
3 Iterative Methods for Linear Algebraic Systems

In this chapter, we discuss iterative methods for solving linear systems. The underlying
problem has the form

Ax = b, (3.0.1)

with a real square matrix A = (aij)
n
i,j=1 ∈ Rn×n and a vector b = (bj)

n
j=1 ∈ Rn. Here,

we concentrate on the higher-dimensional case n 
 103 , such that, besides arithmetical
complexity, also storage requirement becomes an important issue. In practice, high-
dimensional matrices usually have very special structure, e. g., band structure and extreme
sparsity, which needs to be exploited by the solution algorithms. The most cost-intensive
parts of the considered algorithms are simple matrix-vector multiplications x → Ax .
Most of the considered methods and results are also applicable in the case of matrices
and right-hand sides with complex entries.

3.1 Fixed-point iteration and defect correction

For the construction of cheap iterative methods for solving problem (3.0.1), one rewrites
it in form of an equivalent fixed-point problem,

Ax = b ⇔ Cx = Cx− Ax+ b ⇔ x = (I − C−1A)x+ C−1b,

with a suitable regular matrix C ∈ Rn×n, the so-called “preconditioner”. Then, starting
from some initial value x0, one uses a simple fixed-point iteration,

xt = (I − C−1A)︸ ︷︷ ︸
=: B

xt−1 + C−1b︸ ︷︷ ︸
=: c

, t = 1, 2, . . . . (3.1.2)

Here, the matrix B = I − C−1A is called the “iteration matrix” of the fixed-point
iteration. Its properties are decisive for the convergence of the method. In practice,
such a fixed-point iteration is organized in form of a “defect correction” iteration, which
essentially requires in each step only a matrix-vector multiplication and the solution of a
linear system with the matrix C as coefficient matrix:

dt−1 = b−Axt−1 (residual), Cδxt = dt−1 (correction), xt = xt−1 + δxt (update).

Example 3.1: The simplest method of this type is the (damped) Richardson1 method,
which for a suitable parameter θ ∈ (0, 2λmax(A)

−1] uses the matrices

C = θ−1I, B = I − θA. (3.1.3)

1Lewis Fry Richardson (1881–1953): English mathematician and physicist; worked at several institu-
tions in in England and Scotland; a typical “applied mathematician”; pioneered modeling and numerics
in weather prediction.
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100 Iterative Methods for Linear Algebraic Systems

Starting from some initial value x0 the iteration looks like

xt = xt−1 + θ(b−Axt−1), t = 1, 2, . . . . (3.1.4)

In view of the Banach fixed-point theorem a sufficient criterion for the convergence
of the fixed-point iteration (3.1.2) is the contraction property of the corresponding fixed-
point mapping g(x) := Bx+ c ,

‖g(x)− g(y)‖ = ‖B(x− y)‖ ≤ ‖B‖‖x− y‖, ‖B‖ < 1,

in some vector norm ‖ · ‖ . For a given iteration matrix B the property ‖B‖ < 1 may
depend on the particular choice of the norm. Hence, it is desirable to characterize the
convergence of this iteration in terms of norm-independent properties of B . For this, the
appropriate quantity is the “spectral radius”

spr(B) := max { |λ| : λ ∈ σ(B) }.

Obviously, spr(B) is the radius of the smallest circle in C around the origin, which
contains all eigenvalues of B . For any natural matrix norm ‖ · ‖, there holds

spr(B) ≤ ‖B‖. (3.1.5)

For symmetric B , we even have

spr(B) = ‖B‖2 = sup
x∈Rn\{0}

‖Bx‖2
‖x‖2 . (3.1.6)

However, we note that spr(·) does not define a norm on Rn×n since the triangle inequality
does not hold in general.

Theorem 3.1 (Fixed-point iteration): The fixed-point iteration (3.1.2) converges for
any starting value x0 if and only if

ρ := spr(B) < 1. (3.1.7)

In case of convergence the limit is the uniquely determined fixed point x . The asymptotic
convergence behavior with respect to any vector norm ‖ · ‖ is characterized by

sup
x0∈Rn

lim sup
t→∞

(‖xt − x‖
‖x0 − x‖

)1/t

= ρ. (3.1.8)

Hence, the number of iteration steps necessary for an asymptotic error reduction by a
small factor TOL > 0 is approximately given by

t(TOL) ≈ ln(1/TOL)

ln(1/ρ)
. (3.1.9)
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Proof. Assuming the existence of a fixed point x , we introduce the notation et := xt−x.
Recalling that x = Bx+ c, we find

et = xt − x = Bxt−1 + c− (Bx+ c) = Bet−1 = · · · = Bte0.

i) In case that spr(B) < 1, in view of Lemma 3.1 below, there exists a vector norm ‖·‖B,ε

depending on B and some ε > 0 chosen sufficiently small, such that the corresponding
natural matrix norm ‖ · ‖B,ε satisfies

‖B‖B,ε ≤ spr(B) + ε = ρ+ ε < 1.

Consequently, by the Banach fixed-point theorem, there exists a unique fixed-point x
and the fixed-point iteration converges for any starting value x0 :

‖et‖B,ε = ‖Bte0‖B,ε ≤ ‖Bt‖B,ε ‖e0‖B,ε ≤ ‖B‖tB,ε ‖e0‖B,ε → 0.

In view of the norm equivalence in Rn this means convergence xt → x (t→∞) .

ii) Now, we assume convergence for any starting value x0. Let λ be an eigenvalue of
B such that |λ| = ρ and w �= 0 a corresponding eigenvector. Then, for the particular
starting value x0 := x+ w , we obtain

λte0 = λtw = Btw = Bte0 = et → 0 (t→∞).

This necessarily requires spr(B) = |λ| < 1. As byproduct of this argument, we see that
in this particular case (‖et‖

‖e0‖
)1/t

= ρ, t ∈ N.

iii) For an arbitrary small ε > 0 let ‖ · ‖B,ε again be the above special norm for which
‖B‖B,ε ≤ ρ + ε. Then, by the norm equivalence for any other vector norm ‖ · ‖ there
exist positive numbers m = m(B, ε), M =M(B, ε) such that

m‖x‖ ≤ ‖x‖B,ε ≤M‖x‖ , x ∈ R
n.

Using this notation, we obtain

‖et‖ ≤ 1

m
‖et‖B,ε =

1

m
‖Bte0‖B,ε ≤ 1

m
‖B‖tB,ε‖e0‖B,ε ≤ M

m
(ρ+ ε)t‖e0‖,

and, consequently, observing that
(
M
m

)1/t → 1 (t→∞) :

lim sup
t→∞

(‖et‖
‖e0‖

)1/t

≤ ρ+ ε.

Since ε > 0 can be chosen arbitrarily small and recalling the last identity in (ii), we
obtain the asserted identity (3.1.8).
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iv) Finally requiring an error reduction by TOL > 0 , we have to set

‖xt − x‖
‖x0 − x‖ ≤ (ρ+ ε)t ≈ TOL, t ≥ t(TOL),

from which we obtain

t(TOL) ≈ ln(1/TOL)

ln(1/ρ)
.

This completes the proof. Q.E.D.

The spectral radius of the iteration matrix determines the general asymptotic con-
vergence behavior of the fixed-point iteration. The relation (3.1.9) can be interpreted as
follows: In case that ρ = spr(B) < 1 the error obtained in the t-th step ( t sufficiently
large) can be further reduced by a factor 10−1 , i. e., gaining one additional decimal in
accuracy, by

t(10−1) ≈ ln(1/10)

ln(1/ρ)

more iterations. For example, for ρ ∼ 0.99, which is not at all unrealistic, we have
t1 ∼ 230 . For large systems with n 
 106 this means substantial work even if each
iteration step only requires O(n) arithmetic operations.

We have to provide the auxiliary lemma used in the proof of Theorem 3.1.

Lemma 3.1 (Spectral radius): For any matrix B ∈ R
n×n and any small ε > 0 there

exists a natural matrix norm ‖ · ‖B,ε , such that

spr(B) ≤ ‖B‖B,ε ≤ spr(B) + ε. (3.1.10)

Proof. The matrix B is similar to an upper triangular matrix (e. g., its Jordan normal
form),

B = T−1RT , R =

⎡
⎢⎢⎣
r11 · · · r1n

. . .
...

0 rnn

⎤
⎥⎥⎦ ,

with the eigenvalues of B on its main diagonal. Hence,

spr(B) = max
1≤i≤n

|rii|.

For an arbitrary δ ∈ (0, 1], we set
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Sδ =

⎡
⎢⎢⎢⎢⎢⎣

1 0

δ
. . .

0 δn−1

⎤
⎥⎥⎥⎥⎥⎦ R0 =

⎡
⎢⎢⎣
r11 0

. . .

0 rnn

⎤
⎥⎥⎦ Qδ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 r12 δr13 · · · δn−2r1n
. . .

. . .
. . .

...
. . .

. . . δrn−2,n

. . . rn−1,n

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and, with this notation, have

Rδ := S−1
δ RSδ =

⎡
⎢⎢⎢⎢⎢⎣
r11 δr12 · · · δn−1r1n

. . .
. . .

...
. . . δrn−1,n

0 rnn

⎤
⎥⎥⎥⎥⎥⎦ = R0 + δQδ.

In view of the regularity of S−1
δ T , a vector norm is defined by

‖x‖δ := ‖S−1
δ Tx‖2 , x ∈ R

n.

Then, observing R = SδRδS
−1
δ , there holds

B = T−1RT = T−1SδRδS
−1
δ T.

Hence for all x ∈ R
n and y = S−1

δ Tx :

‖Bx‖δ = ‖T−1SδRδS
−1
δ Tx‖δ = ‖Rδy‖2

≤ ‖R0y‖2 + δ‖Qδy‖2 ≤ {max1≤i≤n |rii|+ δμ} ‖y‖2
≤ {spr(B) + δμ}‖x‖δ

with the constant

μ =
( n∑

i,j=1

|rij|2
)1/2

.

This implies

‖B‖δ = sup
x∈Rn\{0}

‖Bx‖δ
‖x‖δ ≤ spr(B) + μδ,

and setting δ := ε/μ the desired vector norm is given by ‖ · ‖B,ε := ‖ · ‖δ . Q.E.D.

3.1.1 Stopping criteria

In using an iterative method, one needs “stopping criteria”, which for some prescribed
accuracy TOL terminates the iteration, in the ideal case, once this required accuracy is
reached.
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i) Strategy 1. From the Banach fixed-point theorem, we have the general error estimate

‖xt − x‖ ≤ q

1− q
‖xt − xt−1‖, (3.1.11)

with the “contraction constant” q = ‖B‖ < 1 . For a given error tolerance TOL > 0 the
iteration could be stopped when

‖B‖
1− ‖B‖

‖xt − xt−1‖
‖xt‖ ≤ TOL. (3.1.12)

The realization of this strategy requires an quantitatively correct estimate of the norm
‖B‖ or of spr(B) . That has to be generated from the computed iteratesxt , i. e., a
posteriori in the course of the computation. In general the iteration matrix B = I−C−1A
cannot be computed explicitly with acceptable work. Methods for estimating spr(B) will
be considered in the chapter about the iterative solution of eigenvalue problems, below.

ii) Strategy 2. Alternatively, one can evaluate the “residual” ‖Axt−b‖ . Observing that
et = xt − x = A−1(Axt − b) and x = A−1b, it follows that

‖et‖ ≤ ‖A−1‖ ‖Axt − b‖ , 1

‖b‖ ≥ 1

‖A‖ ‖x‖ ,

and further ‖et‖
‖x‖ ≤ ‖A−1‖‖A‖‖Ax

t − b‖
‖b‖ = cond(A)

‖Axt − b‖
‖b‖ .

This leads us to the stopping criterion

cond(A)
‖Axt − b‖

‖b‖ ≤ TOL. (3.1.13)

The evaluation of this criterion requires an estimate of cond(A), which may be as costly
as the solution of the equation Ax = b itself. Using the spectral norm ‖·‖2 the condition
number is related to the singular values of A (square roots of the eigenvalues of ATA),

cond2(A) =
σmax

σmin
.

Again generating accurate estimates of these eigenvalues may require more work than the
solution of Ax = b . This short discussion shows that designing useful stopping criteria
for iterative methods is an not at all an easy task. However, in the context of linear
systems originating from the “finite element discretization” (“FEM”) of partial differen-
tial equations there are approaches based on the concept of “Galerkin orthogonality”,
which allow for a systematic balancing of iteration and discretization errors. In this way,
practical stopping criteria can be designed, by which the iteration may be terminated
once the level of the discretization error is reached. Here, the criterion is essentially the
approximate solution’s “violation of Galerkin orthogonality” (s. Meidner et al. [43] and
Rannacher et al. [45] for more details).
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3.1.2 Construction of iterative methods

The construction of concrete iterative methods for solving the linear system Ax = b by
defect correction requires the specification of the preconditioner C . For this task two
particular goals have to be observed:

– spr(I− C−1A) should be as small as possible.

– The correction equation Cδxt = b − Axt−1 should be solvable with O(n) a. op.,
requiring storage space not much exceeding that for storing the matrix A itself.

Unfortunately, these requirements contradict each other. The two extreme cases are:

C = A ⇒ spr(I−C−1A) = 0

C = θ−1I ⇒ spr(I−C−1A) ≈ 1.

The simplest preconditioners are defined using the natural additive decomposition of the
matrix, A = L+D +R , where

D =

⎡
⎢⎢⎢⎢⎢⎣
a11 · · · 0

. . .
. . .

0 · · · ann

⎤
⎥⎥⎥⎥⎥⎦ L =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0

a21
. . .

...
. . .

. . .

an1 · · · an,n−1 0

⎤
⎥⎥⎥⎥⎥⎦ R =

⎡
⎢⎢⎢⎢⎢⎣

0 a12 · · · a1n
. . .

. . .
...

. . . an−1,n

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ .

Further, we assume that the main diagonal elements of A are nonzero, aii �= 0.

1. Jacobi2 method (“Gesamtschrittverfahren” in German):

C = D, B = −D−1(L+R) =: J (iteration matrix). (3.1.14)

The iteration of the Jacobi method reads

Dxt = b− (L+R)xt−1, t = 1, 2, . . . , (3.1.15)

or written component-wise:

aiix
t
i = bi −

n∑
j=1

aijx
t
j , i = 1, . . . , n,

2. Gauß-Seidel method (“Einzelschrittverfahren” in German):

C = D + L, B = −(D + L)−1R =: H1 (iteration matrix). (3.1.16)

2Carl Gustav Jakob Jacobi (1804–1851): German mathematician; already as child highly gifted;
worked in Königsberg and Berlin; contributions to many parts of mathematics: Number Theory, elliptic
functions, partial differential equations, functional determinants, and Theoretical Mechanics.
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The iteration of the Gauß-Seidel method reads as follow:

(D + L)xt = b− Rxt−1, t = 1, 2, . . . .

Writing this iteration componentwise,

aiix
t
i = bi −

∑
j<i

aijx
t
j −

∑
j>i

aijx
t−1
j , i = 1, . . . , n,

one sees that Jacobi and Gauß-Seidel method have exactly the same arithmetic com-
plexity per iteration step and require the same amount of storage. However, since
the latter method uses a better approximation of the matrix A as preconditioner it
is expected to have an iteration matrix with smaller spectral radius, i. e., converges
faster. It will be shown below that this is actually the case for certain classes of
matrices A.

3. SOR method (“Successive Over-Relaxation”): ω ∈ (0, 2)

C =
1

ω
(D + ωL), B = −(D + ωL)−1[(ω − 1)D + ωR]. (3.1.17)

The SOR method is designed to accelerate the Gauß-Seidel method by introducing
a “relaxation parameter” ω ∈ R, which can be optimized in order to minimize the
spectral radius of the corresponding iteration matrix. Its iteration reads as follows:

(D + ωL)xt = ωb− [(ω − 1)D + ωR]xt−1, t = 1, 2, . . . .

The arithmetic complexity is about that of Jacobi and Gauß-Seidel method. But
the parameter ω can be optimized for a certain class of matrices resulting in a
significantly faster convergence than that of the other two simple methods.

4. ILU method (“Incomplete LU Decomposition”):

C = L̃R̃, B = I − R̃−1L̃−1A. (3.1.18)

For a symmetric, positive definite matrix A the ILU method naturally becomes
the ILLT method (“Incomplete Cholesky decomposition”). The ILU decomposition
is obtained by the usual recursive process for the direct computation of the LU
decomposition from the relation LU = A by setting all matrix elements to zero,
which correspond to index pairs {i, j} for which aij = 0 :

i = 1, ..., n : r̃il = ail −
i−1∑
k=1

l̃ikr̃kl (l = 1, ..., n)

l̃ii = 1, l̃ki = r̃−1
ii

{
aki −

i−1∑
l=1

l̃klr̃li

}
(k = i+ 1, ..., n)

l̃ij = 0, r̃ij = 0, for aij = 0 .
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If this process stops because some r̃ii = 0 , we set r̃ii := δ > 0 and continue. The
iteration of the ILU method reads as follows:

L̃R̃xt = (L̃R̃−A)xt−1 + b, t = 1, 2, . . . .

We note that here, L and U stand for “lower” and “upper” triangular matrix,
respectively, in contrast to the notion L and R for “left” and “right” triangular
matrix as used before in the context of multiplicative matrix decomposition.

Again this preconditioner is cheap, for sparse matrices, O(n) a. op. per iteration
step, but its convergence is difficult to analyze and will not be discussed further.
However, in certain situations the ILU method plays an important role as a robust
“smoothing iteration” within “multigrid methods” to be discussed below.

5. ADI method (“Alternating-Direction Implicit Iteration”):

C = (Ax + ωI)(Ay + ωI),

B = (Ay + ωI)−1(ωI −Ax)(Ax + ωI)−1(ωI − Ay).
(3.1.19)

The ADI method can be applied to matrices A which originate from the discretiza-
tion of certain elliptic partial differential equations, in which the contributions from
the different spatial directions (x-direction and y-direction in 2D) are separated in
the form A = Ax+Ay . A typical example is the central difference approximation of
the Poisson equation described in Chapter 0.4.2. The iteration of the ADI method
reads as follows:

(Ax + ωI)(Ay + ωI)xt =
(
(Ax + ωI)(Ay + ωI)− A

)
xt−1 + b, t = 1, 2, . . . .

Here, the matrices Ax + ωI and Ay + ωI are tri-diagonal, such that the second
goal “solution efficiency” is achieved, while the full matrix A is five-diagonal. This
method can be shown to converge for any choice of the parameter ω > 0 . For
certain classes of matrices the optimal choice of ω leads to convergence, which is
at least as fast as that of the optimal SOR method. We will not discuss this issue
further since the range of applicability of the ADI method is rather limited.

Remark 3.1 (Block-versions of fixed-point iterations): Sometimes the coefficient
matrix A has a regular block structure for special numberings of the unknowns (e. g., in
the discretization of the Navier-Stokes equations when grouping the velocity and pressure
unknowns together at each mesh point):

A =

⎡
⎢⎢⎢⎢⎢⎣
A11 · · · A1r

. . .
...

. . .
...

Ar1 · · · Arr

⎤
⎥⎥⎥⎥⎥⎦ ,

where the submatrices Aij are of small dimension, 3−10 , such that the explicit inversion
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of the diagonal blocks Aii is possible without spoiling the overall complexity of O(n) a. op.
per iteration step.

3.1.3 Jacobi- and Gauß-Seidel methods

In the following, we will give a complete convergence analysis of Jacobi and Gauß-Seidel
method. As already stated above, both methods have the same arithmetic cost (per
iteration step) and require not much more storage as needed for storing the matrix A.
This simplicity suggests that both methods may not be very fast, which will actually be
seen below at the model matrix in Example (2.7) of Section 2.2.

Theorem 3.2 (Strong row-sum criterion): If the row sums or the column sums of
the matrix A ∈ Rn×n satisfy the condition (strict diagonal dominance)

n∑
k=1,k 
=j

|ajk| < |ajj| or

n∑
k=1,k 
=j

|akj| < |ajj|, j = 1, . . . , n, (3.1.20)

then, spr(J) < 1 and spr(H1) < 1 , i. e., Jacobi and Gauß-Seidel method converge.

Proof. First, assume that the matrix A is strictly diagonally dominant. Let λ ∈ σ(J)
and μ ∈ σ(H1) with corresponding eigenvectors v and w , respectively. Then, noting
that ajj �= 0 , we have

λv = Jv = −D−1(L+R)v

and
μw = H1w = −(D+L)−1Rw ⇔ μw = −D−1(μL+R)w.

From this it follows that for ‖v‖∞ = ‖w‖∞ = 1 and using the strict diagonal dominance
of A :

|λ| ≤ ‖D−1(L+R)‖∞ = max
j=1,...,n

{ 1

|ajj|
n∑

k=1,k 
=j

|ajk|
}
< 1.

Hence, spr(J) < 1 . Further,

|μ| ≤ ‖D−1(μL+R)‖∞ ≤ max
1≤j≤n

{ 1

|ajj|
[∑

k<j

|μ| |ajk|+
∑
k>j

|ajk|
]}
.

For |μ| ≥ 1 , we would obtain the contradiction

|μ| ≤ |μ| ‖D−1(L+R)‖∞ < |μ|,

so that also spr(H1) < 1 . If instead of A its transpose AT is strictly diagonally dominant,
we can argue analogously since, in view of λ(ĀT ) = λ(A) , the spectral radii of these two
matrices coincide. Q.E.D.
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Remark 3.2: We show an example of a non-symmetric matrix A, which satisfies the
strong column- but not the strong row-sum criterion:

A =

⎡
⎢⎢⎣

4 4 1

2 5 3

1 0 5

⎤
⎥⎥⎦ , AT =

⎡
⎢⎢⎣

4 2 1

4 5 0

1 3 5

⎤
⎥⎥⎦ .

Clearly, for symmetric matrices the two conditions are equivalent.

The strict diagonal dominance of A or AT required in Theorem 3.2 is a too restric-
tive condition for the needs of many applications. In most cases only simple “diagonal
dominance” is given as in the Example (2.7) of Section 2.2,

A =

⎡
⎢⎢⎢⎢⎣

B −I4
−I4 B −I4

−I4 B −I4
−I4 B

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

16 , B =

⎡
⎢⎢⎢⎢⎣

4 −1

−1 4 −1

−1 4 −1

−1 4

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

4

However, this matrix is strictly diagonally dominant in some of its rows, which together
with an additional structural property of A can be used to guarantee convergence of
Jacobi and Gauß-Seidel method.

Definition 3.1: A matrix A ∈ Rn×n is called “reducible”, if there exists a permutation
matrix P such that

PAP T =

[
Ã11 0

Ã21 Ã22

]
,

(simultaneous row and column permutation) with matrices Ã11 ∈ Rp×p, Ã22 ∈ Rq×q, Ã21

∈ Rq×p, p, q > 0, p+ q = n . It is called “irreducible” if it is not reducible.

For a reducible matrix A the linear system Ax = b can be transformed into an
equivalent system of the form PAP Ty = Pb, x = P Ty which is decoupled into two
separate parts such that it could be solved in two successive steps. The following lemma
provides a criterion for the irreducibility of the matrix A , which can be used in concrete
cases. For example, the above model matrix A is irreducible.

Lemma 3.2 (Irreducibility): A matrix A ∈ Rn×n is irreducible if and only if the as-
sociated directed graph

G(A) :=
{
knots P1, ..., Pn , edges PjPk ⇔ ajk �= 0, j, k = 1, ..., n

}
is connected, i. e., for each pair of knots {Pj, Pk} there exists a directed connection between
Pj and Pk .
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Proof. The reducibility of A can be formulated as follows: There exists a non-trivial
decomposition Nn = J ∪K of the index set Nn = {1, ..., n}, J, K �= ∅ , J ∩K = ∅ such
that ajk = 0 for all pairs {j, k} ∈ J ×K . Connectivity of the graph G(A) now means
that for any pair of indices {j, k} there exists a chain of indices i1, . . . , im ∈ {1, . . . , n}
such that

aji1 �= 0 , ai1i2 �= 0 , . . . , aim−1im �= 0 , aimk �= 0.

From this, we can conclude the asserted characterization (left as exercise). Q.E.D.

For irreducible matrices the condition in the strong row-sum criterion can be relaxed.

Theorem 3.3 (Weak row-sum criterion): Let the matrix A ∈ Rn×n be irreducible
and diagonally dominant,

n∑
k=1,k 
=j

|ajk| ≤ |ajj| j = 1, . . . , n, (3.1.21)

and let for at least one index r ∈ {1, . . . , n} the corresponding row sum satisfy

n∑
k=1,k 
=r

|ark| < |arr|. (3.1.22)

Then, A is regular and spr(J) < 1 and spr(H1) < 1 , i. e., Jacobi and Gauß-Seidel
method converge. An analogous criterion holds in terms of the column sums of A .

Proof. i) Because of the assumed irreducibility of the matrix A there necessarily holds

n∑
k=1

|ajk| > 0 , j = 1, . . . , n ,

and, consequently, by its diagonal dominance, ajj �= 0, j = 1, . . . , n . Hence, Jacobi and
Gauß-Seidel method are feasible. With the aid of the diagonal dominance, we conclude
analogously as in the proof of Theorem 3.2 that

spr(J) ≤ 1 , spr(H1) ≤ 1.

ii) Suppose now that there is an eigenvalue λ ∈ σ(J) with modulus |λ| = 1 . Let v ∈ C
n

be a corresponding eigenvector with a component vs satisfying |vs| = ‖v‖∞ = 1. There
holds

|λ| |vi| ≤ |aii|−1
∑
k 
=i

|aik| |vk| , i = 1, . . . , n. (3.1.23)

By the assumed irreducibility of A in the sense of Lemma 3.2 there exist a chain of indices
i1, . . . , im such that asi1 �= 0 , . . .,aimr �= 0 . Hence, by multiple use of the inequality
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(3.1.23), we obtain the following contradiction (observe that |λ| = 1 )

|vr| = |λvr| ≤ |arr|−1
∑
k 
=r

|ark| ‖v‖∞ < ‖v‖∞,

|vim| = |λvim | ≤ |aimim |−1
{ ∑

k 
=im,r

|aimk| ‖v‖∞ + |aimr|︸ ︷︷ ︸
�= 0

|vr|
}
< ‖v‖∞,

...

|vi1| = |λvi1 | ≤ |ai1i1 |−1
{ ∑

k 
=i1,i2

|ai1k| ‖v‖∞ + |ai1i2 |︸ ︷︷ ︸
�= 0

|vi2 |
}
< ‖v‖∞,

‖v‖∞ = |λvs| ≤ |ass|−1
{ ∑

k 
=s,i1

|ask| ‖v‖∞ + |asi1|︸︷︷︸
�= 0

|vi1|
}
< ‖v‖∞.

Consequently, there must hold spr(J) < 1 . Analogously, we also conclude spr(H1) < 1.
Finally, in view of A = D(I−J) the matrix A must be regular. Q.E.D.

3.2 Acceleration methods

For practical problems Jacobi and Gauß-Seidel method are usually much too slow. There-
fore, one tries to improve their convergence by several strategies, two of which will be
discussed below.

3.2.1 SOR method

The SOR method can be interpreted as combining the Gauß-Seidel method with an extra
“relaxation step”. Starting from a standard Gauß-Seidel step in the t-th iteration,

x̃tj =
1

ajj

{
bj −

∑
k<j

xtk −
∑
k>j

xt−1
k

}
,

the next iterate xtj is generated as a convex linear combination (“relaxation”) of the form

xtj = ωx̃tj + (1− ω) xt−1
j ,

with a parameter ω ∈ (0, 2). For ω = 1 this is just the Gauß-Seidel iteration. For ω < 1,
one speaks of “underrelaxation” and for ω > 1 of “overrelaxation”. The iteration matrix
of the SOR methods is obtained from the relation

xt = ωD−1{b− Lxt − Rxt−1}+ (1− ω)xt−1

as
Hω = −(D + ωL)−1 [(ω − 1)D + ωR].
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Hence, the iteration reads

xt = Hωx
t−1 + ω(D + ωL)−1b, (3.2.24)

or in componentwise notation:

xti = (1− ω)xt−1
i +

ω

aii

(
bi −

∑
j<i

aijx
t
j −

∑
j>i

aijx
t−1
j

)
, i = 1, . . . , n. (3.2.25)

The following lemma shows that in the relaxation parameter has to be picked in the range
0 < ω < 2 if one wants to guarantee convergence.

Lemma 3.3 (Relaxation): For an arbitrary matrix A ∈ Rn×n with regular D there
holds

spr (Hω) ≥ |ω − 1| , ω ∈ R. (3.2.26)

Proof. We have

Hω = (D+ωL)−1[ (1−ω)D− ωR ] = (I+ωD−1L︸ ︷︷ ︸
=: L′

)−1D−1D︸ ︷︷ ︸
= I

[ (1−ω) I − ωD−1R︸ ︷︷ ︸
=: R′

].

Then,
det(Hω) = det(I+ωL′)︸ ︷︷ ︸

= 1

)−1 · det((1−ω) I−ωR′ )︸ ︷︷ ︸
= (1−ω)n

= (1−ω)n.

Since det (Hω) =
∏n

i=1 λi ( λi ∈ Hω ) it follows that

spr(Hω) = max
1≤i≤n

|λi| ≥
( n∏

i=1

|λi|
)1/n

= |1− ω|,

which proves the asserted estimate. Q.E.D.

For positive definite matrices the assertion of Lemma 3.3 can be reversed in a certain
sense. This is the content of the following theorem of of Ostrowski3 and Reich4 .

–

3Alexander Markowitsch Ostrowski (1893–1986): Russian-German-Swiss mathematician; studied at
Marburg, Göttingen (with D. Hilbert and E. Landau) and Hamburg, since 1927 Prof. in Basel; worked
on Dirichlet series, in Valuation Theory and especially in Numerical Analysis: “On the linear iteration
procedures for symmetric matrices”, Rend. Mat. Appl. 5, 140–163 (1954).

4Edgar Reich (1927–2009): US-American mathematician of German origin; start as Electrical Engineer
at MIT (Massachusetts, USA) and Rand Corp. working there on numerical methods and Queuing Theory:
“On the convergence of the classical iterative method for solving linear simultaneous equations”, Ann.
Math. Statist. 20. 448–451 (1949); PhD at UCLA and 2-year postdoc at Princeton, since 1956 Prof.
at Univ. of Minnesota (Minneapolis, USA), work in Complex Analysis especially on quasi-conformal
mappings.
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Theorem 3.4 (Theorem of Ostrowski-Reich): For a positive definite matrix A ∈
Rn×n there holds

spr(Hω) < 1 , for 0 < ω < 2. (3.2.27)

Hence, especially the Gauß-Seidel method (ω = 1) is convergent. Its asymptotic conver-
gence speed can be estimated by

spr(H1) ≤ 1− 2

μ
+

2

μ(μ+ 1)
, μ :=

λmax(D)

λmin(A)
, (3.2.28)

assuming the quantity μ ≈ cond2(A) to be large.

Proof. i) In view of the symmetry of A, we have R = LT , i. e., A = L+D + LT . Let
λ ∈ σ(Hω) be arbitrary for 0 < ω < 2 , with some eigenvector v ∈ Rn, i. e., Hωv = λv .
Thus, there holds (

(1−ω)D−ωLT
)
v = λ (D+ωL) v

and
ω (D+LT ) v = (1−λ)Dv − λωLv.

From this, we conclude that

ωAv = ω (D+LT ) v + ωLv

= (1−λ)Dv − λωLv + ωLv = (1−λ)Dv + ω (1−λ)Lv,

and

λωAv = λω (D+LT ) v + λωLv

= λω (D + LT ) v + (1−λ)Dv − ω (D+LT ) v

= (λ−1)ω(D+LT ) v + (1−λ)Dv = (1−λ)(1−ω)Dv− (1−λ)ωLTv.

Observing vTLv = vTLT v implies

ωvTAv = (1−λ) vTDv + ω (1−λ) vTLv
λωvTAv = (1−λ)(1−ω) vTDv − (1−λ)ωvTLv,

and further by adding the two equations,

ω (1+λ) vTAv = (1−λ) (2−ω) vTDv.

As with A also D is positive definite there holds vTAv > 0, vTDv > 0. Consequently
(observing 0 < ω < 2), λ �= ±1 , and it follows that

μ :=
1 + λ

1− λ
=

2− ω

ω

vTDv

vTAv
> 0.

Resolving this for λ, we finally obtain the estimate
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|λ| =
∣∣∣∣μ− 1

μ+ 1

∣∣∣∣ < 1, (3.2.29)

what was to be shown.

ii) To derive the quantitative estimate (3.2.28), we rewrite (3.2.29) in the form

|λ| =
∣∣∣∣μ− 1

μ+ 1

∣∣∣∣ =
∣∣∣∣1− 1/μ

1 + 1/μ

∣∣∣∣ ≤ 1− 2

μ
+

2

μ(μ+ 1)
,

where

μ =
vTDv

vTAv
≤ max‖y‖2=1 y

TDy

min‖y‖2=1 yTAy
≤ λmax(D)

λmin(A)
.

This completes the proof. Q.E.D.

Remark 3.3: The estimate (3.2.28) for the convergence rate of the Gauß-Seidel method
in the case of a symmetric, positive definite matrix A has an analogue for the Jacobi
method,

spr(J) ≤ 1− 1

μ
, (3.2.30)

where μ is defined as in (3.2.28). This is easily seen by considering any eigenvalue
λ ∈ σ(J) with corresponding normalized eigenvector v, ‖v‖2 = 1 , satisfying

λDv = Dv − Av.

Multiplying by v and observing that A as well as D are positive definite, then yields

λ = 1− vTAv

vTDv
≤ 1− 1

μ
.

Comparing this estimate with (3.2.28) and observing that

spr(J)2 = (1− μ−1)2 ≈ 1− 2μ−1 ≈ spr(H1),

for μ 
 1 , indicates that the Gauß-Seidel method may be almost twice as fast as the
Jacobi method. That this is actually the case will be seen below for a certain class of
matrices.

Definition 3.2: A matrix A ∈ Rn×n with the usual additive splitting A = L+D+R is
called “consistently ordered” if the eigenvalues of the matrices

J(α) = −D−1{αL+ α−1R} , α ∈ C,

are independent of the parameter α, i. e., equal to the eigenvalues of the matrix J = J(1).

The importance of this property lies in the fact that in this case there are explicit
relations between the eigenvalues of J and those of Hω .
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Example 3.2: Though the condition of “consistent ordering” appears rather strange
and restrictive, it is satisfied for a large class of matrices. Consider the model matrix in
Subsection 0.4.2 of Chapter 0. Depending on the numbering of the mesh points matrices
with different block structures are encountered.

i) If the mesh points are numbered in a checker-board manner a block-tridiagonal matrix

A =

⎡
⎢⎢⎢⎢⎢⎣
D1 A12

A21 D2
. . .

. . .
. . . Ar−1,r

Ar,r−1 Dr

⎤
⎥⎥⎥⎥⎥⎦ ,

occurs where the Di are diagonal and regular. Such a matrix is consistently ordered,
which is seen by applying a suitable similarity transformation,

T =

⎡
⎢⎢⎢⎢⎢⎣
I

αI
. . .

αr−1I

⎤
⎥⎥⎥⎥⎥⎦ , αD−1L+ α−1D−1R = T (D−1L+D−1R)T−1.

and observing that similar matrices have the same eigenvalues.

ii) If the mesh points are numbered in a row-wise manner a block-tridiagonal matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

A1 D12

D21 A2
. . .

. . .
. . . Dr−1,r

Dr,r−1 Ar

⎤
⎥⎥⎥⎥⎥⎦ ,

occurs where the Ai are tridiagonal and the Dij diagonal. Such a matrix is consistently
ordered, which is seen by first applying the same similarity transformation as above,

TAT−1 =

⎡
⎢⎢⎢⎢⎢⎣

A1 α−1D12

αD21 A2
. . .

. . .
. . . α−1Dr−1,r

αDr,r−1 Ar

⎤
⎥⎥⎥⎥⎥⎦ ,

and then a similarity transformation with the diagonal-block matrix

S = diag{S1, . . . , Sm},

where Si = diag{1, α, α2, . . . , αr−1}, i = 1, . . . , m, resulting in
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STAT−1S−1 =

⎡
⎢⎢⎢⎢⎢⎣
S1A1S

−1
1 α−1D12

αD21 S2A2S
−1
2

. . .
. . .

. . . α−1Dr−1,r

αDr,r−1 SrArS
−1
r

⎤
⎥⎥⎥⎥⎥⎦ .

Here, it has been used that the blocks Dij are diagonal. Since the main-diagonal blocks
are tri-diagonal, they split like Ai = Di + Li +Ri and there holds

SiAiS
−1
i = Di + αL+ α−1R.

This implies that the matrix A is consistently ordered.

Theorem 3.5 (Optimal SOR method): Let the matrix A ∈ Rn×n be consistently or-
dered and 0 ≤ ω ≤ 2. Then, the eigenvalues μ ∈ σ(J) and λ ∈ σ(Hω) are related
through the identity

λ1/2ωμ = λ+ ω − 1. (3.2.31)

Proof. Let λ, μ ∈ C two numbers, which satisfy equation (3.2.31). If 0 �= λ ∈ σ(Hω)
the relation Hωv = λv is equivalent to(

(1− ω)I − ωD−1R
)
v = λ(I + ωD−1L)v

and
(λ+ ω − 1)v = −λ1/2ω (λ1/2D−1L+ λ−1/2D−1R

)
v = λ1/2ωJ(λ1/2) v.

Thus, v is eigenvector of J(λ1/2) corresponding to the eigenvalue

μ =
λ+ ω − 1

λ1/2ω
.

Then, by the assumption on A also μ ∈ σ(J). In turn, for μ ∈ σ(J), by the same relation
we see that λ ∈ σ(Hω). Q.E.D.

As direct consequence of the above result, we see that for consistently ordered matrices
the Gauß-Seidel matrix (case ω = 1 ) either has spectral radius spr(H1) = 0 or there holds

spr(H1) = spr(J)2. (3.2.32)

In case spr(J) < 1 the Jacobi method converges. For reducing the error by the factor
10−1 the Gauß-Seidel method only needs half as many iterations than the Jacobi method
and is therefore to be preferred. However, this does not necessarily hold in general since
one can construct examples for which one or the other method converges or diverges.

For consistently ordered matrices from the identity (3.2.31), we can derive a formula
for the “optimal” relaxation parameter ωopt with spr(Hωopt) ≤ spr(Hω), ω ∈ (0, 2). If
there holds ρ := spr(J) < 1, then:
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spr(Hω) =

{
ω − 1 , ωopt ≤ ω
1
4

(
ρ ω +

√
ρ2ω2 − 4(ω − 1)

)2
, ω ≤ ωopt .
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Figure 3.1: Spectral radius of the SOR matrix Hω as function of ω

.

Then, there holds

ωopt =
2

1 +
√

1− ρ2
, spr(Hωopt) = ωopt − 1 =

1−
√

1− ρ2

1 +
√
1− ρ2

< 1. (3.2.33)

In general the exact value for spr(J) is not known. Since the left-sided derivative of
the function f(ω) = spr(Hω) for ω → ωopt is singular, in estimating ωopt it is better to
take a value slightly larger than the exact one. Using inclusion theorems for eigenvalues
or simply the bound ρ ≤ ‖J‖∞ one obtains estimates ρ̄ ≥ ρ . In case ρ̄ < 1 this yields
an upper bound ω̄ ≥ ωopt

ω̄ :=
2

1 +
√

1− ρ̄2
≥ 2

1 +
√

1− ρ2
= ωopt

for which

spr(Hω̄) = ω̄ − 1 =
1−

√
1− ρ̄2

1 +
√

1− ρ̄2
< 1. (3.2.34)

However, this consideration requires the formula (3.2.33) to hold true.

Example 3.3: To illustrate the possible improvement of convergence by optimal overre-
laxation, we note that

spr(H1) = spr (J)2 =

{
0.81

0.99
⇒ spr(Hωopt) =

{
0.39

0.8

This will be further discussed for the model matrix in Section 3.4, below.
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3.2.2 Chebyshev acceleration

In the following, we discuss another method of convergence acceleration, termed “Cheby-
shev acceleration”, which can be used in the case of a symmetric coefficient matrices A,
for fixed-point iterations of the form

xt = Bxt−1 + c, t = 1, 2, . . . , (3.2.35)

with diagonalizable iteration matrix B . First, we describe the general principle of this
approach and then apply it to a symmetrized version of the SOR method. Suppose that
the above fixed-point iteration converges to the solution x ∈ Rn of the linear system

Ax = b ⇔ x = Bx+ c, (3.2.36)

i. e., that spr(B) < 1 . The idea of Chebyshev acceleration is to construct linear combi-
nations

yt :=
t∑

s=0

γtsx
s, t ≥ 1, (3.2.37)

with certain coefficients γts, such that the new sequence (yt)t≥0 converges faster to the
fixed point x than the original sequence (xt)t≥0. Once the fixed-point has been reached,
i. e., xt ≈ x , the new iterates should also be close to x . This imposes the consistency
condition

t∑
s=0

γts = 1. (3.2.38)

Then, the corresponding error has the form

yt − x =

t∑
s=0

γts(x
s − x) =

t∑
s=0

γtsB
s(x0 − x) = pt(B)(x0 − x), (3.2.39)

with the polynomial pt ∈ Pt of degree t given by

pt(z) =

t∑
s=0

γtsz
s, pt(1) = 1. (3.2.40)

This iteration may be viewed as one governed by a sequence of “iteration matrices”
pt(B), t = 1, 2, . . . , and therefore, we may try to characterize its convergence by the spec-
tral radius spr(pt(B)) as in the standard situation of a “stationary fixed-point iteration
(i. e., one with a fixed iteration matrix). This requires us to relate the eigenvalues of
pt(B) to those of B,

λ(pt(B)) = pt(λ(B)). (3.2.41)
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This leads us to consider the following optimization problem

spr(pt(B)) = min
p∈Pt,p(1)=1

max
λ∈σ(B)

|p(λ)|. (3.2.42)

The eigenvalues λ ∈ spr(B) are usually not known, but rather the bound spr(B) ≤ 1− δ
with some small δ > 0 may be available. Hence, this optimization problem has to be
relaxed to

spr(pt(B)) ≤ min
p∈Pt,p(1)=1

max
|x|≤1−δ

|pt(x)|. (3.2.43)

This optimization problem can be explicitly solved in the case σ(B) ∈ R . Therefore, we
make the following assumption.

Assumption 3.1: The coefficient matrix A = L+D + LT is assumed to be symmetric
and the iteration matrix B of the base iteration (3.2.35) to be similar to a symmetric
matrix and, therefore, is diagonalizable with real eigenvalues,

σ(B) ⊂ R. (3.2.44)

Remark 3.4: In general the iteration matrix B cannot be assumed to be symmetric and
not even similar to a symmetric matrix (e. g., in the Gauß-Seidel method with H1 = −(D+
L)−1LT ). But if this were the case (e. g., in the Richardson method with B = I − θA or
in the Jacobi method with J = −D−1(L+LT ) ) the analysis of the new sequence (yt)t≥0

may proceed as follows. Taking spectral-norms, we obtain

‖yt − x‖2 ≤ ‖pt(B)‖2‖x0 − x‖2. (3.2.45)

Hence, the convergence can be improved by choosing the polynomial pt such the the
norm ‖pt(B)‖2 becomes minimal,

‖yt − x‖2
‖x0 − x‖2 ≤ min

pt∈Pt,pt(1)=1
‖pt(B)‖2 � ‖Bt‖2 ≤ ‖B‖t2. (3.2.46)

Using the representation of the spectral norm, valid for symmetric matrices,

‖pt(B)‖2 = max
λ∈σ(B)

|pt(λ)|. (3.2.47)

and observing σ(B) ∈ [−1 + δ, 1 − δ], for same small δ > 0, the optimization problem
takes the form

min
pt∈Pt,pt(1)=1

max
|x|≤1−δ

|pt(x)|. (3.2.48)

The solution of the optimization problem (3.2.43) is given by the well-known Cheby-
shev polynomials (of the first kind), which are the orthogonal polynomials obtained by
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successively orthogonalizing (using the the Gram-Schmidt algorithm with exact arith-
metic) the monomial basis {1, x, x2, . . . , xt} with respect to the scalar product

(p, q) :=

∫ 1

−1

p(x)q(x)
dx√
1− x2

, p, q ∈ Pt,

defined on the function space C[−1, 1] . These polynomials, named Tt ∈ Pt , are usually
normalized to satisfy Tt(1) = 1 ,

∫ 1

−1

Tt(x)Ts(x)
dx√
1− x2

=

⎧⎨
⎩

0, t �= s,

π, t = s = 0,

π/2, t = s �= 0.

They can be written in explicit form as (see, e. g., Stoer&Bulirsch [50] or Rannacher [1]):

Tt(x) =

⎧⎨
⎩

(−1)tcosh(t arccosh(−x)), x ≤ −1,

cos(t arccos(x)), −1 ≤ x ≤ 1,

cosh(t arccosh(x)), x ≥ 1.

(3.2.49)
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Figure 3.2: Chebyshev polynomials Tt, t = 0, 1, . . . , 5.
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That the so defined functions are actually polynomials can be seen by induction.
Further, there holds the three-term recurrence relation

T0(x) = 1, T1(x) = x, Tt+1(x) = 2xTt(x)− Tt−1(x), t ≥ 1, (3.2.50)

which allows the numerically stable computation and evaluation of the Chebyshev poly-
nomials. Sometimes the following alternative global representation is useful:

Tt(x) =
1
2

(
[x+

√
x2 − 1 ]t + [x−

√
x2 − 1 ]t

)
, x ∈ R. (3.2.51)

With this notation, we have the following basic result.

Theorem 3.6 (Chebyshev polynomials): Let [a, b] ⊂ R be a non-empty interval and
let c ∈ R be any point outside this interval. Then, the minimum

min
p∈Pt,p(c)=1

max
x∈[a,b]

|p(x)| (3.2.52)

is attained by the uniquely determined polynomial

p(x) := Ct(x) =
Tt(1 + 2x−b

b−a
)

Tt(1 + 2 c−b
b−a

)
, x ∈ [a, b]. (3.2.53)

Furthermore, for a < b < c there holds

min
p∈Pt,p(c)=1

max
x∈[a,b]

|p(x)| = 1

Tt(1 + 2 c−b
b−a

)
=

2γt

1 + γ2t
≤ 2γt, (3.2.54)

where

γ :=
1− 1/

√
κ

1 + 1/
√
κ
, κ :=

c− a

c− b
.

Proof. i) By affine transformation, which does not change the max-norm, we may restrict
ourselves to the standard case [a, b] = [−1, 1] and c ∈ R\ [−1, 1] . Then, Ct(x) = C̃Tt(x)
with constant C̃ = Tt(c)

−1 . The Chebyshev polynomial Tt(x) = cos(t arccos(x)) attains
the values ±1 at the points xi = cos(iπ/t), i = 0, . . . , t, and it alternates between 1
and −1 , i. e., Tt(xi) and Tt(xi+1) have opposite signs. Furthermore, max[−1,1] |Tt| = 1 ,

implying max[−1,1] |Ct| = |C̃| .
ii) Assume now the existence of q ∈ Pt such that max[−1,1] |q| < max[−1,1] |Ct| = |C̃|
and q(c) = 1 . Then, the polynomial r = Ct − q changes sign t-times in the interval
[−1, 1] since sign r(xi) = signTt(xi), i = 0, . . . , t. Thus, r has at least t zeros in [−1, 1] .
Additionally, r(c) = 0 . Hence, r ∈ Pt has at least t + 1 zeros; thus, r ≡ 0, which leads
to a contradiction.

iii) By definition, there holds |Tt(x)| ≤ 1, x ∈ [−1, 1] . This implies that

max
x∈[a,b]

|Ct(x)| = 1

Tt(1 + 2 c−b
b−a

)
.
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The assertion then follows from the explicit representation of the Tt given above and
some manipulations (for details see the proof of Theorem 3.11, below). Q.E.D.

Practical use of Chebyshev acceleration

We now assume σ(B) ⊂ (−1, 1) , i. e., convergence of the primary iteration. Moreover,
we assume that a parameter ρ ∈ (−1, 1) is known such that σ(B) ⊂ [−ρ, ρ] . With
the parameters a = −ρ, b = ρ, and c = 1, we use the polynomials pt = Ct given in
Theorem 3.6 in defining the secondary iteration (3.2.37). This results in the “Chebyshev-
accelerated” iteration scheme. This is a consistent choice since Tt(1) = 1 .

The naive evaluation of the secondary iterates (3.2.37) would require to store the
whole convergence history of the base iteration (xt)t≥0 , which may not be possible for
large problems. Fortunately, the three-term recurrence formula (3.2.50) for the Chebyshev
polynomials carries over to the corresponding iterates (yt)t≥0 , making the whole process
feasible at all.

Since the Tt satisfy the three-term recurrence (3.2.50), and so do the polynomials
p = Ct from (3.2.53):

μt+1pt+1(x) =
2x

ρ
μtpt(x)− μt−1pt−1(x), t ≥ 1, μt = Tt(1/ρ), (3.2.55)

with initial functions

p0(x) ≡ 1, p1(x) =
T1(x/ρ)

T1(1/ρ)
=
x/ρ

1/ρ
= x,

i. e., a0,0 = 1 and a1,0 = 0, a1,1 = 1 . We also observe the important relation

μt+1 =
2

ρ
μt − μt−1, μ0 = 1, μ1 = 1/ρ. (3.2.56)

which can be concluded from (3.2.55) observing that pt(1) = 1 . With these preparations,
we can now implement the Chebyshev acceleration scheme. With the limit x := limt→∞ xt,
we obtain for the error yt − x = ẽt = pt(B)e0 :

yt+1 = x+ ẽt+1 = x+ pt+1(B)e0 = x+ 2
μt

ρμt+1

Bpt(B)e0 − μt−1

μt+1

pt−1(B)e0

= x+ 2
μt

ρμt+1
Bẽt − μt−1

μt+1
ẽt−1 = x+ 2

μt

ρμt+1
B(yt − x)− μt−1

μt+1
(yt−1 − x)

= 2
μt

ρμt+1
Byt − μt−1

μt+1
yt−1 +

1

μt+1

(
μt+1 − 2

ρ
μtB + μt−1

)
x.

Now, using the fixed-point relation x = Bx+c and the recurrence (3.2.56), we can remove
the appearance of x in the above recurrence obtaining
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yt+1 = 2
μt

ρμt+1
Byt − μt−1

μt+1
yt−1 + 2

μt

ρμt+1
c, y0 = x0, y1 = x1 = Bx0 + c. (3.2.57)

Hence, the use of Chebyshev acceleration for the primary iteration (3.2.35) consists in
evaluating the three-term recurrences (3.2.56) and (3.2.57), which is of similar costs as
the primary iteration (3.2.35) itself, in which the most costly step is the matrix-vector
multiplication Byt .

In order to quantify the acceleration effect of this process, we write the secondary
iteration in the form

yt − x =
t∑

s=0

γts(x
s − x) = pt(B)(x0 − x),

where γts are the coefficients of the polynomial pt . There holds

pt(x) = Ct(x) =
Tt(x/ρ)

Tt(1/ρ)
.

By the estimate (3.2.54) of Theorem 3.6 it follows that

spr(pt(B)) = max
λ∈σ(B)

|pt(x)| = 2γt

1 + γ2t
≤ 2γt, γ :=

1− 1/
√
κ

1 + 1/
√
κ
, κ :=

1 + ρ

1− ρ
.

Hence, for the primary and the secondary iteration, we find the asymptotic error behavior

lim sup
(‖et‖
‖e0‖

)1/t

= spr(B) ≤ ρ = 1− δ, (3.2.58)

lim sup
(‖ẽt‖
‖e0‖

)1/t

≤ 1− 1/
√
κ

1 + 1/
√
κ
≤ 1− c′

√
δ, (3.2.59)

i. e., in the case 0 < δ � 1 by Chebyshev acceleration a significant improvement can be
achieved for the convergence speed.

Application for accelerating the SOR method

We want to apply the concept of Chebyshev acceleration to the SOR method with the
iteration matrix (recalling that A is symmetric)

Hω = (D + ωL)−1
(
(1− ω)D− ωLT

)
, ω ∈ (0, 2).

However, it is not obvious whether this matrix is diagonalizable. Therefore, one introduces
a symmetrized version of the SOR method, which is termed “SSOR method”,

(D + ωL)yt = [(1−ω)D − ωLT ]xt−1 + b,

(D + ωLT )xt = [(1−ω)D − ωL]yt + b,
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or equivalently,

xt = (D + ωLT )−1[(1−ω)D− ωL](D + ωL)−1[(1−ω)D− ωLT ]xt−1 + b
)
+ b

)
, (3.2.60)

with the iteration matrix

HSSOR
ω := (D + ωLT )−1

(
(1−ω)D− ωL

)
(D + ωL)−1

(
(1−ω)D− ωLT

)
.

The SSOR-iteration matrix is similar to a symmetric matrix, which is seen from the
relation

(D+ωLT )HSSOR
ω (D+ωLT )−1 = [(1−ω)D−ωL](D+ωL)−1[(1−ω)D−ωLT ](D+ωLT )−1

= [(1−ω)D−ωL](D+ωL)−1(D+ωLT )−1[(1−ω)D−ωLT ].

The optimal relaxation parameter of the SSOR method is generally different from that of
the SOR method.

Remark 3.5: In one step of the SSOR method the SOR loop is successively applied
twice, once in the standard “forward” manner based on the splitting A = (L+D) + LT

and then in “backward” form based on A = L+(D+LT ) . Hence, it is twice as expensive
compared to the standard SOR method. But this higher cost is generally not compensated
by faster convergence. Hence, the SSOR method is attractive mainly in connection with
the Chebyshev acceleration as described above and not so much as a stand-alone method.

3.3 Descent methods

In the following, we consider a class of iterative methods, which are especially designed for
linear systems with symmetric and positive definite coefficient matrices A , but can also
be extended to more general situations. In this section, we use the abbreviated notation
(·, ·) := (·, ·)2 and ‖ · ‖ := ‖ · ‖2 for the Euclidian scalar product and norm.

Let A ∈ Rn×n be a symmetric positive definite (and hence regular) matrix,

(Ax, y) = (x,Ay), x, y ∈ R
n, (Ax, x) > 0, x ∈ R

n×n \ {0}. (3.3.61)

This matrix generates the so-called “A-scalar product” and the corresponding “A-norm”,

(x, y)A := (Ax, y), ‖x‖A := (Ax, x)1/2, x, y ∈ R
n. (3.3.62)

Accordingly, vectors with the property (x, y)A = 0 are called “A-orthogonal”. The
positive definite matrix A has important properties. Its eigenvalues are real and positive
0 < λ := λ1 ≤ . . . ≤ λn =: Λ and there exists an ONB of eigenvectors {w1, . . . , wn} . For
its spectral radius and spectral condition number, there holds

spr(A) = Λ , cond2(A) =
Λ

λ
. (3.3.63)
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The basis for the descent methods discussed below is provided by the following theorem,
which characterizes the solution of the linear system Ax = b as the minimum of a
quadratic functional.

Theorem 3.7 (Minimization property): The matrix A be symmetric positive defi-
nite. The uniquely determined solution of the linear system Ax = b is characterized by
the property

Q(x) < Q(y) ∀ y ∈ R
n \ {x}, Q(y) := 1

2
(Ay, y)2 − (b, y)2. (3.3.64)

Proof. Let Ax = b . Then, in view of the definiteness of A for y �= x there holds

Q(y)−Q(x) = 1
2
{ (Ay, y)− 2(b, y)− (Ax, x) + 2(b, x) }

= 1
2
{ (Ay, y)− 2(Ax, y) + (Ax, x) } = 1

2
(A[x− y], x− y) > 0.

In turn, if Q(x) < Q(y) , for x �= y , i. e., if x is a strict minimum of Q on Rn , there
must hold gradQ(x) = 0 . This means that (observe ajk = akj )

∂Q

∂xi
(x) =

1

2

∂

∂xi

n∑
j,k=1

ajkxjxk − ∂

∂xi

n∑
k=1

bkxk =
n∑

k=1

aikxk − bi = 0, i = 1, . . . , n,

i. e., Ax = b . Q.E.D.

We note that the gradient of Q in a point y ∈ Rn is given by

gradQ(y) = 1
2
(A+ AT )y − b = Ay − b. (3.3.65)

This coincides with the “defect” of the point y with respect to the equation Ax = b
(negative “residual” b−Ay ). The so-called “descent methods”, starting from some initial
point x(0) ∈ Rn, determine a sequence of iterates xt , t ≥ 1, by the prescription

xt+1 = xt + αtr
t, Q(xt+1) = min

α∈R
Q(xt + αrt). (3.3.66)

Here, the “descent directions” rt are a priori determined or adaptively chosen in the
course of the iteration. The prescription for choosing the “step length” αt is called “line
search”. In view of

d

dα
Q(xt + αrt) = gradQ(xt + αrt) · rt = (Axt − b, rt) + α(Art, rt),

we obtain the formula

αt = − (gt, rt)

(Art, rt)
, gt := Axt − b = gradQ(xt).

Definition 3.3: The general descent method, starting from some initial point x0 ∈ Rn ,
determines a sequence of iterates xt ∈ Rn, t ≥ 1, by the prescription
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i) gradient gt = Axt − b,

ii) descent direction rt,

iii) step length αt = − (gt, rt)

(Art, rt)
,

iv) descent step xt+1 = xt + αtr
t.

Each descent step as described in the above definition requires two matrix-vector
multiplications. By rewriting the algorithm in a slightly different way, one can save one
of these multiplications at the price of additionally storing the vector Art .

General descent algorithm:

Starting values: x0 ∈ R
n, g0 := Ax0 − b.

Iterate for t ≥ 0: descent direction rt

αt = − (gt, rt)

(Art, rt)
, xt+1 = xt + αtr

t, gt+1 = gt + αtAr
t.

Using the notation ‖y‖B := (By, y)1/2 there holds

2Q(y) = ‖Ay − b‖2A−1 − ‖b‖2A−1 = ‖y − x‖2A − ‖x‖2A, (3.3.67)

i. e., the minimization of the functional Q(·) is equivalent to the minimization of the
Defect norm ‖Ay − b‖A−1 or the error norm ‖y − x‖A .

3.3.1 Gradient method

The various descent methods essentially differ by the choice of the descent directions
rt. One of the simplest a priori strategies uses in a cyclic way the Cartesian coordinate
direction {e1, . . . , en} . The resulting method is termed “coordinate relaxation” and is
sometimes used in the context of nonlinear systems. For solving linear systems it is much
too slow as it is in a certain sense equivalent to the Gauß-Seidel method (exercise). A
more natural choice are the directions of steepest descent of Q(·) in the points xt :

rt = −gradQ(xt) = −gt. (3.3.68)

Definition 3.4: The “gradient method” determines a sequence of iterates xt ∈ Rn, t ≥ 0,
by the prescription

Starting values: x0 ∈ R
n , g0 := Ax0 − b.

Iterate for t ≥ 0: αt =
‖gt‖2

(Agt, gt)
, xt+1 = xt − αtg

t, gt+1 = gt − αtAg
t.

In case that (Agt, gt) = 0 for some t ≥ 0 there must hold gt = 0 , i. e., the iteration can
only terminate with Axt = b .
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Theorem 3.8 (Gradient method): For a symmetric positive definite matrix A ∈ Rn×n

the gradient method converges for any starting point x0 ∈ Rn to the solution of the linear
system Ax = b .

Proof. We introduce the “error functional”

E(y) := ‖y − x‖2A = (y − x,A[y−x]) , y ∈ R
n,

and for abbreviation set et := xt − x . With this notation there holds

E(xt)−E(xt+1)

E(xt)
=

(et, Aet)− (et+1, Aet+1)

(et, Aet)

=
(et, Aet)− (et − αtg

t, A[et − αtg
t])

(et, Aet)

=
2αt(e

t, Agt)− α2
t (g

t, Agt)

(et, Aet)

and consequently, because of Aet = Axt −Ax = Axt − b = gt,

E(xt)−E(xt+1)

E(xt)
=

2αt‖gt‖2 − α2
t (g

t, Agt)

(gt, A−1gt)
=

‖gt‖4
(gt, Agt)(gt, A−1gt)

.

For the positive definite matrix A there holds

λ‖y‖2 ≤ (y, Ay) ≤ Λ‖y‖2 , Λ−1‖y‖2 ≤ (y, A−1y) ≤ λ−1‖y‖2,

with λ = λmin(A) and Λ = λmax(A) . In the case xt �= x , i. e., E(xt) �= 0 and gt �= 0 ,
we conclude that

‖gt‖4
(gt, Agt)(gt, A−1gt)

≥ ‖gt‖4
Λ‖gt‖2 λ−1‖gt‖2 =

λ

Λ
,

and, consequently,

E(xt+1) ≤ { 1− κ−1 } E(xt), κ := condnat(A).

Since 0 < 1 − 1/κ < 1 for any x0 ∈ Rn the error functional E(xt) → 0 (t → ∞) , i. e.,
xt → x (t→∞). Q.E.D.

For the quantitative estimation of the speed of convergence of the gradient method,
we need the following result of Kantorovich5 .

Lemma 3.4 (Lemma of Kantorovich): For a symmetric and positive definite matrix

5Leonid Vitalyevich Kantorovich (1912–1986): Russian Mathematician; Prof. at the U of Leningrad
(1934–1960), at the Academy of Sciences (1961–1971) and at the U Moscow (1971-1976); fundamental
contributions to linear optimization in Economy, to Functional Analysis and to Numerics (Theorem of
Newton-Kantorovich).
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A ∈ Rn with smallest and largest eigenvalues λ and Λ, respectively, there holds

4
λΛ

(λ+ Λ)2
≤ ‖y‖4

(y, Ay)(y, A−1y)
, y ∈ R

n. (3.3.69)

Proof. Let λ = λ1 ≤ . . . ≤ λn = Λ be the eigenvalues of A and {w1, . . . , wn} a
corresponding ONB of eigenvectors. An arbitrary vector y ∈ R

n admits an expansion
y =

∑n
i=1 yiwi with the coefficients yi = (y, wi) . Then,

‖y‖4
(y, Ay)(y, A−1y)

=
(
∑n

i=1 y
2
i )

2

(
∑n

i=1 λiy
2
i ) (

∑n
i=1 λ

−1
i y2i )

=
1

(
∑n

i=1 λiζi) (
∑n

i=1 λ
−1
i ζi)

=
ϕ(ζ)

ψ(ζ)
,

with the notation

ζ = (ζi)i=1,...,n , ζi = y2i (
n∑

i=1

y2i )
−1,

ψ(ζ) =
n∑

i=1

λ−1
i ζi , ϕ(ζ) = (

n∑
i=1

λiζi)
−1.

Since the function f(λ) = λ−1 is convex it follows from 0 ≤ ζi ≤ 1 and
∑n

i=1 ζi = 1
that

n∑
i=1

λ−1
i ζi ≥ (

n∑
i=1

λiζi)
−1.

We set g(λ) := (λ1 + λn − λ)/(λ1λn) .
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Figure 3.3: Sketch to the proof of the Lemma of Kantorovich.

Obviously, the graph of ϕ(ζ) lies, for all arguments ζ on the curve f(λ) , and that of
ψ(ζ) between the curves f(λ) and g(λ) (shaded area). This implies that

ϕ(ζ)

ψ(ζ)
≥ min

λ1≤λ≤λn

f(λ)

g(λ)
=
f([λ1 + λn]/2)

g([λ1 + λn]/2)
=

4λ1λn
(λ1 + λn)2

,

which concludes the proof. Q.E.D.
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Theorem 3.9 (Error estimate for gradient method): Let the matrix A ∈ Rn×n be
symmetric positive definite. Then, for the gradient method the following error estimate
holds:

‖xt − x‖A ≤
(1− 1/κ

1 + 1/κ

)t

‖x0 − x‖A , t ∈ N, (3.3.70)

with the spectral condition number κ = cond2(A) = Λ/λ of A . For reducing the initial
error by a factor TOL the following number of iterations is required:

t(TOL) ≈ 1
2
κ ln(1/TOL). (3.3.71)

Proof. i) In the proof of Theorem 3.8 the following error identity was shown:

E(xt+1) =
{
1− ‖gt‖4

(gt, Agt) (gt, A−1gt)

}
E(xt).

This together with the inequality (3.3.69) in the Lemma of Kantorovich yields

E(xt+1) ≤
{
1− 4

λΛ

(λ+ Λ)2

}
E(xt) =

( λ− Λ

λ+ Λ

)2

E(xt).

From this, we conclude by successive use of the recurrence that

‖xt − x‖2A ≤
( λ− Λ

λ+ Λ

)2t

‖x0 − x‖2A , t ∈ N,

Which proves the asserted estimate (3.3.70).

ii) To prove (3.3.71), we take the logarithm on both sides of the relations

(1− 1/κ

1 + 1/κ

)t(TOL)

=
(κ− 1

κ+ 1

)t(TOL)

< TOL,
(κ + 1

κ− 1

)t(TOL)

>
1

TOL
,

obtaining
t(TOL) > ln

( 1

TOL

)
ln
(κ+ 1

κ− 1

)−1

.

Since
ln
x+ 1

x− 1
= 2

{
1

x
+

1

3

1

x3
+

1

5

1

x5
+ . . .

}
≥ 2

x

this is satisfied for t(TOL) ≥ 1
2
κ ln(1/TOL) . Q.E.D.

The relation

(gt+1, gt) = (g(t) − αtAg
t, gt) = ‖gt‖2 − αt(Ag

t, gt) = 0 (3.3.72)

shows that the descent directions rt = −gt used in the gradient method in consecutive
steps are orthogonal to each other, while gt+2 may be far away form being orthogonal
to gt . This may lead to strong oscillations in the convergence behavior of the gradient
method especially for matrices A with large condition number, i. e., λ� Λ . In the two-
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dimensional case this effect can be illustrated by the contour lines of the functional Q(·),
which are eccentric ellipses, leading to a zickzack path of the iteration (see Fig. 3.3.1).

Figure 3.4: Oscillatory convergence of the gradient method

3.3.2 Conjugate gradient method (CG method)

The gradient method utilizes the particular structure of the functional Q(·), i. e., the
distribution of the eigenvalues of the matrix A , only locally from one iterate xt to the next
one, xt+1. It seems more appropriate to utilize the already obtained information about
the global structure of Q(·) in determining the descent directions, e. g., by choosing the
descent directions mutually orthogonal. This is the basic idea of the “conjugate gradient
method” (“CG method”) of Hestenes6 and Stiefel7 (1952), which successively generates
a sequence of descent directions dt which are mutually “A-orthogonal”, i. e., orthogonal
with respect to the scalar product (·, ·)A .

For developing the CG method, we start from the ansatz

Bt := span{d0, · · · , dt−1} (3.3.73)

with a set of linearly independent vectors di and seek to determine the iterates in the
form

xt = x0 +
t−1∑
i=0

αid
i ∈ x0 +Bt, (3.3.74)

such that

Q(xt) = min
y∈x0+Bt

Q(y) ⇔ ‖Axt − b‖A−1 = min
y∈x0+Bt

‖Ay − b‖A−1 . (3.3.75)

Setting the derivatives of Q(·) with respect to the αi to zero, we see that this is equivalent

6Magnus R. Hestenes (1906–1991): US-American mathematician; worked at the National Bureau of
Standards (NBS) and the University of California at Los Angeles (UCLA); contributions to optimization
and control theory and to numerical linear algebra.

7Eduard Stiefel (1909–1978): Swiss mathematician; since 1943 Prof. for Applied Mathematics at
the ETH Zurich; important contributions to Topology, Groupe Theory, Numerical Linear Algebra (CG
method), Approximation Theory and Celestrian Mechanics.
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to solving the so-called “Galerkin8 equations”:

(Axt − b, dj) = 0 , j = 0, . . . , t− 1, (3.3.76)

or in compact form: Axt − b = gt ⊥ Bt . Inserting the above ansatz for xt into this
orthogonality condition, we obtain a regular linear system for the coefficients αi, i =
0, . . . , t−1,

n∑
i=1

αi(Ad
i, dj) = (b, dj)− (Ax0, dj), j = 0, . . . , t− 1. (3.3.77)

Remark 3.6: We note that (3.3.76) does not depend on the symmetry of the matrix A .
Starting from this relation one may construct CG-like methods for linear systems with
asymmetric and even indefinite coefficient matrices. Such methods are generally termed
“projection methods”. Methods of this type will be discussed in more detail below.

Recall that the Galerkin equations (3.3.76) are equivalent to minimizing the defect
norm ‖Axt − b‖A−1 or the error norm ‖xt − x‖A on x0 + Bt . Natural choices for the
spaces Bt are the so-called Krylov9 spaces

Bt = Kt(d
0;A) := span{d0, Ad0, . . . , At−1d0}, (3.3.78)

with some vector d0 , e. g., the (negative) initial defect d0 = b−Ax0 of an arbitrary vector
x0. This is motivated by the observation that from Atd0 ∈ Kt(d

0;A), we necessarily obtain

−gt = b− Axt = d0 + A(x0 − xt) ∈ d0 + AKt(d
0;A) ∈ Kt(d

0;A).

Because gt ⊥ Kt(d
0;A) , this implies gt = 0 by construction.

Now the CG method constructs a sequence of descent directions, which form an A-
orthogonal basis of the Krylov spaces Kt(d

0;A) . We proceed in an inductive way: Start-
ing from an arbitrary point x0 with (negative) defect d0 = b − Ax0 let iterates xi

and corresponding descent directions di(i = 0, ..., t − 1) already been determined such
that {d0, ..., dt−1} is an A-orthogonal basis of Kt(d

0;A) . For the construction of the
next descent direction dt ∈ Kt+1(d

0;A) with the property dt ⊥A Kt(d
0;A) we make the

ansatz

dt = −gt +
t−1∑
j=0

βt−1
j dj ∈ Kt+1(d

0;A). (3.3.79)

8Boris Grigorievich Galerkin (1871–1945): Russian civil engineer and mathematician; Prof. in St.
Petersburg; contributions to Structural Mechanics especially Plate Bending Theory.

9Aleksei Nikolaevich Krylov (1863–1945): Russian mathematician; Prof. at the Sov. Academy of
Sciences in St. Petersburg; contributions to Fourier Analysis and differential equations, applications in
ship building.
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Here, we can assume that gt = Axt−b /∈ Kt(d
0;A) as otherwise gt = 0 and, consequently,

xt = x . Then, for i = 0, ..., t− 1 there holds

(dt, Adi) = (−gt, Adi) +
t−1∑
j=0

βt−1
j (dj, Adi) = (−gt + βt−1

i di, Adi). (3.3.80)

For i < t− 1, we have (gt, Adi) = 0 since Adi ∈ Kt(d
0;A) and, consequently, βt−1

i = 0.
For i = t− 1, the condition

0 = (−gt, Adt−1) + βt−1
t−1(d

t−1, Adt−1) (3.3.81)

leads us to the formulas

βt−1 := βt−1
t−1 =

(gt, Adt−1)

(dt−1, Adt−1)
, dt = −gt + βt−1d

t−1. (3.3.82)

The next iterates xt+1 and gt+1 = Axt+1 − b are then determined by

αt = − (gt, dt)

(dt, Adt)
, xt+1 = xt + αtd

t , gt+1 = gt + αtAd
t. (3.3.83)

These are the recurrence equations of the CG method. By construction there holds

(dt, Adi) = (gt, di) = 0, i ≤ t− 1 , (gt, gt−1) = 0. (3.3.84)

From this, we conclude that

‖gt‖2 = (dt − βt−1d
t−1,−gt+1 + αtAd

t) = αt(d
t, Adt), (3.3.85)

‖gt+1‖2 = (gt + αtAd
t, gt+1) = αt(Ad

t, gt+1). (3.3.86)

This allows for the following simplifications in the above formulas:

αt =
‖gt‖2

(dt, Adt)
, βt =

‖gt+1‖2
‖gt‖2 , (3.3.87)

as long as the iteration does not terminate with gt = 0.

Definition 3.5: The CG method determines a sequence of iterates xt ∈ R
n, t ≥ 0, by

the prescription

Starting values: x0 ∈ R
n , d0 = −g0 = b− Ax0,

Iterate for t ≥ 0: αt =
‖gt‖2

(dt, Adt)
, xt+1 = xt + αtd

t, gt+1 = gt + αtAd
t,

βt =
‖gt+1‖2
‖gt‖2 , dt+1 = −gt+1 + βtd

t.

By construction the CG method generates a sequence of descent directions dt, which
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are automatically A-orthogonal. This implies that the vectors d0, . . . , dt are linearly
independent and that therefore span{d0, . . . , dn−1} = Rn. We formulate the properties of
the CG method derived so far in the following theorem.

Theorem 3.10 (CG method): Let the matrix A ∈ R
n×n be symmetric positive defi-

nite. Then, (assuming exact arithmetic) the CG method terminates for any starting vector
x0 ∈ Rn after at most n steps at xn = x . In each step there holds

Q(xt) = min
y∈x0+Bt

Q(y), (3.3.88)

and, equivalently,

‖xt − x‖A = ‖Axt − b‖A−1 = min
y∈x0+Bt

‖Ay − b‖A−1 = min
y∈x0+Bt

‖y − x‖A, (3.3.89)

where Bt := span{d0, . . . , dt−1} .

In view of the result of Theorem 3.10 the CG method formally belongs to the class of
“direct” methods. In practice, however, it is used like an iterative method, since:

1. Because of round-off errors the descent directions dt are not exactly A-orthogonal
such that the iteration does not terminate.

2. For large matrices one obtains accurate approximations already after t � n itera-
tions.

As preparation for the main theorem about the convergence of the CG method, we provide
the following auxiliary lemma.

Lemma 3.5 (Polynomial norm bounds): Let A be a symmetric positive definite ma-
trix with spectrum σ(A) ⊂ [a, b] . Then, for any polynomial p ∈ Pt, p(0) = 1 there holds

‖xt − x‖A ≤M ‖x0 − x‖A, M := sup
μ∈[a,b]

|p(μ)|. (3.3.90)

Proof. Observing the relation

‖xt − x‖A = min
y∈x0+Bt

‖y − x‖A,

Bt = span{d0, . . . , dt−1} = span{A0g(0), . . . , At−1g0},
we find

‖xt − x‖A = min
p∈Pt−1

‖x0 − x+ p(A)g0‖A.
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Since g0 = Ax0 − b = A(x0 − x) it follows that

‖xt − x‖A = min
p∈Pt−1

‖[I + Ap(A)](x0 − x)‖A
≤ min

p∈Pt−1

‖I + Ap(A)‖A ‖x0 − x‖A
≤ min

p∈Pt, p(0)=1
‖p(A)‖A ‖x0 − x‖A,

with the natural matrix norm ‖ · ‖A generated from the A-norm ‖ · ‖A. Let λi, i =
1, . . . , n, be the eigenvalues and {w1, . . . , wn} a corresponding ONS of eigenvectors of the
symmetric, positive definite matrix A. Then, for arbitrary y ∈ Rn there holds

y =

n∑
i=1

γiwi , γi = (y, wi),

and, consequently,

‖p(A)y‖2A =
n∑

i=1

λip(λi)
2γ2i ≤M2

n∑
i=1

λiγ
2
i =M2 ‖y‖2A.

This implies

‖p(A)‖A = sup
y∈Rn, y 
=0

‖p(A)y‖A
‖y‖A ≤M,

which completes the proof. Q.E.D.

As a consequence of Lemma 3.5, we obtain the following a priori error estimate.

Theorem 3.11 (Error estimate for CG method): Let A be a symmetric positive
definite matrix. Then, for the CG method there holds the error estimate

‖xt − x‖A ≤ 2
(1− 1/

√
κ

1 + 1/
√
κ

)t

‖x0 − x‖A , t ∈ N , (3.3.91)

with the spectral condition number κ = cond2(A) = Λ/λ of A . For reducing the initial
error by a factor TOL the following number of iteration is required:

t(TOL) ≈ 1
2

√
κ ln(2/TOL). (3.3.92)

Proof. i) Setting [a, b] := [λ,Λ] in Lemma 3.5, we obtain

‖xt − x‖A ≤ min
p∈Pt, p(0)=1

{
sup

λ≤μ≤Λ
|p(μ)|} ‖x0 − x‖A.

This yields the assertion if we can show that

min
p∈Pt, p(0)=1

{
sup

λ≤μ≤Λ
|p(μ)|} ≤ 2

(1−√
λ/Λ

1 +
√
λ/Λ

)t

.
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This is again a problem of approximation theory with respect to the max-norm (Chebyshev
approximation), which can be solved using the Chebyshev polynomials described above
in Subsection 3.2.2. The solution pt ∈ Pt is give by

pt(μ) = Tt

(Λ + λ− 2μ

Λ− λ

)
Tt

(Λ + λ

Λ− λ

)−1

,

with the t-th Chebyshev polynomial Tt on [−1, 1] . There holds

sup
λ≤μ≤Λ

pt(μ) = Tt

(Λ + λ

Λ− λ

)−1

.

From the representation

Tt(μ) =
1
2

[(
μ+

√
μ2 − 1

)t
+
(
μ−

√
μ2 − 1

)t]
, μ ∈ [−1, 1],

for the Chebyshev polynomials and the identity

κ+ 1

κ− 1
+

√(κ+ 1

κ− 1

)2

− 1 =
κ+ 1

κ− 1
+

2
√
κ

κ− 1
=

(
√
κ+ 1)2

κ− 1
=

√
κ + 1√
κ− 1

,

we obtain the estimate

Tt

(Λ + λ

Λ− λ

)
= Tt

(κ+ 1

κ− 1

)
=

1

2

[(√κ+ 1√
κ− 1

)t

+
(√κ− 1√

κ + 1

)t]
≥ 1

2

(√κ+ 1√
κ− 1

)t

.

Hence,

sup
λ≤μ≤Λ

pt(μ) ≤ 2
(√κ− 1√

κ+ 1

)t

,

which implies (3.3.91).

ii) For deriving (3.3.92), we require

2
(√κ− 1√

κ + 1

)t(ε)

≤ TOL,

and, equivalently,

t(TOL) > ln
( 2

TOL

)
ln
(√κ+ 1√

κ− 1

)−1

.

Since

ln
x+ 1

x− 1
= 2

{
1

x
+

1

3

1

x3
+

1

5

1

x5
+ . . .

}
≥ 2

x
,

this is satisfied for t(TOL) ≥ 1
2

√
κ ln(2/TOL) . Q.E.D.

Since κ = condnat(A) > 1, we have
√
κ < κ. Observing that the function f(λ) =

(1 − λ−1) (1 + λ−1)−1 is strictly monotonically increasing for λ > 0 (f ′(λ) > 0), there
holds
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1− 1/
√
κ

1 + 1/
√
κ
<

1− 1/κ

1 + 1/κ
,

implying that the CG method should converge faster than the gradient method. This is
actually the case in practice. Both methods converge the faster the smaller the condition
number is. However, in case Λ 
 λ , which is frequently the case in practice, even the
CG method is too slow. An acceleration can be achieved by so-called “preconditioning”,
which will be described below.

3.3.3 Generalized CG methods and Krylov space methods

For solving a general linear system Ax = b, with regular but not necessarily symmetric
and positive definite matrix A ∈ Rn, by the CG method, one may consider the equivalent
system

ATAx = AT b (3.3.93)

with the symmetric, positive definite matrix ATA. Applied to this system the CG method
takes the following form:

Starting values: x0 ∈ R
n , d0 = AT (b− Ax0) = −g0,

for t ≥ 0: αt =
‖gt‖2
‖Adt‖2 , xt+1 = xt + αtd

t, gt+1 = gt + αtA
TAdt,

βt =
‖gt+1‖2
‖gt‖2 , dt+1 = −gt+1 + βtd

t.

This approach is referred to as CGS method (“Conjugate Gradient Squared”) of P. Sonn-
eveld (1989). The convergence speed is characterized by cond2(A

TA) . The whole method
is equivalent to minimizing the functional

Q(y) := 1
2
(ATAy, y)− (AT b, y) = 1

2
‖Ay − b‖2 − 1

2
‖b‖2. (3.3.94)

Since cond2(A
TA) ≈ cond2(A)

2 the convergence of this variant of the CG method may
be rather slow. However, its realization does not require the explicit evaluation of the
matrix product ATA but only the computation of the matrix-vector products z = Ay
and AT z .

On the basis of the formulation (3.3.75) the standard CG method is limited to linear
systems with symmetric, positive definite matrices. But starting from the (in this case
equivalent) Galerkin formulation (3.3.76) the method becomes meaningful also for more
general matrices. In fact, in this way one can derive effective generalizations of the CG
method also for nonsymmetric and even indefinite matrices. These modified CG methods
are based on the Galerkin equations (3.3.76) and differ in the choices of “ansatz spaces”
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Kt and “test spaces” K∗
t ,

xt ∈ x0 +Kt : (Axt − b, y) = 0 ∀ y ∈ K∗
t . (3.3.95)

Here, one usually uses the Krylov spaces

Kt = span{d0, Ad0, ..., At−1d0},

combined with the test spaces K∗
t = Kt, or

K∗
t = span{d0, ATd0, ..., (AT )t−1d0}.

This leads to the general class of “Krylov space methods”. Most popular representatives
are the following methods, which share one or the other property with the original CG
method but generally do not allow for a similarly complete error analysis.

1. GMRES with or without restart (“Generalized Minimal Residual”) of Y. Saad and
M. H. Schultz (1986): Kt = span{d0, Ad0, ..., At−1d0} = K∗

t ,

‖Axt − b‖ = min
y∈x0+Kt

‖Ay − b‖. (3.3.96)

Since this method minimizes the residual over spaces of increasing dimension as
the CG method also the GMRES methods yields the exact solution after at most
n steps. However, for general nonsymmetric matrices the iterates xt cannot be
obtained by a simple tree-term recurrence as in the CG method. It uses a full
recurrence, which results in high storage requirements. Therefore, to limit the costs
the GMRES method is stopped after a certain number of steps, say k steps, and
then restarted with xk as new starting vector. The latter variant is denoted by
“GMRES(k) method”.

2. BiCG and BiCGstab (“Biconjugate Gradient Stabilized”) of H. A. Van der Vorst,
(1992): Kt = span{d0, Ad0, ..., At−1d0}, K∗

t = span{d0, ATd0, ..., (AT )t−1d0},

xt ∈ x0 +Kt : (Axt − b, y) = 0, ∀y ∈ K∗
t . (3.3.97)

In the BiCG method the iterates xt are obtained by a three-term recurrence but
for an unsymmetric matrix the residual minimization property gets lost and the
method may not even converge. Additional stability is provided in the “BiCGstab”
method.

Both methods, GMRES(k) and BiCGstab, are especially designed for unsymmetric but
definite matrices. They have there different pros and cons and are both not universally
applicable. One can construct matrices for which one or the other of the methods does
not work. The methods for the practical computation of the iterates xt in the Krylov
spaces Kt are closely related to the Lanczos and Arnoldi algorithms used for solving the
corresponding eigenvalue problems discussed in Chapter 4, below.
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3.3.4 Preconditioning (PCG methods)

The error estimate (3.3.91) for the CG method indicates a particularly good convergence
if the condition number of the matrix A is close to one. In case of large cond2(A) 
 1 ,
one uses “preconditioning”, i. e., the system Ax = b is transformed into an equivalent
one, Ãx̃ = b̃ with a better conditioned matrix Ã. To this end, let C be a symmetric,
positive definite matrix, which is explicitly given in product form

C = KKT , (3.3.98)

with a regular matrix K . The system Ax = b can equivalently be written in the form

K−1A (KT )−1︸ ︷︷ ︸
Ã

KTx︸︷︷︸
x̃

= K−1b︸ ︷︷ ︸
b̃

. (3.3.99)

Then, the CG method is formally applied to the transformed system Ãx̃ = b̃ , while it is
hoped that cond2(Ã) � cond2(A) for an appropriate choice of C . The relation

(KT )−1ÃKT = (KT )−1K−1A(KT )−1KT = C−1A (3.3.100)

shows that for C ≡ A the matrix Ã is similar to I, and thus cond2(Ã) = cond2(I) = 1.
Consequently, one chooses C = KKT such that C−1 is a good approximation to A−1.

The CG method for the transformed system Ãx̃ = b̃ can then be written in terms of
the quantities A, b, and x as so-called “PCG method” (“Preconditioned CG” method)
as follows:

Starting value: x0 ∈ R
N , d0 = r0 = b− Ax0, Cρ0 = r0,

for t ≥ 0: αt =
〈rt, ρt〉
〈Adt, dt〉 , xt+1 = xt + αtd

t, rt+1 = rt − αtAd
t, Cρt+1 = rt+1,

βt =
〈rt+1, ρt+1〉
〈rt, ρt〉 , dt+1 = rt+1 + βtd

t.

Compared to the normal CG method the PCG iteration in each step additionally requires
the solution of the system Cρt+1 = rt+1 , which is easily accomplished using the decompo-
sition C = KKT . In order to preserve the work complexity O(n) a. op. in each step the
triangular matrix K should have a sparsity pattern similar to that of the lower triangular
part L of A . This condition is satisfied by the following popular preconditioners:

1) Diagonal preconditioning (scaling): C := D = D1/2D1/2 .
The scaling ensures that the elements of A are brought to approximately the same size,
especially with ãii = 1 . This reduces the condition number since

cond2(A) ≥ max1≤i≤n aii
min1≤i≤n aii

. (3.3.101)

Example: The matrix A = diag{λ1 = ... = λn−1 = 1, λn = 10k} has the condition number
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cond2(A) = 10k , while the scaled matrix Ã = D−1/2AD−1/2 has the optimal condition
number cond2(Ã) = 1.

2) SSOR preconditioning: We choose

C := (D + L)D−1(D + LT ) = D + L+ LT + LD−1LT

= (D1/2 + LD−1/2︸ ︷︷ ︸
K

)(D1/2 +D−1/2LT︸ ︷︷ ︸
KT

),

or, more generally, involving a relaxation parameter ω ∈ (0, 2),

C :=
1

2−ω
( 1

ω
D + L

)( 1

ω
D
)−1( 1

ω
D + LT

)
=

1√
(2−ω)ω (D

1/2 + ωLD−1/2

︸ ︷︷ ︸
K

)
1√

(2−ω)ω(D
1/2 + ωD−1/2LT

︸ ︷︷ ︸
KT

).

Obviously, the triangular matrix K has the same sparsity pattern as L . Each step of the
preconditioned iteration costs about twice as much work as the basic CG method. For an
optimal choice of the relaxation parameter ω (not easy to determine) there holds

cond2(Ã) =
√

cond2(A).

3) ICCG preconditioning (Incomplete Cholesky Conjugate Gradient): The symmetric,
positive definite matrix A has a Cholesky decomposition A = LLT with an lower tri-
angular matrix L = (lij)

n
i,j=1. The elements of L are successively determined by the

recurrence formulas

lii =
(
aii −

i−1∑
k=1

l2ik

)1/2

, i = 1, . . . , n, lji =
1

lii

(
aji −

i−1∑
k=1

ljklik

)
, j = i+ 1, . . . , n.

The matrix L generally has nonzero elements in the whole band of A, which requires
much more memory than A itself. This can be avoided by performing (such as in the
ILU approach discussed in Subsection 3.1.2) only an “incomplete” Cholesky decomposition
where within the elimination process some of the lji are set to zero, e. g., those for which
aji = 0. This results in an incomplete decomposition

A = L̃L̃T + E (3.3.102)

with a lower triangular matrix L̃ = (l̃ij)
n
i,j=1, which has a similar sparsity pattern as A .

In this case, one speaks of the “ICCG(0) variant”. In case of a band matrix A, one
may allow the elements of L̃ to be nonzero in further p off-diagonals resulting in the
so-called “ICCG(p) variant” of the ICCG method, which is hoped to provide a better
approximation C−1 ≈ A−1 for increasing p. Then, for preconditioning the matrix

C = KKT := L̃L̃T (3.3.103)
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is used. Although, there is no full theoretical justification yet for the success of the
ICCG preconditioning practical tests show a significant improvement in the convergence
behavior. This may be due to the fact that, though the condition number is not necessar-
ily decreased, the eigenvalues of the corresponding transformed matrix Ã cluster more
around λ = 1.

3.4 A model problem

At the end of the discussion of the classical iterative methods for solving linear systems
Ax = b , we will determine their convergence rates for the model situation already de-
scribed in Section 0.4.2 of Chapter 0. We consider the so-called “1-st boundary value
problem of the Laplace operator”

−∂
2u

∂x2
(x, y)− ∂2u

∂y2
(x, y) = f(x, y) for (x, y) ∈ Ω

u(x, y) = 0 for (x, y) ∈ ∂Ω,

(3.4.104)

on the unit square Ω = (0, 1) × (0, 1) ⊂ R2 . For solving this problem the domain Ω is
covered by a uniform mesh as shown in Fig. 3.4.
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Figure 3.5: Mesh for the discretization of the model problem

The “interior” mesh points are numbered row-wise. On this mesh the second deriva-
tives in the differential equation (3.4.104) are approximated by second-order central dif-
ference quotients leading to the following difference equations for the mesh unknowns
U(x, y) ≈ u(x, y) :

−h−2
{
U(x+h, y)− 2U(x, y)+U(x−h, y)+U(x, y+h)− 2U(x, y)+U(x, y−h)} = f(x, y).

Observing the boundary condition u(x, y) = 0 for (x, y) ∈ ∂Ω this set of difference
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equations is equivalent to the linear system

Ax = b, (3.4.105)

for the vector x ∈ Rn of unknown mesh values xi ≈ u(Pi) , Pi interior mesh point. The
matrix A has the already known form

A =

⎡
⎢⎢⎢⎢⎢⎣

B −I
−I B −I

−I B
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
n B =

⎡
⎢⎢⎢⎢⎢⎣

4 −1

−1 4 −1

−1 4
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
m

with the m×m-unit matrix I . The right-hand side is given by b = h2(f(P1), . . . , f(Pn))
T .

The matrix A has several special properties:

- “sparse band matrix” with bandwidth 2m+ 1 ;

- “irreducible” and “strongly diagonally dominant”;

- “symmetric” and “positive definite”;

- “consistently ordered”;

- “of nonnegative type” (“M-matrix”): aii > 0, aij ≤ 0, i �= j.
The importance of this last property will be illustrated in an exercise.

For this matrix eigenvalues and eigenvectors can be explicitly determined (h = 1/(m+1)) :

λkl = 4− 2 (cos[khπ] + cos[lhπ]), wkl = (sin[ikhπ] sin[jlhπ])i,j=1,...,m, k, l = 1, . . . , m,

i. e., Awkl = λklw
kl. Hence for h� 1, we have

Λ := λmax = 4− 4 cos (1− h)π ≈ 8,

λ := λmin = 4− 4 cos (hπ) = 4− 4 (1− π2

2
h2 +O(h4)) ≈ 2π2h2,

and consequently

κ := cond2(A) ≈ 4

π2h2
. (3.4.106)

Then, the eigenvalues of the Jacobi iteration matrix J = −D−1(L+R) are given by

μkl(J) =
1
2
(cos[khπ] + cos[lhπ]), k, l = 1, . . . , m.

Hence,

ρ := spr(J) = μmax(J) = cos[hπ] = 1− π2

2
h2 +O(h4). (3.4.107)

For the iteration matrices of the Gauß-Seidel and the optimal SOR iteration matrices,
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H1 and Hωopt, respectively, there holds

spr(H1) = ρ2 = 1− π2h2 +O(h4), (3.4.108)

spr(Hωopt) =
1−√

1− ρ2

1 +
√
1− ρ2

=
1− πh+O(h2)

1 + πh+O(h2)
= 1− 2 πh+O(h2) . (3.4.109)

Comparison of convergence speed

Now, we make a comparison of the convergence speed of the various iterative methods
considered above. The reduction of the initial error ‖x(0) − x‖2 in a fixed-point iteration
by the factor ε� 1 requires about T (ε) iterations,

T (ε) ≈ ln(1/ε)

ln(1/ρ)
, ρ = spr(B), B = I− C−1A iteration matrix. (3.4.110)

Using the above formulas, we obtain:

TJ (ε) ≈ − ln(1/ε)

ln(1− π2

2
h2)

≈ 2
ln(1/ε)

π2h2
=

2

π2
n ln(1/ε),

TGS(ε) ≈ − ln(1/ε)

ln(1− π2h2)
≈ ln(1/ε)

π2h2
=

1

π2
n ln(1/ε),

TSOR(ε) ≈ − ln(1/ε)

ln(1− 2πh)
≈ ln(1/ε)

2πh
=

1

2π

√
n ln(1/ε).

The gradient method and the CG method require for the reduction of the initial error
‖x0 − x‖2 by the factor ε� 1 the following numbers of iterations:

TG(ε) =
1

2
κ ln (2/ε) ≈ 2

π2h2
ln(1/ε) ≈ 2

π2
n ln(1/ε),

TCG(ε) =
1

2

√
κ ln(2/ε) ≈ 1

πh
ln(2/ε) ≈ 1

π

√
n ln(2/ε).

We see that the Jacobi method and the gradient method converge with about the same
speed. The CG method is only half as fast as the (optimal) SOR method, but it does
not require the determination of an optimal parameter (while the SOR method does not
require the matrix A to be symmetric). The Jacobi method with Chebyshev acceleration
is as fast as the “optimal” SOR method but also does not require the determination of
an optimal parameter (but a guess for spr(J) ).

For the special right-hand side function f(x, y) = 2π2 sin(πx) sin(πy) the exact solu-
tion of the boundary value problem is given by

u(x, y) = sin(πx) sin(πy). (3.4.111)

The error caused by the finite difference discretization considered above can be estimated
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as follows:

max
Pi

|u(Pi)− xi| ≤ π4

12
h2 +O(h4). (3.4.112)

Hence, for achieving a relative accuracy of TOL = 10−3 (three decimals) a mesh size

h ≈
√
12

π2
10−3/2 ≈ 10−2,

is required. This results in n ≈ 104 unknowns. In this case, we obtain for the above
spectral radii, conditions numbers and numbers of iterations required for error reduction
by ε = 10−4 (including a safety factor of 1/10) the following values (ln(1/ε) ∼ 10) :

spr(J) ≈ 0, 9995 TJ ≈ 20.000

spr(H1) ≈ 0, 999 TGS ≈ 10.000

spr(Hω∗) ≈ 0, 9372 TSOR ≈ 160

cond2(A) ≈ 5.000 TG ≈ 20.000, TCG ≈ 340

For the comparison of the various solution methods, we also have to take into account
the work in each iteration step. For the number “OP” of “a. op.” (1 multiplication + 1
addition) per iteration step there holds:

OPJ ≈ OPH1 ≈ OPHω
≈ 6 n ,

OPG ≈ OPCG ≈ 10 n .

As final result, we see that the computation of the approximate solution of the boundary
value model problem (3.4.104) with a prescribed accuracy TOL by the Jacobi method,
the Gauß-Seidel method and the gradient method requires O(n2) a. op. In this case
a direct method such as the Cholesky algorithm requires O(n2) = O(m2n) a. op. but
significantly more storage space. The (optimal) SOR method and the CG method only
require O(n3/2) a. op.

For the model problem with n = 104, we have the following total work “TW” required
for the solution of the system (3.4.105) to discreetization accuracy ε = 10−4:

TWJ(TOL) ≈ 4 · 3n2 ≈ 1, 2 · 109 a. op. ,
TWGS(TOL) ≈ 4 · 1, 5n2 ≈ 6 · 108 a. op. ,

TWSOR(TOL) ≈ 4 · 2n3/2 ≈ 8 · 106 a. op. ,
TWCG(TOL) ≈ 4 · 10n3/2 ≈ 4 · 107 a. op. .

Remark 3.7: Using an appropriate preconditioning, e. g., the ILU preconditioning, in
the CG method the work count can be reduced to O(n5/4) . The same complexity can
be achieved by Chebyshev acceleration of the (optimal) SOR method. Later, we will
discuss a more sophisticated iterative method based on the “multi-level concept”, which
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has optimal solution complexity O(n) . For such a multigrid (“MG”) method, we can
expect work counts like TWMG ≈ 4 · 25n ≈ 106 a. op..

Remark 3.8: For the 3-dimensional version of the above model problem, we have

λmax ≈ 12h−2, λmin ≈ 3π2, κ ≈ 8

3π2h2
,

and consequently the same estimates for ρJ , ρGS and ρSOR as well as for the iteration
numbers TJ , TGS, TSOR, TCG, as in the 2-dimensional case. In this case the total work
per iteration step is OPJ, OPGS, OPSOR ≈ 8N, OPCG ≈ 12N . Hence, the resulting
total work amounts to

TWJ(TOL) ≈ 4 · 4n2 ≈ 1, 6 · 1013 a. op. ,
TWGS(TOL) ≈ 4 · 2n2 ≈ 8 · 1012 a. op. ,

TWSOR(TOL) ≈ 4 · 3n3/2 ≈ 1, 2 · 1010 a. op. ,
TWCG(TOL) ≈ 4 · 12n3/2 ≈ 4, 8 · 1010 a. op.,

while that for the multigrid method increases only to TWMG ≈ 4 · 50n ≈ 2 · 108 a. op..

Remark 3.9: For the interpretation of the above work counts, we have to consider the
computing power of available computer cores, e. g., 200 MFlops (200 million “floating-
point” oper./sec.) of a standard desktop computer. Here, the solution of the 3-dimensional
model problem by the optimal SOR method takes about 1, 5 minutes while the multigrid
method only needs less than 1 second.

3.5 Exercises

Exercise 3.1: Investigate the convergence of the fixed-point iteration xt = Bxt−1 + c
with an arbitrary starting value x0 ∈ R3 for the following matrices

i) B =

⎡
⎢⎢⎣

0.6 0.3 0.1

0.2 0.5 0.7

0.1 0.1 0.1

⎤
⎥⎥⎦ , ii) B =

⎡
⎢⎢⎣

0 0.5 0

1 0 0

0 0 2

⎤
⎥⎥⎦ .

What are the limits of the iterates in case of convergence? (Hint: The eigenvalues of the
matrices B are to be estimated. This can be done via appropriate matrix norms or also
via the determinants.

Exercise 3.2: The linear system[
3 −1

−1 3

][
x1

x2

]
=

[
−1

1

]
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is to be solved by the Jacobi and the Gauß-Seidel method. How many iterations are
approximately (asymptotically) required for reducing the initial error ‖x0 − x‖2 by the
factor 10−6? (Hint: Use the error estimate stated in the text.)

Exercise 3.3: Show that the two definitions of “irreducibility” of a matrix A ∈ Rn×n

given in the text are equivalent.

Hint: Use the fact that the definition of “reducibility” of the system Ax = b , i. e., the
existence of simultaneous row and column permutations resulting in

PAP T = Ã =

[
Ã11 0

0 Ã22

]
, Ã11 ∈ R

p×p, Ã22 ∈ R
q×q, n = p + q,

is equivalent to the existence of a non-trivial index partitioning {J,K} of Nn = {1, . . ., n},
J ∪K = Nn, J ∩K = ∅, such that ajk = 0 for j ∈ J, k ∈ K.

Exercise 3.4: Examine the convergence of the Jacobi and Gauss-Seidel methods for
solving the linear system Aix = b (i = 1, 2) for the following two matrices

A1 =

⎡
⎢⎢⎣

2 −1 2

1 2 −2

2 2 2

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣

5 5 0

−1 5 4

2 3 8

⎤
⎥⎥⎦ .

(Hint: Use the convergence criteria stated in the text, or estimate the spectral radius)

Exercise 3.5: For the solution of the linear (2× 2)-system[
1 −a
−a 1

]
x = b, x, b ∈ R

2,

the following parameter-dependent fixed-point iteration is considered:[
1 0

−ωa 1

]
xt =

[
1− ω ωa

0 1− ω

]
xt−1 + ωb, ω ∈ R.

a) For which a ∈ R is this method with ω = 1 convergent?

b) Determine for a = 0.5 the value

ω ∈ {0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4},

for which the spectral radius of the iteration matrix Bω becomes minimal and sketch the
graph of the function f(ω) = spr(Bω) .
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Exercise 3.6: Let A ∈ Rn×n be a symmetric (and therefore diagonalizable) matrix with
eigenvalues λi ∈ R, i = 1, . . . , n. Show that for any polynomial p ∈ Pk there holds

spr(p(A)) = max
i=1,...,n

|p(λi)|.

(Hint: Use the fact that there exists an ONB of eigenvectors of A .)

Exercise 3.7: For the computation of the inverse A−1 of a regular matrix A ∈ Rn×n

the following two fixed-point iterations are considered:

a) Xt = Xt−1(I −AC) + C, t = 1, 2, . . . , C ∈ R
n×n a regular “preconditioner”,

b) Xt = Xt−1(2I −AXt−1), t = 1, 2, . . . .

Give (sufficient) criteria for the convergence of these iterations. For this task (computation
of a matrix inverse), how would the Newton iteration look like?

Exercise 3.8: Let B be an arbitrary n × n-matrix, and let p by a polynomial. Show
that

σ(p(B)) = p(σ(B)),

i. e., for any λ ∈ σ(p(B)) there exists a μ ∈ σ(B) such that λ = p(μ) and vice versa.
(Hint: Recall the Schur or the Jordan normal form.)

Exercise 3.9: The method of Chebyshev acceleration can be applied to any convergent
fixed-point iteration

xt = Bxt−1 + c, t = 1, 2, . . . ,

with symmetric iteration matrix B. Here, the symmetry of B guarantees the relation
‖p(B)‖2 = spr(p(B)) = maxλ∈σ(B) |p(λ| for any polynomial p ∈ Pk, which is crucial for
the analysis of the acceleration effect. In the text this has been carried out for the SSOR
(Symmetric Successive Over-Relaxation) method. Repeat the steps of this analysis for
the Jacobi method for solving the linear system Ax = b with symmetric matrix A ∈ Rn×n.

Exercise 3.10: Consider the following symmetric “saddle point system”[
A B

BT O

][
x

y

]
=

[
b

c

]
,

with a symmetric positive definite matrix A ∈ Rn×n and a not necessarily quadratic
matrix B ∈ Rn×m, m ≤ n. The coefficient matrix cannot be positive definite since some
of its main diagonal elements are zero. Most of the iterative methods discussed in the
text can directly be applied for this system.

i) Assume that the coefficient matrix is regular. Can the damped Richardson method,[
xt

yt

]
=

([
I O

O I

]
− θ

[
A B

BT O

])[
xt−1

yt−1

]
+ θ

[
b

c

]
,



3.5 Exercises 147

be made convergent in this case for appropriately chosen damping parameter θ ? (Hint:
Investigate whether the coefficient matrix may have positive AND negative eigenvalues.)

ii) A classical approach to solving this saddle-point system is based on the equivalent
“Schur-complement formulation”:

BTA−1By = BTA−1b− c, x = A−1b− A−1By,

in which the solution component y can be computed independently of x . The matrix
BTA−1B is called the “Schur complement” of A in the full block matrix. Show that
the matrix BTA−1B is symmetric and positive semi-definite and even positive definite
if B has maximal rank. Hence the symmetrized Gauß-Seidel method with Chebyshev
acceleration may be applied to this reduced system for y . Formulate this iteration!

Exercise 3.11: The general “descent method” for the iterative solution of a linear system
Ax = b with symmetric positive definite matrix A ∈ RN×N has the form

starting value: x0 ∈ R
n, g0 := Ax0 − b ,

for t ≥ 0: descent direction rt ,

αt = − (gt, rt)2
(Art, rt)2

,

xt+1 = xt + αtr
t , gt+1 = gt − αtAr

t .

The so-called “Coordinate Relaxation” uses descent directions rt , which are obtained by
cyclicing through the Cartesian unit vectors {e1, . . . , en} . Verify that a full n-cycle of
this method is equivalent to one step of the Gauß-Seidel iteration

x̂1 = D−1b−D−1(Lx̂1 +Rx0).

Exercise 3.12: The minimal squared-defect solution of an overdetermined linear system
Ax = b is characterized as solution of the normal equation

ATAx = AT b.

The square matrix ATA is symmetric and also positive definite, provided A has full rank.
Formulate the CG method for solving the normal equation without explictly computing
the matrix product ATA. How many matrix-vector products with A are necessary per
iteration (compared to the CG method applied to Ax = b)? Relate the convergence speed
of this iteration to the singular values of the matrix A.

Exercise 3.13: For solving a linear system Ax = b with symmetric positive definite co-
efficient matrix A one may use the Gauß-Seidel, the (optimal) SOR method, the gradient
mathod, or the CG methods. Recall the estimates for the asymptotic convergence speed
of these iterations expressed in terms of the spectral condition number κ = cond2(A) and
compare the corresponding performance results.
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In order to derive convergence estimates for the Gauß-Seidel and (optimal) SOR method,
assume that A is consistently ordered and that the spectral radius of the Jacobi iteration
matrix is given by

spr(J) = 1− 1

κ
.

Discuss the pros and cons of the considered methods.

Exercise 3.14: Consider the symmetric “saddle point system” from Exercise 3.10[
A B

BT O

][
x

y

]
=

[
b

c

]
,

with a symmetric positive definite matrix A ∈ R
n×n and a not necessarily quadratic

matrix B ∈ Rn×m, m ≤ n with full rank. The coefficient matrix cannot be positive
definite since some of its main diagonal elements are zero.

A classical approach of solving this saddle-point system is based on the equivalent “Schur-
complement formulation”:

BTA−1By = BTA−1b− c, x = A−1b− A−1By,

in which the solution component y can be computed independently of x . The matrix
BTA−1B is called the “Schur complement” of A in the full block matrix.

In Exercise 3.10 it was shown that a symmetric variant of the Gauß-Seidel method with
Chebyshev-acceleration can be applied to this system. However, this approach suffers
from the severe drawback that BTA−1B has to be explicitly known in order to construct
the decomposition

BTA−1B = L+D +R.

Verify that, in contrast, the CG method applied to the Schur complement method does
not suffer from this defect, i. e. that an explicit construction of A−1 can be avoided.
Formulate the CG algorithm for above Schur complement and explain how to efficiently
treat the explicit occurence of A−1 in the algorithm.

Exercise 3.15: For the gradient method and the CG method for a symmetric, positive
definite matrix A there hold the error estimates

‖xtgrad − x‖A ≤
(1− 1/κ

1 + 1/κ

)t

‖x0grad − x‖A,

‖xtcg − x‖A ≤ 2
(1− 1/

√
κ

1 + 1/
√
κ

)t

‖x0cg − x‖A,

with the condition number κ := cond2(A) = λmax/λmin . Show that for reducing the
initial error by a factor ε the following numbers of iteration are required:

tgrad(ε) ≈ 1
2
κ ln(1/ε), tcg(ε) ≈ 1

2

√
κ ln(2/ε).
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Exercise 3.16: The SSOR preconditioning of the CG method for a symmetric, positive
definite matrix A with the usual additive decomposition A = L + D + LT uses the
parameter dependent matrix

C :=
1

2−ω
( 1

ω
D + L

)( 1

ω
D
)−1( 1

ω
D + LT

)
, ω ∈ (0, 2).

Write this matrix in the form C = KKT with a regular, lower-triangular matrix K and
explain why C−1 may be viewed as an approximation to A−1.

Exercise 3.17: The model matrix A ∈ Rn×n, n = m2, originating from the 5-point
discretization of the Poisson problem on the unit square,

A =

⎡
⎢⎢⎢⎢⎢⎣

B −I
−I B −I

−I B
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
n B =

⎡
⎢⎢⎢⎢⎢⎣

4 −1

−1 4 −1

−1 4
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
m,

possesses an important property (of “nonnegative type” or a regular ”Z-matrix”):

aii > 0, aij ≤ 0, i �= j.

Show that the inverse A−1 = (a
(−1)
ij )ni,j=1 has nonnegative elements a

(−1)
ij ≥ 0, i. e., A is a

so-called “M-matrix” (“(inverse) monotone” matrix). This implies that the solution x of
a linear system Ax = b with nonnegative right-hand side b, bi ≥ 0 , is also nonnegative
xi ≥ 0. (Hint: consider the Jacobi matrix J = −D−1(L + R) and the representation of
the inverse (I − J)−1 as a Neumann series.)

Exercise 3.18: In the text, we formulated the sequence of iterates {xt}t≥1 of the CG-
method formally as the solution xt of the optimization problem

Q(xt) = min
y∈x0+Kt(d0;A)

Q(y) ↔ ‖Axt − b‖A−1 = min
y∈x0+Kt(d0;A)

‖Axt − b‖A−1 ,

with the Krylow spaces Kt(d
0;A) = span{d0, Ad0, · · · , At−1d0}. The so called “Gener-

alized minimal residual method” (GMRES), instead, formally constructs a sequence of
iterates {xtgmres}t≥1 by

‖Axtgmres − b‖2 = min
y∈x0+Kt(d0;A)

‖Ay − b‖2.

i) Prove that the GMRES method allows for an error inequality similar to the one that
was derived for the CG method:

‖Axtgmres − b‖2 ≤ min
p∈Pt,p(0)=1

‖p(A)‖2 ‖Ax0 − b‖2,

where Pt denotes the space of polynomials up to order t.
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ii) Prove that in case of A being a symmetric, positive definite matrix, this leads to the
same asymptotic convergence rate as for the CG method.

iii) Show that the result obtained in (i) can also be applied to the case of A being similar
to a diagonal matrix D = diagi(λi) ∈ Cn×n , i. e.,

A = TDT−1,

with a regular matrix T . In this case there holds

‖xtgmres − x‖2 ≤ κ2(T ) min
p∈Pt,p(0)=1

max
i

|p(λi)| ‖x0 − x‖2.

What makes this result rather cumbersome in contrast to the case of a symmetric, positive
matrix discussed in (ii)?

Remark: The advantage of the GMRES method lies in the fact that it is, in principle,
applicable to any regular matrix A . However, good convergence estimates for the general
case are hard to prove.

Exercise 3.19: Repeat the analysis of the convergence properties of the various solution
methods for the 3-dimensional version of the model problem considered in the text. The
underlying boundary value problem has the form

−
( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u(x, y, z) = f(x, y, z), (x, y, z) ∈ Ω = (0, 1)3 ∈ R

3,

u(x, y, z) = 0, (x, y, z) ∈ ∂Ω,

and the corresponding difference approximation (so-called “7-point approximation”) at
interior mesh points (x, y, z) ∈ {Pijk, i, j, k = 1, . . . , m} , reads

−h−2
(
U(x± h, y, z) + U(x, y ± h, z) + U(x, y, z ± h)− 6U(x, y, z)

)
= f(x, y, z).

Using again row-wise numbering of the mesh points the resulting linear system for the
mesh values Uijk ≈ u(Pijk) takes the form

A =

⎡
⎢⎢⎣

B −Im2

−Im2 B
. . .

. . .
. . .

⎤
⎥⎥⎦

︸ ︷︷ ︸
n=m3

B =

⎡
⎢⎢⎣

C −Im
−Im C

. . .
. . .

. . .

⎤
⎥⎥⎦

︸ ︷︷ ︸
m2

C =

⎡
⎢⎢⎣

6 −1

−1 6
. . .

. . .
. . .

⎤
⎥⎥⎦

︸ ︷︷ ︸
m

In this case the corresponding eigenvalues and eigenvectors are explicitly given by

λijk = 6− 2
(
cos[ihπ] + cos[jhπ] + cos[khπ]

)
, i, j, k = 0, . . . , m,

wijk =
(
sin[pihπ] sin[qjhπ] sin[rkhπ]

)m
p,q,r=1

.

For the exact solution u(x, y, z) = sin(πx) sin(πy) sin(πz) there holds the error estimate



3.5 Exercises 151

max
Ω

|Uijk)− u(Pijk)| ≤ π4

8
h2 +O(h4),

which dictates a mesh size h = 10−2 in order to guarantee a desired relative discretization
accuracy of TOL = 10−3 .

a) Determine formulas for the condition number cond2(A) and the spectral radius spr(J)
in terms of the mesh size h.

b) Give the number of iterations of the Jacobi, Gauß-Seidel and optimal SOR method as
well as the gradient and CG method approximately needed for reducing the initial error
to size ε = 10−4 (including a small safety factor).

c) Give a rough estimate (in terms of h) of the total number of a. op. per iteration step
for the methods considered.




