
2 Direct Solution Methods

2.1 Gaussian elimination, LR and Cholesky decomposition

In this chapter, we collect some basic results on so-called “direct” methods for solving
linear systems and matrix eigenvalue problems. A “direct” method delivers the exact
solution theoretically in finitely many arithmetic steps, at least under the assumption of
“exact” arithmetic. However, to get useful results a “direct” method has to be carried
to its very end. In contrast to this, so-called “iterative” methods produce sequences of
approximate solutions of increasing accuracy, which theoretically converge to the exact
solution in infinitely many arithmetic steps. However, “iterative” methods may yield
useful results already after a small number of iterations. Usually “direct” methods are
very robust but, due to their usually high storage and work requirements, feasible only
for problems of moderate size. Here, the meaning of “moderate size” depends very much
on the currently available computer power, i. e., today reaches up to dimension n ≈
105 − 106. Iterative methods need less storage and as multi-level algorithms may even
show optimal arithmetic complexity, i. e., a fixed improvement in accuracy is achieved in
O(n) arithmetic operations. These methods can be used for really large-scale problems
of dimension reaching up to n ≈ 106 − 109 but at the prize of less robustness and higher
algorithmic complexity. Such modern “iterative” methods are the main subject of this
book and will be discussed in the next chapters.

2.1.1 Gaussian elimination and LR decomposition

In the following, we discuss “direct methods” for solving (real) quadratic linear systems

Ax = b . (2.1.1)

It is particularly easy to solve staggered systems, e. g., those with an upper triangular
matrix A = (ajk) as coefficient matrix

a11x1 + a12x2 + . . . + a1nxn = b1

a22x2 + . . . + a2nxn = b2
...

annxn = bn

.

In case that ajj �= 0, j = 1, . . . , n , we obtain the solution by “backward substitution”:

xn =
bn
ann

, j = n− 1, . . . , 1 : xj =
1

ajj
(bj −

n∑
k=j+1

ajk xk).

This requires Nback subst = n2/2 + O(n) arithmetic operations. The same holds true if
the coefficient matrix is lower triangular and the system is solved by the corresponding
“forward substitution”.
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56 Direct Solution Methods

Definition 2.1: For quantifying the arithmetic work required by an algorithm, i. e., its
“(arithmetic) complexity”, we use the notion “arithmetic operation” (in short “a. op.”),
which means the equivalent of “1 multiplication + 1 addition” or “1 division” (assuming
that the latter operations take about the same time on a modern computer).

The classical direct method for solving linear systems is the elimination method of
Gauß1 which transforms the system Ax = b in several “elimination steps” (assuming
“exact” arithmetic) into an equivalent upper triangular system Rx = c, which is then
solved by backward substitution. In practice, due to round-off errors, the resulting upper
triangular system is not exactly equivalent to the original problem and this unavoidable
error needs to be controlled by additional algorithmical steps (“final iteration”, or “Na-
chiteration”, in German). In the elimination process two elementary transformations are
applied to the matrix A , which do not alter the solution of system (2.1.1): “permutation
of two rows of the matrix” and “addition of a scalar multiple of a row to another row of
the matrix”. Also the “permutation of columns” of A is admissible if the unknowns xi
are accordingly renumbered.

In the practical realization of Gaussian elimination the elementary transformations
are applied to the composed matrix [A, b] . In the following, we assume the matrix A

to be regular. First, we set A(0) ≡ A, b(0) ≡ b and determine a
(0)
r1 �= 0, r ∈ {1, . . . , n} .

(Such an element exists since otherwise A would be singular.). Permute the 1-st and the
r-th row. Let the result be the matrix [Ã(0), b̃(0)] . Then, for j = 2, . . . , n, we multiply
the 1-st row by qj1 and subtract the result from the j-th row,

qj1 ≡ ã
(0)
j1 /ã

(0)
11 (= a

(0)
r1 /a

(0)
rr ), a

(1)
ji := ã

(0)
ji − qj1ã

(0)
1i , b

(1)
j := b̃

(0)
j − qj1b̃

(0)
1 .

The result is

[A(1), b(1)] =

⎡
⎢⎢⎢⎢⎢⎣
ã
(0)
11 ã

(0)
12 . . . ã

(0)
1n b̃

(0)
1

0 a
(1)
22 . . . a

(1)
2n b

(1)
2

...
...

0 a
(1)
n2 . . . a

(1)
nn b

(1)
n

⎤
⎥⎥⎥⎥⎥⎦ .

The transition [A(0), b(0)] → [Ã(0), b̃(0)] → [A(1), b(1)] can be expressed in terms of matrix
multiplication as follows:

[Ã(0), b̃(0)] = P1[A
(0), b(0)] , [A(1), b(1)] = G1[Ã

(0), b̃(0)] ,

where P1 is a “permutation matrix” und G1 is a “Frobenius matrix” of the following
form:

1Carl Friedrich Gauß (1777–1855): Eminent German mathematician, astronomer and physicist;
worked in Göttingen; fundamental contributions to arithmetic, algebra and geometry; founder of modern
number theory, determined the planetary orbits by his “equalization calculus”, further contributions to
earth magnetism and construction of an electro-magnetic telegraph.



2.1 Gaussian elimination, LR and Cholesky decomposition 57

P1 =

1 r⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 1

1
...

. . .
...

1

1 · · · 0

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

r G1 =

1⎡
⎢⎢⎢⎢⎢⎣

1

−q21 1
...

. . .

−qn1 1

⎤
⎥⎥⎥⎥⎥⎦

1

Both matrices, P1 and G1, are regular regular with determinants det(P1) = det(G1) = 1
and there holds

P−1
1 = P1 , G−1

1 =

⎡
⎢⎢⎢⎢⎢⎣

1

q21 1
...

. . .

qn1 1

⎤
⎥⎥⎥⎥⎥⎦ .

The systems Ax = b and A(1)x = b(1) have obviously the same solution,

Ax = b ⇐⇒ A(1)x = G1P1Ax = G1P1b = b(1).

Definition 2.2: The element ar1 = ã
(0)
11 is called “pivot element” and the whole substep

of its determination “pivot search”. For reasons of numerical stability one usually makes
the choice

|ar1| = max
1≤j≤n

|aj1| . (2.1.2)

The whole process incl. permutation of rows is called “column pivoting” . If the elements
of the matrix A are of very different size “total pivoting” is advisable. This consists in
the choice

|ars| = max
1≤j,k≤n

|ajk|, (2.1.3)

and subsequent permutation of the 1-st row with the r-th row and the 1-st column with
the s-th column. According to the column permutation also the unknowns xk have to
be renumbered. However, “total pivoting” is costly so that simple “column pivoting” is
usually preferred.
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Pi =

i r⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1

0 · · · 1

1
...

. . .
...

1

1 · · · 0

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i

r

Gi =

i⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1

−qi+1,i 1
...

. . .

−qni 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i

The matrix A(1) generated in the first step is again regular. The same is true for
the reduced submatrix to which the next elimination step is applied. By repeating this
elimination process, one obtains in n− 1 steps a sequence of matrices,

[A, b] → [A(1), b(1)] → . . .→ [A(n−1), b(n−1)] =: [R, c] ,

where
[A(i), b(i)] = GiPi[A

(i−1), b(i−1)] , [A(0), b(0)] := [A, b] ,

with (unitary) permutation matrices Pi and (regular) Frobenius matrices Gi of the above
form. The end result

[R, c] = Gn−1Pn−1 . . . G1P1[A, b] (2.1.4)

is an upper triangular system Rx = c , which has the same solution as the original system
Ax = b . By the i-th elimination step [A(i−1), b(i−1)] → [A(i), b(i)] the subdiagonal elements
in the i-th column are made zero. The resulting free places are used for storing the
elements qi+1,i, . . . , qn,i of the matrices G−1

i (i = 1, . . . , n− 1) . Since in this elimination
step the preceding rows 1 to i are not changed, one works with matrices of the form⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 · · · r1i r1,i+1 · · · r1n c1

λ21 r22 · · · r2i r2,i+1 · · · r2n c2

λ31 λ32 r3i r3,i+1 · · · r3n c3
...

...
. . .

...
...

...
...

λi1 λi2 rii ri,i+1 · · · rin ci

λi+1,1 λi+2,2 λi+1,i a
(i)
i+1,i+1 · · · a

(i)
i+1,n b

(i)
i+1

...
...

...
...

...
...

λn,1 λn,2 · · · λn,i a
(i)
n,i+1 · · · a

(i)
n,n b

(i)
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Here, the subdiagonal elements λk+1,k, . . . , λnk in the k-th column are permutations of
the elements qk+1,k, . . . , qnk of G−1

k since the permutations of rows (and only those) are
applied to the whole composed matrix. As end result, we obtain the matrix⎡

⎢⎢⎢⎢⎢⎣
r11 · · · r1n c1

l21 r22 r2n c2
...

. . .
. . .

...
...

ln1 · · · ln,n−1 rnn cn

⎤
⎥⎥⎥⎥⎥⎦ .

Theorem 2.1 (LR decomposition): The matrices

L =

⎡
⎢⎢⎢⎢⎢⎣

1 0

l21 1
...

. . .
. . .

ln1 · · · ln,n−1 1

⎤
⎥⎥⎥⎥⎥⎦ , R =

⎡
⎢⎢⎢⎢⎢⎣

r11 r12 · · · r1n

r22 · · · r2n
. . .

...

0 rnn

⎤
⎥⎥⎥⎥⎥⎦

are the factors in a so-called (multiplicative) “LR decomposition” of the matrix PA,

PA = LR , P := Pn−1 · · ·P1 . (2.1.5)

If the LR decomposition is possible with P = I, then it is uniquely determined. Once an
LR decomposition is computed the solution of the linear system Ax = b can be accom-
plished by successively solving two triangular systems,

Ly = Pb, Rx = y, (2.1.6)

by forward and backward substitution, respectively.

Proof. i) We give the proof only for the case that pivoting is not necessary, i. e., Pi = I .
Then, R = Gn−1 · · ·G1A and G−1

1 · · ·G−1
n−1R = A. In view of L = G−1

1 · · ·G−1
n−1 the first

assertion follows.

ii) To prove uniqueness let A = L1R1 = L2R2 be two LR decompositions. Then, L−1
2 L1 =

R2R
−1
1 = I since L−1

2 L1 is lower triangular with ones on the main diagonal and R2R
−1
1

is upper triangular. Consequently, L1 = L2 and R1 = R2, what was to be shown. Q.E.D.

Lemma 2.1: The solution of a linear n×n system Ax = b by Gaussian elimination
requires

NGauß(n) =
1
3
n3 +O(n2) (2.1.7)

arithmetic operations. This is just the work count of computing the corresponding decom-
position PA = LR , while the solution of the two triangular systems (2.1.6) only requires
n2 +O(n) arithmetic operations.
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Proof. The k-th elimination step

a
(k)
ij = a

(k−1)
ij − a

(k−1)
ik

a
(k−1)
kk

a
(k−1)
kj , b

(k)
i = b

(k−1)
i − a

(k−1)
ik

a
(k−1)
kk

b
(k−1)
k , i, j = k, . . ., n,

requires n−k divisions and (n−k) + (n−k)2 combined multiplications and additions
resulting altogether in

n−1∑
k=1

k2 +O(n2) = 1
3
n3 +O(n2) a. Op.

for the n−1 steps of forward elimination. By this all elements of the matrices L and R
are computed. The work count of the forward and backward elimination in (2.1.6) follows
by similar considerations. Q.E.D.

Example 2.1: The pivot elements are marked by · .
⎡
⎢⎢⎣

3 1 6

2 1 3

1 1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1

x2

x3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2

7

4

⎤
⎥⎥⎦ →

pivoting

3 1 6 2

2 1 3 7

1 1 1 4

elimination

3 1 6 2

2/3 1/3 −1 17/3

1/3 2/3 −1 10/3

→

pivoting

3 1 6 2

1/3 2/3 −1 10/3

2/3 1/3 −1 17/3

elimination

3 1 6 2

1/3 2/3 −1 10/3

2/3 1/2 −1/2 4

→
x3 = −8

x2 = 3
2(

10
3 − x3) = −7

x1 = 1
3(2− x2 − 6x3) = 19 .

LR decomposition:

P1 = I , P2 =

⎡
⎢⎢⎣

1 0 0

0 0 1

0 1 0

⎤
⎥⎥⎦ ,

PA =

⎡
⎢⎢⎣

3 1 6

1 1 1

2 1 3

⎤
⎥⎥⎦ = LR =

⎡
⎢⎢⎣

1 0 0

1/3 1 0

2/3 1/2 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

3 1 6

0 2/3 −1

0 0 −1/2

⎤
⎥⎥⎦ .
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Example 2.2: For demonstrating the importance of the pivoting process, we consider
the following linear 2×2-system:[

10−4 1

1 1

] [
x1

x2

]
=

[
1

2

]
(2.1.8)

with the exact solution x1 = 1.00010001, x2 = 0.99989999 . Using 3-decimal floating
point arithmetic with correct rounding yields

a) without pivoting:

x1 x2

0.1 · 10−3 0.1 · 101 0.1 · 101
0 −0.1 · 105 −0.1 · 105

x2 = 1 , x1 = 0

b) with pivoting:

x1 x2

0.1 · 101 0.1 · 101 0.2 · 101
0 0.1 · 101 0.1 · 101

x2 = 1 , x1 = 1

Example 2.3: The positive effect of column pivoting is achieved only if all row sums of
the matrix A are of similar size. As an example, we consider the 2×2-system[

2 20000

1 1

] [
x1

x2

]
=

[
20000

2

]
,

which results from (2.1.8) by scaling the first row by the factor 20.000 . Since in the first
column the element with largest modulus is on the main diagonal the Gauß algorithm
with and without pivoting yields the same unacceptable result (x1, x2)

T = (0, 1)T . To
avoid this effect, we apply an “equilibration” step before the elimination, i. e., we multiply
A by a diagonal matrix D,

Ax = b → DAx = Db , di =
( n∑

j=1

|aij|
)−1

, (2.1.9)

such that all row sums of A are scaled to 1 . An even better stabilization in the case
of matrix elements of very different size is “total pivoting”. Here, an equilibration step,
row-wise and column-wise, is applied before the elimination.

Conditioning of Gaussian elimination

We briefly discuss the conditioning of the solution of a linear system by Gaussian elim-
ination. For any (regular) matrix A there exists an LR decomposition like PA = LR.
Then, there holds

R = L−1PA, R−1 = (PA)−1L.

Due to column pivoting the elements of the triangular matrices L and L−1 are all less
or equal one and there holds

cond∞(L) = ‖L‖∞‖L−1‖∞ ≤ n2.
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Consequently,

cond∞(R) = ‖R‖∞‖R−1‖∞ = ‖L−1PA‖∞‖(PA)−1L‖∞
≤ ‖L−1‖∞‖PA‖∞‖(PA)−1‖∞‖L‖∞ ≤ n2 cond∞(PA).

Then, the general perturbation theorem, Theorem1.8, yields the following estimate for
the solution of the equation LRx = Pb (considering only perturbations of the right-hand
side b ):

‖δx‖∞
‖x‖∞ ≤ cond∞(L)cond∞(R)

‖δPb‖∞
‖Pb‖∞ ≤ n4 cond∞(PA)

‖δPb‖∞
‖Pb‖∞ .

Hence the conditioning of the original system Ax = b is by the LR decomposition, in the
worst case, amplified by n4 . However, this is an extremely pessimistic estimate, which
can significantly be improved (see Wilkinson2 [23]).

Theorem 2.2 (Round-off error influence): The matrix A ∈ Rn×n be regular, and the
linear system Ax = b be solved by Gaussian elimination with column pivoting. Then, the
actually computed perturbed solution x+δx under the influence of round-off error is exact
solution of a perturbed system (A+ δA)(x+ δx) = b , where (eps = “machine accuracy”)

‖δA‖∞
‖A‖∞ ≤ 1.01 · 2n−1(n3 + 2n2) eps. (2.1.10)

In combination with the perturbation estimate of Theorem 1.8 Wilkinson’s result
yields the following bound on the effect of round-off errors in the Gaussian elimination:

‖δx‖∞
‖x‖∞ ≤ cond(A)

1− cond(A)‖δA‖∞/‖A‖∞ {1.01 · 2n−1(n3 + 2n2) eps} . (2.1.11)

This estimate is, as practical experience shows, by far too pessimistic since it is oriented
at the worst case scenario and does not take into account round-off error cancellations.
Incorporating the latter effect would require a statistical analysis. Furthermore, the above
estimate applies to arbitrary full matrices. For “sparse” matrices with many zero entries
much more favorable estimates are to be expected. Altogether, we see that Gaussian
elimination is, in principle, a well-conditioned algorithm, i. e., the influence of round-off
errors is bounded in terms of the problem dimension n and the condition cond(A) , which
described the conditioning of the numerical problem to be solved.

Direct LR and Cholesky decomposition

The Gaussian algorithm for the computation of the LR decomposition A = LR (if it
exists) can also be written in direct form, in which the elements ljk of L and rjk of

2James Hardy Wilkinson (1919–1986): English mathematician; worked at National Physical Labora-
tory in London (since 1946); fundamental contributions to numerical linear algebra, especially to round-off
error analysis; co-founder of the famous NAG software library (1970).
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R are computed recursively. The equation A = LR yields n2 equations for the n2

unknown elements rjk , j ≤ k , ljk , j > k (ljj = 1) :

ajk =

min(j,k)∑
i=1

lji rik. (2.1.12)

Here, the ordering of the computation of ljk, rjk is not prescribed a priori. In the so-called
“algorithm of Crout3” the matrix A = LR is tessellated as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

3

5
...

2 4 6 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The single steps of this algorithm are (lii ≡ 1) :

k = 1, · · · , n : a1k =

1∑
i=1

l1irik ⇒ r1k := a1k,

j = 2, · · · , n : aj1 =

1∑
i=1

ljiri1 ⇒ lj1 := r−1
11 aj1,

k = 2, · · · , n : a2k =

2∑
i=1

l2irik ⇒ r2k := a2k − l21r1k,

...

and generally for j = 1, · · · , n :

rjk := ajk −
j−1∑
i=1

ljirik , k = j, j + 1, · · · , n ,

lkj := r−1
jj

(
akj −

j−1∑
i=1

lkirij

)
, k = j + 1, j + 2, · · · , n .

(2.1.13)

The Gaussian elimination and the direct computation of the LR decomposition differ only
in the ordering of the arithmetic operations and are algebraically equivalent.

3Prescott D. Crout (1907–1984): US-American mathematician and engineer; Prof. at Massachusetts
Institute of Technology (MIT); contributions to numerical linear algebra (“A short method for evaluating
determinants and solving systems of linear equations with real or complex coefficients”, Trans. Amer.
Inst. Elec. Eng. 60, 1235–1241, 1941) and to numerical electro dynamics.
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2.1.2 Accuracy improvement by defect correction

The Gaussian elimination algorithm transforms a linear system Ax = b into an upper
triangular system Rx = c , from which the solution x can be obtained by simple back-
ward substitution. Due to Theorem 2.1 this is equivalent to the determination of the
decomposition PA = LR and the subsequent solution of the two triangular systems

Ly = Pb , Rx = y . (2.1.14)

This variant of the Gaussian algorithm is preferable if the same linear system is succes-
sively to be solved for several right-hand sides b . Because of the unavoidable round-off
error one usually obtains an only approximate LR decomposition

L̃R̃ �= PA

and using this in (2.1.14) an only approximate solution x(0) with (exact) “residual”
(negative “defect”)

d̂(0) := b− Ax(0) �= 0 .

Using the already computed approximate trianguler decomposition L̃R̃ ∼ PA, one solves
(again approximately) the so-called “correction equation”

Ak = d̂(0), L̃R̃k(1) = d̂(0), (2.1.15)

and from this obtains a correction k(1) for x(0) :

x(1) := x(0) + k(1) . (2.1.16)

Had the correction equation be solved exactly, i. e., k(1) ≡ k , then

Ax(1) = Ax(0) + Ak = Ax(0) − b+ b+ d̂(0) = b,

i. e., x(1) = x would be the exact solution of the system Ax = b . In general, x(1)

is a better approximation to x than x(0) even if the defect equation is solved only
approximately. This, however, requires the computation of the residual (defect) d with
higher accuracy by using extended floating point arithmetic. This is supported by the
following error analysis.

For simplicity, let us assume that P = I . We suppose the relative error in the LR
decomposition of the matrix A to be bounded by a small number ε . Due to the general
perturbation result of Theorem 1.8 there holds the estimate

‖x(0) − x‖
‖x‖ ≤ cond(A)

1− cond(A)‖A−L̃R̃‖
‖A‖

‖A− L̃R̃‖
‖A‖︸ ︷︷ ︸∼ ε

.

Here, the loss of exact decimals corresponds to the condition cond(A) . Additionally
round-off errors are neglected. The exact residual d̂(0) is replaced by the expression
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d(0) := Ãx(0) − b where Ã is a more accurate approximation to A ,

‖A− Ã‖
‖A‖ ≤ ε̃� ε .

By construction there holds

x(1) = x(0) + k(1) = x(0) + (L̃R̃)−1[b− Ãx(0)]

= x(0) + (L̃R̃)−1[Ax− Ax(0) + (A− Ã) x(0)],

and, consequently,

x(1) − x = x(0) − x− (L̃R̃)−1A(x(0) − x) + (L̃R̃)−1(A− Ã) x(0)

= (L̃R̃)−1[L̃R̃− A](x(0) − x) + (L̃R̃)−1(A− Ã) x(0).

Since
L̃R̃ = A− A+ L̃R̃ = A

(
I − A−1(A− L̃R̃)

)
,

we can use Lemma 1.15 to conclude

‖(L̃R̃)−1‖ ≤ ‖A−1‖ ‖ [I −A−1(A− L̃R̃)]−1‖

≤ ‖A−1‖
1− ‖A−1(A− L̃R̃)‖ ≤ ‖A−1‖

1− ‖A−1‖ ‖A− L̃R̃‖ =
‖A−1‖

1− cond(A) ‖A−L̃R̃‖
‖A‖

.

This eventually implies

‖x(1) − x‖
‖x‖ ∼ cond(A)

[ ‖A− L̃R̃‖
‖A‖︸ ︷︷ ︸
∼ ε

‖x(0) − x‖
‖x‖︸ ︷︷ ︸

∼ cond(A)ε

+
‖A− Ã‖
‖A‖︸ ︷︷ ︸
∼ ε̃

‖x(0)‖
‖x‖

]
.

This correction procedure can be iterated to a “defect correction” iteration (“Nachitera-
tion” in German). It may be continued until the obtained solution has an error (usually
achieved after 2−3 steps) of the order of the defect computation, i. e., ‖x(3)−x‖/‖x‖ ∼ ε̃ .

Example 2.4: The linear system[
1.05 1, 02

1.04 1, 02

] [
x1

x2

]
=

[
1

2

]

has the exact solution x = (−100, 103.921 . . .)T . Gaussian elimination, with 3-decimal
arithmetic and correct rounding, yields the approximate triangular matrices

L̃ =

[
1 0

0.990 1

]
, R̃ =

[
1.05 1.02

0 0.01

]
,
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L̃R̃ −A =

[
0 0

5 · 10−4 2 · 10−4

]
(correct within machine accuracy).

The resulting “solution” x(0) = (−97, 1.101)T has the residual

d(0) = b− Ax(0) =

{
(0, 0)T 3-decimal computation,

(0, 065, 0, 035)T 6-decimal computation.

The approximate correction equation[
1 0

0.990 1

][
1.05 1.02

0 0.01

][
k
(1)
1

k
(1)
2

]
=

[
0.065

0.035

]

has the solution k(1) = (−2.9, 102.899)T (obtained by 3 decimal computation). Hence,
one correction step yields the approximate solution

x(1) = x(0) + k(1) = (−99.9, 104)T ,

which is significantly more accurate than the first approximation x(0).

2.1.3 Inverse computation and the Gauß-Jordan algorithm

In principle, the inverse A−1 of a regular matrix A can be computed as follows:

i) Computation of the LR decomposition of PA .

ii) Solution of the staggered systems

Ly(i) = Pe(i), Rx(i) = y(i), i = 1, . . . , n,

with the Cartesian basis vectors ei of Rn .

iii) Then, A−1 = [x(1), . . . , x(n)].

More practical is the simultaneous elimination (without explicit determination of the
matrices L and R ), which directly leads to the inverse (without row perturbation):

1 0

A
. . .

0 1

→

forward elimination

r11 · · · r1n 1 0
. . .

...
. . .

rnn ∗ 1
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backward elimination

r11 0
. . . ∗

0 rnn

→

scaling

1 0
. . . A−1

0 1

Example 2.5: The pivot elements are marked by · .

A =

⎡
⎢⎢⎣

3 1 6

2 1 3

1 1 1

⎤
⎥⎥⎦ :

forward elimination

3 1 6 1 0 0

2 1 3 0 1 0

1 1 1 0 0 1

→

→

row permutation

3 1 6 1 0 0

0 1/3 −1 −2/3 1 0

0 2/3 −1 −1/3 0 1

→

forward elimination

3 1 6 1 0 0

0 2/3 −1 −1/3 0 1

0 1/3 −1 −2/3 1 0

→

→

backward elimination

3 1 6 1 0 0

0 2/3 −1 −1/3 0 1

0 0 −1/2 −1/2 1 −1/2

→

backward elimination

3 1 0 −5 12 −6

0 2/3 0 2/3 −2 2

0 0 −1/2 −1/2 1 −1/2

→

→

scaling

3 0 0 −6 15 −9

0 2/3 0 2/3 −2 2

0 0 −1/2 −1/2 1 −1/2

→ 1 0 0 −2 5 −3

0 1 0 1 −3 3

0 0 1 1 −2 1

⇒ A−1 =

⎡
⎢⎢⎣

−2 5 −3

1 −3 3

1 −2 1

⎤
⎥⎥⎦ .

An alternative method for computing the inverse of a matrix is the so-called “exchange
algorithm” (sometimes called “Gauß-Jordan algorithm”). Let be given a not necessarily
quadratic linear system

Ax = y, where A ∈ R
m×n, x ∈ R

n, y ∈ R
m. (2.1.17)

A solution is computed by successive substitution of components of x by those of y . If
a matrix element apq �= 0 , then the p-th equation can be solved for xq :

xq = −ap1
apq

x1 − . . .− ap,q−1

apq
xq−1 +

1

apq
yp − ap,q+1

apq
xq+1 − . . .− apn

apq
xn .
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Substitution of xq into the other equations

aj1x1 + . . .+ aj,q−1xq−1 + ajq xq + aj,q+1xq+1 + . . .+ ajnxn = yj ,

yields for j = 1, . . . , m , j �= p :[
aj1 − ajqap1

apq

]
x1 + . . .+

[
aj,q−1 − ajqap,q−1

apq

]
xq−1 +

ajq
apq

yp +

+

[
aj,q+1 − ajqap,q+1

apq

]
xq+1 + . . .+

[
ajn − ajqapn

apq

]
xn = yj .

The result is a new system, which is equivalent to the original one,

Ã

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
...

yp
...

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
...

xq
...

ym

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.1.18)

where the elements of the matrix Ã are determined as follows:

pivot element : ãpq = 1/apq ,

pivot row : ãpk = apk/apq , k = 1, . . . , n , k �= q ,

pivot column : ãjq = ajq/apq , j = 1, . . . , m , j �= p ,

others : ãjk = ajk − ajqapk/apq , j = 1, . . . , m, j �= p, k = 1, . . . , n , k �= q.

If we succeed with replacing all components of x by those of y the result is the solution
of the system y = A−1x . In the case m = n , we obtain the inverse A−1 , but in general
with permutated rows and columns. In determining the pivot element it is advisable, for
stability reasons, to choose an element apq of maximal modulus.

Theorem 2.3 (Gauß-Jordan algorithm): In the Gauß-Jordan algorithm r = rank(A)
exchange steps can be done.

Proof. Suppose the algorithm stops after r exchange steps. Let at this point x1, . . . , xr
be exchanged against y1, . . . , yr so that the resulting system has the form
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r

⎧⎪⎪⎨
⎪⎪⎩

m− r

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗

∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
...

yr

xr+1

...

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
...

xr

yr+1

...

ym

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

︸ ︷︷ ︸
r

︸ ︷︷ ︸
n−r

If one chooses now y1 = · · · = yr = 0, xr+1 = λ1, · · · , xn = λn−r so are all x1, · · · , xr
uniquely determined and it follows that yr+1 = · · · = ym = 0 . For arbitrary values
λ1, · · · , λn−r there also holds

A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(λ1, · · · , λn−r)
...

xr(λ1, · · · , λn−r)

λ1

...

λn−r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence, dim(kern(A)) ≥ n−r . On the other hand, because y1, · · · , yr can be freely chosen,
we have dim(range(A)) ≥ r . Further, observing dim(range(A)) + dim(kern(A)) = n it
follows that rank(A) = dim(range(A)) = r . This completes the proof. Q.E.D.

For a quadratic linear system with regular coefficient matrix A the Gauß-Jordan
algorithm for computing the inverse A−1 is always applicable.

Example 2.6: ⎡
⎢⎢⎣

1 2 1

−3 −5 −1

−7 −12 −2

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
y1

y2

y3

⎤
⎥⎥⎦

Exchange steps: The pivot elements are marked by · .

x1 x2 x3

1 2 1 y1

−3 −5 −1 y2

−7 −12 −2 y3

x1 y3 x3

−1/6 −1/6 2/3 y1

−1/12 5/12 −1/6 y2

−7/12 −1/12 −1/6 x2
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x1 y3 y1

1/4 1/4 3/2 x3

−1/8 3/8 −1/4 y2

−5/8 −1/8 −1/4 x2

y2 y3 y1

−2 1 1 x3

−8 3 −2 x1

5 −2 1 x2

inverse:

⎡
⎢⎢⎣

−2 −8 3

1 5 −2

1 −2 1

⎤
⎥⎥⎦

Lemma 2.2: The inversion of a regular n×n-matrix by simultaneous elimination or the
Gauß-Jordan algorithmalgorithmus requires

NGauß-Jordan(n) = n3 +O(n2) a. op. (2.1.19)

Proof. i) The n− 1 steps of forward elimination at the matrix A require 1
3
n3 +O(n2)

a. op. The simultaneous treatment of the columns of the identity matrix requires addi-
tional 1

6
n3 + O(n2) a. op. The backward elimination for generating the identity matrix

on the left requires again

(n− 1)n+ (n− 2)n+ . . .+ n = 1
2
n(n− 1)n = 1

2
n3 +O(n2)

multiplications and additions and subsequently n2 divisions. Hence the total work count
for computing the inverse is

Ninverse =
1
3
n3 + 1

6
n3 + 1

2
n3 +O(n2) = n3 +O(n2).

ii) In the Gauß-Jordan algorithm the k-th exchange step requires 2n + 1 divisions in
pivot row and column and (n − 1)2 multiplications and additions for the update of the
remaining submatrix, hence all together n2+O(n) a. op.. The computation of the inverse
requires n exchange steps so that the total work count again becomes n3+O(n2) a. op..
Q.E.D.

2.2 Special matrices

2.2.1 Band matrices

The application of Gaussian elimination for the solution of large linear systems of size
n > 104 poses technical difficulties if the primary main memory of the computer is not
large enough for storing the matrices occurring during the process (fill-in problem). In
this case secondary (external) memory has to be used, which increases run-time because
of slower data transfer. However, many large matrices occurring in practice have special
structures, which allow for memory saving in the course of Gaussian elimination.

Definition 2.3: A matrix A ∈ Rn,n is called “band matrix” of “band type” (ml, mr)
with 0 ≤ ml, mr ≤ n− 1 , if

ajk = 0, for k < j −ml or k > j +mr (j, k = 1, . . . , n),
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i. e., the elements of A outside of the main diagonal and of ml+mr secondary diagonals
are zero. The quantity m = ml +mr + 1 is called the “band width” of A.

Example 2.7: We give some very simple examples of band matrices:

Typ (n− 1, 0) : lower triangular matrix

Typ (0, n− 1) : upper triangular matrix

Typ (1, 1) : tridiagonal matrix

Example of a (16× 16)-band matrix of band type (4, 4) :

A =

⎡
⎢⎢⎢⎢⎢⎣

B −I

−I B −I

−I B −I

−I B

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
16, B =

⎡
⎢⎢⎢⎢⎢⎣

4 −1

−1 4 −1

−1 4 −1

−1 4

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
4, I =

⎡
⎢⎢⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
4.

Theorem 2.4 (Band matrices): Let A ∈ Rn×n be a band matrix of band type (ml, mr),
for which Gaussian elimination can be applied without pivoting, i. e., without permutation
of rows. Then, all reduced matrices are also band matrices of the same band type and
the matrix factors L and R in the triangular decomposition of A are band matrices of
type (ml, 0) and (0, mr), respectively. The work count for the computation of the LR
decomposition A = LR is

NLR = 1
3
nmlmr +O(n(ml +mr)) a. op. (2.2.20)

Proof. The assertion follows by direct computation (exercise). Q.E.D.

In Gaussian elimination applied to a band matrix it suffices to store the “band” of the
matrix. For n ≈ 105 and m ≈ 102 this makes Gaussian elimination feasible at all. For
the small model matrix from above (finite difference discretization of the Poisson problem)
this means a reduced memory requirement of 16× 9 = 144 instead of 16× 16 = 256 for
the full matrix. How the symmetry of A can be exploited for further memory reduction
will be discussed below.

An extreme storage saving is obtained for tridiagonal matrices⎡
⎢⎢⎢⎢⎢⎣

a1 b1

c2
. . .

. . .

. . .
. . . bn−1

cn an

⎤
⎥⎥⎥⎥⎥⎦ .
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Here, the elements of the LR decomposition

L =

⎡
⎢⎢⎢⎢⎢⎣

1

γ2
. . .

. . . 1

γn 1

⎤
⎥⎥⎥⎥⎥⎦ , R =

⎡
⎢⎢⎢⎢⎢⎣

α1 β1
. . .

. . .

αn−1 βn−1

αn

⎤
⎥⎥⎥⎥⎥⎦

are simply be obtained by short recursion formulas (sometimes called “Thomas4 algo-
rithm”),

i = 2, . . . , n− 1 :

α1 = a1 , β1 = b1 ,

γi = ci/αi−1 , αi = ai − γiβi−1 , βi = bi ,

γn = cn/αn−1 , αn = an − γnβn−1 .

For this only 3n− 2 storage places and 2n− 2 a. op. are needed.

Frequently the band matrices are also sparse, i. e., most elements within the band
are zero. However, this property cannot be used within Gaussian elimination for storage
reduction because during the elimination process the whole band is filled with non-zero
entries.

It is essential for the result of Theorem 2.4 that the Gaussian elimination can be carried
out without perturbation of rows, i. e., without pivoting, since otherwise the bandwidth
would increase in the course of the algorithm. We will now consider two important classes
of matrices, for which this is the case.

2.2.2 Diagonally dominant matrices

Definition 2.4: A matrix A = (aij)
n
i,j=1 ∈ Rn×n is called “diagonally dominant”, if there

holds

n∑
k=1,k 
=j

|ajk| ≤ |ajj| , j = 1, . . . , n. (2.2.21)

Theorem 2.5 (Existence of LR decomposition): Let the matrix A ∈ Rn×n be reg-
ular and diagonally dominant. Then, the LR decomposition A = LR exists and can be
computed by Gaussian elimination without pivoting.

4Llewellyn Thomas (1903–1992): British physicist and applied mathematician; studied at Cambridge
University, since 1929 Prof. of physics at Ohio State University, after the war, 1946, staff member at
Watson Scientific Computing Laboratory at Columbia University, since 1968 Visiting Professor at North
Carolina State University until retirement; best known for his contributions to Atomic Physics, thesis
(1927) “Contributions to the theory of the motion of electrified particles through matter and some effects
of that motion”; his name is frequently attached to an efficient version of the Gaussian elimination method
for tridiagonal matrices.
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Proof. Since A is regular and diagonally dominant necessarily a11 �= 0 . Consequently,
the first elimination step A := A(0) → A(1) can be done without (column) pivoting. The

elements a
(1)
jk are obtained by a

(1)
1k = a1k, k = 1, . . . , n , and

j = 2, . . . , n , k = 1, . . . , n : a
(1)
jk = ajk − qj1a1k , qj1 =

aj1
a11

.

Hence, for j = 2, . . . , n, there holds

n∑
k=2,k 
=j

|a(1)jk | ≤
n∑

k=2,k 
=j

|ajk|+ |qj1|
n∑

k=2,k 
=j

|a1k|

≤
n∑

k=1,k 
=j

|ajk|︸ ︷︷ ︸
≤ |ajj|

−|aj1|+ |qj1|︸︷︷︸
=
∣∣∣aj1
a11

∣∣∣
n∑

k=2

|a1k|︸ ︷︷ ︸
≤ |a11|

−|qj1||a1j |

≤ |ajj| − |qj1a1j | ≤ |ajj − qj1a1j | = |a(1)jj |.

The matrix A(1) = G1A
(0) is regular and obviously again diagonally dominant. Conse-

quently, a
(1)
22 �= 0 . This property is maintained in the course of the elimination process,

i. e., the elimination is possible without any row permutations. Q.E.D.

Remark 2.1: If in (2.2.21) for all j ∈ {1, . . . , n} the strict inequality holds, then the
matrix A is called “strictly diagonally dominant” . The proof of Theorem 2.5 shows that
for such matrices Gaussian elimination is applicable without pivoting, i. e., such a matrix
is necessarily regular. The above model matrix is diagonally dominant but not strictly
diagonally dominant. Its regularity will be shown later by other arguments based on a
slightly more restrictive assumption.

2.2.3 Positive definite matrices

We recall that a (symmetric) matrix A ∈ Rn×n with the property

(Ax, x)2 > 0 , x ∈ R
n \ {0},

is called “positive definite”.

Theorem 2.6 (Existence of LR decomposition): For positive definite matrices A ∈
Rn×n the Gaussian elimination algorithm can be applied without pivoting and all occurring
pivot elements a

(i)
ii are positive.

Proof. For the (symmetric) positive matrix A there holds a11 > 0 . The relation

a
(1)
jk = ajk − aj1

a11
a1k = akj − ak1

a11
a1j = a

(1)
kj ,
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for j, k = 2, . . . , n, shows that the first elimination step yields an (n−1)× (n−1)-matrix

Ã(1) = (a
(1)
jk )j,k=2,...,n, which ia again symmetric. We have to show that it is also positive

definite, i. e., a
(1)
22 > 0. The elimination process can be continued with a positive pivot

element and the assertion follows by induction. Let x̃ = (x2, . . . , xn)
T ∈ Rn−1 \ {0} and

x = (x1, x̃)
T ∈ Rn with

x1 = − 1

a11

n∑
k=2

a1kxk .

Then,

0 <

n∑
j,k=1

ajkxjxk =

n∑
j,k=2

ajkxjxk + 2x1

n∑
k=2

a1kxk + a11x
2
1

− 1

a11

n∑
j,k=2

ak1a1jxkxj +
1

a11

( n∑
k=2

a1kxk

)2

︸ ︷︷ ︸
= 0 (ajk = akj)

=
n∑

j,k=2

(
ajk − ak1a1j

a11

)
︸ ︷︷ ︸

= a
(1)
jk

xjxk + a11

(
x1 +

1

a11

n∑
k=2

a1kxk

)2

︸ ︷︷ ︸
= 0

and, consequently, x̃T Ã(1)x̃ > 0, what was to be proven. Q.E.D.

For positive definite matrices an LR decomposition A = LR exists with positive pivot
elements rii = a

(i)
ii > 0, i = 1, . . . , n. Since A = AT there also holds

A = AT = (LR)T = (LDR̃)T = R̃TDLT

with the matrices

R̃ =

⎡
⎢⎢⎢⎢⎢⎣

1 r12/r11 · · · r1n/r11
. . .

. . .
...

1 rn−1,n/rn−1,n−1

0 1

⎤
⎥⎥⎥⎥⎥⎦ , D =

⎡
⎢⎢⎣

r11 0
. . .

0 rnn

⎤
⎥⎥⎦ .

In virtue of the uniqueness of the LR decomposition it follows that

A = LR = R̃TDLT ,

and, consequently, L = R̃T and R = DLT . This proves the following theorem.
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Theorem 2.7: Positive definite matrices allow for a so-called “Cholesky5decomposition”.

A = LDLT = L̃L̃T , (2.2.22)

with the matrix L̃ := LD1/2 . For computing the Cholesky decomposition it suffices to
compute the matrices D and L . This reduces the required work count to

NCholesky(n) =
1
6
n3 +O(n2) a. op. (2.2.23)

The so-called “Cholesky method” for computing the decomposition matrix

L̃ =

⎡
⎢⎢⎣

l̃11 0
...

. . .

l̃n1 · · · l̃nn

⎤
⎥⎥⎦

starts from the relation A = L̃L̃T , which can be viewed as a system of n(n + 1)/2

equations for the quantities l̃jk , k ≤ j. Multiplicating this out,⎡
⎢⎢⎣

l̃11 0
...

. . .

l̃n1 · · · l̃nn

⎤
⎥⎥⎦
⎡
⎢⎢⎣

l̃11 · · · l̃n1
. . .

...

0 l̃nn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a11 · · · a1n
...

...

an1 · · · ann

⎤
⎥⎥⎦ ,

yields in the first column of L̃ :

l̃211 = a11 , l̃21 l̃11 = a21 , . . . , l̃n1 l̃11 = an1 ,

from which, we obtain

l̃11 =
√
a11 , j = 2, . . . , n : l̃j1 =

aj1

l̃11
=

aj1√
a11

. (2.2.24)

Let now for some i ∈ {2, · · · , n} the elements l̃jk , k = 1, . . . , i − 1, j = k, . . . , n be
already computed. Then, from

l̃2i1 + l̃2i2 + . . .+ l̃2ii = aii , l̃ii > 0 ,

l̃j1l̃i1 + l̃j2l̃i2 + . . .+ l̃jil̃ii = aji,

the next elements l̃ii and l̃ji , j = i+ 1, . . . , n can be obtained,

l̃ii =
√
aii − l̃2i1 − l̃2i2 − . . .− l̃2i,i−1 ,

l̃ji = l̃−1
ii

{
aji − l̃j1l̃i1 − l̃j2l̃i2 − . . .− l̃j,i−1l̃i,i−1

}
, j = i+ 1, . . . , n,

5Andrè Louis Cholesky (1975–1918): French mathematician; military career as engineer officer; con-
tributions to numerical linear algebra, “Cholesky decomposition”; killed in battle shortly before the end of
World War I, his discovery was published posthumously in ”Bulletin Géodésique”.
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Example 2.8: The 3× 3-matrix

A =

⎡
⎢⎢⎣

4 12 −16

12 37 −43

−16 −43 98

⎤
⎥⎥⎦

has the following (uniquely determined) Cholesky decomposition A = LDL = L̃L̃T :

A =

⎡
⎢⎢⎣

1 0 0

3 1 0

−4 5 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

4 0 0

0 1 0

0 0 9

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 3 −4

0 1 5

0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2 0 0

6 1 0

−8 5 3

⎤
⎥⎥⎦
⎡
⎢⎢⎣

2 6 −8

0 1 5

0 0 3

⎤
⎥⎥⎦ .

2.3 Irregular linear systems and QR decomposition

Let A ∈ Rm×n be a not necessarily quadratic coefficient matrix and b ∈ Rm a right-hand
side vector. We are mainly interested in the case m > n (more equations than unknowns)
but also allow the case m ≤ n. We consider the linear system

Ax = b, (2.3.25)

for x ∈ Rn. In the following, we again seek a vector x̂ ∈ Rn with minimal defect
norm ‖d‖2 = ‖b − Ax̂‖2, which coincides with the usual solution concept if rank(A) =
rank([A, b]). In view of Theorem 1.4 such a generalized solution is characterized as solution
of the “normal equation”

ATAx = AT b. (2.3.26)

In the rank-deficient case, rank(A) < n , a particular solution x̂ of the normal system is
not unique, but of the general form x̂ + y with any element y ∈ kern(A). In this case
uniqueness is achieved by requiring the “least error-squares” solution to have minimal
Euclidian norm, ‖x̂‖2.

We recall that the matrix ATA is symmetric and positive semi-definite, and even
positive definite if A has maximal rank rank(A) = n. In the latter case the normal
equation can, in principle, be solved by the Cholesky algorithm for symmetric positive
definite matrices. However, in general the matrix ATA is rather ill-conditioned. In fact,
for m = n, we have that

cond2(A
TA) ∼ cond2(A)

2. (2.3.27)
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Example 2.9: Using 3-decimal arithmetic, we have

A =

⎡
⎢⎢⎣

1.07 1.10

1.07 1.11

1.07 1.15

⎤
⎥⎥⎦ → ATA =

[
3.43 3.60

3.60 3.76

]
.

But ATA is not positive definite: (−1, 1) · ATA · (−1, 1)T = −0.01 , i. e., in this case the
Cholesky algorithm will not yield a solution.

We will now describe a method, by which the normal equation can be solved without
explicitly forming the product ATA. For later purposes, from now on, we admit complex
matrices.

Theorem 2.8 (QR decomposition): Let A ∈ Km×n be any rectangular matrix with
m ≥ n and rank(A) = n . Then, there exists a uniquely determined orthonormal matrix
Q ∈ Km×n with the property

Q̄TQ = I (K = C) , QTQ = I (K = R), (2.3.28)

and a uniquely determined upper triangular matrix R ∈ Kn×n with real diagonal rii >
0 , i = 1, . . . , n , such that

A = QR. (2.3.29)

Proof. i) Existence: The matrix Q is generated by successive orthonormalization of the
column vectors ak, k = 1, . . . , n , of A by the Gram-Schmidt algorithm:

q1 ≡ ‖a1‖−1
2 a1, k = 2, . . . , n : q̃k ≡ ak −

k−1∑
i=1

(ak, qi)2 qi , qk ≡ ‖q̃k‖−1
2 q̃k.

Since by assumption rank(A) = n the n column vectors {a1, . . . , an} are linearly in-
dependent and the orthonormalization process does not terminate before k = n. By
construction the matrix Q ≡ [q1, . . . , qn] is orthonormal. Further, for k = 1, . . . , n, there
holds:

ak = q̃k +

k−1∑
i=1

(ak, qi)2 qi = ‖q̃k‖2 qk +
k−1∑
i=1

(ak, qi)2 qi

and

ak =
k∑

i=1

rik qk , rkk ≡ ‖q̃k‖2 ∈ R+ , rik ≡ (ak, qi)2 .

Setting rik ≡ 0, for i > k, this is equivalent to the equation A = QR with the upper
triangular matrix R = (rik) ∈ K

n×n.

ii) Uniqueness: For proving the uniqueness of the QR decomposition let A = Q1R1 and
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A = Q2R2 be two such decompositions. Since R1 and R2 are regular and (det(Ri) > 0)
it follows that

Q := Q̄T
2Q1 = R2R

−1
1 right upper triangular,

Q̄T = Q̄T
1Q2 = R1R

−1
2 right upper triangular.

Since Q̄TQ = R1R
−1
2 R2R

−1
1 = I it follows that Q is orthonormal and diagonal with

|λi| = 1 . From QR1 = R2, we infer that λir
1
ii = r2ii > 0 and, consequently, λi ∈ R and

λi = 1. Hence, Q = I , i. e.,

R1 = R2 , Q1 = AR−1
1 = AR−1

2 = Q2.

This completes the proof. Q.E.D.

In the case K = R, using the QR decomposition, the normal equation ATAx = AT b
transforms into

ATAx = RTQTQRx = RTRx = RTQT b,

and, consequently, in view of the regularity of RT ,

Rx = QT b. (2.3.30)

This triangular system can now be solved by backward substitution in O(n2) arithmetic
operations. Since

ATA = RTR (2.3.31)

with the triangular matrix R, we are given a Cholesky decomposition of ATA without
explicit computation of the matrix product ATA.

Example 2.10: The 3× 3-matrix

A =

⎡
⎢⎢⎣

12 −51 4

6 167 −68

−4 24 −41

⎤
⎥⎥⎦

has the following uniquely determined QR decomposition

A = QR =

⎡
⎢⎢⎣

6/7 −69/175 −58/5

3/7 158/175 6/175

−2/7 6/35 −33/35

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

14 21 −14

0 175 −70

0 0 35

⎤
⎥⎥⎦ .

2.3.1 Householder algorithm

The Gram-Schmidt algorithm used in the proof of Theorem 2.8 for orthonormalizing
the column vectors of the matrix A is not suitable in practice because of its inherent
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instability. Due to strong round-off effects the orthonormality of the columns of Q is
quickly lost already after only few orthonormalization steps. A more stable algorithm for
this purpose is the “Householder6 algorithm”, which is described below.

For any vector v ∈ Km the “dyadic product” is defined as the matrix

vv̄T :=

⎡
⎢⎢⎣
v1
...

vm

⎤
⎥⎥⎦ [v̄1, . . . , v̄m] =

⎡
⎢⎢⎣

|v1|2 v1v̄2 · · · v1v̄m
...

vmv̄1 vmv̄2 · · · |vm|2

⎤
⎥⎥⎦ ∈ K

m×m,

(not to be confused with the “scalar product” v̄Tv = ‖v‖22, which maps vectors to scalars).

Definition 2.5: For a normalized vector v ∈ Kn, ‖v‖2 = 1, the Matrix

S = I − 2vv̄T ∈ K
m×m

is called “Householder transformation”. Obviously S = S̄T = S−1, i. e., S (and also S̄T )
is Hermitian and unitary. Further, the product of two (unitary) Householder transforma-
tions is again unitary.

For the geometric interpretation of the Householder transformation S , we restrict us
to the real case, K = R. For an arbitrary normed vector v ∈ R2, ‖v‖2 = 1, consider the
basis {v, v⊥}, where vTv⊥ = 0 . For an arbitrary vector u = αv + βv⊥ ∈ R2 there holds

Su = (I − 2vvT ) (αv + βv⊥)

= αv + βv⊥ − 2α (v vT ) v︸ ︷︷ ︸
=1

−2β(v vT ) v⊥︸ ︷︷ ︸
=0

= −αv + βv⊥ .

Hence, the application of S = I − 2vvT to a vector u in the plane span{v, u} induces a
reflection of u with respect to the orthogonal axis span{v⊥} .

Starting from a matrix A ∈ Km×n the Householder algorithm in n steps generates a
sequence of matrices

A := A(0) → · · · → A(i−1) → · · · → A(n) := R̃ ,

where A(i−1) has the followimg form:

6Alston Scott Householder (1904–1993): US-American mathematician; Director of Oak Ridge National
Laboratory (1948-1969), thereafter Prof. at the Univ. of Tennessee; worked in mathematical biology,
best known for his fundamental contributions to numerics, especially to numerical linear algebra.
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A(i−1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗
. . .

...

∗
∗ · · · ∗

0

∗ · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i

i

In the i-th step the Householder transformation Si ∈ K
m×m is determined such that

SiA
(i−1) = A(i).

After n steps the result is

R̃ = A(n) = SnSn−1 · · ·S1A =: ¯̃QTA,

where ¯̃Q ∈ Km×m as product of unitary matrices is also unitary and R̃ ∈ Km×n has the
form

R̃ =

⎡
⎢⎢⎢⎢⎢⎣
r11 · · · r1n

. . .
...

0 rnn

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ n

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

m .

This results in the representation

A = S̄T
1 · · · S̄T

n R̃ = Q̃R̃.

From this, we obtain the desired QR decomposition of A simply by striking out the last
m− n columns in Q̃ and the last m− n rows in R̃ :

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ n

⎫⎪⎪⎬
⎪⎪⎭ m− n

= QR .

︸ ︷︷ ︸
n

︸ ︷︷ ︸
m - n

We remark that here the diagonal elements of R do not need to be positive, i. e., the
Householder algorithm does generally not yield the “uniquely determined” special QR
decomposition given by Theorem 2.8.
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Now, we describe the transformation process in more detail. Let ak be the column
vectors of the matrix A .

Step 1: S1 is chosen such that S1a1 ∈ span{e1} . The vector a1 is reflected with respect
to one of the axes span{a1+ ‖a1‖e1} or span{a1−‖a1‖e1} ) into the x1-axis. The choice
of the axis is oriented by sgn(a11) in order to minimize round-off errors. In case a11 ≥ 0
this choice is

v1 =
a1 + ‖a1‖2e1

‖a1 + ‖a1‖2e1‖2 , v⊥1 =
a1 − ‖a1‖2e1

‖a1 − ‖a1‖2e1‖2 .

Then, the matrix A(1) = (I − 2v1v̄
T
1 )A has the column vectors

a
(1)
1 = −‖a1‖2e1 , a

(1)
k = ak − 2(ak, v1)v1, k = 2, . . . , n.

−||a1||2e1 ||a1||2e1

a1−||a1||2e1 a1+||a1||2e1a1

Spiegelungsachse

x1

Figure 2.1: Scheme of the Householder transformation

Let now the transformed matrix A(i−1) be already computed.

i-th step: For Si we make the following ansatz:

Si =

⎡
⎢⎢⎢⎢⎢⎢⎣

I 0

0 I − 2ṽi ¯̃v
T
i

⎤
⎥⎥⎥⎥⎥⎥⎦ = I − 2viv̄

T
i , vi =

⎡
⎢⎢⎢⎢⎢⎣

0
...

0

ṽi

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ i - 1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

m

︸ ︷︷ ︸
i - 1

The application of the (unitary) matrix Si to A(i−1) leaves the first i − 1 rows and
columns of A(i−1) unchanged. For the construction of vi , we use the considerations of
the 1-st step for the submatrix:
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Ã(i−1) =

⎡
⎢⎢⎣
ã
(i−1)
ii · · · ã

(i−1)
in

...
...

ã
(i−1)
mi · · · ã

(i−1)
mn

⎤
⎥⎥⎦ =

[
ã
(i−1)
i , . . . , ã(i−1)

n

]
.

It follows that

ṽi =
ã
(i−1)
i − ‖ã(i−1)

i ‖2ẽi
‖ . . . ‖2 , ṽ⊥i =

ã
(i−1)
i + ‖ã(i−1)

i ‖2ẽi
‖ . . . ‖2 ,

and the matrix A(i) has the column vectors

a
(i)
k = a

(i−1)
k , k = 1, . . . , i− 1 ,

a
(i)
i = (a

(i−1)
1i , . . . , a

(i−1)
i−1,i , ‖ã(i−1)

i ‖ , 0, . . . , 0)T ,
a
(i)
k = a

(i−1)
k − 2(ã

(i−1)
k , ṽi)vi, k = i+ 1, . . . , n.

Remark 2.2: For a quadratic matrix A ∈ Kn×n the computation of the QR decom-
position by the Householder algorithm costs about twice the work needed for the LR
decomposition of A , i. e., NQR = 2

3
n3 +O(n2) a. op.

2.4 Singular value decomposition

The methods for solving linear systems and equalization problems become numerically
unreliable if the matrices are very ill-conditioned. It may happen that a theoretically
regular matrix appears as singular for the (finite arithmetic) numerical computation or
vice versa. The determination of the rank of a matrix cannot be accomplished with suf-
ficient reliability by the LR or the QR decomposition. A more accurate approach for
treating rank-deficient matrices uses the so-called “singular value decomposition (SVD)”.
This is a special orthogonal decomposition, which transforms the matrix from both sides.
For more details, we refer to the literature, e. g., to the introductory textbook by Deufl-
hard&Hohmann [33].

Let A ∈ K
m×n be given. Further let Q ∈ K

m×m and Z ∈ K
n×n be orthonormal

matrices. Then, the holds

‖QAZ‖2 = ‖A‖2. (2.4.32)

Hence this two-sided transformation does not change the conditioning of the matrix A .
For suitable matrices Q and Z , we obtain precise information about the rank of A
and the equalization problem can by accurately solved also for a rank-deficient matrix.
However, the numerically stable determination of such transformations is costly as will
be seen below.
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Theorem 2.9 (Singular value decomposition): Let A ∈ Km×n be arbitrary real or
complex. Then, there exist unitary matrices V ∈ Kn×n and U ∈ Km×m such that

A = UΣV̄ T , Σ = diag(σ1, . . . , σp) ∈ R
m×n , p = min(m,n), (2.4.33)

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0. Depending on whether m ≤ n or m ≥ n the matrix Σ
has the form ⎛

⎜⎜⎝
σ1 0

. . . 0

0 σm

⎞
⎟⎟⎠ or

⎛
⎜⎜⎜⎜⎜⎝

σ1
. . .

σn

0

⎞
⎟⎟⎟⎟⎟⎠ .

Remark 2.3: The singular value decomposition A = UΣV̄ T of a general matrix A ∈
Km×n is the natural generalization of the well-known decomposition

A = WΛW̄ T (2.4.34)

of a square normal (and hence diagonalizable) matrix A ∈ Kn×n where Λ = diag(λi) ,
λi the eigenvalues of A , and W = [w1, . . . , wn] , {w1, . . . , wn} an ONB of eigenvectors.
It allows for a representation of the inverse of a general square regular matrix A ∈ Kn×n

in the form

A−1 = (UΣV̄ T )−1 = V −1Σ−1ŪT , (2.4.35)

where the orthonormlity of U and V are used.

From (2.4.33), one sees that for the column vectors ui, vi of U, V , there holds

Avi = σiu
i, ĀTui = σiv

i, i = 1, . . . ,min(m,n).

This implies that
ĀTAvi = σ2

i v
i, AĀTui = σ2

i u
i,

which shows that the values σi, i = 1, . . . ,min(m,n), are the square roots of eigenvalues
of the Hermitian, positive semi-definite matrices ĀTA ∈ Kn×n and AĀT ∈ Km×m corre-
sponding to the eigenvectors vi and ui, respectively. The σi are the so-called “singular
values” of the matrix A . In the case m ≥ n the matrix ĀTA ∈ Kn×n has the p = n
eigenvalues {σ2

i , i = 1, . . . , n} , while the matrix AĀT ∈ Km×m has the m eigenvalues
{σ2

1, . . . , σ
2
n, 0n+1, . . . , 0m} . In the case m ≤ n the matrix ĀTA ∈ K

n×n has the n
eigenvalues {σ2

i , . . . , σ
2
m, 0m+1, . . . , 0n} , while the matrix AĀT ∈ Rm×m has the p = m

eigenvalues {σ2
1, . . . , σ

2
m} . The existence of a decomposition (2.4.33) will be concluded

by observing that ĀTA is orthonormally diagonalizable,

Q̄T (ĀTA)Q = diag(σ2
i ).
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Proof of Theorem 2.9. We consider only the real case K = R.
i) Case m ≥ n (overdetermined system): Let the eigenvalues of the symmetric, positive
semi-definite matrix ATA ∈ Rn×n be ordered like λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = · · · =
λn = 0. Here, r is the rank of A and also of ATA. Further, let {v1, . . . , vn} be a
corresponding ONB of eigenvectors, ATAvi = λiv

i, such that the associated matrix V :=
[v1, . . . , vn] is unitary. We define the diagonal matrices Λ := diag(λi) and Σ := diag(σi)

where σi := λ
1/2
i , i = 1 . . . , n, are the “singular values” of A . In matrix notation there

holds
AV = ΛV.

Next, we define the vectors ui := σ−1
i Avi ∈ Rm, i = 1, . . . , n, which form an ONS in Rm,

(ui, uj)2 = σ−1
i σ−1

j (Avi, Avj)2 = σ−1
i σ−1

j (vi, ATAvj)2

= σ−1
i σ−1

j λj(v
i, vj)2 = δij , i, j = 1, . . . , n.

The ONS {u1, . . . , un} can be extended to an ONB {u1, . . . , um} of Rm such that the
associated matrix U := [u1, . . . , um] is unitary. Then, in matrix notation there holds

ATU = Σ−1ATAV = Σ−1ΛV = ΣV, UTA = ΣV T , A = UΣV T .

ii) Case m ≤ n (underdetermined system): We apply the result of (i) to the transposed
matrix AT ∈ Rn×m, obtaining

AT = Ũ Σ̃Ṽ T , A = Ṽ Σ̃T ŨT .

Then, setting U := Ṽ , V := Ũ , and observing that, in view of the above discussion, the
eigenvalues of (AT )TAT = AAT ∈ R

m×m are among those of ATA ∈ R
n×n besides n−m

zero eigenvalues. Hence, Σ̃T has the desired form. Q.E.D.

We now collect some important consequences of the decomposition (2.4.33). Suppose
that the singular values are ordered like σ1 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0, p =
min(m,n) . Then, there holds (proof exercise):

- rank(A) = r ,

- kern(A) = span{vr+1, . . . , vn} ,
- range(A) = span{u1, . . . , ur} ,
- A = UrΣrV

T
r ≡∑r

i=1 σiu
iviT (singular decomposition of A ),

- ‖A‖2 = σ1 = σmax ,

- ‖A‖F = (σ2
1 + · · ·+ σ2

r )
1/2 (Frobenius norm).

We now consider the problem of computing the “numerical rank” of a matrix. Let

rank(A, ε) = min
‖A−B‖2≤ε

rank(B) .
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The matrix is called “numerically rank-deficient” if

rank(A, ε) < min(m,n) , ε = eps‖A‖2,

where eps is the “machine accuracy” (maximal relative round-off error). If the matrix
elements come from experimental measurements, then the parameter ε should be related
to the measurement error. The concept of “numerically rank-deficient” has something in
common with that of the ε-pseudospectrum discussed above.

Theorem 2.10 (Error estimate): Let A, U, V, Σ be as in Theorem 2.9. If k < r =
rank(A), then in the truncated singular value decomposition,

Ak =
k∑

i=1

σiu
iviT ,

there holds the estimate

min
rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1 .

This implies for rε = rank(A, ε) the relation

σ1 ≥ · · · ≥ σrε > ε ≥ σrε+1 ≥ · · · ≥ σp , p = min(m,n).

Proof. Since
UTAkV = diag(σ1, . . . , σk, 0, . . . , 0)

it follows that rank(Ak) = k . Further, we obtain

UT (A−Ak)V = diag(0, . . . , 0, σk+1, . . . , σp)

and because of the orthonormality of U and V that

‖A−Ak‖2 = σk+1.

It remains to show that for any other matrix B with rank k, the following inequality
holds

‖A− B‖2 ≥ σk+1.

To this end, we choose an ONB {x1, . . . , xn−k} of kern(B) . For dimensional reasons
there obviously holds

span{x1, . . . , xn−k} ∩ span{v1, . . . , vk+1} �= ∅.

Let z with ‖z‖2 = 1 be from this set. Then, there holds

Bz = 0 , Az =

k+1∑
i=1

σi(v
iT z)ui
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and, consequently,

‖A− B‖22 ≥ ‖(A− B)z‖22 = ‖Az‖22 =
k+1∑
i=1

σ2
i (v

iT z)2 ≥ σ2
k+1.

Here, we have used that z =
∑k+1

i=1 (v
iTz)vi and therefore

1 = ‖z‖22 =
k+1∑
i=1

(viTz)2.

This completes the proof. Q.E.D.

With the aid of the singular value decomposition, one can also solve the equalization
problem. In the following let again m ≥ n . We have already seen that any minimal
solution x,

‖Ax− b‖2 = min!

necessarily solves the normal equation ATAx = AT b. But this solution is unique only in
the case of maximal rank(A) = n , which may be numerically hard to verify. In this case
ATA is invertible and there hold

x = (ATA)−1AT b.

Now, knowing the (non-negative) eigenvalues λi, i = 1, . . . , n, of ATA with corresponding

ONB of eigenvectors {v1, . . . , vn} and setting Σ = diag(σi), σi := λ
1/2
i , V = [v1, . . . , vn],

ui := λ
−1/2
i Avi, and U := [u1, . . . , un], we have

(ATA)−1AT = (V Σ2V T )−1AT = V Σ−2V TAT = V Σ−1(AV )T = V Σ−1UT .

This implies the solution representation

x = V Σ−1UT b =
n∑

i=1

uiT b

σi
vi. (2.4.36)

In the case rank(A) < n the normal equation has infinitely many solutions. Out of these
solutions, one selects one with minimal euclidian norm, which is then uniquely determined.
This particular solution is called “minimal solution” of the equalization problem. Using
the singular value decomposition the solution formula (2.4.36) can be extended to this
“irregular” situation.

Theorem 2.11 (Minimal solution): Let A = UΣV T be singular value decomposition
of the matrix A ∈ Rm×n and let r = rank(A) . Then,

x̄ =

r∑
i=1

uiT b

σi
vi
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is the uniquely determined “minimal solution” of the normal equation. The corresponding
least squares error satisfies

ρ2 = ‖Ax̄− b‖22 =
m∑

i=r+1

(uiT b)2.

Proof. For any x ∈ Rn there holds

‖Ax− b‖22 = ‖AV V Tx− b‖22 = ‖UTAV V Tx− UT b‖22 = ‖ΣV Tx− UT b‖22.

Setting z = V Tx , we conclude

‖Ax− b‖22 = ‖Σz − UT b‖22 =
r∑

i=1

(σiz
i − uiT b)2 +

m∑
i=r+1

(uiT b)2.

Hence a minimal point necessarily satisfies

σiz
i = uiT b, i = 1, . . . , r.

Among all z with this property zi = 0 , i = r + 1, . . . , m has minimal euclidian norm.
The identity for the least squares error is obvious. Q.E.D.

The uniquely determined minimal solution of the equalization problem has the follow-
ing compact representation

x̄ = A+b , ρ = ‖(I − AA+)b‖2, (2.4.37)

where
A+ = V Σ+UT , Σ+ = diag(σ−1

1 , . . . , σ−1
r , 0, . . . , 0) ∈ R

n×m.

The matrix

A+ = V Σ+UT (2.4.38)

is called “pseudo-inverse” of the matrix A (or “Penrose7 inverse” (1955)). The pseudo-
inverse is the unique solution of the matrix minimization problem

min
X∈Rn×m

‖AX − I‖F ,

with the Frobenius norm ‖ · ‖F . Since the identity in (2.4.37) holds for all b it follows
that

7Roger Penrose (1931–): English mathematician; Prof. at Birkbeck College in London (1964) and since
1973 Prof. at the Univ. of Oxford; fundamental contributions to the theory of half-groups, to matrix
calculus and to the theory of “tesselations” as well as in Theoretical Physics to Cosmology, Relativity
and Quantum Mechanics.
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rank(A) = n ⇒ A+ = (ATA)−1AT ,

rank(A) = n = m ⇒ A+ = A−1.

In numerical practice the definition of the pseudo-inverse has to use the (suitably defined)
numerical rank. The numerically stable computation of the singular value decomposition
is rather costly. For details, we refer to the literature, e. g., the book by Golub&van Loan
[36].

2.5 “Direct” determination of eigenvalues

In the following, we again consider general square matrices A ∈ Kn×n. The direct way of
computing eigenvalues of A would be to follow the definition of what an eigenvalue is and
to compute the zeros of the corresponding characteristic polynomial χA(z) = det(zI−A)
by a suitable method such as, e. g., the Newton method. However, the mathematical task
of determining the zeros of a polynomial may be highly ill-conditioned if the polynomial is
given in “monomial expansion”, although the original task of determining the eigenvalues
of a matrix is mostly well-conditioned. This is another nice example of a mathematical
problem the conditioning of which significantly depends on the choice of its formulation.

In general the eigenvalues cannot be computed via the characteristic polynomial. This
is feasible only in special cases when the characteristic polynomial does not need to be
explicitly built up, such as for tri-diagonal matrices or so-called “Hessenberg8 matrices”.

Tridiagonal matrix Hessenberg matrix⎡
⎢⎢⎢⎢⎢⎣
a1 b1

c2
. . .

. . .
. . . bn−1

cn an

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
a11 · · · a1n

a21
. . .

...
. . . an−1,n

0 an,n−1 ann

⎤
⎥⎥⎥⎥⎥⎦

2.5.1 Reduction methods

We recall some properties related to the “similarity” of matrices. Two matrices A, B ∈
C

n×n are “similar”, in symbols A ∼ B , if with a regular matrix T ∈ C
n×n there holds

A = T−1BT . In view of

det(A− zI) = det(T−1[B − zI]T ) = det(T−1) det(B − zI) det(T ) = det(B − zI),

similar matrices A, B have the same characteristic polynomial and therefore also the
same eigenvalues. For any eigenvalue λ of A with a corresponding eigenvector w there

8Karl Hessenberg (1904–1959): German mathematicians; dissertation “Die Berechnung der Eigenwerte
und Eigenl”osungen linearer Gleichungssysteme”, TU Darmstadt 1942.
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holds
Aw = T−1BTw = λw,

i. e., Tw is an eigenvector of B corresponding to the same eigenvalue λ . Further, al-
gebraic and geometric multiplicity of eigenvalues of similar matrices are the same. A
“reduction method” reduces a given matrix A ∈ Cn×n by a sequence of similarity trans-
formations to a simply structured matrix for which the eigenvalue problem is then easier
to solve,

A = A(0) = T−1
1 A(1)T1 = Q . . . = T−1

i A(i)Ti = . . . . (2.5.39)

In order to prepare for the following discussion of reduction methods, we recall (without
proof) some basic results on matrix normal forms.

Theorem 2.12 (Jordan normal form): Let the matrix A ∈ C
n×n have the (mutually

different) eigenvalues λi, i = 1, . . . , m, with algebraic and geometric multiplicities σi and

ρi, respectively. Then, there exist numbers r
(i)
k ∈ N k = 1, . . . , ρi, σi = r

(i)
1 + . . . + r

(i)
ρi ,

such that A is similar to the Jordan normal form

JA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
r
(1)
1

(λ1)

. . . 0

C
r
(1)
ρ1

(λ1)

. . .

C
r
(m)
1

(λm)

0
. . .

C
r
(m)
ρm

(λm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, the numbers r
(i)
k are up to their ordering uniquely determined.

The following theorem of Schur9 concerns the case that in the similarity transformation
only unitary matrices are allowed.

Theorem 2.13 (Schur normal form): Let the matrix A ∈ Cn×n have the eigenvalues
λi, i = 1, . . . , n (counted accordingly to their algebraic multiplicities). Then, there exists
a unitary matrix U ∈ Cn×n such that

9Issai Schur (1875–1941): Russian-German mathematician; Prof. in Bonn (1911–1916) and in Berlin
(1916–1935), where he founded a famous mathematical school; because of his jewish origin persecuted
he emigrated 1939 to Palestine; fundamental contributions especially to the Representation Theory of
Groups and to Number Theory.
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ŪTAU =

⎡
⎢⎢⎣
λ1 ∗

. . .

0 λn

⎤
⎥⎥⎦ . (2.5.40)

If A ∈ Cn×n is Hermitian, AT = Ā , so is also ŪTAU Hermitian. Hence, Hermitian
matrices A ∈ Cn×n are “unitary similar” to a diagonal matrix ŪTAU = diag(λi) , i. e.,
“diagonalizable”.

Lemma 2.3 (Diagonalization): For any matrix A ∈ Cn×n the following statements
are equivalent:

i) A is diagonalizable.

ii) There exists an ONB in Cn of eigenvectors of A .

iii) For all eigenvalues of A algebraic and geometric multiplicity coincide.

In general, the direct transformation of a given matrix into normal form in finitely
many steps is possible only if all its eigenvectors are a priori known. Therefore, first one
transforms the matrix in finitely many steps into a similar matrix of simpler structure
(e. g., Hessenberg form) and afterwards applies other mostly iterative methods of the form

A = A(0) → A(1) = T−1
1 A(0) T1 → . . . A(m) = T−1

m A(m−1) Tm.

Here, the transformation matrices Ti should be given explicitly in terms of the elements
of A(i−1). Further, the eigenvalue problem of the matrix A(i) = T−1

i A(i−1) Ti should not
be worse conditioned than that of A(i−1).

Let ‖ · ‖ be any natural matrix norm generated by a vector norm ‖ · ‖ on C
n . For

any two similar matrices, B ∼ A, there holds

B = T−1AT , B + δB = T−1(A+ δA) T , δA = TδBT−1,

and, therefore,
‖B‖ ≤ cond(T) ‖A‖ , ‖δA‖ ≤ cond(T) ‖δB‖.

This implies that

‖δA‖
‖A‖ ≤ cond(T)2

‖δB‖
‖B‖ . (2.5.41)

Hence, for large cond(T) 
 1 even small perturbations in B may effect its eigenvalues
significantly more than those in A . In order to guarantee the stability of the reduction
approach, in view of

cond(T) = cond(T1 . . .Tm) ≤ cond(T1) · . . . · cond(Tm),

the transformation matrices Ti are to be chosen such that cond(Ti) does not become too
large. This is especially achieved for the following three types of transformations:
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a) Rotations (Givens transformation):

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1

cos(ϕ) − sin(ϕ)

1
. . .

1

sin(ϕ) cos(ϕ)

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=⇒ cond2(T) = 1.

b) Reflections (Householder transformation):

T = I−2uūT =⇒ cond2(T) = 1.

The Givens and the Householder transformations are unitary with spectral condition
cond2(T) = 1.

c) Elimination

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1

li+1,i 1
...

. . .

ln,i 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, |ljk| ≤ 1 =⇒ cond∞ (T) ≤ 4.

In the following, we consider only the eigenvalue problem of real matrices. The fol-
lowing theorem provides the basis of the so-called “Householder algorithm”.

Theorem 2.14 (Hessenberg normal form): To each matrix A ∈ Rn×n there exists
a sequence of Householder matrices Ti, i = 1, . . . , n−2, such that TAT T with T =
Tn−2 . . . T1 is a Hessenberg matrix . For symmetric A the transformed matrix TAT T is
tri-diagonal.

Proof. Let A = [a1, . . . , an] and ak the column vectors of A . In the first step u1 =
(0, u12, . . . , u1n)

T ∈ Rn, ‖u1‖2 = 1 , is determines such that with T1 = I−2u1u
T
1 there

holds T1a
1 ∈ span{e1, e2}. Then,
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A(1) = T1AT1 =

⎡
⎢⎢⎣

a11 a12 . . . a1n

//// ∗
0

⎤
⎥⎥⎦

︸ ︷︷ ︸
T1A

⎡
⎢⎢⎣

1 0 . . .

0 ∗
...

⎤
⎥⎥⎦

︸ ︷︷ ︸
T T
1

=

⎡
⎢⎢⎢⎣

a11 ∗
////

0
Ã(1)

⎤
⎥⎥⎥⎦ .

In the next step, we apply the same procedure to the reduced matrix Ã(1). After n−2
steps, we obtain a matrix A(n−2) which has Hessenberg form. With A also A(1) = T1AT1
is symmetric and then also A(n−2) . The symmetric Hessenberg matrix A(n−2) is tri-
diagonal. Q.E.D.

Remark 2.4: For a symmetric matrix A ∈ R
n×n the Householder algorithm for reduc-

ing it to tri-diagonal form requires 2
3
n3 + O(n2) a. op. and the reduction of a general

matrix to Hessenberg form 5
3
n3 + O(n2) a.op. For this purpose the alternative method

of Wilkinson using Gaussian elimination steps and row permutation is more efficient as
it requires only half as many arithmetic operations. However, the row permutation de-
stroys the possible symmetry of the original matrix. The oldest method for reducing a
real symmetric matrix to tri-diagonal form goes back to Givens10 (1958). It uses (uni-
tary) Givens rotation matrices. Since this algorithm requires twice as many arithmetic
operations as the Householder algorithm it is not further discussed. For details, we refer
to the literature, e. g., the textbook by Stoer&Bulirsch II [50].

2.5.2 Hyman’s method

The classical method for computing the eigenvalues of a tri-diagonal or Hessenberg matrix
is based on the characteristic polynomial without explicitly determining the coefficients
in its monomial expansion. The method of Hyman11 (1957) computes the characteristic
polynomial χA(·) of a Hessenberg matrix A ∈ Rn×n . Let as assume that the matrix
A does not separate into two submatrices of Hessenberg form, i. e., aj+1,j �= 0, j =
1, . . . , n−1. With a function c(·) still to be chosen, we consider the linear system

(a11 − z)x1 + a12x2 + · · ·+ a1,n−1xn−1 + a1nxn = −c (z)
a21x1 + (a22 − z)x2 + · · ·+ a2,n−1xn−1 + a2nxn = 0

...

an,n−1xn−1 + (ann − z)xn = 0.

10James Wallace Givens, 1910–1993: US-American mathematician; worked at Oak Ridge National
Laboratory; known by the named after him matrix transformation “Givens rotation” (“Computation of
plane unitary rotations transforming a general matrix to triangular form”, SIAM J. Anal. Math. 6,
26-50, 1958).

11Morton Allan Hyman: Dutch mathematician; PhD Techn. Univ. Delft 1953, Eigenvalues and
eigenvectors of general matrices, Twelfth National Meeting A.C.M., Houston, Texas, 1957.
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Setting xn = 1 the values xn−1, . . . , x1 and c (z) can be successively determined. By
Cramer’s rule there holds

1 = xn =
(−1)nc(z)a21a32 . . . an,n−1

det(A− zI)
.

Consequently, c(z) = const. det(A − zI), and we obtain a recursion formula for deter-
mining the characteristic polynomial χA(z) = det(zI − A) .

Let now A ∈ Rn×n be a symmetric tri-diagonal matrix with entries bi �= 0, i =
1, . . . , n− 1 :

A =

⎡
⎢⎢⎢⎢⎢⎣

a1 b1 0

b1
. . .

. . .
. . . bn−1

0 bn−1 an

⎤
⎥⎥⎥⎥⎥⎦ .

For the computation of the characteristic polynomial χA(·) , we have the recursion for-
mulas

p0(z) = 1 , p1(z) = a1 − z, pi(z) = (ai − z) pi−1(z)− b2i−1pi−2(z), i = 2, . . . , n.

The polynomials pi ∈ Pi are the i-th principle minors of det(zI −A), i. e., pn = χA . To
see this, we expand the (i+ 1)-th principle minor with respect to the (i+ 1)-th column:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 − z b1

b1
. . .

. . .

. . .

bi−1

bi−1 ai − z bi

bi ai+1 − z
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (ai+1 − z)pi(z)− b2i pi−1(z)︸ ︷︷ ︸
=: pi+1(z)

.

i− 1 i i+ 1

Often it is useful to know the derivative χ′
A(·) of χA(·) (e. g., in using the Newton

method for computing the zeros of χA(·)). This is achieved by the recursion formula

q0(z) = 0 , q1(z) = −1

qi(z) = −pi−1(z) + (ai − z)qi−1(z)− b2i−1qi−2(z) , i = 2, . . . , n ,

qn(z) = χ′
A(z) .

If the zero λ of χA , i. e., an eigenvalue of A, has been determined a corresponding
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eigenvector w (λ) is given by

w (z) =

⎡
⎢⎢⎣

w0 (z)
...

wn−1(z)

⎤
⎥⎥⎦ ,

w0(z) ≡ 1 (bn := 1)

wi(z) :=
(−1)ipi(z)

b1 . . . bi
, i = 1, . . . , n .

(2.5.42)

For verifying this, we compute (A− zI)w(z) . For i = 1, . . . , n− 1 (b0 := 0) there holds

bi−1wi−2(z) + aiwi−1(z) + biwi(z)− z wi−1(z) =

= bi−1(−1)i−2 pi−2(z)

b1 . . . bi−2
+ ai(−1)i−1 pi−1(z)

b1 . . . bi−1
+ bi(−1)i

pi(z)

b1 . . . bi
− z(−1)i−1 pi−1(z)

b1 . . . bi−1

= b2i−1(−1)i−2 pi−2(z)

b1 . . . bi−1

+ ai(−1)i−1 pi−1(z)

b1 . . . bi−1

+ (−1)i
(ai − z) pi−1(z)− b2i−1pi−2(z)

b1 . . . bi−1

− z(−1)i−1 pi−1(z)

b1 . . . bi−1
= 0.

Further, for i = n (bn := 1):

bn−1wn−2(z) + anwn−1(z)− z wn−1(z) =

= bn−1(−1)n−2 pn−2(z)

b1 . . . bn−2
+ (an − z)(−1)n−1 pn−1(z)

b1 . . . bn−1

= −b2n−1(−1)n−1 pn−2(z)

b1 . . . bn−1
+ (an − z)(−1)n−1 pn−1(z)

b1 . . . bn−1

= (−1)n−1 pn(z)

b1 . . . bn−1

= −wn(z) .

Hence, we have

(A− zI)w(z) =

⎡
⎢⎢⎢⎢⎢⎣

0
...

0

−wn(z)

⎤
⎥⎥⎥⎥⎥⎦ . (2.5.43)

For an eigenvalue λ of A there is wn(λ) = const. pA(λ) = 0 , i. e., (A− λI)w(λ) = 0.

2.5.3 Sturm’s method

We will now describe a method for the determination of zeros of the characteristic polyno-
mial χA of a real symmetric (irreducible) tridiagonal matrix A ∈ R

n×n. Differentiating
in the identity (2.5.43) yields
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[(A− zI)w(z)]′ = −w(z) + (A− zI)w′(z) =

⎡
⎢⎢⎢⎢⎢⎣

0
...

0

−w′
n(z)

⎤
⎥⎥⎥⎥⎥⎦ .

We set z = λ with some eigenvalue λ of A and multiply by −w(λ) to obtain

0 < ‖w(λ)‖22 − ([A− λI]w(λ)︸ ︷︷ ︸
= 0

, w′(λ))

= wn−1(λ)w
′
n(λ) = −pn−1(λ)p

′
n(λ)

b21 . . . b
2
n−1

.

Consequently, p′n(λ) �= 0 , i. e., there generally holds

(S1) All zeros of pn are simple.

Further:

(S2) For each zero λ of pn : pn−1(λ)p
′
n(λ) < 0.

(S3) For each real zero ζ of pi−1 : pi(ζ)pi−2(ζ) < 0, i = 2, . . . , n;

since in this case pi(ζ) = −b2i−1pi−2(ζ) and were pi(ζ) = 0 this would result in the
contradiction

0 = pi(ζ) = pi−1(ζ) = pi−2(ζ) = . . . = p0(ζ) = 1.

Finally, there trivially holds:

(S4) p0 �= 0 does not change sign.

Definition 2.6: A sequence of polynomials p = pn, pn−1, . . . , p0 (or more general of con-
tinuous functions fn, fn−1, . . . , f0 ) with the properties (S1) - (S4) is called a “Sturm12

chain” of p .

The preceding consideration has led us to the following result:

Theorem 2.15 (Sturm chain): Let A ∈ Rn×n be a symmetric, irreducible tri-diagonal
matrix. Then, the principle minors pi(z) of the matrix A − zI form a Sturm chain of
the characteristic polynomial χA(z) = pn(z) of A .

The value of the existence of a Sturm chain of a polynomial p consists in the following
result.

12Jacques Charles Franois Sturm (1803–1855): French-Swiss mathematician; Prof. at École Poly-
technique in Paris since 1840; contributions to Mathematical Physics, differential equations, (“Sturm-
Liouville problem”) and Differential Geometry.
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Theorem 2.16 (Bisection method): Let p be a polynomial and p = pn, pn−1, . . . , p0 a
corresponding Sturm chain. Then, the number of real zeros of p in an interval [a, b] equals
N(b)−N(a), where N(ζ) is the number of sign changes in the chain pn(ζ), . . . , p0(ζ).

Proof. We consider the number of sign changes N(a) for increasing a . N(a) remains
constant as long as a does not pass a zero of one of the pi. Let now a be a zero of one
of the pi . We distinguish two cases:

i) Case pi(a) = 0 for i �= n : In this case pi+1(a) �= 0 , pi−1(a) �= 0 . Therefore, the sign of
pj(a) , j ∈ {i− 1, i, i+ 1} for sufficiently small h > 0 shows a behavior that is described
by one of the following two tables:

a− h a a + h

i− 1 − − −
i +/− 0 −/+

i+ 1 + + +

a− h a a+ h

i− 1 + + +

i +/− 0 −/+
i+ 1 − − −

In each case N(a − h) = N(a) = N(a + h) and the number of sign changes does not
change.

ii) Case pn(a) = 0 : In this case the behavior of pj(a) , j ∈ {n − 1, n} , is described by
one of the following two tables (because of (S2)):

a− h a a + h

n − 0 +

n− 1 − − −

a− h a a + h

n + 0 −
n− 1 + + +

Further, there holds N(a − h) = N(a) = N(a + h) − 1 , i. e., passing a zero of pn
causes one more sign change. For a < b and h > 0 sufficiently small the difference
N(b) − N(a) = N(b + h) − N(a − h) equals the number of zeros of pn in the interval
[a− h, b+ h] . Since h can be chosen arbitrarily small the assertion follows. Q.E.D.

Theorem 2.15 suggests a simple bisection method for the approximation of roots of the
characteristic polynomial χA of a symmetric, irreduzible tridiagonal matrix A ∈ R

n×n.
Obviously, A has only real, simple eigenvalues

λ1 < λ2 < · · · < λn.

For x→ −∞ the chain

p0(x) = 1 , p1(x) = a1 − x

i = 2, . . . , n : pi(x) = (ai − x)pi−1(x)− b2i pi−2(x) ,

has the sign distribution +, . . . ,+ , which shows that N(x) = 0 . Consequently,N(ζ)
corresponds to the number of zeros λ of χA with λ < ζ . For the eigenvalues λi of A
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it follows that

λi < ζ ⇐⇒ N(ζ) ≥ i. (2.5.44)

In order to determine the i-th eigenvalue λi , one starts from an interval [a0, b0] containing
λi , i. e., a0 < λ1 < λn < b0. Then, the interval is bisected and it is tested using the Sturm
sequence, which of the both new subintervals λi contains λi. Continuing this process for
t = 0, 1, 2, . . ., one obtains:

μt :=
at + bt

2
,

at+1 :=

{
at , for N(μt) ≥ i

μt , for N(μt) < i

bt+1 :=

{
μt , for N(μt) ≥ i

bt , for N(μt) < i

(2.5.45)

By construction, we have λi ∈ [at+1, bt+1] and

[at+1, bt+1] ⊂ [at, bt] , |at+1 − bt+1| = 1
2
|at − bt|,

i. e., the points at converge monotonically increasing and bt monotonically decreasing to
λi . This algorithm is slow but very robust with respect to round-off perturbations and
allows for the determination of any eigenvalue of A independently of the others.

2.6 Exercises

Exercise 2.1: a) Construct examples of real matrices, which are symmetric, diagonally
dominant and regular but indefinite (i. e. neither positive nor negative definite), and vice
versa those, which are positive (or negative) definite but not diagonally dominant. This
demonstrates that these two properties of matrices are independent of each other.

b) Show that a matrix A ∈ Kn×n for which the conjugate transpose ĀT is strictly
diagonally dominant is regular.

c) Show that a strictly diagonally dominant real matrix, which is symmetric and has
positive diagonal elements is positive definite.

Exercise 2.2: Let A = (aij)
n
i,j=1 ∈ R

n×n be a symmetric, positive definite matrix. The
Gaussian elimination algorithm (without pivoting) generates a sequence of matrices A =
A(0) → . . .→ A(k) → . . .→ A(n−1) = R, where R = (rij)

n
i,j=1 is the resulting upper-right

triangular matrix. Prove that the algorithm is “stable” in the following sense:

k = 1, . . ., n− 1 : a
(k)
ii ≤ a

(k−1)
ii , i = 1, . . ., n, max

1≤i,j≤n
|rij| ≤ max

1≤i,j≤n
|aij|.

(Hint: Use the recursion formula and employ an induction argument.)

Exercise 2.3: The “LR decomposition” of a regular matrix A ∈ Rn×n is the represen-
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tation of A as a product A = LR consisting of a lower-left triangular matrix L with
normalized diagonal (lii = 1, 1 ≤ i ≤ n) and an upper-right triangular matrix R.

i) Verify that the set of all (regular) lower-left triangular matrices L ∈ Rn×n , with normal-
ized diagonal (lii = 1, i = 1, . . ., n), as well as the set of all regular, upper-right triangular
matrices R ∈ R

n×n form groups with respect to matrix multiplication. Are these groups
Abelian?

ii) Use the result of (i) to prove that if the LR decomposition of a regular matrix A ∈ R
n×n

exists, it must be unique.

Exercise 2.4: Let A ∈ Rn×n be a regular matrix that admits an “LR decomposition”.
In the text it is stated that Gaussian elimination (without pivoting) has an algorithmic
complexity of 1

3
n3 + O(n2) a. op., and that in case of a symmetric matrix this reduces

to 1
6
n3 +O(n2) a. op. Hereby, an “a. op.” (arithmetic operation) consists of exactly one

multiplication (with addition) or of a division.

Question: What are the algorithmic complexities of these algorithms in case of a band
matrix of type (ml, mr) with ml = mr = m? Give explicit numbers for the model matrix
introduced in the text with m = 102, n = m2 = 104, and m = 104, n = m2 = 108,
respectively.

Exercise 2.5: Consider the linear system Ax = b where⎡
⎢⎢⎢⎢⎣

1 3 −4

3 9 −2

4 12 −6

2 6 2

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎥⎦ .

a) Investigate whether this system is solvable (with argument).

b) Determine the least-error squares solution of the system (“minimal solution”).

c) Is this “solution” unique?

d) Are the matrices ATA and AAT (symmetric) positive definit?




