously) appropriate choice of d = 0.002. Hence:

ρ2 = (2× 10−3)2 = 4× 10−6 : K4×10−6(2).

Solution A.5.8: Let z0 ∈ Cn with ‖z0‖ = 1 be an arbitrary starting point. Then,
construct a sequence zt ∈ C

n, t = 1, 2, . . . by

z̃t := Azt−1, zt = z̃t/‖z̃t‖.

In case of a general matrix the corrsponding eigenvalue approximation is given by

λt :=
(Azt)r
ztr

,

where r is an index such that |ztr| = maxj=1,...,n |ztj | . In case of a Hermitian matrix A ,
the eigenvalue approximation can be determined with the help of the Rayleigh quotient:

λt :=
(Azt, zt)

‖zt‖2 .

i) The power method converges if A is diagonalizable and the eigenvalue with largest
modulus is separated from the other eigenvalues, i. e. |λn| > |λi| for i < n . Furthermore
the starting vector z0 must have a non-trivial component in the direction of the eigen-
vector wn corresponding to λn .

ii) The separation of the biggest eigenvalue from the others is the most crucial restriction
because the convergence rate is directly connected to this property (see iii)), and the other
two conditions are usually fulfilled (due to round-off errors).

iii) The power method has the following a priori error estimate (for a general matrix):

λt = λmax +O
( ∣∣∣∣λn−1

λn

∣∣∣∣t ), t→∞.




