
5 Multigrid Methods

Multigrid methods belong to the class of preconditioned defect correction methods, in
which the preconditioning uses a hierarchy of problems of similar structure but decreas-
ing dimension. They are particularly designed for the solution of the linear systems
resulting from the discretization of partial differential equations by grid methods such as
finite difference or finite element schemes. But special versions of this method can also be
applied to other types of problems not necessarily originating from differential equations.
Its main concept is based on the existence of a superposed “continuous” problem of infi-
nite dimension, from which all the smaller problems are obtained in a nested way by some
projection process (e. g., a “finite difference discretization” or a “finite element Galerkin
method”). On the largest subspace (on the finest grid) the errors and the corresponding
defects are decomposed into “high-frequency” and “low-frequency” components, which
are treated separately by simple fixed-point iterations for “smoothing” out the former
and by correcting the latter on “coarser” subspaces (the “preconditioning” or “coarse-
space correction”). This “smoothing” and “coarse-space correcting” is applied recursively
on the sequence of nested spaces leading to the full “multigrid algorithm”. By an appro-
priate combination of all these algorithmic components one obtains an “optimal” solution
algorithm, which solves a linear system of dimension n , such as the model problem con-
sidered above, in O(n) arithmetic operations. In the following, for notational simplicity,
we will decribe and analyze the multigrid method within the framework of a low-order
finite element Galerkin discretization of the model problem of Section 3.4. In fact, on
uniform Cartesian meshes this discretization is closely related (almost equivalent) to the
special finite difference scheme considered in Section 3.4. For the details of such a finite
element scheme and its error analysis, we refer to the literature, e. g., Rannacher [3].

5.1 Multigrid methods for linear systems

For illustration, we consider the linear system

Ahxh = bh, (5.1.1)

representing the discretization of the two-dimensional model problem of Section 3.4 on a
finite difference mesh Th with mesh size h ≈ m−1 and dimension n = m2 ≈ h−4. Here
and below, the quantities related to a fixed subspace (corresponding to a mesh Th ) are
labeled by the subscript h.

The solution of problem (5.1.1) is approximated by the damped Richardson iteration

xt+1
h = xth + θh(bh − Ahx

t
h) = (Ih − θhAh)x

t
h + θhbh, (5.1.2)

with a damping parameter 0 < θh ≤ 1 . The symmetric, positive definite matrix Ah pos-
sesses an ONS of eigenvectors {wi

h, i = 1, ..., nh} corresponding to the ordered eigenvalue
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188 Multigrid Methods

λmin(Ah) = λ1 ≤ ... ≤ λn = λmax(Ah) =: Λh . The expansion of the initial error

e0h := x0h − xh =

nh∑
i=1

εiw
i
h,

induces the corresponding expansion of the iterated errors

eth = (Ih − θhAh)
te0h =

nh∑
i=1

εi(Ih − θhAh)
twi

h =

nh∑
i=1

εi(1− θhλi)
twi

h.

Consequently, denoting by | · | the Euclidean norm on Rnh ,

|eth|2 =
nh∑
i=1

ε2i (1− θhλi)
2t. (5.1.3)

The assumption 0 < θh ≤ Λ−1
h is sufficient for the convergence of the Richardson iteration.

Because of |1− θhλi| � 1 for larger λi and |1− θhλ1| ≈ 1 “high-frequency” components
of the error decay fast, but “low-frequency” components only very slowly. The same holds
for the residuum rth = bh−Ahx

t
h = Ahe

t
h. Hence already after a few iterations there holds

|rth|2 ≈
[N/2]∑
i=1

ε2iλ
2
i (1− θhλi)

2t, [n/2] := max{m ∈ N|m ≤ n/2}. (5.1.4)

This may be interpreted as follows: The iterated defect rth on the mesh Th is “smooth”.
Hence, it can be approximated well on the coarser mesh T2h with mesh size 2h . The
resulting defect equation for the computation of the correction to the approximation xth
on Th would be less costly because of its smaller dimension n2h ≈ nh/4 .

This defect correction process in combination with recursive coarsening can be carried
on to a coarsest mesh, on which the defect equation can finally be solved exactly. The
most important components of this multigrid process are the “smoothing iteration”, xνh =
Sν
h(x

0
h) and certain transfer operations between functions defined on different meshes. The

smoothing operation Sh(·) is usually given in form of a simple fixed-point iteration (e. g.,
the Richardson iteration)

xν+1
h = Sh(x

ν
h) := (Ih − C−1

h Ah)x
ν
h + C−1

h bh,

with the iteration matrix Sh := Ih − C−1
h Ah.

5.1.1 Multigrid methods in the “finite element” context

For the formulation of the multigrid process, we consider a sequence of nested grids
Tl = Thl

, l = 0, ..., L , of increasing fineness h0 > ... > hl > ... > hL (for instance
obtained by successively refining a coarse starting grid) and corresponding finite element
spaces Vl := Vhl

of increasing dimension nl, which are subspaces of the “continuous” solu-
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tion space V = H1
0 (Ω) (first-order Sobolev

1 space on Ω including zero Dirichlet boundary
conditions). Here, we think of spaces of continuous, with respect to the mesh Th piece-
wise linear (on triangular meshes) or piecewise (isoparametric) bilinear (on quadrilateral
meshes) functions. For simplicity, we assume that the finite element spaces are hierachi-
cally ordered,

V0 ⊂ V1 ⊂ ... ⊂ Vl ⊂ ... ⊂ VL . (5.1.5)

This structural assumption eases the analysis of the multigrid process but is not essential
for its practical success.

The finite element Galerkin scheme

As usual, we write the continuous problem and its corresponding finite element Galerkin
approximation in compact variational form

a(u, ϕ) = (f, ϕ)L2 ∀ϕ ∈ V, (5.1.6)

and, analogously on the mesh Th

a(uh, ϕh) = (f, ϕh)L2 ∀ϕh ∈ Vh. (5.1.7)

Here, a(u, ϕ) := (Lu, ϕ)L2 is the “energy bilinear form” corresponding to the (elliptic)
differential operator L and (f, ϕ)L2 the L2-scalar product on the solution domain Ω . In
the model problem discussed above this notation has the explicit form Lu = −Δu and

a(u, ϕ) =

∫
Ω

∇u(x)∇ϕ(x) dx, (f, ϕ)L2 =

∫
Ω

f(x)ϕ(x) dx.

The finite element subspace Vh ⊂ V has a natural so-called “nodal basis” (Lagrange basis)
{b1, . . . , bnh} characterized by the interpolation property bi(aj) = δij , i, j = 1, . . . , nh ,
where aj are the nodal points of the mesh Th. Between the finite element function
uh ∈ Vh and the corresponding nodal-value vector xh ∈ Rnh, we have the connection
uh(aj) = xh,j, j = 1, ..., nh,

uh =

nh∑
j=1

xh,jb
j =

nh∑
j=1

uh(aj)b
j .

Using this notation the discrete problems (5.1.7) can be written in the following form:

nh∑
j=1

xh,ja(b
j , bi) = (f, bi)L2 , i = 1, . . . , nh,

1Sergei Lvovich Sobolev (1908–1989): Russian mathematician; worked in Leningrad (St. Petersburg)
and later at the famous Steklov-Institute for Mathematics of the Academy of Sciences in Moscow; funda-
mental contributions to the theory of partial differential equations concept of generalized (distributional)
solutions, “Sobolev spaces”; worked also on numerical methods, numerical quadrature.
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which is equivalent to the linear system

Ahxh = bh, (5.1.8)

with the “system matrix” (“stiffness matrix”) Ah = (aij)
nh

i,j=1 ∈ Rnh×nh and “load vector”
bh = (bj)

nh

j=1 ∈ Rnh defined by

aij := a(bj , bi), bj := (f, bj)L2, i, j = 1, . . . , nh.

For finite element functions uh =
∑nh

i=1 xh,ib
i and vh =

∑nh

i=1 yh,ib
i there holds

a(uh, vh) = (Ahxh, yh)2.

The system matrix Ah is symmetric and positive definite by construction and has a
condition number of size cond2(Ah) = O(h−2). Additionally, we will use the so-called
“mass matrix” Mh = (mij)

nh

i,j=1 defined by

mij := (bj , bi)L2, i, j = 1, . . . , nh.

For finite element functions uh =
∑nh

i=1 xh,ib
i and vh =

∑nh

i=1 yh,ib
i there holds

(uh, vh)L2 = (Mhxh, yh)2.

The mass matrix Mh is also symmetric and positive definite by construction and has a
condition number of size cond2(Ah) = O(1).

For the exact “discrete” solution uh ∈ Vh there holds the error estimate

‖u− uh‖L2 ≤ c h2 ‖f‖L2 . (5.1.9)

Now, we seek a solution process which produces an approximation ũh ∈ Vh to uh satis-
fying

‖uh − ũh‖L2 ≤ c h2 ‖f‖L2. (5.1.10)

This process is called “complexity-optimal” if the arithmetic work for achieving this accu-
racy is of size O(nh) uniformly with respect to the mesh size h . We will see below that
the multigrid method is actually optimal is this sense if all its components are properly
chosen.

The multigrid process

Let u0L ∈ VL be an initial guess for the exact discrete solution uL ∈ VL on mesh level L
(For example, u0L = 0 or u0L = uL−1 if such a coarse-grid solution is available.). Then,
u0L is “smoothed” (“pre-smoothed”) by applying ν steps, e. g., of the damped Richardson
iteration starting from ū0L := u0L. This reads in variational from as follows:
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(ūkL, ϕL)L2 = (ūk−1
L , ϕL)L2 + θL

{
(f, ϕL)L2 − a(ūk−1

L , ϕL)
} ∀ϕL ∈ VL, (5.1.11)

where θL = λmax(Ah)
−1. For the resulting smoothed approximation ūνL, we define the

“defect” dL ∈ VL (without actually computing it) as follows:

(dL, ϕL)L2 := (f, ϕL)L2 − a(ūνL, ϕL), ϕL ∈ VL. (5.1.12)

Since VL−1 ⊂ VL, we obtain the “defect equation” on the next coarser mesh TL−1 as

a(qL−1, ϕL−1) = (dL, ϕL−1)L2 = (f, ϕL−1)L2 − a(ūνL, ϕL−1) ∀ϕL−1 ∈ VL−1. (5.1.13)

The correction qL−1 ∈ VL−1 is now computed either exactly (for instance by a direct
solver) or only approximately by a defect correction iteration q0L−1 → qRL−1 using the
sequence of coarser meshes TL−2, ...,T0 . The result qRL−1 ∈ VL−1 is then interpreted as
an element of VL and used for correcting the preliminary approximation ūνL :

¯̄u0L := ūνL + ωLq
R
L−1. (5.1.14)

The correction step may involve a damping parameter ωL ∈ (0, 1] in order to minimize
the residual of ¯̄uL . This practically very useful trick will not be further discussed here,
i. e., in the following, we will mostly set ωL = 1 . The obtained corrected approximation
¯̄uL is again smoothed (“post-smoothing”) by applying another μ steps of the damped
Richardson iteration starting from ¯̄u0L := ¯̄uL :

(¯̄ukL, ϕL)L2 = (¯̄uk−1
L , ϕL)L2 + θL

{
(f, ϕL)L2 − a(¯̄uk−1

L , ϕL)
} ∀ϕL ∈ VL. (5.1.15)

The result is then accepted as the next multigrid iterate, u1L := ¯̄uμL, completing one step
of the multigrid iteration (“multigrid cycle”) on mesh level L. Each such cycle consists of
ν + μ Richardson smoothing steps (on level L), which each requires the inversion of the
mass matrix Mh , and the solution of the correction equation on the next coarser mesh.

Now, we will formulate the multigrid algorithm using a more abstract, functional
analytic notation, in order to better understand its structure and to ease its convergence
analysis. To the system matrices Al = Ahl

on the sequence of meshes Tl, l = 0, 1, . . . , L,
we associate operators Al : Vl → Vl by setting

(Alvl, wl)L2 = a(vl, wl) = (Alyl, zl)2 ∀vl, wl ∈ Vl, (5.1.16)

where vl = (yl,i)
nl

i=1, wl = (zl,i)
nl

i=1 . Further, let Sl(·) denote the corresponding smoothing
operations with (linear) iteration operators (Richardson operator) Sl = Il−θlAl : Vl → Vl
where Al is the “system operator” defined above and Il denotes the identity operator
on Vl. Finally, we introduce the operators by which the transfers of functions between
consecutive subspaces are accomplished:

rl−1
l : Vl → Vl−1 (“restriction”), pll−1 : Vl−1 → Vl (“prolongation”).

In the finite element context these operators are naturally chosen as rl−1
l = Pl−1, the L

2

projection onto Vl−1, and pll−1 = id., the natural embedding of Vl−1 ⊂ Vl into Vl.



192 Multigrid Methods

Now, using this notation, we reformulate the multigrid process introduced above for
solving the linear system on the finest mesh TL:

ALuL = fL := PLf. (5.1.17)

Multigrid process: Starting from an initial vector u0L ∈ VL iterates utL are constructed
by the recursive formula

u
(t+1)
L = MG(L, u

(t)
L , fL). (5.1.18)

Let the t-th multigrid iterate u
(t)
L be determined.

Coarse grid solution: For l = 0 , the operation MG(0, 0, g0) yields the exact solution of
the system A0v0 = g0 (obtained for instance by a direct method),

v0 = MG(0, ·, g0) = A−1
0 g0. (5.1.19)

Recursion: Let for some 1 ≤ l ≤ L the system Alvl = gl to be solved. With parameter
values ν, μ ≥ 1 the value

MG(l, v0l , gl) := v1l ≈ vl (5.1.20)

is recursively definined by the following steps:

i) Pre-smoothimg:
v̄l := Sν

l (v
0
l ); (5.1.21)

ii) Defect formation:

dl := gl −Alv̄l; (5.1.22)

iii) Restriction:

d̃l−1 := rl−1
l dl; (5.1.23)

iv) Defect equation: Starting from q0l−1 := 0 for 1 ≤ r ≤ R the iteration proceeds as
follows:

qrl−1 := MG(l − 1, qr−1
l−1 , d̃l−1); (5.1.24)

(5.1.25)

v) Prolongation:

ql := pll−1q
R
l−1 ; (5.1.26)

vi) Correction: With a damping parameter ωl ∈ (0, 1],

¯̄vl := v̄l + ωlql; (5.1.27)
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vii) Post-smoothing:

v1l := Sμ
l (¯̄vl); (5.1.28)

In case l = L , one sets:

ut+1
L := v1l . (5.1.29)

We collect the afore mentioned algorithmic steps into a compact systematics of the multi-
grid cycle utL → ut+1

L :

utL → ūtL = Sν
L(u

t
L) → dL = fL −ALū

t
L

↓ d̃L−1 = rL−1
L dL−1 (restriction)

qL−1 = Ã−1
L−1d̃L−1 (R-times defect correction)

↓ q̃L = pLL−1qL−1 (prolongation)

¯̄utL = ūtL + ωLq̃L → ut+1
L = Sμ

L(¯̄u
t
L).

If the defect equation AL−1qL−1 = d̃L−1 on the coarser mesh TL−1 is solved “exactly”, one
speaks of a “two-grid method”. In practice, the two-grid process is continued recursively
to the “multigrid method” up to the coarsest mesh T0. This process can be organized
in various ways depending essentially on the choice of the iteration parameter R , which
determines how often the defect correction step is repeated on each mesh level. In practice,
for economical reasons, only the cases R = 1 and R = 2 play a role. The schemes of the
corresponding multigrid cycles, the “V-cycle” and the “W-cycle”, are shown in Fig. 5.1.
Here, “•” represent “smoothing” and “defect correction” on the meshes Tl , and lines
“−” stand for the transfer between consecutive mesh levels.

4v
3v
v2
v1
v0
v4

v
v3
2

v1
v0

Figure 5.1: Scheme of a multigrid algorithm organized as V- (top left), F- (top right), and
W-cycle (bottom line).
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The V-cycle is very efficient (if it works at all), but often suffers from instabilities
caused by irregularities in the problem to be solved, such as strong anisotropies in the
differential operator, boundary layers, corner singularities, nonuniformities and deteriora-
tions in the meshes (local mesh refinement and cell stretching), etc.. In contrast to that,
the W-cycle is more robust but usually significantly more expensive. Multigrid methods
with R ≥ 3 are too inefficient. A good compromise between robustness and efficiency is
provided by the so-called “F-cycle” shown in Fig. 5.1. This process is usually started on
the finest mesh TL with an arbitrary initial guess u0L (most often u0L = 0). However,
for economical reasons, one may start the whole multigrid process on the coarsest mesh
T0 and then use the approximate solutions obtained on intermediate meshes as starting
values for the iteration on the next finer meshes. This “nested” version of the multigrid
method will be studied more systematically below.

Nested multigrid: Starting from some initial vector u0 := A−1
0 f0 on the coarsest mesh

T0, for l = 1, ..., L, successively approximations ũl ≈ ul are computed by the following
recursion:

u0l = pll−1ũl−1

utl = MG(l, ut−1
l , fl), t = 1, ..., tl, ‖utll − ul‖L2 ≤ ĉ h2l ‖f‖L2,

ũl = utll .

Remark 5.1: Though the multigrid iteration in V-cycle modus may be unstable, it can
be used as preconditioners for an “outer” CG (in the symmetric case) or GMRES iteration
(in the nonsymmetric case). This approach combines the robustness of the Krylov space
method with the efficiency of the multigrid methods and has been used very successfully
for the solution of various nonstandard problems, involving singularities, indefiniteness,
saddle-point structure, and multi-physics coupling.

Remark 5.2: There is not something like the multigrid algorithm. The successful real-
ization of the multigrid concept requires a careful choice of the various components such
as the “smoother” Sl, the coarse-mesh operators Al, and the mesh-transfer operators
rl−1
l , pll−1, specially adapted to the particular structure of the problem considered. In the
following, we discuss these algorithmic componenents in the context of the finite element
discretization, e. g., of the model problem from above.

i) Smoothers: “Smoothers” are usually simple fixed-point iterations, which could princi-
pally also be used as “solvers”, but with a very bad convergence rate. They are applied
on each mesh level only a few times (ν, μ ∼ 1 − 4), for damping out the high-frequency
components in the errors or the residuals. In the following, we consider the damped
Richardson iteration with iteration matrix

Sl := Il − θlAl , θl = λmax(Al)
−1, (5.1.30)

as smoother, which, however, only works for very simple (scalar) and non-degenerate
problems.
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Remark 5.3: More powerful smoothers are based on the Gauß-Seidel and the ILU iter-
ation. These methods also work well for problems with certain pathologies. For example,
in case of strong advection in the differential equation, if the mesh points are numbered
in the direction of the transport, the system matrix has a dominant lower triangular part
L , for which the Gauß-Seidel method is nearly “exact”. For problems with degenerate
coefficients in one space direction or on strongly anisotropic meshes the system matrix has
a dominant tridiagonal part, for which the ILU method is nearly “exact”. For indefinite
saddle-point problems certain “block” iterations are used, which are specially adapted to
the structure of the problem. Examples are the so-called “Vanka-type” smoothers, which
are used in solving the “incompressible” Navier-Stokes equations in Fluid Mechanics.

ii) Grid transfers: In the context of a finite element discretization with nested subspaces
V0 ⊂ V1 ⊂ ... ⊂ Vl ⊂ ... ⊂ VL the generic choice of the prolongation pll−1 : Vl−1 → Vl
is the cellwise embedding, and of the restriction rl−1

l : Vl → Vl−1 the L2 projection. For
other discretizations (e. g., finite difference schemes), one uses appropriate interpolation
operators (e. g., bi/trilinear interpolation).

iii) Corse-grid operators: The operators Al on the several spaces Vl do not need to
correspond to the same discretization of the original “continuous” problem. This as-
pect becomes important in the use of mesh-dependent numerical diffusion (“upwinding”,
“streamline diffusion”, etc.) for the treatment of stronger transport. Here, we only con-
sider the ideal case that all Al are defined by the same finite element discretization on
the mesh family {Tl}l=0,...,L . In this case, we have the following useful identity:

(Al−1vl−1, wl−1)L2 = a(vl−1, wl−1)

= a(pll−1vl−1, p
l
l−1wl−1)

= (Alp
l
l−1vl−1, p

l
l−1wl−1)L2 = (rl−1

l Alp
l
l−1vl−1, wl−1)L2 ,

(5.1.31)

for all wl−1 ∈ Vl−1, which means that

Al−1 = rl−1
l Alp

l
l−1. (5.1.32)

iv) Coarse-grid correction: The correction step contains a damping parameter ωl ∈
(0, 1]. It has proved very useful in practice to choose this parameter such that the defect
Al ¯̄vl − d̃l−1 becomes minimal. This leads to the formula

ωl =
(Al ¯̄vl, d̃l−1 −Al ¯̄vl)L2

‖Al ¯̄vl‖2L2

. (5.1.33)

In the following analysis of the multigrid process, for simplicity, we will make the choice
ωl = 1.

5.1.2 Convergence analysis

The classical analysis of the multigrid process is based on its interpretation as a defect-
correction iteration and the concept of recursive application of the two-grid method. For
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simplicity, we assume that only pre-smoothing is used, i. e., ν > 0, μ = 0, and that in the
correction step no damping is applied, i. e., ωl = 1 . Then, the two-grid algorithm can be
written in the following form:

ut+1
L = Sν

L(u
t
L) + pLL−1A−1

L−1r
L−1
L

(
fL −ALS

ν
L(u

t
L)
)

= Sν
L(u

t
L) + pLL−1A−1

L−1r
L−1
L AL

(
uL − Sν

L(u
t
L)
)
.

Hence, for the iteration error etL := utL − uL there holds

et+1
L =

(IL − pLL−1A−1
L−1r

L−1
L AL

)(
Sν
L(u

t
L)− uL

)
. (5.1.34)

The smoothing operation is given in (affin)-lineare form as

SL(vL) := SLvL + gL,

and as fixed-point iteration satisfies SL(uL) = uL. From this, we conclude that

Sν
L(u

t
L)− uL = SL

(
Sν−1
L (utL)− uL

)
= ... = Sν

Le
t
L.

With the so-called “two-grid operator”

ZGL(ν) := (IL − pLL−1A−1
L−1r

L−1
L AL)Sν

L

there consequently holds

et+1
L = ZGL(ν)e

t
L . (5.1.35)

Theorem 5.1 (Two-grid convergence): For sufficiently frequent smoothimg, ν > 0 ,
the two-grid method converges with a rate independent of the mesh level L :

‖ZGL(ν)‖L2 ≤ ρZG(ν) = c ν−1 < 1 . (5.1.36)

Proof. We write

ZGL(ν) = (A−1
L − pLL−1A−1

L−1r
L−1
L )ALSν

L (5.1.37)

and estimate as follows:

‖ZGL(ν)‖L2 ≤ ‖A−1
L − pLL−1A−1

L−1r
L−1
L ‖L2‖ALSν

L‖L2. (5.1.38)

The first term on the right-hand side describes the quality of the approximation of the fine-
grid solution on the next coarser mesh, while the second term represents the smoothing
effect. The goal of the further analysis is now to show that the smoother SL(·) possesses
the so-called “smoothing property”,

‖ALSν
LvL‖L2 ≤ csν

−1h−2
L ‖vL‖L2, vL ∈ VL , (5.1.39)
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and the coarse-grid correction possesses the so-called “approximation property” ,

‖(A−1
L − pLL−1A−1

L−1r
L−1
L )vL‖L2 ≤ cah

2
L‖vL‖L2, vL ∈ VL , (5.1.40)

with positive constants cs, ca independent of the mesh level L . Combination of these two
estimates then yields the asserted estimate (5.1.36). For sufficiently frequent smoothing,
we have ρZG := cν−1 < 1 and the two-grid algorithm converges with a rate uniformly
w.r.t. the mesh level L . All constants appearing in the following are independent of L .

i) Smoothing property: The selfadjoint operator AL possesses real, positive eigenvalues
0 < λ1 ≤ ... ≤ λi ≤ ... ≤ λnL

=: ΛL and a corresponding L2-ONS of eigenfunctions
{w1, ..., wnL} , such that each vL ∈ VL can be written as vL =

∑nL

i=1 γiw
i, γi = (vL, w

i)L2.
For the Richardson iteration operator,

SL := IL − θLAL : VL → VL, θL = Λ−1
L , (5.1.41)

there holds

ALSν
LvL =

nL∑
i=1

γiλi

(
1− λi

ΛL

)ν

wi, (5.1.42)

and, consequently,

‖ALSν
LvL‖2L2 =

nL∑
i=1

γ2i λ
2
i

(
1− λi

ΛL

)2ν

≤ Λ2
L max

1≤i≤nL

{( λi
ΛL

)2(
1− λi

ΛL

)2ν} nL∑
i=1

γ2i

= Λ2
L max

1≤i≤nL

{( λi
ΛL

)2(
1− λi

ΛL

)2ν}
‖vL‖2L2 .

By the relation (exercise)

max
0≤x≤1

{x2(1− x)2ν} ≤ (1 + ν)−2 (5.1.43)

it follows that

‖ALSν
LvL‖2L2 ≤ Λ2

L(1 + ν)−2‖vL‖2L2. (5.1.44)

The relation ΛL ≤ ch−2
L eventually implies the asserted inequality for the Richardson

iteration operator:

‖ALSν
L‖L2 ≤ csν

−1h−2
L , ν ≥ 1. (5.1.45)

ii) Approximation property: We recall that in the present context of nested subspaces Vl
prolongationen and restriction operators are given by

pLL−1 = id. (identity), rL−1
L = PL−1 (L

2 projection).



198 Multigrid Methods

Further, the operator AL : VL → VL satisfies

(ALvL, ϕL)L2 = a(vL, ϕL), vL, ϕL ∈ VL.

For an arbitrary but fixed fL ∈ VL and functions vL := A−1
L fL, vL−1 := A−1

L−1r
L−1
L fL

there holds:

a(vL, ϕL) = (fL, ϕL)L2 ∀ϕL ∈ VL,

a(vL−1, ϕL−1) = (fL, ϕL−1)L2 ∀ϕL−1 ∈ VL−1.

To the function vL ∈ VL, we associate a function v ∈ V ∩ H2(Ω) as solution of the
“continuous” boundary value problem

Lv = fL in Ω, v = 0 on ∂Ω, (5.1.46)

or in “weak” formulation

a(v, ϕ) = (fL, ϕ)L2 ∀ϕ ∈ V. (5.1.47)

For this auxiliary problem, we have the following a priori estimate

‖∇2v‖L2 ≤ c‖fL‖L2 . (5.1.48)

There holds

a(vL, ϕL) = (fL, ϕL)L2 = a(v, ϕL), ϕL ∈ VL,

a(vL−1, ϕL−1) = (fL, ϕL−1)L2 = a(v, ϕL−1), ϕL−1 ∈ VL−1,

i. e., vL and vL−1 are the Ritz projections of v into VL and VL−1, respectively. For
these the following L2-error estimates hold true:

‖vL − v‖L2 ≤ ch2L‖∇2v‖L2, ‖vL−1 − v‖L2 ≤ ch2L−1‖∇2v‖L2. (5.1.49)

This together with the a priori estimate (5.1.48) and observing hL−1 ≤ 4hL implies that

‖vL − vL−1‖L2 ≤ ch2L‖∇2v‖L2 ≤ ch2L‖fL‖L2 , (5.1.50)

and, consequently,

‖A−1
L fL − pLL−1A−1

L−1r
L−1
L fL‖L2 ≤ ch2L‖fL‖L2. (5.1.51)

From this, we obtain the desired estimate

‖A−1
L − pLL−1A−1

L−1r
L−1
L ‖L2 ≤ ch2L, (5.1.52)

which completes the proof. Q.E.D.
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The foregoing result for the two-grid algorithm will now be used for inferring the
convergence of the full multigrid method.

Theorem 5.2 (Multigrid conver- gence): Suppose that the two-grid algorithm con-
verges with rate ρZG(ν) → 0 for ν → ∞ , uniformly with respect to the mesh level L .
Then, for sufficiently frequent smoothing the multigrid method with R ≥ 2 (W-cycle)
converges with rate ρMG < 1 independent of the mesh level L,

‖uL −MG(L, utL, fL)‖L2 ≤ ρMG ‖uL − utL‖L2 . (5.1.53)

Proof. The proof is given by induction with respect to the mesh level L . We consider
only the relevant case R = 2 (W-cycle) and, for simplicity, will not try to optimize the
constants occurring in the course of the argument. Let ν be chosen sufficiently large such
that the convergence rate of the two-grid algorithm is ρZG ≤ 1/8 . We want to show that
then the convergence rate of the full multigrid algorithm is ρMG ≤ 1/4, uniformly with
respect to the mesh level L . For L = 1 this is obviously fulfilled. Suppose now that
also ρMG ≤ 1/4 for mesh level L− 1. Then, on mesh level L , starting from the iterate
utL , with the approximative solution q2L−1 (after 2-fold application of the coarse-mesh
correction) and the exact solution q̂L−1 of the defect equation on mesh level L−1 , there
holds

ut+1
L = MG(L, utL, fL) = ZG(L, utL, fL) + pLL−1(q

2
L−1 − q̂L−1). (5.1.54)

According to the induction assumption (observing that the starting value of the multigrid
iteration on mesh level L− 1 is zero and that ρ̂L−1 = A−1

L−1r
L−1
L dL ) it follows that

‖q̂L−1 − q2L−1‖L2 ≤ ρ2MG ‖q̂L−1‖L2 = ρ2MG ‖A−1
L−1r

L−1
L ALSν

L(uL − utL)‖L2. (5.1.55)

Combination of the last two relations implies for the iteration error etL := utL − uL that

‖et+1
L ‖L2 ≤ (

ρZG + ρ2MG ‖A−1
L−1r

L−1
L ALSν

L‖L2

) ‖etL‖L2 . (5.1.56)

The norm on the right-hand side has been estimated already in connection with the
convergence analysis of the two-grid algorithm. Recalling the two-grid operator

ZGL = (A−1
L − pLL−1A−1

L−1r
L−1
L )ALSν

L = Sν
L − pL−1

L A−1
L−1r

L−1
L ALSν

L,

there holds
A−1

L−1r
L−1
L ALSν

L = Sν
L − ZGL,

und, consequently,

‖A−1
L−1r

L−1
L ALSν

L‖L2 ≤ ‖Sν
L‖L2 + ‖ZGL‖L2 ≤ 1 + ρZG ≤ 2. (5.1.57)

This eventually implies

‖et+1
L ‖L2 ≤ (

ρZG + 2ρ2MG

) ‖etL‖L2. (5.1.58)
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By the assumption on ρZG and the induction assumption, we conclude

‖et+1
L ‖L2 ≤ (

1
8
+ 2 1

16

) ‖etL‖L2 ≤ 1
4
‖etL‖L2 , (5.1.59)

which completes the proof. Q.E.D.

Remark 5.4: For well-conditioned problems (symmetric, positive definite operator, reg-
ular coefficients, quasi-uniform meshes, etc.) one achieves multigrid convergence rates in
the range ρMG = 0, 05 − 0, 5 . The above analysis only applies to the W-cycle since in
part (ii), we need that R ≥ 2 . The V-cycle cannot be treated on the basis of the two-
grid analysis. In the literature there are more general approaches, which allow to prove
convergence of multigrid methods under much weaker conditions.

Next, we analyze the computational complexity of the full multigrid algorithm. For
this, we introduce the following notation:

OP(T ) = number of a. op. for performing the operation T,

R = number of defect-correction steps on the different mesh levels,

nl = dimVl ≈ h−d
l (d = space dimension),

κ = max
1≤l≤L

nl−1/nl < 1,

C0 = OP(A−1
0 )/n0,

Cs = max
1≤l≤L

{OP(Sl)/nl}, Cd = max
1≤l≤L

{OP(dl)/nl},
Cr = max

1≤l≤L
{OP(rl)/nl}, Cp = max

1≤l≤L
{OP(pl)/nl}.

In practice mostly κ ≈ 2−d , Cs ≈ Cd ≈ Cr ≈ Cp ≈ #{anm �= 0} and C0n0 � nL .

Theorem 5.3 (Multigrid complexity): Under the condition q := Rκ < 1, for the full
multigrid cycle MGL there holds

OP(MGL) ≤ CLnL, (5.1.60)

where

CL =
(ν + μ)Cs + Cd + Cr + Cp

1− q
+ C0q

L.

The multigrid algorithm for approximating the nL-dimensional discrete solution uL ∈ VL
on the finest mesh TL within discretization accuracy O(h2L) requires O(nL ln(nL)) a. op.,
and therefore has (almost) optimal complexity.

Proof. We set Cl := OP(MGl)/nl. One multigrid cycle contains the R-fold application
of the same algorithm on the next coarser mesh. Observing nl−1 ≤ κnl and setting
Ĉ := (ν + μ)Cs + Cd + Cr + Cp it follows that

CLnL = OP(MGL) ≤ ĈnL +R ·OP(MGL−1) = ĈnL +R · CL−1nL−1 ≤ ĈnL + qCL−1nL,
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and consequently CL ≤ Ĉ + qCL−1 . Recursive use of this relation yields

CL ≤ Ĉ + q
(
Ĉ + qCL−2

)
= Ĉ(1 + q) + q2CL−1

...

≤ Ĉ(1 + q + q2 + ...+ qL−1) + qLC0 ≤ Ĉ

1− q
+ qLC0.

This implies the asserted estimate (5.1.60). The total complexity of the algotrithm then
results from the relations

ρtMG ≈ h2L ≈ n
−2/d
L , t ≈ − ln(nL)

ln(ρMG)
.

The proof is complete. Q.E.D.

It should be emphasized that in the proof of (5.1.60) the assumption

q := Rκ = R max
1≤l≤L

nl−1/nl < 1 (5.1.61)

is essential. This means for the W-cycle (R = 2) that by the transition from mesh Tl−1

to the next finer mesh Tl the number of mesh points (dimension of spaces) sufficiently
increases, comparibly to the situation of uniform mesh refinement,

nl ≈ 4nl−1. (5.1.62)

Remark 5.5: In an adaptively driven mesh refinement process with only local mesh
refinement the condition (5.1.61) is usually not satisfied. Mostly only nl ≈ 2nl−1 can be
expected. In such a case the multigrid process needs to be modified in order to preserve
good efficiency. This may be accomplished by applying the cost-intensive smoothing only
to those mesh points, which have been newly created by the transition from mesh Tl−1 to
mesh Tl . The implementation of a multigrid algorithm on locally refined meshes requires
much care in order to achieve optimal complexity of the overall algorithm.

The nested multigrid algorithm turns out to be really complexity optimal, as it requires
only O(nL) a. op. for producing a sufficiently accurate approximation to the discrete
solution uL ∈ VL .

Theorem 5.4 (Nested multigrid): The nested multigrid algorithm is of optimal com-
plexity, i. e., it delivers an approximation to the discrete solution uL ∈ VL on the finest
mesh TL with discretization accuracy O(h2L) with complexity O(nL) a. op. independent
of the mesh level L.

Proof. The accuracy requirement for the multigrid algorithm on mesh level TL is

‖etL‖L2 ≤ ĉh2L‖f‖L2. (5.1.63)
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i) First, we want to show that, under the assumptions of Theorem 5.2, the result (5.1.63)
is achievable by the nested multigrid algorithm on each mesh level L by using a fixed
(sufficiently large) number t∗ of multigrid cycles. Let etL := utL−uL be again the iteration
error on mesh level L . By assumption et0 = 0, t ≥ 1 . In case u0L := utL−1 there holds

‖etL‖L2 ≤ ρtMG‖e0L‖L2 = ρtMG‖utL−1 − uL‖L2

≤ ρtMG

(‖utL−1 − uL−1‖L2 + ‖uL−1 − u‖L2 + ‖u− uL‖L2

)
≤ ρtMG

(‖etL−1‖L2 + ch2L‖f‖L2

)
.

Recursive use of this relation for L ≥ l ≥ 1 then yields (observing hl ≤ κl−LhL )

‖etL‖L2 ≤ ρtMG

(
ρtMGbig(‖etL−2‖L2 + ch2L−1‖f‖L2

)
+ ch2L‖f‖L2

)
...

≤ ρLtMG‖et0‖L2 +
(
cρtMGh

2
L + cρ2tMGh

2
L−1 + ... + cρLtMGh

2
1

) ‖f‖L2

= ch2Lκ
2
(
ρtMGκ

−2·1 + ρ2tMGκ
−2·2 + ... + ρLtMGκ

−2L
) ‖f‖L2

≤ ch2Lκ
2‖f‖L2

κ−2ρtMG

1− κ−2ρtMG

,

provided that κ−2ρtMG < 1. Obviously there exists a t∗ , such that (5.1.63) is satisfied for
t ≥ t∗ uniformly with respect to L .

ii) We can now carry out the complexity analysis. Theorem 5.3 states that one cycle
of the simple multigrid algorithm MG(l, ·, ·) on the l-th mesh level requires Wl ≤ c∗nl

a. op. (uniformly with respect to l ). Let now Ŵl be the number of a. op. of the nested
multigrid algorithm on mesh level l . Then, by construction there holds

ŴL ≤ ŴL−1 + t∗WL ≤ ŴL−1 + t∗c∗nL.

Iterating this relation, we obtain with κ := max1≤l≤L nl−1/nl < 1 that

ŴL ≤ ŴL−1 + t∗c∗nL ≤ ŴL−2 + t∗c∗nL−1 + t∗c∗nL

...

≤ t∗c∗{nL + ...+ n0} ≤ ct∗c∗nL{1 + ...+ κL} ≤ ct∗c∗
1− κ

nL,

what was to be shown. Q.E.D.

5.2 Multigrid methods for eigenvalue problems (a short review)

The application of the “multigrid concept” to the solution of high-dimensional eigenvalue
problems can follow different pathes. First, there is the possibility of using it directly
for the eigenvalue problem based on its reformulation as a nonlinear system of equations,
which allows for the formation of “residuals”. Second, the multigrid concept may be
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used as components of other iterative methods, such as the Krylov space methods, for
accelerating certain computation-intensive substeps. In the following, we will only briefly
describe these different approaches.

5.2.1 Direct multigrid approach

The algebraic eigenvalue problem

Az = λz, λ ∈ C, z ∈ C
n, ‖z‖2 = 1, (5.2.64)

is equivalent to the following nonlinear system of equations{
Az − λz

‖z‖22 − 1

}
= 0. (5.2.65)

To this system, we may apply a nonlinear version of the multigrid method described in
Section 5.1 again yielding an algorithm of optimal complexity, at least in principly (for
details see, e. g., Brand et al. [27] and Hackbusch [37]). However, this approach suffers
from stability problems in case of irregularities of the underlying continuous problem,
such as anisotropies in the operator, the domain or the computational mesh, which may
spoil the convergence of the method or render it inefficient. One cause may be the lack
of approximation property in case that the continuous eigenvalue problem is not well
approximated on coarser meshes, which is essential for the convergence of the multigrid
method. The possibility of such a pathological situation is illustrated by the following
example, which suggests to use the multigrid concept not directly but rather for accel-
erating the cost-intensive components of other more robust methods such as the Krylov
space methods (or the Jacobi-Davidson method) described above.

Example 5.1: We consider the following non-symmetric convection-diffusion eigenvalue
problem on the unit square Ω = (0, 1)2 ∈ R2 :

−νΔu + b · ∇u = λu, in Ω, u = 0, on ∂Ω, (5.2.66)

with coefficients ν > 0 and c = (c1, c2) ∈ R2. The (real) eigenvalues are explicitly given
by

λ =
b21 + b22
4ν

+ νπ2(n2
1 + n2

2), n1, n2 ∈ N,

with corresponding (non-normalized) eigenfunctions

w(x1, x2) = exp
(b1x1 + b2x2

2ν

)
sin(n1πx1) sin(n2πx2).

The corresponding adjoint eigenvalue problem has the eigenfunctions

w∗(x1, x2) = exp
(
− b1x1 + b2x2

2ν

)
sin(n1πx1) sin(n2πx2).
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This shows, first, that the underlying differential operator in (5.2.66) is non-normal and
secondly that the eigenfunctions develop strong boundary layers for small parameter val-
ues ν (transport-dominant case). In particular, the eigenvalues depend very strongly
on ν. For the “direct” application of the multigrid method to this problem, this means
that the “coarse-grid problems”, due to insufficient mesh resolution, have completely dif-
ferent eigenvalues than the “fine-grid” problem, leading to insufficient approximation for
computing meaningful corrections. This renders the multigrid iteration, being based on
successive smoothing and coarse-grid correction, inefficient and may even completely spoil
convergence.

5.2.2 Accelerated Arnoldi and Lanczos method

The most computation-intensive part of the Arnoldi and Lanczos methods in the case of
the approximation of the smallest (by modulus) eigenvalues of a high-dimensional matrix
A ∈ Kn×n is the generation of the Krylov space

Km = span{q, A−1q, . . . , (A−1)m−1q},

which requires the solution of a small number m� n but high-dimensional linear systems
with A as coefficient matrix. Even though the Krylov space does not need to be explicitly
constructed in the course of the modified Gram-Schmidt algorithm for the generation
of an orthonormal basis {q1, . . . , qm} of Km , this process requires the same amount
of computation. This computational “acceleration” by use of multigrid techniques is
exploited in Section 4.3.2 on the computation of pseudospectra. We want to illustrate this
for the simpler situation of the “inverse iteration” for computing the smallest eigenvalue
of a symmetric, positive definite matrix A ∈ Rn×n .

Recall Example 4.1 in Section 4.1.1, the eigenvalue problem of the Laplace operator
on the unit square:

−∂
2w

∂x2
(x, y)− ∂2w

∂y2
(x, y) = μw(x, y) for (x, y) ∈ Ω,

w(x, y) = 0 for (x, y) ∈ ∂ Ω.

. (5.2.67)

The discretization of this eigenvalue problem by the 5-point difference scheme on a uniform
Cartesian mesh or the related finite element method with piecewise linear trial functions
leads to the matrix eigenvalue problem

Az = λz, λ = h2μ, (5.2.68)

with the same block-tridiagonal matrix A as occurring in the corresponding discretization
of the boundary value problem discussed in Section 3.4. We are interested in the smallest
eigenvalue λ1 = λmin of A , which by h−2λmin ≈ μmin yields an approximation to the
smallest eigenvalue of problem (5.2.67). For λ1 and the next eigenvalue λ2 > λ1 there
holds

λ1 = 2π2h2 +O(h4), λ2 = 5π2h2 +O(h4).
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For computing λ1, we may use the inverse iteration with shift λ = 0 . This requires in
each step the solution of a problem like

Az̃t = zt−1, zt := ‖z̃t‖−1
2 z̃t. (5.2.69)

For the corresponding eigenvalue approximation

1

λt1
:=

(A−1zt, zt)2
‖zt‖22

= (z̃t+1, zt)2, (5.2.70)

there holds the error estimate (see exercise in Section 4.1.1)∣∣∣ 1
λt1

− 1

λ1

∣∣∣ ≤ ∣∣∣ 1
λ1

∣∣∣‖z0‖22|α1|2
(λ2
λ1

)2t

, (5.2.71)

where α1 is the coefficient in the expansion of z0 with respect to the eigenvector w1.
From this relation, we infer that

|λ1 − λt1| ≤ λt1
‖z0‖22
|α1|2

(λ2
λ1

)2t

. (5.2.72)

Observing that λt1 ≈ λ1 ≈ h2 and h2‖z0‖22 = h2
∑n

i=1 |z0i |2 ≈ ‖v0‖2L2 , where v0 ∈ H1
0 (Ω)

is the continuous eigenfunction corresponding to the eigenvector z0, we obtain

|λ1 − λt1| ≤ c
(λ2
λ1

)2t

≤ c 0.42t. (5.2.73)

i. e., the convergence is independent of the mesh size h or the dimension n = m2 ≈ h−2

of A. However, in view of the relation μ1 = h−2λ1 achieving a prescribed accuracy in the
approximation of μ1 requires the scaling of the tolerance in computing λ1 by a factor
h2, which introduces a logarithmic h-dependence in the work count of the algorithm,

t(ε) ≈ log(εh2)

log(2/5)
≈ log(n). (5.2.74)

Now, using a multigrid solver of optimal complexity O(n) in each iteration step (4.1.20)
the total complexity of computing the smallest eigenvalue λ1 becomes O(n log(n)) .

Remark 5.6: For the systematic use of multigrid acceleration within the Jacobi-Davidson
method for nonsymmetric eigenvalue problems, we refer to Heuveline&Bertsch [41]. This
combination of a robust iteration and multigrid acceleration seems presently to be the
most efficient approach to solving large-scale symmetric or unsymmetric eigenvalue prob-
lems.
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5.3 Exercises

Exercise 5.1: Consider the discretization of the Poisson problem

−Δu = f, in Ω, u = 0, on ∂Ω,

on the unit square Ω = (0, 1)2 ⊂ R
2 by the finite element Galerkin method using linear

shape and test functions on a uniform Cartesian triangulation Th = {K} with cells K
(rectangular triangles) of width h > 0. The lowest-order finite element space on the mesh
Th is given by

Vh = {vh ∈ C(Ω̄) | vh|K ∈ P1(K), K ∈ Th, vh|∂Ω = 0}.

Its dimension is dimVh = nh, which coincides with the number of interior nodal points
ai, i = 1, . . . , nh, of the mesh Th. Let {ϕ1

h, . . . , ϕ
nh

h } denote the usual “nodal basis” (so-
called “Lagrange basis”) of the finite element subspace Vh defined by the interpolation
condition ϕi

h(aj) = δij . Make a sketch of this situation, especially of the mesh Th and a
nodal basis function ϕi

h.

Then, the finite element Galerkin approximation in the space Vh as described in the text
results in the following linear system for the nodal value vector xh = (x1h, . . . , x

nh

h ) :

Ahxh = bh,

with the matrix Ah = (aij)
nh

i,j=1 and right-hand side vector bh = (bi)
nh

i=1 given by

aij = (∇ϕj
h,∇ϕi

h)L2 and bi = (f, ϕi
h)L2. Evaluate these elements aij and bi using

the trapezoidal rule for triangles

∫
K

w(x) dx ≈ |K|
3

3∑
i=1

w(ai),

where ai, i = 1, 2, 3 , are the three vertices of the triangle K and |K| its area. This
quadrature rule is exact for linear polynomials. The result is a matrix and right-hand
side vector which are exactly the same as resulting from the finite difference discretization
of the Poisson problem on the mesh Th described in the text.

Exercise 5.2: Analyze the proof for the convergence of the two-grid algorithm given in
the text for its possible extension to the case the restriction rl−1

l : Vl → Vl−1 is defined
by local bilinear interpolation rather than by global L2-projection onto the coarser mesh
Tl−1 . What is the resulting difficulty? Do you have an idea how to get around it?

Exercise 5.3: The FE-discretization of the convection-diffusion problem

−Δu+ ∂1u = f in Ω, u = 0 on ∂Ω,

leads to asymmetric system matrices Ah . In this case the analysis of the multigrid
algorithm requires some modifications. Try to extend the proof given in the text for the
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convergence of the two-grid algorithm for this case if again the (damped) Richardson
iteration is chosen as smoother,

xt+1
h = xth − θt(Ahx

t
h − bh), t = 0, 1, 2, . . . .

What is the resulting difficulty and how can one get around it?

Exercise 5.4: Consider the discretization of the Poisson problem

−Δu = f, in Ω, u = 0, on ∂Ω,

on the unit square Ω = (0, 1)2 ⊂ R2 by the finite element Galerkin method using linear
shape and test functions. Let (Tl)l≥0 be a sequence of equidistant Cartesian meshes of
width hl = 2−l . The discrete equations on mesh level l are solved by a multigrid method
with (damped) Richardson smooting and the natural embedding as prolongation and the
L2 projection as restriction. The number of pre- and postsmoothing steps is ν = 2 and
μ = 0 , respectively. How many arithmetic operations are approximately required for a
V-cycle and a W-cycle depending on the dimension nl = dimVl ?

5.3.1 General exercises

Exercise 5.5: Give short answers to the following questions:

a) When is a matrix A ∈ Rn×n called “diagonalizable”?

b) When is a matrix A ∈ Rn×n called “diagonally dominant”?

c) What is a “normal” matrix and is a Hermitian matrix always “normal”?

d) What is the relation between the “power method” and the “inverse iteration”?

e) What is the Rayleigh quotient of a Hermitian matrix A ∈ Cn×n and a given vector
v ∈ Cn \ {0} . What is it used for?

f) What is the spectral condition number of a matrix A ∈ Cn×n ?

g) What is a “Gerschgorin circle”?

h) What is the use of “restriction” and “prolongation” within the multigrid method?

i) What is a “Krylov space” Km corresponding to a matrix A ∈ Cn×n ?

j) What does the adjective “damped” refer to within the Richardson method?

k) What is the difference between the “classical” and the “modified” Gram-Schmidt
algorithm for orthonormalization?

Exercise 5.6: Consider the following matrices:

A1 =

⎡
⎢⎢⎣

2 −1 0

−1 2 −1

0 −1 2

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣

2 −1 1

−1 2 −1

1 −1 2

⎤
⎥⎥⎦ , A3 =

⎡
⎢⎢⎣

2 −1 1

−1 2 −1

−1 −1 2

⎤
⎥⎥⎦ .
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For which of these matrices do the Jacobi method, the Gauß-Seidel method and the CG
method converge unconditionally for any given initial point u0 ?

Exercise 5.7: Derive best possible estimates for the eigenvalues of the matrix

A =

⎡
⎢⎢⎣

1 10−3 10−4

10−3 2 10−3

10−4 10−3 3

⎤
⎥⎥⎦

by the enclusion lemma of Gerschgorin. (Hint: Precondition the matrix by scaling, i. e.,
by using an appropriate similarity transformation with a diagonal matrix A→ D−1AD .)

Exercise 5.8: Formulate the power method for computing the largest (by modulus)
eigenvalue of a matrix A ∈ Cn×n . Distinguish between the case of a general matrix
and the special case of a Hermitian matrix.

i) Under which conditions is convergence guaranteed?

ii) Which of these conditions is the most critical one?

iii) State an estimate for the convergence speed.




