
4 Iterative Methods for Eigenvalue Problems

4.1 Methods for the partial eigenvalue problem

In this section, we discuss iterative methods for solving the partial eigenvalue problem of
a general matrix A ∈ Kn×n.

4.1.1 The “Power Method”

Definition 4.1: The “Power method” of v. Mises1 generates, starting from some initial
point z0 ∈ C

n with ‖z0‖ = 1, a sequence of iterates zt ∈ C
n, t = 1, 2, . . . , by

z̃t = Azt−1 , zt := ‖z̃t‖−1z̃t. (4.1.1)

The corresponding eigenvalue approximation is given by

λt :=
(Azt)r
ztr

, r ∈ {1, . . . , n} : |ztr| = max
j=1,...,n

|ztj|. (4.1.2)

The normalization is commonly done using the norms ‖ · ‖ = ‖ · ‖∞ or ‖ · ‖ = ‖ · ‖2. For
the convergence anlysis of this method, we assume the matrix A to be diagonalizable,
i. e., to be similar to a diagonal matrix, which is equivalent to the existence of a basis
of eigenvectors {w1, . . . , wn} of A . These eigenvectors are associated to the eigenvalues
ordered according to their modulus, 0 ≤ |λ1| ≤ . . . ≤ |λn| , and are assumed to be
normalized, ‖wi‖2 = 1 . Further, we assume that the initial vector z0 has a nontrivial
component with respect to the n-th eigenvector wn ,

z0 =
n∑

i=1

αiw
i, αn �= 0. (4.1.3)

In practice, this is not really a restrictive assumption since, due to round-off errors, it will
be satisfied in general.

Theorem 4.1 (Power method): Let the matrix A be diagonalizable and let the eigen-
value with largest modulus be separated from the other eigenvalues, i. e., |λn| > |λi|, i =
1, . . . , n− 1. Further, let the starting vector z0 have a nontrivial component with respect
to the eigenvector wn . Then, there are numbers σt ∈ C, |σt| = 1 such that

‖zt − σtw
n‖ → 0 (t→∞), (4.1.4)

1Richard von Mises (1883–1953): Austrian mathematician; Prof. of applied Mathematics in Straßburg
(1909-1918), in Dresden and then founder of the new Institute of Applied Mathematics in Berlin (1919-
1933), emigration to Turkey (Istambul) and eventually to the USA (1938); Prof. at Harward University;
important contributions to Theoretical Fluid Mechanics (introduction of the “stress tensor”), Aerodynam-
ics, Numerics, Statistics and Probability Theory.
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154 Iterative Methods for Eigenvalue Problems

and the “maximum” eigenvalue λmax = λn is approximated with convergence speed

λt = λmax +O
(∣∣∣λn−1

λmax

∣∣∣t) (t→∞). (4.1.5)

Proof. Let z0=
∑n

i=1 αiw
i be the basis expansion of the starting vector. For the iterates

zt there holds

zt =
z̃t

‖z̃t‖2 =
Azt−1

‖Azt−1‖2 =
Az̃t−1

‖z̃t−1‖2
‖z̃t−1‖2
‖Az̃t−1‖2 = . . . =

Atz0

‖Atz0‖2 .

Furthermore,

Atz0 =
n∑

i=1

αiλ
t
iw

i = λtnαn

{
wn +

n−1∑
i=1

αi

αn

( λi
λn

)t

wi
}

and consequently, since |λi/λn| < 1, i = 1, . . . , n− 1 ,

Atz0 = λtnαn{wn + o(1)} (t→ ∞).

This implies

zt =
λtnαn{wn + o(1)}

|λtnαn| ‖wn + o(1)‖2 =
λtnαn

|λtnαn|︸ ︷︷ ︸
=: σt

wn + o(1).

The iterates zt converges to span{wn}. Further, since αn �= 0, it follows that

λt =
(Azt)k
ztk

=
(At+1 z0)k
‖Atz0‖2

‖Atz0‖2
(Atz0)k

=
λt+1
n

{
αnw

n
k +

∑n−1
i=1 αi

(
λi

λn

)t+1
wi

k

}
λtn
{
αnwn

k +
∑n−1

i=1 αi

(
λi

λn

)t
wi

k

} = λn +O
(∣∣∣λn−1

λn

∣∣∣t) (t→∞).

This completes the proof. Q.E.D.

For Hermitian matrices, one obtains improved eigenvalue approximations using the
“Rayleigh quotient”:

λt := (Azt, zt)2 , ‖zt‖2 = 1. (4.1.6)

In this case {w1, . . . , wn} can be chosen as ONB of eigenvectors such that there holds

λt =
(At+1z0, Atz0)

‖Atz0‖2 =

∑n
i=1 |αi|2λ2t+1

i∑n
i=1 |αi|2λ2ti

=
λ2t+1
n

{|αn|2 +
∑n−1

i=1 |αi|2
(
λi

λn

)2t+1 }
λ2tn

{
|αn|2 +

∑n−1
i=1 |αi|2

(
λi

λn

)2t } = λmax +O
(∣∣∣λn−1

λmax

∣∣∣2t).
Here, the convergence of the eigenvalue approximations is twice as fast as in the non-
Hermitian case.
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Remark 4.1: The convergence of the power method is the better the more the modulus-
wise largest eigenvalue λn is separated from the other eigenvalues. The proof of conver-
gence can be extended to the case of diagonalizable matrices with multiple “maximum”
eigenvalue for which |λn| = |λi| necessarily implies λn = λi. For even more general,
non-diagonalizable matrices convergence is not guaranteed. The proof of Theorem 4.1
suggests that the constant in the convergence estimate (4.1.5) depends on the dimension
n and may therefore be very large for large matrices. The proof that this is actually not
the case is posed as an exercise.

4.1.2 The “Inverse Iteration”

For practical computation the power method is of only limited value, as its convergence is
very slow in general if |λn−1/λn| ∼ 1. Further, it only delivers the “largest” eigenvalue. In
most practical applications the “smallest” eigenvalue is wanted, i. e., that which is closest
to zero. This is accomplished by the so-called “Inverse Iteration” of Wielandt2. Here, it
is assumed that one already knows a good approximation λ̃ for an eigenvalue λk of the
matrix A to be computed (obtained by other methods, e. g., Lemma of Gershgorin, etc.)
such that

|λk − λ̃| � |λi − λ̃|, i = 1, . . . , n , i �= k. (4.1.7)

In case λ̃ �= λk the matrix (A− λ̃I)−1 has the eigenvalues μi = (λi− λ̃)−1 , i = 1, . . . , n ,
and there holds

|μk| =
∣∣∣ 1

λk − λ̃

∣∣∣ 
 ∣∣∣ 1

λi − λ̃

∣∣∣ = |μi|, i = 1, . . . , n , i �= k. (4.1.8)

Definition 4.2: The “Inverse Iteration” consists in the application of the power method
to the matrix (A− λ̃I)−1 , where the so-called “shift” λ̃ is taken as an approximation to
the desired eigenvalue λk. Starting from an initial point z0 the method generates iterates
zt as solutions of the linear systems

(A− λ̃I)z̃t = zt−1 , zt = ‖z̃t‖−1z̃t, t = 1, 2, . . . . (4.1.9)

The corresponding eigenvalue approximation is determined by

μt :=
[(A− λ̃I)−1zt]r

ztr
, r ∈ {1, . . . , n} : |ztr| = max

j=1,...,n
|ztj|, (4.1.10)

or, in the Hermitian case, by the Rayleigh quotient

μt := ((A− λ̃I)−1zt, zt)2. (4.1.11)

2Helmut Wielandt (1910–2001): German mathematician; Prof. in Mainz (1946-1951) and Tübingen
(1951-1977); contributions to Group Theory, Linear Algebra and Matrix Theory.
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In the evaluation of the eigenvalue approximation in (4.1.10) and (4.1.11) the not yet
known vector z̃t+1 := (A − λ̃I)−1zt is needed. Its computation requires to carry the
iteration, possibly unnecessarily, one step further by solving the corresponding linear
system (A− λ̃I)z̃t+1 = zt. This can be avoided by using the formulas

λt :=
(Azt)r
ztr

, or in the symmetric case λt := (Azt, zt)2, (4.1.12)

instead. This is justified since zt is supposed to be an approximation to an eigenvector
of (A − λ̃I)−1 corresponding to the eigenvalue μk, which is also an eigenvector of A
corresponding to the desired eigenvalue λk.

In virtue of the above result for the simple power method, for any diagonalizable
matrix A the “Inverse Iteration” delivers any eigenvalue, for which a sufficiently accurate
approximation is known. There holds the error estimate

μt = μk +O
(∣∣∣μk−1

μk

∣∣∣t) (t→∞), (4.1.13)

where μk−1 is the eigenvalue of (A − λ̃I)−1 closest to the “maximum” eigenvalue μk.
From this, we infer

μt =
1

λk − λ̃
+O

(∣∣∣ λk − λ̃

λk−1 − λ̃

∣∣∣t) (t→∞), (4.1.14)

where λk−1 := 1/μk−1 + λ̃ , and eventually,

λtk :=
1

μt
+ λ̃ = λk +O

(∣∣∣ λk − λ̃

λk−1 − λ̃

∣∣∣t) (t→∞). (4.1.15)

We collect the above results for the special case of the computation of the “smallest”
eigenvalue λmin = λ1 of a diagonalizable matrix A in the following theorem.

Theorem 4.2 (Inverse Iteration): Let the matrix A be diagonalizable and suppose
that the eigenvalue with smallest modulus is separated from the other eigenvalues, i. e.,
|λ1| < |λi|, i = 2, . . . , n. Further, let the starting vector z0 have a nontrivial component
with respect to the eigenvector w1 . Then, for the “Inverse Iteration” (with shift λ̃ := 0)
there are numbers σt ∈ C, |σt| = 1 such that

‖zt − σtw
1‖ → 0 (t→∞), (4.1.16)

and the “smallest” eigenvalue λmin = λ1 of A is approximated with convergence speed,
in the general non-Hermitian case using (4.1.10),

λt = λmin +O
(∣∣∣λmin

λ2

∣∣∣t) (t→∞). (4.1.17)

and with squared power 2t in the Hermitian case using (4.1.11).
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Remark 4.2: The inverse iteration allows the approximation of any eigenvalue of A for
which a sufficiently good approximation is known, where “sufficiently good” depends on
the separation of the desired eigenvalue of A from the other ones. The price to be paid
for this flexibility is that each iteration step requires the solution of the nearly singular
system (A − λ̃I)zt = zt−1. This means that the better the approximation λ̃ ≈ λk , i. e.,
the faster the convergence of the Inverse Iteration is, the more expensive is each iteration
step. This effect is further amplified if the Inverse Iteration is used with “dynamic shift”
λ̃ := λtk, in order to speed up its convergence.

The solution of the nearly singular linear systems (4.1.9),

(A− λ̃I)z̃t = zt−1,

can be accomplished, for moderately sized matrices, by using an a priori computed LR or
Cholesky (in the Hermitian case) decomposition and, for large matrices, by the GMRES
or the BiCGstab method and the CG method (in the Hermitian case). The matrix A−λ̃I
is very ill-conditioned with condition number

cond2(A− λ̃I) =
|λmax(A− λ̃I)|
|λmin(A− λ̃I)| =

maxj=1,...,n |λj − λ̃|
|λk − λ̃| 
 1.

Therefore, preconditioning is mandatory. However, only the “direction” of the iterate
z̃t is needed, which is a much better conditoned task almost independent of the quality
of the approximation λ̃ to λk. In this case a good preconditioning is obtained by the
incomplete LR (or the incomplete Cholesky) decomposition.

Example 4.1: We want to apply the considered methods to the eigenvalue problem of
the model matrix from Section 3.4. The determination of vibration mode and frequency of
a membrane over the square domain Ω = (0, 1)2 (drum) leads to the eigenvalue problem
of the Laplace operator

−∂
2w

∂x2
(x, y)− ∂2w

∂y2
(x, y) = μw(x, y) for (x, y) ∈ Ω,

w(x, y) = 0 for (x, y) ∈ ∂ Ω.

. (4.1.18)

This eigenvalue problem in function space shares several properties with that of a sym-
metric, positive definite matrix in Rn. First, there are only countably many real, positive
eigenvalues with finite (geometric) multiplicities. The corresponding eigenspaces span
the whole space L2(Ω) . The smallest of theses eigenvalues, μmin > 0, and the associated
eigenfunction, wmin, describe the fundamental tone and the fundamental oscillation mode
of the drum. The discretization by the 5-point difference operator leads to the matrix
eigenvalue problem

Az = λz, λ = h2μ, (4.1.19)

with the same block-tridiagonal matrix A as occurring in the corresponding discretization
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of the boundary value problem discussed in Section 3.4. Using the notation from above,
the eigenvalues of A are explicitly given by

λkl = 4− 2(cos(khπ) + cos(lhπ)) , k, l = 1, . . . , m.

We are interested in the smallest eigenvalue λmin of A , which by h−2λmin ≈ μmin yields
an approximation to the smallest eigenvalue of problem (4.1.18). For λmin and the next
eigenvalue λ∗ > λmin there holds

λmin = 4− 4 cos(hπ) = 2π2h2 +O(h4),

λ∗ = 4− 2(cos(2hπ) + cos(hπ)) = 5π2h2 +O(h4).

For computing λmin, we may use the inverse iteration with shift λ = 0 . This requires in
each iteration the solution of a linear system like

Azt = zt−1. (4.1.20)

For the corresponding eigenvalue approximation

λt = (z̃t+1, zt)2, (4.1.21)

there holds the convergence estimate

|λt − λmin| ≈
(λmin

λ∗

)2t

≈
(2
5

)2t

, (4.1.22)

i. e., the convergence is independent of the mesh size h or the dimension n = m2 ≈ h−2

of A. However, in view of the relation μmin = h−2λmin achieving a prescribed accuracy
in the approximation of μmin requires the scaling of the tolerance in computing λmin

by a factor h2, which introduces a logarithmic h-dependence in the work count of the
algorithm,

t(ε) ≈ log(εh2)

log(2/5)
≈ log(n). (4.1.23)

This strategy for computing μmin is not very efficient if the solution of the subproblems
(4.1.20) would be done by the PCG method. For reducing the work, one may use an
iteration-dependent stopping criterion for the inner PCG iteration by which its accuracy
is balanced against that of the outer inverse iteration.

Remark 4.3: Another type of iterative methods for computing single eigenvalues of sym-
metric or nonsymmetric large-scale matrices is the “Jacobi-Davidson method” (Davidson
[30]), which is based on the concept of defect correction. This method will not be dis-
cussed in these lecture notes, we rather refer to the literature, e. g., Crouzeix et al. [29]
and Sleijpen&Van der Vorst [48]
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4.2 Methods for the full eigenvalue problem

In this section, we consider iterative methods for solving the full eigenvalue problem of
an arbitrary matrix A ∈ Rn×n. Since these methods use successive factorizations of
matrices, which for general full matrices have arithmetic complexity O(n3), they are only
applied to matrices with special sparsity pattern such as general Hessenberg or symmetric
tridiagonal matrices. In the case of a general matrix therefore at firsr a reduction to such
special structure has to be performed (e. g., by applying Householder transformations as
discussed in Section 2.5.1). As application of such a method, we discuss the computation
of the singular value decomposition of a general matrix. In order to avoid confusion
between “indexing” and “exponentiation”, in the following, we use the notation A(t)

instead of the short version At for elements in a sequence of matrices.

4.2.1 The LR and QR method

I) The “LR method” of Rutishauser3 (1958), starting from some initial guess A(1) := A,
generates a sequence of matrices A(t), t ∈ N, by the prescription

A(t) = L(t)R(t) (LR decomposition), A(t+1) := R(t)L(t). (4.2.24)

Since
A(t+1) = R(t)L(t) = L(t)−1L(t)R(t)L(t) = (L(t)−1A(t)L(t),

all iterates A(t) are similar to A and therefore have the same eigenvalues as A. Under
certain conditions on A , one can show that, with the eigenvalues λi of A :

lim
t→∞

A(t) = lim
t→∞

R(t) =

⎡
⎢⎢⎣
λ1 ∗

. . .

0 λn

⎤
⎥⎥⎦ , lim

t→∞
L(t) = I. (4.2.25)

The LR method requires in each step the computation of an LR decomposition and is
consequently by far too costly for general full matrices. For Hessenberg matrices the work
is acceptable. The most severe disadvantage of the LR method is the necessary existence
of the LR decompositions A(t) = L(t)R(t). If only a decomposition P (t)A(t) = L(t)R(t)

exists with a perturbation matrix P (t) �= I the method may not converge. This problem
is avoided by the so-called “QR method”.

II) The “QR method” of Francis4 (1961) is considered as the currently most efficient
method for solving the full eigenvalue problem of Hessenberg matrices. Starting from

3Heinz Rutishauser (1918–1970): Swiss mathematician and computer scientist; since 1962 Prof. at
ETH Zurich; contributions to Numerical Linear Algebra (LR method: “Solution of eigenvalue problems
with the LR transformation”, Appl. Math. Ser. nat. Bur. Stand. 49, 47-81(1958).) and Analysis as well
as to the foundation of Computer Arithmetik.

4J. F. G. Francis: “The QR transformation. A unitary analogue to the LR transformation”, Computer
J. 4, 265-271 (1961/1962).
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some initial guess A(1) = A a sequence of matrices A(t), t ∈ N, is generated by the
prescription

A(t) = Q(t)R(t) (QR decomposition), A(t+1) := R(t)Q(t), (4.2.26)

where Q(t) is unitary and R(t) is an upper triangular matrix with positive diagonal
elements (in order to ensure its uniqueness). The QR decomposition can be obtained,
e. g., by employing Householder transformations. Because of the high costs of this method
for a general full matrix the QR method is economical only for Hessenberg matrices or,
in the symmetric case, only for tridiagonal matrices. Since

A(t+1) = R(t)Q(t) = Q(t)TQ(t)R(t)Q(t) = Q(t)TA(t)Q(t),

all iterates A(t) are similar to A and therefore have the same eigenvalues as A. The
proof of convergence of the QR method will use the following auxiliary lemma.

Lemma 4.1: Let E(t) ∈ Rn×n, t ∈ N, be regular matrices, which satisfy limt→∞E(t) = I
and possess the QR decompositions E(t) = Q(t)R(t) with rii > 0. Then, there holds

lim
t→∞

Q(t) = I = lim
t→∞

R(t). (4.2.27)

Proof. Since

‖E(t) − I‖2 = ‖Q(t)R(t) −Q(t)Q(t)T ‖2 = ‖Q(t)(R(t) −Q(t)T )‖2 = ‖R(t) −Q(t)T ‖2 → 0,

it follows that q
(t)
jk → 0 (t→∞) for j < k . In view of

I = Q(t)Q(t)T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

� → 0

� ∗
. . .

∗ �

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�

� ∗
∗ . . .

�

→ 0 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

we conclude that
q
(t)
jj → ±1 , q

(t)
jk → 0 (t→ ∞), j > k.

Hence Q(t) → diag(±1) (t →∞). Since

Q(t)R(t) = E(t) → I (t→∞) , rjj > 0,

also limt→∞ Q(t) = I. Then,

lim
t→∞

R(t) = lim
t→∞

Q(t)TE(t) = I,

what was to be shown. Q.E.D.



4.2 Methods for the full eigenvalue problem 161

Theorem 4.3 (QR method): Let the eigenvalues of the matrix A ∈ Rn×n be separated
with respect to their modulus, i. e., |λ1| > |λ2| > . . . > |λn| . Then, the matrices A(t) =

(a
(t)
jk )j,k=1,...,n generated by the QR method converge like

{ lim
t→∞

a
(t)
jj | j = 1, . . . , n} = {λ1, . . . , λn}. (4.2.28)

Proof. The separation assumption implies that all eigenvalues of the matrix A are
simple. There holds

A(t) = R(t−1)Q(t−1) = Q(t−1)TQ(t−1)R(t−1)Q(t−1) = Q(t−1)TA(t−1)Q(t−1)

= . . . = [Q(1) . . . Q(t−1)]TA[Q(1) . . . Q(t−1)] =: P (t−1)TAP (t−1).
(4.2.29)

The normalized eigenvectors wi, ‖wi‖ = 1, associated to the eigenvalues λi are linearly
independent. Hence, the matrix W = [w1, . . . , wn] is regular and there holds the relation
AW = WΛ with the diagonal matrix Λ = diag(λi). Consequently,

A = WΛW−1.

Let QR = W be a QR decomposition of W and LS = PW−1 an LR decomposition of
PW−1 (P an appropriate permutation matrix). In the following, we consider the simple
case that P = I . There holds

At = [WΛW−1]t =WΛtW−1 = [QR]Λt[LS] = QR[ΛtLΛ−t]ΛtS

= QR

⎡
⎢⎢⎢⎣

1 0
. . .

ljk

(
λj

λk

)t

1

⎤
⎥⎥⎥⎦ΛtS

= QR[I +N (t)]ΛtS = Q[R +RN (t)]ΛtS,

and, consequently,

At = Q[I +RN (t)R−1]RΛtS. (4.2.30)

By the assumption on the separation of the eigenvalues λi , we have |λj/λk| < 1, j > k ,
which yields

N (t) → 0 , RN (t)R−1 → 0 (t→∞).

Then, for the (uniquely determined) QR decomposition Q̃(t)R̃(t) = I + RN (t)R−1 with

r̃
(t)
ii > 0, Lemma 4.1 implies

Q̃(t) → I , R̃(t) → I (t→ ∞).

Further, recalling (4.2.30),

At = Q[I +RN (t)R−1]RΛtS = Q[Q̃(t)R̃(t)]RΛtS = [QQ̃(t)][R̃(t)RΛtS]
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is obviously a QR decomposition of At (but with not necessarily positive diagonal ele-
ments of R). By (4.2.29) and Q(t)R(t) = A(t) there holds

[Q(1) . . . Q(t)︸ ︷︷ ︸
= P (t)

] [R(t) . . . R(1)︸ ︷︷ ︸
=: S(t)

] = [Q(1) . . . Q(t−1)︸ ︷︷ ︸
= P (t−1)

] A(t) [R(t−1) . . . R(1)︸ ︷︷ ︸
=: S(t−1)

]

= P (t−1) [P (t−1)T A P (t−1)]S(t−1) = A P (t−1)S(t−1),

and observing P (1)S(1) = A,

P (t)S(t) = AP (t−1)S(t−1) = . . . = At−1P (1)S(1) = At. (4.2.31)

This yields another QR decomposition of At , i. e.,

[QQ̃(t)][R̃(t)RΛtS] = At = P (t)S(t).

Since the QR decomposition of a matrix is unique up to the scaling of the column vectors
of the unitary matrix Q , there must hold

P (t) = QQ̃(t)D(t) =: QT (t),

with certain diagonal matrices D(t) = diag(±1). Then, recalling again the realtion
(4.2.29) and observing that

A =WΛW−1 = QRΛ[QR]−1 = QRΛR−1QT ,

we conclude that

A(t+1) = P (t)TAP (t) = [QT (t)]TAQT (t)

= T (t)TQT [QRΛR−1QT ]QT (t) = T (t)TRΛR−1T (t)

= T (t)T

⎡
⎢⎢⎣
λ1 ∗

. . .

0 λn

⎤
⎥⎥⎦T (t) = D(t)Q̃(t)T

⎡
⎢⎢⎣
λ1 ∗

. . .

0 λn

⎤
⎥⎥⎦ Q̃(t)D(t).

Since Q̃(t) → I (t→ ∞) and D(t)D(t) = I, we obtain

D(t)A(t+1)D(t) →

⎡
⎢⎢⎣
λ1 ∗

. . .

0 λn

⎤
⎥⎥⎦ (t→ ∞).

In case that W−1 does not possess an LR decomposition, then the eigenvalues λi do not
appear ordered according to their modulus. Q.E.D.
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Remark 4.4: The separation assumption |λ1| > |λ2| > . . . > |λn| means that all eigen-
values of A are simple, which implies that A is necessarily diagonalizable. For more
general matrices the convergence of the QR method is not guaranteed. However, conver-
gence in a suitable sense can be shown in case of multiple eigenvalues (such as in the model
problem of Section 3.4). For a more detailed discussion, we refer to the literature, e. g.,
Deuflhard&Hohmann [33], Stoer&Bulirsch [50], Golub&Loan [36], and Parlett [44].

The speed of convergence of the QR method, i. e., the convergence of the off-diagonal
elements in A(t) to zero, is determined by the size of the quotients∣∣∣∣λjλk

∣∣∣∣ < 1, j > k,

The convergence is the faster the better the eigenvalues of A are modulus-wise separated.
This suggests to use the QR algorithm with a “shift” σ for the matrix A−σI, such that∣∣∣∣λj − σ

λk − σ

∣∣∣∣ �
∣∣∣∣λjλk

∣∣∣∣ < 1,

for the most interesting eigenvalues. The QR method with (dynamic) shift starts form
some initial guess A(1) = A and constructs a sequence of matrices A(t), t ∈ N, by the
prescription

A(t) − σtI = Q(t)R(t) (QR decomposition), A(t+1) := R(t)Q(t) + σtI, (4.2.32)

This algorithm again produces a sequence of similar matrices:

A(t+1) = R(t)Q(t) + σtI

= Q(t)TQ(t)R(t)Q(t) + σtI = Q(t)T [A(t) − σtI]Q
(t) + σtI

= Q(t)TA(t)Q(t).

(4.2.33)

For this algorithm a modified version of the proof of Theorem 4.3 yields a convergence
estimate

|a(t)jk | ≤ c
(∣∣∣λj − σ1
λk − σ1

∣∣∣ · · · ∣∣∣λj − σt
λk − σt

∣∣∣), j > k, (4.2.34)

for the lower off-diagonal elements of the iterates A(t) = (a
(t)
jk )

n
j,k=1.

Remark 4.5: For positive definite matrices the QR method converges twice as fast as the
corresponding LR method, but requires about twice as much work in each iteration. Under
certain structural assumpotions on the matrix A , one can show that the QR method with
varying shifts converges with quadratic order for Hermitian tridiagonal matrices and even
with cubic order for unitary Hessenberg matrices (see Wang&Gragg [56]).

|λ(t) − λ| ≤ c|λ(t−1) − λ|3,
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As the LR method, for economy reasons, also the QR method is applied only to pre-
reduced matrices for which the computation of the QR decomposition is of acceptable cost,
e. g., Hessenber matrices, symmetric tridiagonal matrices or more general band matrices
with bandwidth 2m + 1 � n = m2 (e. g., the model matrix considered in Section 3.4).
This is justified by the following observation.

Lemma 4.2: If A is a Hessenberg matrix (or a symmetric 2m + 1-band matrix), then
the same holds true for the matrices A(t) generated by the QR method.

Proof. The proof is posed as exercise. Q.E.D.

4.2.2 Computation of the singular value decomposition

The numerically stable computation of the singular value decomposition (SVD) is rather
costly. For more details, we refer to the literature, e. g., the book by Golub&van Loan
[36]. The SVD of a matrix A ∈ Cn×k is usually computed by a two-step procedure. In the
first step, the matrix is reduced to a bidiagonal matrix. This requires O(kn2) operations,
assuming that k ≤ n . The second step is to compute the SVD of the bidiagonal matrix.
This step needs an iterative method since the problem to be solved is generically nonlinear.
For fixe4 accuracy requirement (e. g., round-off error level) this takes O(n) iterations,
each costing O(n) operations. Thus, the first step is more expensive and the overall
cost is O(kn2) operations (see Trefethen&Bau [54]). The first step can be done using
Householder reflections for a cost of O(kn2 + n3) operations, assuming that only the
singular values are needed and not the singular vectors.

The second step can then very efficiently be done by the QR algorithm. The LAPACK
subroutine DBDSQR[9] implements this iterative method, with some modifications to
cover the case where the singular values are very small. Together with a first step using
Householder reflections and, if appropriate, QR decomposition, this forms the LAPACK
DGESVD[10] routine for the computation of the singular value decomposition.

If the matrix A is very large, i. e., n ≥ 104 − 108 , the method described so far for
computing the SVD is too expensive. In this situation, particularly if A ∈ Cn×n is square
and regular, the matrix is first reduced to smaller dimension,

A→ A(m) = Q(m)TAQ(m) ∈ C
m×m,

with m � n, by using, e. g., the Arnoldi process described below in Section 4.3.1, and
then the above method is applied to this reduced matrix. For an appropriate choice
of the orthonormal transformation matrix Q(m) ∈ Cn×m the singular values of A(m)

are approximations of those of A , especially the “largest” ones (by modulus). If one is
interested in the “smallest” singular values of A , what is typically the case in applications,
the dimensional reduction process has to be applied to the inverse matrix A−1 .
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4.3 Krylov space methods

“Krylov space methods” for solving eigenvalue problems follow essentially the same idea
as in the case of the solution of linear systems. The original high-dimensional problem
is reduced to smaller dimension by applying the Galerkin approximation in appropriate
subspaces, e. g., so-called “Krylov space”, which are sucessively constructed using the
given matrix and sometimes also its transpose. The work per iteration should amount to
about one matrix-vector multiplication. We will consider the two most popular variants
of such methods, the “Arnoldi5 method” for general, not necessarily Hermitian matrices,
and its specialization for Hermitian matrices, the “Lanczos6 method”.

First, we introduce the general concept of such a “model reduction” by “Galerkin
approximation”. Consider a general eigenvalue problem

Az = λz, (4.3.35)

with a higher-dimensional matrix A ∈ Cn×n, n ≥ 104, which may have resulted from the
discretization of the eigenvalue problem of a partial differential operator. This eigenvalue
problem can equivalently be written in variational from as

z ∈ C
n, λ ∈ C : (Az, y)2 = λ(z, y)2 ∀y ∈ C

n. (4.3.36)

Let Km = span{q1, . . . , qm} be an appropriately chosen subspace of Cn of smaller di-
mension dimKm = m � n. Then, the n-dimensional eigenvalue problem (4.3.36) is
approximated by the m-dimensional “Galerkin eigenvalue problem”

z ∈ Km, λ ∈ C : (Az, y)2 = λ(z, y)2 ∀y ∈ Km. (4.3.37)

Expanding the eigenvector z ∈ Km with respect to the given basis, z =
∑m

j=1 αjq
j , the

Galerkin system takes the form

m∑
j=1

αj(Aq
j, qi)2 = λ

m∑
j=1

αj(q
j, qi)2, i = 1, . . . , m, (4.3.38)

5Walter Edwin Arnoldi (1917–1995): US-American engineer; graduated in Mechanical Engineering
at the Stevens Institute of Technology in 1937; worked at United Aircraft Corp. from 1939 to 1977;
main research interests included modelling vibrations, Acoustics and Aerodynamics of aircraft propellers;
mainly known for the “Arnoldi iteration”; the paper “The principle of minimized iterations in the solution
of the eigenvalue problem”, Quart. Appl. Math. 9, 17-29 (1951), is one of the most cited papers in
Numerical Linear Algebra.

6Cornelius (Cornel) Lanczos (1893–1974): Hungarian mathematician and physicist; PhD in 1921 on
Relativity Theory; assistant to Albert Einstein 19281929; contributions to exact solutions of the Einstein
field equation; discovery of the fast Fourier transform (FFT) 1940; worked at the U.S. National Bureau
of Standards after 1949; invented the “Lanczos algorithm” for finding eigenvalues of large symmetric
matrices and the related conjugate gradient method; in 1952 he left the USA for the School of Theoretical
Physics at the Dublin Institute for Advanced Studies in Ireland, where he succeeded Schrödinger and
stayed until 1968; Lanczos was author of many classical text books.
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Within the framework of Galerkin approximation this is usually written in compact form
as a generalized eigenvalue problem

Aα = λMα, (4.3.39)

for the vector α = (αj)
n
j=1 , involving the matrices A =

(
(Aqj, qi)2

)n
i,j=1

and M =(
(qj, qi)2

)n
i,j=1

.

In the following, we use another formulation. With the Cartesian representations of
the basis vectors qi = (qij)

n
j=1 the Galerkin eigenvalue problem (4.3.37) is written in the

form

m∑
j=1

αj

n∑
k,l=1

aklq
j
kq̄

i
l = λ

m∑
j=1

αj

n∑
k=1

qjkq̄
i
k, i = 1, . . . , m. (4.3.40)

Then, using the matrix Q(m) := [q1, . . . , qm] ∈ Cn×m and the vector α = (αj)
m
j=1 ∈ Cm

this can be written in compact form as

Q̄(m)TAQ(m)α = λQ̄(m)TQ(m)α. (4.3.41)

If {q1, . . . , qm} were an ONB of Km this reduces to the normal eigenvalue problem

Q̄(m)TAQ(m)α = λα, (4.3.42)

of the reduced matrix H(m) := Q̄(m)TAQ(m) ∈ Cm×m. If the reduced matrix H(m) has a
particular structure, e. g., a Hessenberg matrix or a symmetric tridiagonal matrix, then,
the lower-dimensional eigenvalue problem (4.3.42) can efficiently be solved by the QR
method. Its eigenvalues may be considered as approximations to some of the dominant
eigenvalues of the original matrix A and are called “Ritz7 eigenvalues” of A . In view of
this preliminary consideration the “Krylov methods” consist in the following steps:

1. Choose an appropriate subspace Km ⊂ Cn, m � n (a “Krylov space”), using the
matrix A and powers of it.

2. Construct an ONB {q1, . . . , qm} of Km by the stabilized version of the Gram-
Schmidt algorithm, and set Q(m) := [q1, . . . , qm].

3. Form the matrix H(m) := Q̄(m)TAQ(m), which then by construction is a Hessenberg
matrix or, in the Hermitian case, a Hermitian tridiagonal matrix.

4. Solve the eigenvalue problem of the reduced matrix H(m) ∈ C
m×m by the QR

method.

5. Take the eigenvalues of H(m) as approximations to the dominant (i. e., “largest”)
eigenvalues of A . If the “smallest” eigenvalues (i. e., those closest to the origin) are

7Walter Ritz (1878–1909): Swiss physicist; Prof. in Zürich and Göttingen; contributions to Spectral
Theorie in Nuclear Physics and Electromagnetism.
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to be determined the whole process has to be applied to the inverse matrix A−1,
which possibly makes the construction of the subspace Km expensive.

Remark 4.6: In the above form the Krylov method for eigenvalue problems is analogous
to its version for (real) linear systems described in Section 3.3.3. Starting from the
variational form of the linear system

x ∈ R
n : (Ax, y)2 = (b, y)2 ∀y ∈ R

n,

we obtain the following reduced system for xm =
∑m

j=1 αjq
j:

m∑
j=1

αj

n∑
k,l=1

aklq
j
kq

i
l =

n∑
k=1

bkq
i
k, i = 1, . . . , m.

This is then equivalent to the m-dimensional algebraic system

Q(m)TAQ(m)α = Q(m)T b.

4.3.1 Lanczos and Arnoldi method

The “power method” for computing the largest eigenvalue of a matrix only uses the
current iterate Amq, m � n, for some normalized starting vector q ∈ Cn, ‖q‖2 = 1, but
ignores the information contained in the already obtained iterates {q, Aq, . . . , A(m−1)q}.
This suggests to form the so-called “Krylov matrix”

Km = [q, Aq, A2q, . . . , Am−1q], 1 ≤ m ≤ n.

The columns of this matrix are not orthogonal. In fact, since Atq converges to the
direction of the eigenvector corresponding to the largest (in modulus) eigenvalue of A ,
this matrix tends to be badly conditioned with increasing dimension m. Therefore, one
constructs an orthogonal basis by the Gram-Schmidt algorithm. This basis is expected to
yield good approximations of the eigenvectors corresponding to the m largest eigenvalues,
for the same reason that Am−1q approximates the dominant eigenvector. However, in
this simplistic form the method is unstable due to the instability of the standard Gram-
Schmidt algorithm. Instead the “Arnoldi method” uses a stabilized version of the Gram-
Schmidt process to produce a sequence of orthonormal vectors, {q1, q2, q3, . . .} called
the “Arnoldi vectors”, such that for every m, the vectors {q1, . . . , qm} span the Krylov
subspace Km. For the following, we define the orthogonal projection operator

proju(v) := ‖u‖−2
2 (v, u)2u ,

which projects the vector v onto span{u}. With this notation the classical Gram-Schmidt
orthonormalization process uses the recurrence formulas:



168 Iterative Methods for Eigenvalue Problems

q1 = ‖q‖−1
2 q, t = 2, . . . , m :

q̃t = At−1q −
t−1∑
j=1

projqj (A
t−1q), qt = ‖q̃t‖−1

2 q̃t.
(4.3.43)

Here, the t-th step projects out the component of At−1q in the directions of the already
determined orthonormal vectors {q1, . . . , qt−1}. This algorithm is numerically unstable
due to round-off error accumulation. There is a simple modification, the so-called “mod-
ified Gram-Schmidt algorithm”, where the t-th step projects out the component of Aqt

in the directions of {q1, . . . , qt−1}:

q1 = ‖q‖−1
2 q, t = 2, . . . , m :

q̃t = Aqt−1 −
t−1∑
j=1

projqj (Aq
t−1), qt = ‖q̃t‖−1

2 q̃t.
(4.3.44)

Since qt, q̃t are aligned and q̃t⊥Kt , we have

(qt, q̃t)2 = ‖q̃t‖2 =
(
q̃t, Aqt−1 −

∑t−1

j=1
projqj (Aq

t−1)
)
2
= (q̃t, Aqt−1)2.

Then, with the setting hi,t−1 := (Aqt−1, qi)2, from (4.3.44), we infer that

Aqt−1 =
t∑

i=1

hi,t−1q
i, t = 2, . . . , m+ 1. (4.3.45)

In practice the algorithm (4.3.44) is implemented in the following equivalent recursive
form:

q1 = ‖q‖−1
2 q, t = 2, . . . , m :

j = 1, . . . , t− 1 : qt,1 = Aqt−1,

qt,j+1 = qt,j − projqj(q
t,j), qt = ‖qt,t‖−1

2 qt,t.

(4.3.46)

This algorithm gives the same result as the original formula (4.3.43) but introduces smaller
errors in finite-precision arithmetic. Its cost is asymptotically 2nm2 a. op.

Definition 4.3 (Arnoldi algorithm): For a general matrix A ∈ C
n×n the Arnoldi

method determines a sequence of orthonormal vectors qt ∈ Cn, 1 ≤ t ≤ m � n
(“Arnoldi basis”), by applying the modified Gram-Schmidt method (4.3.46) to the basis
{q, Aq, . . . , Am−1q} of the Krylov space Km:

Starting vector: q1 = ‖q‖−1
2 q.

Iterate for 2 ≤ t ≤ m: qt,1 = Aqt−1,

j = 1, . . . , t−1 : hj,t = (qt,j , qj)2, qt,j+1 = qt,j − hj,tq
j ,

ht,t = ‖qt,t‖2, qt = h−1
t,t q

t,t
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Let Q(m) denote the n×m-matrix formed by the first m Arnoldi vectors {q1, q2, . . . , qm},
and let H(m) be the (upper Hessenberg) m×m-matrix formed by the numbers hjk:

Q(m) := [q1, q2, . . . , qm], H(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 h13 . . . h1m

h21 h22 h23 . . . h2m

0 h32 h33 . . . h3m
...

. . .
. . .

. . .
...

0 0 hm,m−1 hmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrices Q(m) are orthonormal and in view of (4.3.45) satisfy (“Arnoldi relation”)

AQ(m) = Q(m)H(m) + hm+1,m[0, . . . , 0, q
m+1]. (4.3.47)

Multiplying by Q̄(m)T from the left and observing Q̄(m)TQ(m) = I and Q̄(m)T qm+1 = 0 ,
we infer that

H(m) = Q̄(m)TAQ(m). (4.3.48)

In the limit case m = n the matrix H(n) is similar to A and, therefore, has the same
eigenvalues. This suggests that even for m � n the eigenvalues of the reduced matrix
H(m) may be good approximations to some eigenvalues of A . When the algorithm stops
(in exact arithmetic) for some m < n by hm+1,m = 0, then the Krylov space Km is an
invariant subspace of the matrix A and the reduced matrix H(m) = Q̄(m)TAQ(m) has m
eigenvalues in common with A (exercise), i. e.,

σ(H(m)) ⊂ σ(A).

The following lemma provides an a posteriori bound for the accuracy in approximating
eigenvalues of A by those of H(m).

Lemma 4.3: Let {μ, w} be an eigenpair of the Hessenberg matrix H(m) and let v =
Q(m)w so that (μ, v} is an approximate eigenpair of A. Then, there holds

‖Aw − μw‖2 = |hm+1,m| |wm|, (4.3.49)

where wm is the last component of the eigenvector w.

Proof. Multiplying in (4.3.47) by w yields

Av = AQ(m)w = Q(m)H(m)w + hm+1,m[0, . . . , 0, q
m+1]w

= μQ(m)w + hm+1,m[0, . . . , 0, q
m+1]w = μv + hm+1,m[0, . . . , 0, q

m+1]w.

Consequently, observing ‖qm+1‖2 = 1,

‖Av − μv‖2 = |hm+1,m| |wm|,
which is the asserted identity. Q.E.D.
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The relation (4.3.49) does not provide a priori information about the convergence of
the eigenvalues of H(m) against those of A for m→ n , but in view of σ(H(n)) = σ(A)
this is not the question. Instead, it allows for an a posteriori check on the basis of the
computed quantities hm+q,m and wm whether the obtained pair {μ, w} is a reasonable
approximation.

Remark 4.7: i) Typically, the Ritz eigenvalues converge to the extreme (“maximal”)
eigenvalues of A. If one is interested in the “smallest” eigenvalues, i. e., those which
are closest to zero, the method has to be applied to the inverse matrix A−1 , similar to
the approach used in the “Inverse Iteration”. In this case the main work goes into the
generation of the Krylov space Km = span{q, A−1q, . . . , (A−1)m−1q}, which requires the
successive solution of linear systems,

v0 := q, Av1 = v0, . . . Avm = vm−1.

ii) Due to practical storage consideration, common implementations of Arnoldi methods
typically restart after some number of iterations. Theoretical results have shown that
convergence improves with an increase in the Krylov subspace dimension m. However,
an a priori value of m which would lead to optimal convergence is not known. Recently a
dynamic switching strategy has been proposed, which fluctuates the dimension m before
each restart and thus leads to acceleration of convergence.

Remark 4.8: The algorithm (4.3.46) can be used also for the stable orthonormalization
of a general basis {v1, . . . , vm} ⊂ Cn :

u1 = ‖v1‖−1
2 v1, t = 2, . . . , m :

j = 1, . . . , t− 1 : ut,1 = vt,

ut,j+1 = ut,j − projuj(ut,j), ut = ‖ut,t‖−1
2 ut,t.

(4.3.50)

This “modified” Gram-Schmidt algorithm (with exact arithmetic) gives the same result
as its “classical” version (exercise)

u1 = ‖v1‖−1
2 v1, t = 2, . . . , m :

ũt = vt −
t−1∑
j=1

projuj(vt), ut = ‖ũt‖−1
2 ũt.

(4.3.51)

Both algorithms have the same arithmetic complexity (exercise). In each step a vector is
determined orthogonal to its preceding one and also orthogonal to any errors introduced
in the computation, which enhances stability. This is supported by the following stability
estimate for the resulting “orthonormal” matrix U = [u1, . . . , um]

‖UTU − I‖2 ≤ c1 cond2(A)

1− c2 cond2(A)
ε. (4.3.52)

The proof can be found in Björck&Paige [26].
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Remark 4.9: Other orthogonalization algorithms use Householder transformations or
Givens rotations. The algorithms using Householder transformations are more stable
than the stabilized Gram-Schmidt process. On the other hand, the Gram-Schmidt pro-
cess produces the t-th orthogonalized vector after the t-th iteration, while orthogonaliza-
tion using Householder reflections produces all the vectors only at the end. This makes
only the Gram-Schmidt process applicable for iterative methods like the Arnoldi itera-
tion. However, in Quantum Mechanics there are several orthogonalization schemes with
characteristics even better suited for applications than the Gram-Schmidt algorithm

As in the solution of linear systems by Krylov space methods, e. g., the GMRES
method, the high storage needs for general matrices are avoided in the case of Hermitian
matrices due to the availability of short recurrences in the orthonormalization process.
This is exploited in the “Lanczos method”. Suppose that the matrix A is Hermitian.
Then, the recurrence formula of the Arnoldi method

q̃t = Aqt−1 −
t−1∑
j=1

(Aqt−1, qj)2q
j, t = 2, . . . , m+ 1,

because of (Aqt−1, qj)2 = (qt−1, Aqj)2 = 0, j = 1, . . . , t− 3, simplifies to

q̃t = Aqt−1 − (Aqt−1, qt−1)2︸ ︷︷ ︸
=: αt−1

qt−1 − (Aqt−1, qt−2)2︸ ︷︷ ︸
=: βt−2

qt−2 = Aqt−1 − αt−1q
t−1 − βt−2q

t−2.

Clearly, αt−1 ∈ R since A Hermitian. Further, multiplying this identity by qt yields

‖q̃t‖2 = (qt, q̃t)2 = (qt, Aqt−1 − αt−1q
t−1 − βt−2q

t−2)2 = (qt, Aqt−1)2 = (Aqt, qt−1)2 = βt−1.

This implies that also βt−1 ∈ R and βt−1q
t = q̃t . Collecting the foregoing relations, we

obtain

Aqt−1 = βt−1q
t + αt−1q

t−1 + βt−2q
t−2, t = 2, . . . , m+ 1. (4.3.53)

These equations can be written in matrix form as follows:

AQ(m) = Q(m)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β2 0 . . . . . . 0

β2 α2 β3 0
...

0 β3 α3
. . .

. . .
...

...
. . .

. . .
. . . βm−1 0

... 0 βm−1 αm−1 βm

0 . . . . . . 0 βm αm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=: T (m)

+ βm[0, . . . , 0, q
m+1],

where the matrix T (m) ∈ Rm×m is real symmetric. From this so-called “Lanczos relation”,
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we finally obtain

Q̄(m)TAQ(m) = T (m). (4.3.54)

Definition 4.4 (Lanczos Algorithm): For a Hermitian matrix A ∈ C
n×n the Lanczos

method determines a set of orthonormal vectors {q1, . . . , qm}, m � n, by applying the
modified Gram-Schmidt method to the basis {q, Aq, . . . , Am−1q} of the Krylov space Km:

Starting values: q1 = ‖q‖−1
2 q, q0 = 0, β1 = 0.

Iterate for 1 ≤ t ≤ m− 1: rt = Aqt, αt = (rt, qt)2,

st = rt − αtq
t − βtq

t−1,

βt+1 = ‖st‖2, qt+1 = β−1
t+1s

t,

rm = Aqm, αm = (rm, qm)2.

After the matrix T (m) is calculated, one can compute its eigenvalues λi and their
corresponding eigenvectors wi, e. g., by the QR algorithm. The eigenvalues and eigen-
vectors of T (m) can be obtained in as little as O(m2) work. It can be proven that the
eigenvalues are approximate eigenvalues of the original matrix A. The Ritz eigenvectors
vi of A can then be calculated by vi = Q(m)wi.

4.3.2 Computation of the pseudo-spectrum

As an application of the Krylov space methods described so far, we discuss the computa-
tion of the pseudo-spectrum of a matrix Ah ∈ R

n×n, which resulted from the discretization
of a dynamical system governed by a differential operator in the context of linearized sta-
bility analysis. Hence, we are interested in the most “critical” eigenvalues, i. e., in those
which are close to the origin or to the imaginary axis. This requires to consider the in-
verse of matrix, T = A−1

h . Thereby, we follow ideas developed in Trefethen&Embree
[22], Trefethen [21], and Gerecht et al. [35]. The following lemma collects some useful
facts on the pseudo-spectra of matrices.

Lemma 4.4: i) The ε-pseudo-spectrum of a matrix T ∈ C
n×n can be equivalently defined

in the following way:

σε(T ) := {z ∈ C | σmin(zI − T ) ≤ ε}, (4.3.55)

where σmin(B) denotes the smallest singular value of the matrix B , i. e.,

σmin(B) := min{λ1/2| λ ∈ σ(B̄TB)},

with the (complex) adjoint B̄T of B .

ii) The ε-pseudo-spectrum σε(T ) of a matrix T ∈ Cn×n is invariant under orthonormal
transformations, i. e., for any unitary matrix Q ∈ Cn×n there holds

σε(Q̄
TTQ) = σε(T ). (4.3.56)
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Proof. i) There holds

‖(zI−T )−1‖2 = max{μ1/2|μ singular value of (zI−T )−1}
= min{μ1/2|μ singular value of zI−T}−1 = σmin(zI − T )−1,

and, consequently,

σε(T ) = {z ∈ C | ‖(zI − T )−1‖2 ≥ ε−1}
= {z ∈ C | σmin(zI − T )−1 ≥ ε−1} = {z ∈ C | σmin(zI − T ) ≤ ε}.

ii) The proof is posed as exercise. Q.E.D.

There are several different though equivalent definitions of the ε-pseudo-spectrum
σε(T ) of a matrix T ∈ Cn×n, which can be taken as starting point for the computation
of pseudo-spectra (see Trefethen [21] and Trefethen&Embree [22]). Here, we use the
definition contained in Lemma 4.4. Let σε(T ) to be determined in a whole section
D ⊂ C . We choose a sequence of grid points zi ∈ D, i = 1, 2, 3, . . . , and in each zi
determine the smallest ε for which zi ∈ σε(T ). By interpolating the obtained values, we
can then decide whether a point z ∈ C approximately belongs to σε(T ).

Remark 4.10: The characterization

σε(T ) = ∪{σ(T + E) |E ∈ C
n×n, ‖E‖2 ≤ ε} (4.3.57)

leads one to simply take a number of random matrices E of norm less than ε and to
plot the union of the usual spectra σ(T + E) . The resulting pictures are called the
“poor man’s pseudo-spectra”. This approach is rather expensive since in order to obtain
precise information of the ε-pseudo-spectrum a really large number of random matrices
are needed. It cannot be used for higher-dimensional matrices.

Remark 4.11: The determination of pseudo-spectra in hydrodynamic stability theory
requires the solution of eigenvalue problems related to the linearized Navier-Stokes equa-
tions as described in Section 0.4.3:

− νΔv + v̂ · ∇v + v · ∇v̂ +∇q = λv, ∇ · v = 0, in Ω,

v|Γrigid∪Γin
= 0, ν∂nv − qn|Γout = 0,

(4.3.58)

where v̂ is the stationary “base flow” the stability of which is to be investigated. This
eigenvalue problem is posed on the linear manifold described by the incompressibility con-
straint ∇·v = 0. Hence after discretization the resulting algebraic eigenvalue problems in-
herit the saddle-point structure of (4.3.58). We discuss this aspect in the context of a finite
element Galerkin discretization with finite element spaces Hh ⊂ H1

0 (Ω)
d and Lh ⊂ L2(Ω).

Let {ϕi
h, i = 1, . . . , nv := dimHh} and {χj

h, j = 1, . . . , np := dimLh} be standard nodal
bases of the finite element spaces Hh and Lh , respectively. The eigenvector vh ∈ Hh

and the pressure qh ∈ Lh possess expansions vh =
∑nv

i=1v
i
hϕ

i
h, qh =

∑np

j=1q
j
hχ

j
h, where

the vectors of expansion coefficients are likewise denoted by vh = (vih)
nv

i=1 ∈ Cnv and
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qh = (qjh)
np

j=1 ∈ Cnp , respectively. With this notation the discretization of the eigenvalue
problem (4.3.58) results in a generalized algebraic eigenvalue problem of the form[

Sh Bh

BT
h 0

][
vh

qh

]
= λh

[
Mh 0

0 0

][
vh

qh

]
, (4.3.59)

with the so-called stiffness matrix Sh , gradient matrix Bh and mass matrix Mh defined
by

Sh :=
(
a′(v̂h;ϕ

j
h, ϕ

i
h)
)nv

i,j=1
, Bh :=

(
(χj

h,∇ · ϕi
h)L2

)nv,np

i,j=1
, Mh :=

(
(ϕj

h, ϕ
i
h)L2

)nv

i,j=1
.

For simplicity, we suppress terms stemming from pressure and transport stabilization.
The generalized eigenvalue problem (4.3.59) can equivalently be written in the form[

Mh 0

0 0

][
Sh Bh

BT
h 0

]−1 [
Mh 0

0 0

][
vh

qh

]
= μh

[
Mh 0

0 0

][
vh

qh

]
, (4.3.60)

where μh = λ−1
h . Since the pressure qh only plays the role of a silent variable (4.3.60)

reduces to the (standard) generalized eigenvalue problem

Thvh = μhMhvh, (4.3.61)

with the matrix Th ∈ Rnv×nv defined by[
Th 0

0 0

]
:=

[
Mh 0

0 0

][
Sh Bh

BT
h 0

]−1 [
Mh 0

0 0

]
.

The approach described below for computing eigenvalues of general matrices T ∈ Rn×n

can also be applied to this non-standard situation.

Computation of eigenvalues

For computing the eigenvalues of a (general) matrix T ∈ Rn×n , we use the Arnoldi
process, which produces a lower-dimensional Hessenberg matrix the eigenvalues of which
approximate those of T :

H(m) = Q̄(m)TTQ(m) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h1,1 h1,2 h1,3 · · · h1,m

h2,1 h2,2 h2,3 · · · h2,m

0 h3,2 h3,3 · · · h3,m
...

. . .
. . .

. . .
...

0 · · · 0 hm,m−1 hm,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,
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where the matrix Q(m) = [q1, . . . , qm] is formed with the orthonormal basis {q1, . . . , qm}
of the Krylov space Km = span{q, T q, .., Tm−1q} . The corresponding eigenvalue problem
is then efficiently solved by the QR method using only O(m2) operaton. The obtained
eigenvalues approximate those eigenvalues of T with largest modulus, which in turn are
related to the desired eigenvalues of the differential operator with smallest real parts.
Enlarging the dimension m of Km improves the accuracy of this approximation as well
as the number of the approximated “largest” eigenvalues. In fact, the pseudo-spectrum
of H(m) approaches that of T for m→ n .

The construction of the Krylov space Km is the most cost-intensive part of the whole
process. It requires (m−1)-times the application of the matrix T , which, if T is the inverse
of a given system matrix, amounts to the consecutive solution of m linear systems of
dimension n
 m. This may be achieved by a multigrid method implemented in available
open source software (see Chapter 5). Since such software often does not support complex
arithmetic the linear system Sx = y needs to be rewritten in real arithmetic,

Sx = y ⇔
(

ReS ImS

−ImS ReS

)(
Rex

−Imx

)
=

(
Rey

−Imy

)
.

For the reliable approximation of the pseudo-spectrum of T in the subregion D ⊂ C it is
necessary to choose the dimension m of the Krylov space sufficiently large, such that all
eigenvalues of T and its perturbations located in D are well approximated by eigenvalues
of H(m) . Further, the QR method is to be used with maximum accuracy requiring the
corresponding error tolerance TOL to be set in the range of the machine accuracy. An
eigenvector w corresponding to an eigenvalue λ ∈ σ(H(m)) is then obtained by solving
the singular system

(H(m) − λI)w = 0. (4.3.62)

By back-transformation of this eigenvector from the Krylov space Km into the space Rn ,
we obtain a corresponding approximate eigenvector of the full matrix T .

Practical computation of the pseudospectrum

We want to determine the “critical” part of the ε-pseudo-spectrum of the discrete operator
Ah , which approximates the unbounded differential operator A . As discussed above, this
requires the computation of the smallest singular value of the inverse matrix T = A−1

h .
Since the dimension nh of T in practical applications is very high, nh ≈ 104 − 108, the
direct computation of singular values of T or even a full singular value decomposition is
prohibitively expensive. Therefore, the first step is the reduction of the problem to lower
dimension by projection onto a Krylov space resulting in a (complex) Hessenberg matrix
H(m) ∈ Cn×n the inverse of which, H(m)−1 , may then be viewed as a low-dimensional
approximation to Ah capturing the critical “smallest” eigenvalues of Ah and likewise its
pseudo-spectra. The pseudo-spectra of H(m) may then be computed using the approach
described in Section 4.2.2. By Lemma 1.17 the pseudo-spectrum of H(m) is closely related
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to that of H(m)−1 but involving constants, which are difficult to control. Therefore, one
tends to prefer to directly compute the pseudo-spectra of H(m)−1 as an approximation
to that of Ah. This, however, is expensive for larger m since the inversion of the matrix
H(m) costs O(m3) operations. Dealing directly with the Hessenberg matrix H(m) looks
more attractive. Both procedures are discussed in the following. We choose a section
D ⊂ C (around the origin), in which we want to determine the pseudo-spectrum. Let
D := {z ∈ C| {Re z, Im z} ∈ [ar, br] × [ai, bi]} for certain values ar < br and ai < bi .
To determine the pseudo-spectrum in the complete rectangle D , we cover D by a grid
with spacing dr and di , such that k points lie on each grid line. For each grid point, we
compute the corresponding ε-pseudo-spectrum.

i) Computation of the pseudo-spectra σε(H
(m)−1): For each z ∈ D \ σ(H(m)−1) the

quantity
ε(z,H(m)−1) := ‖(zI −H(m)−1)−1‖−1

2 = σmin(zI −H(m)−1)

determines the smallest ε > 0 , such that z ∈ σε(H
(m)−1). Then, for any point z ∈ D ,

by computing σmin(zI − H(m)−1) , we obtain an approximation of the smallest ε , such
that z ∈ σε(H

(m)−1) . For computing σmin := σmin(zI −H(m)−1) , we recall its definition
as smallest (positive) eigenvalue of the Hermitian, positive definite matrix

S := (zI −H(m)−1)T (zI −H(m)−1)

and use the “inverse iteration”, z0 ∈ Cn, ‖z0‖2 = 1 ,

t ≥ 1 : Sz̃t = zt−1, zt = ‖z̃t‖−1
2 z̃t, σt

min := (Szt, zt)2. (4.3.63)

The linear systems in each iteration can be solved by pre-computing either directly an
LR decomposition of S , or if this is too ill-conditioned, first a QR decomposition

zI −H(m)−1 = QR,

which then yields a Cholesky decomposition of S :

S = (QR)TQR = R̄T Q̄TQR = R̄TR. (4.3.64)

This preliminary step costs another O(m3) operations.

ii) Computation of the pseudo-spectra σε(H
(m)): Alternatively, one may compute a sin-

gular value decomposition of the Hessenberg matrix zI −H(m),

zI −H(m) = UΣV̄ T ,

where U, V ∈ Cn×n are unitary matrices and Σ = diag{σi, i = 1, . . . , n}. Then,

σmin(zI −H(m)) = min{σi, i = 1, . . . , m}.

For that, we use the LAPACK routine dgesvd within MATLAB. Since the operation count
of the singular value decomposition growth like O(m2) , in our sample calculation, we limit
the dimension of the Krylov space by m ≤ 200 .
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Choice of parameters and accuracy issues

The described algorithm for computing the pseudo-spectrum of a differential operator at
various stages requires the appropriate choice of parameters:

- The mesh size h in the finite element discretization on the domain Ω ⊂ Rn for
reducing the infinite dimensional problem to an matrix eigenvalue problem of di-
mension nh.

- The dimension of the Krylov space Km,h in the Arnoldi method for the reduction
of the nh-dimensional (inverse) matrix Th to the much smaller Hessenberg matrix

H
(m)
h .

- The size of the subregion D := [ar, br]× [ai, bi] ⊂ C in which the pseudospectrum
is to be determined and the mesh width k of interpolation points in D ⊂ C .

Only for an appropriate choice of these parameters one obtains a reliable approximation
to the pseudo-spectrum of the differential operator A . First, h is refined and m is in-
creased until no significant change in the boundaries of the ε-pseudo-spectrum is observed
anymore.

Example 1. Sturm-Liouville eigenvalue problem

As a prototypical example for the proposed algorithm, we consider the Sturm-Liouville
boundary value problem (see Trefethen [21])

Au(x) = −u′′(x)− q(x)u(x), x ∈ Ω = (−10, 10), (4.3.65)

with the complex potential q(x) := (3 + 3i)x2 + 1
16
x4 , and the boundary condition

u(−10) = 0 = u(10). Using the sesquilinear form

a(u, v) := (u′, v′) + (qu, v), u, v ∈ H1
0 (Ω),

the eigenvalue problem of the operator A reads in variational form

a(v, ϕ) = λ(v, ϕ) ∀ϕ ∈ H1
0 (Ω). (4.3.66)

First, the interval Ω = (−10, 10) is discretized by eightfold uniform refinement resulting
in the finest mesh size h = 20 · 2−8 ≈ 0.078 and nh = 256 . The Arnoldi algorithm
for the corresponding discrete eigenvalue problem of the inverse matrix A−1

h generates

a Hessenberg matrix H
(m)
h of dimension m = 200 . The resulting reduced eigenvalue

problem is solved by the QR method. For the determination of the corresponding pseudo-
spectra, we export the Hessenberg matrix H

(m)
h into a MATLAB file. For this, we use the

routine DGESVD in LAPACK (singular value decomposition) on meshes with 10×10 and
with 100× 100 points. The ε-pseudo-spectra are computed for ε = 10−1, 10−2, ..., 10−10

leading to the results shown in Fig. 4.1. We observe that all eigenvalues have negative real
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part but also that the corresponding pseudo-spectra reach far into the positive half-plane
of C , i. e., small perturbations of the matrix may have strong effects on the location of
the eigenvalues. Further, we see that already a grid with 10×10 points yields sufficiently
good approximations of the pseudo-spectrum of the matrix H

(m)
h .
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Figure 4.1: Approximate eigenvalues and pseudo-spectra of the operator A computed
from those of the inverse matrix A−1

h on a 10 × 10 grid (left) and on a 100 × 100 grid
(right): “dots” represent eigenvalues and the lines the boundaries of the ε-pseudo-spectra
for ε = 10−1, ..., 10−10.

Example 2. Stability eigenvalue problem of the Burgers operator

A PDE test example is the two-dimensional Burgers equation

−νΔv + v · ∇v = 0, in Ω. (4.3.67)

This equation is sometimes considered as a simplified version of the Navier-Stokes equation
since both equations contain the same nonlinearity. We use this example for investigating
some questions related to the numerical techniques used, e. g., the required dimension of
the Krylov spaces in the Arnoldi method.

For simplicity, we choose Ω := (0, 2) × (0, 1) ⊂ R2, and along the left-hand “inflow
boundary” Γin := ∂Ω ∩ {x1 = 0} as well as along the upper and lower boundary parts
Γrigid := ∂Ω∩({x2 = 0}∪{x2 = 1}) Dirichlet conditions and along the right-hand “outflow
boundary” Γout := ∂Ω ∩ {x1 = 2} Neumann conditions are imposed, such that the exact
solution has the form v̂(x) = (x2, 0) of a Couette-like flow. We set ΓD := Γrigid∪Γin and
choose ν = 10−2 . Linearization around this stationary solution yields the nonsymmetric
stability eigenvalue problem for v = (v1, v2) :

−νΔv1 + x2∂1v1 + v2 = λv1,

−νΔv2 + x2∂1v2 = λv2,
(4.3.68)

in Ω with the boundary conditions v|ΓD
= 0, ∂nv|Γout = 0 . For discretizing this problem,

we use the finite element method described above with conforming Q1-elements combined
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with transport stabilization by the SUPG (streamline upwind Petrov-Galerkin) method.
We investigate the eigenvalues of the linearized (around Couette flow) Burgers operator
with Dirichlet or Neumann inflow conditions. We use the Arnoldi method described above
with Krylov spaces of dimension m = 100 or m = 200 . For generating the contour lines
of the ε-pseudospectra, we use a grid of 100× 100 test points.

For testing the accuracy of the proposed method, we compare the quality of the
pseudo-spectra computed on meshes of width h = 2−7 (nh ≈ 30, 000) and h = 2−8, (nh ≈
130, 000) and using Krylov spaces of dimension m = 100 or m = 200 . The results shown
in Fig. 4.2 and Fig. 4.3 indicate that the choice h = 2−7 and m = 100 is sufficient for
the present example.
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Figure 4.2: Computed pseudo-spectra of the linearized Burgers operator with Dirichlet
inflow condition for ν = 0.01 and h = 2−7 (left) and h = 2−8 (right) computed by
the Arnoldi method with m = 100. The “dots” represent eigenvalues and the lines the
boundaries of the ε-pseudo-spectra for ε = 10−1, ..., 10−4.
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Figure 4.3: Computed pseudo-spectra of the linearized Burgers operator with Dirichlet
inflow condition for ν = 0.01 and h = 2−8 computed by the Arnoldi method with m =
100 (left) and m = 200 (right). The “dots” represent eigenvalues and the lines the
boundaries of the ε-pseudo-spectra for ε = 10−1, ..., 10−4.

Now, we turn to Neumann inflow conditions. In this particular case the first eigenval-
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ues and eigenfunctions of the linearized Burgers operator can be determined analytically
as λk = νk2π2 , vk(x) = (sin(kπx2), 0)

T , for k ∈ Z . All these eigenvalues are degenerate.
However, there exists another eigenvalue λ4 ≈ 1.4039 between the third and fourth one,
which is not of this form, but also degenerate.

We use this situation for studying the dependence of the proposed method for com-
puting pseudo-spectra on the size of the viscosity parameter, 0.001 ≤ ν ≤ 0.01 . Again
the discretization uses the mesh size h = 2−7, Krylov spaces of dimension m = 100 and
a grid of spacing k = 100 . By varying these parameters, we find that only eigenvalues
with Reλ ≤ 6 and corresponding ε-pseudo-spectra with ε ≥ 10−4 are reliably computed.
The results are shown in Fig. 4.4.
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Figure 4.4: Computed pseudos-pectra of the linearized (around Couette flow) Burger op-
erator with Neumann inflow conditions for ν = 0.01 (left) and ν = 0.001 (right):
The dots represent eigenvalues and the lines the boundaries of the ε-pseudo-spectra for
ε = 10−1, . . . , 10−4.

For Neumann inflow conditions the most critical eigenvalue is significantly smaller
than the corresponding most critical eigenvalue for Dirichlet inflow conditions, which
suggests weaker stability properties in the “Neumann case”. Indeed, in Fig. 4.4, we
see that the 0.1-pseudo-spectrum reaches into the negative complex half-plane indicating
instability for such perturbations. This effect is even more pronounced for ν = 0.001
with λNcrit ≈ 0.0098 .

Example 3. Stability eigenvalue problem of the Navier-Stokes operator

In this last example, we present some computational results for the 2d Navier-Stokes
benchmark “channel flow around a cylinder” with the configuration shown in Section 0.4.3
(see Schäfer&Turek [65]). The geometry data are as follows: channel domain Ω :=
(0.00m, 2.2m) × (0.00m, 0.41m), diameter of circle D := 0.10m, center of circle at a :=
(0.20m, 0.20m) (slightly nonsymmetric position). The Reynolds number is defined in
terms of the diameter D and the maximum inflow velocity Ū = max |vin| = 0.3m/s
(parabolic profile), Re = Ū2D/ν . The boundary conditions are v|Γrigid

= 0, v|Γin
=

vin, ν∂nv − np|Γout = 0. The viscosity is chosen such that the Reynolds number is small
enough, 20 ≤ Re ≤ 40 , to guarantee stationarity of the base flow as shown in Fig. 4.5.
Already for Re = 60 the flow turns nonstationary (time periodic).
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Figure 4.5: Configuration of the “channel flow” benchmark and x1-component of the ve-
locity for Re = 40 .

We want to investigate the stability of the computed base flow for several Reynolds
numbers in the range 20 ≤ Re ≤ 60 and inflow conditions imposed on the admissible
perturbations, Dirichlet or Neumann (“free”), by determining the corresponding critical
eigenvalues and pseudo-spectra. This computation uses a “stationary code” employing the
Newton method for linearization, which is known to potentially yield stationary solutions
even at Reynolds numbers for which such solutions may not be stable.

Perturbations satisfying Dirichlet inflow conditions

We begin with the case of perturbations satisfying (homogeneous) Dirichlet inflow condi-
tions. The pseudo-spectra of the critical eigenvalues for Re = 40 and Re = 60 are shown
in Fig. 4.6.

Figure 4.6: Computed pseudo-spectra of the linearized Navier-Stokes operator (“chan-
nel flow” benchmark) for different Reynolds numbers, Re = 40 (left) and Re = 60
(right), with Dirichlet inflow condition: The “dots” represent eigenvalues and the lines
the boundaries of ε-pseudospectra for ε = 10−2, 10−2.5, 10−3, 10−3.5.
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The computation has been done on meshes obtained by four to five uniform refinements
of the (locally adapted) meshes used for computing the base flow. In the Arnoldi method,
we use Krylov spaces of dimension m = 100 . Computations with m = 200 give almost
the same results. For Re = 40 the relevant 10−2-pseudo-spectrum does not reach into
the negative complex half-plane indicating stability of the corresponding base solution in
this case, as expected in view of the result of nonstationary computations. Obviously the
transition from stationary to nonstationary (time periodic) solutions occurs in the range
40 ≤ Re ≤ 60 . However, for this “instability” the sign of the real part of the critical
eigenvalue seems to play the decisive role and not so much the size of the corresponding
pseudo-spectrum.

Perturbations satisfying Neumann (free) inflow conditions

Next, we consider the case of perturbations satisfying (homogeneous) Neumann (“free”)
inflow conditions, i. e., the space of admissible perturbations is larger than in the pre-
ceding case. In view of the observations made before for Couette flow and Poiseuille
flow, we expect weaker stability properties. The stationary base flow is again computed
using Dirichlet inflow conditions but the associated eigenvalue problem of the linearized
Navier-Stokes operator is considered with Neumann inflow conditions. In the case of
perturbations satisfying Dirichlet inflow conditions the stationary base flow turned out
to be stable up to Re = 45 . In the present case of perturbations satisfying Neumann
inflow conditions at Re = 40 the critical eigenvalue has positive but very small real
part, Reλmin ≈ 0.003. Hence, the precise stability analysis requires the determination of
the corresponding pseudo-spectrum. The results are shown in Fig. 4.3.2. Though, for
Re = 40 the real part of the most critical (positive) eigenvalue is rather small, the corre-
sponding 10−2-pseudo-spectrum reaches only a little into the negative complex half-plane.

Figure 4.7: Computed pseudo-spectra of the linearized Navier-Stokes operator (“channel
flow”) with Neumann inflow conditions for different Reynolds numbers, Re = 40 (left)
and Re = 60 (right): The “dots” represent eigenvalues and the lines the boundaries of
the ε-pseudospectra for ε = 10−2, 10−2.5, 10−3, 10−3.5.
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4.4 Exercises

Exercise 4.1: The proof of convergence of the “power method” applied to a symmetric,
positive definite matrix A ∈ Rn×n resulted in the identity

λt = (Azt, zt)2 =
(λn)

2t+1
{|αn|2 +

∑n−1
i=1 |αi|2

(
λi

λn

)2t+1 }
(λn)2t

{|αn|2 +
∑n−1

i=1 |αi|2
(
λi

λn

)2t } = λmax +O
(∣∣∣λn−1

λmax

∣∣∣2t),
where λi ∈ R, i = 1, . . . , n , are the eigenvalues of A , {wi, i = 1, . . . , n} a corresponding
ONB of eigenvectors and αi the coefficients in the expansion of the starting vector z0 =∑n

i=1 αiw
i. Show that, in case αn �= 0, in the above identity the error term on the

right-hand side is uniformly bounded with respect to the dimension n of A but depends
linearly on |λn|.

Exercise 4.2: The “inverse iteration” may be accelerated by employing a dynamic “shift”
taken from the presceding eigenvalue approximation (λ0k ≈ λk):

(A− λt−1
k I)z̃t = zt−1, zt =

z̃t−1

‖z̃t−1‖ , μt
k = ((A− λt−1

k I)−1zt, zt)2, λtk =
1

μt
k

+ λt−1
k .

Investigate the convergence of this method for the computation of the smallest eigenvalue
λ1 = λmin of a symmetric, positive definite matrix A ∈ Rn×n . In detail, show the
convergence estimate

|λ1 − λt| ≤ |λt − λt−1|
t−1∏
j=0

∣∣∣λ1 − λj

λ2 − λj

∣∣∣2‖z0‖22|α1|2 .

(Hint: Show that

μt =

∑n
i=1 |αi|2(λi − λt−1)−1

∏t−1
j=0(λi − λj)−2∑n

i=1 |αi|2
∏t−1

j=0(λi − λj)−2

and proceed in a similar way as in the preceding exercise.)

Exercise 4.3: Let A be a Hessenberg matrix or a symmetric tridiagonal matrix. Show
that in this case the same holds true for all iterates At generated by the QR method:

A(0) := A,

A(t+1) := R(t)Q(t), with A(t) = Q(t)R(t), t ≥ 0.

Exercise 4.4: Each matrix A ∈ Cn×n possesses a QR decomposition A = QR, with a
unitary matrix Q = [q1, . . . , qn] and an upper triangular matrix R = (rij)

n
i,j=1. Clearly,

this decomposition is not uniquely determined. Show that for regular A there exists a
uniquely determined QR decomposition with the property rii ∈ R+, i = 1, . . . , n.
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(Hint: Use the fact that the QR decomposition of A yields a Cholesky decomposition of
the matrix ĀTA.)

Exercise 4.5: For a matrix A ∈ C
n×n and an arbitrary vector q ∈ C

n, q �= 0, form the
Krylov spaces Km := span{q, Aq, . . . , Am−1q}. Suppose that for some 1 ≤ m ≤ n there
holds Km−1 �= Km = Km+1.

i) Show that then Km = Km+1 = · · · = Kn = Cn and dimKm = m.

ii) Let {q1, . . . , qm} be an ONB of Km and set Qm := [q1, . . . , qm]. Show that there
holds σ(QmTAQm) ⊂ σ(A) . In the case m = n there holds σ(QnTAQn) = σ(A) .

Exercise 4.6: Recall the two versions of the Gram-Schmidt algorithm, the “classical”
one and the “modified” one described in the text, for the successive orthogonalization of
a general, linear independent set {v1, . . . , vm} ⊂ Rn .

i) Verify that both algorithms, used with exact arithmetic, yield the same result.

ii) Determine the computational complexity of these two algorithms, i. e., the number of
arithmetic operations for computing the corresponding orthonormal set {u1, . . . , um}.

Exercise 4.7: Consider the nearly singular 3× 3-matrix

A =

⎡
⎢⎢⎣

1 1 1

ε ε 0

ε 0 ε

⎤
⎥⎥⎦ = [a1, a2, a3],

where ε > 0 is small enough so that 1 + ε2 is rounded to 1 in the given floating-point
arithmetic. Compute the QR decomposition of A = [a1, a2, a3] by orthonormalization
of the set of its column vectors {a1, a2, a3} using (i) the classical Gram-Schmidt algo-
rithm and (ii) its modified version. Compare the quality of the results by making the
“Householder Test”: ‖QTQ− I‖∞ ≈ 0 .

Exercise 4.8: Consider the model eigenvalue problem from the text, which originates
from the 7-point discretization of the Poisson problem on the unit cube:

A = h−2

⎡
⎢⎢⎣

B −Im2

−Im2 B
. . .

. . .
. . .

⎤
⎥⎥⎦

︸ ︷︷ ︸
n=m3

B =

⎡
⎢⎢⎣

C −Im
−Im C

. . .
. . .

. . .

⎤
⎥⎥⎦

︸ ︷︷ ︸
m2

C =

⎡
⎢⎢⎣

6 −1

−1 6
. . .

. . .
. . .

⎤
⎥⎥⎦

︸ ︷︷ ︸
m

where h = 1/(m + 1) is the mesh size. In this case the corresponding eigenvalues and
eigenvectors are explicitly given by

λhijk = h−2
{
6− 2

(
cos[ihπ] + cos[jhπ] + cos[khπ]

)}
, i, j, k = 1, . . . , m,

wijk
h =

(
sin[pihπ] sin[qjhπ] sin[rkhπ]

)m
p,q,r=1

.
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For this discretization, there holds the theoretical a priori error estimate

|λijk − λhijk|
|λijk| ≤ 1

12
λijkh

2,

where λijk = (i2 + j2 + k2)π2 are the exact eigenvalues of the Laplace operator (and h
sufficiently small).

i) Verify this error estimate using the given values for λijk and λhijk .

ii) Derive an estimate for the number of eigenvalues (not counting multiplicities) of the
Laplace operator that can be approximated reliably for a mesh size of h = 2−7, if a
uniform relative accuracy of TOL = 10−3 is required.

iii) How small has the mesh size h to be chosen if the first 1.000 eigenvalues (counting
multiplicities for simplicity) of the Laplace operator have to be computed with relative
accuracy TOL = 10−3 ? How large would the dimension n of the resulting system matrix
A be in this case? (Hint: We are interested in an upper bound, so simplify accordingly.)

Exercise 4.9: Formulate the “inverse iteration” of Wielandt and the “Lanczos algo-
rithm” (combined with the QR method) for computing the smallest eigenvalue of a large
symmetric positive definite matrix A ∈ Rn×n . Suppose that matrix vector products as
well as solving linear systems occurring in these processes can be accomplished with O(n)
a. op.:

i) Compare the arithmetic work (# of a. op.) of these two approaches for performing 100
iterations.

ii) How do the two methods compare if not only the smallest but the 10 smallest eigen-
values are to be computed?

Exercise 4.10: The Krylov space method applied for general matrices A ∈ Cn×n re-
quires complex arithmetic, but many software packages provide only real arithmetic.

i) Verify that a (complex) linear system Ax = b can equivalently be written in the
following real “(2n× 2n)-block form”:(

ReA ImA

−ImA ReA

)(
Re x

−Im x

)
=

(
Re b

−Im b

)
.

ii) Formulate (necessary and sufficient) conditions on A, which guarantee that this (real)
coefficient block-matrix is a) regular, b) symmetric and c) positive definite?

Exercise 4.11: Show that the ε-pseudo-spectrum σε(T ) of a matrix T ∈ C
n×n is in-

variant under orthonormal transformations, i. e., for any unitary matrix Q ∈ Cn×n there
holds

σε(T ) = σε(Q
−1TQ).

(Hint: Pick a suitable one of the many equivalent definitions of ε-pseudo-spectrum pro-
vided in the text.)




