
1 Linear Algebraic Systems and Eigenvalue Problems

In this chapter, we introduce the basic notation and facts about the normed real or
complex vector spaces Kn of n-dimensional vectors and Kn×n of corresponding n × n-
matrices. The emphasis is on square matrices as representations of linear mappings in
Kn and their spectral properties.

1.1 The normed Euclidean space Kn

1.1.1 Vector norms and scalar products

We recall some basic topological properties of the finite dimensional “normed” (vector)
space Kn, where depending on the concrete situation K = R (real space) or K = C

(complex space). In the following each point x ∈ Kn is expressed by its canonical coor-
dinate representation x = (x1, . . . , xn) in terms of a (fixed) Cartesian basis {e1, . . . , en}
of Kn,

x =

n∑
i=1

xie
i.

Definition 1.1: A mapping ‖ · ‖ : Kn → R is a “(vector) norm” if it has the following
properties:

(N1) Definiteness: ‖x‖ ≥ 0, ‖x‖ = 0 ⇒ x = 0, x ∈ K
n.

(N2) Homogeneity: ‖αx‖ = |α| ‖x‖, α ∈ K, x ∈ Kn.

(N3) Triangle inequality: ‖x+ y‖ ≤ ‖x‖ + ‖y‖, x, y ∈ K
n.

The notion of a “norm” can be defined on any vector space V over K , finite or infinite
dimensional. The resulting pair {V, ‖ · ‖} is called “normed space”.

Remark 1.1: The property ‖x‖ ≥ 0 is a consequence of the other conditions. With (N2),
we obtain 0 = ‖0‖ and then with (N3) and (N2) 0 = ‖x − x‖ ≤ ‖x‖ + ‖ − x‖ = 2‖x‖ .
With the help of (N3) we obtain the useful inequality∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖, x, y ∈ K

n. (1.1.1)

Example 1.1: The standard example of a vector norm is the “Euclidian norm”

‖x‖2 :=
( n∑

i=1

|xi|2
)1/2

.
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The first two norm properties, (N1) and (N2), are obvious, while the triangle inequality
is a special case of the “Minkowski inequality” provided below in Lemma 1.4. Other
examples of useful norms are the “maximum norm” (or “l∞ norm”) and the “l1 norm”

‖x‖∞ := max
i=1,...,n

|xi|, ‖x‖1 :=
n∑

i=1

|xi|.

The norm properties of ‖·‖∞ and ‖·‖1 are immediate consequences of the corresponding
properties of the modulus function. Between l1 norm and maximum norm there are the
so-called “lp norms” for 1 < p <∞ :

‖x‖p :=
( n∑

i=1

|xi|p
)1/p

.

Again the first two norm properties, (N1) and (N2), are obvious and the triangle inequality
is the Minkowski inequality provided in Lemma 1.4, below.

With the aid of a norm ‖ · ‖ the “distance” d(x, x′) := ‖x − x′‖ of two vectors in
K

n is defined. This allows the definition of the usual topological terms “open”, “closed”,
“compact”, “diameter”, and “neighborhood” for point sets in Kn in analogy to the cor-
responding situation in K . We use the maximum norm ‖·‖∞ in the following discussion,
but we will see later that this is independent of the chosen norm. For any a ∈ Kn and
r > 0 , we use the ball

Kr(a) := {x ∈ K
n : ‖x− a‖∞ < r}

as standard neighborhood of a with radius r . This neighborhood is “open” since for
each point x ∈ Kr(a) there exists a neighborhood Kδ(x) ⊂ Kr(a) ; accordingly the
complement Kr(a)

c is “closed”. The “closure” of Kr(a) is defined by Kr(a) := Kr(a)∪
∂Kr(a) with the “boundary” ∂Kr(a) = {x ∈ Kn : ‖x− a‖∞ = r} of Kr(a).

Definition 1.2: A sequence of vectors (xk)k∈N in Kn is called

- “bounded” if all its elements are contained in a ball KR(0) , i. e., ‖xk‖∞ < R, k ∈ N,

- “Cauchy sequence” if for each ε ∈ R+ there is an Nε ∈ N, such that ‖xk − xl‖∞ < ε
for k, l ≥ Nε,

- “convergent” towards an x ∈ Kn if ‖xk − x‖∞ → 0 (k →∞).

For a convergent sequence (xk)k∈N , we also write limk→∞ xk = x or xk → x (k →∞).
Geometrically this means that any standard neighborhood Kε(x) of x contains almost all
(i. e., all but finitely many) of the elements xk. This notion of “convergence” is obviously
equivalent to the componentwise convergence:

‖xk − x‖∞ → 0 (k →∞) ⇔ xki → xi (k →∞), i = 1, . . . , n.

This allows the reduction of the convergence of sequences of vectors in Kn to that of
sequences of numbers in K . As basic results, we obtain n-dimensional versions of the
Cauchy criterion for convergence and the theorem of Bolzano-Weierstraß.
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Theorem 1.1 (Theorems of Cauchy and Bolzano-Weierstraß):

i) Each Cauchy sequence in Kn is convergent, i. e., the normed space (Kn, ‖ · ‖∞) is
complete (a so-called “Banach space”).

ii) Each bounded sequence in Kn contains a convergent subsequence.

Proof. i) For any Cauchy sequence (xk)k∈N, in view of |xi| ≤ ‖x‖∞, i = 1, . . . , n , for
x ∈ Kn , also the component sequences (xki )k∈N, i = 1, . . . , n, are Cauchy sequences in
K and therefore converge to limits xi ∈ K . Then, the vector x := (x1, . . . , xn) ∈ Kn is
limit of the vector sequence (xk)k∈N with respect to the maximum norm.

ii) For any bounded vector sequence (xk)k∈N the component sequences (xki )k∈N, i =
1, . . . , n, are likewise bounded. By successively applying the theorem of Bolzano-Weierstraß
in K, in the first step, we obtain a convergent subsequence (x

k1j
1 )j∈N of (xk1)k∈N with

x
k1j
1 → x1 (j → ∞) , in the next step a convergent subsequence (x

k2j
2 )j∈N of (x

k1j
2 )j∈N

with x
k2j
2 → x2 (j →∞), and so on. After n selection steps, we eventually obtain a sub-

sequence (xknj )j∈N of (xk)k∈N, for which all component sequences (x
knj

i )j∈N, i = 1, . . . , n,
converge. Then, with the limit values xi ∈ K, we set x := (x1, . . . , xn) ∈ Kn and have
the convergence xknj → x (j →∞) . Q.E.D.

The following important result states that on the (finite dimensional) vector space K
n

the notion of convergence, induced by any norm ‖ · ‖ , is equivalent to the convergence
with respect to the maximum norm, i. e., to the componentwise convergence.

Theorem 1.2 (Equivalence of norms): All norms on the finite dimensional vector
space Kn are equivalent to the maximum norm, i. e., for each norm ‖ · ‖ there are
positive constants m, M such that

m ‖x‖∞ ≤ ‖x‖ ≤M ‖x‖∞ , x ∈ K
n . (1.1.2)

Proof. Let ‖ · ‖ be a vector norm. For any vector x =
∑n

i=11 xie
i ∈ Kn there holds

‖x‖ ≤
n∑

k=1

|xk| ‖ek‖ ≤M ‖x‖∞ , M :=

n∑
k=1

‖ek‖ .

We set
S1 := {x ∈ K

n : ‖x‖∞ = 1}, m := inf{‖x‖, x ∈ S1} ≥ 0.

We want to show that m > 0 since then, in view of ‖x‖−1
∞ x ∈ S1 , it follows that also

m ≤ ‖x‖−1
∞ ‖x‖ for x �= 0 , and consequently,

0 < m‖x‖∞ ≤ ‖x‖, x ∈ K
n.

Suppose m = 0 . Then, there is a sequence (xk)k∈N in S1 with ‖xk‖ → 0 (k →∞) . Since
this sequence is bounded in the maximum norm, by the theorem of Bolzano-Weierstrass it
possesses a subsequence, likewise denoted by xk, which converges in the maximum norm
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to some x ∈ Kn. Since∣∣1− ‖x‖∞
∣∣ = ∣∣‖xk‖∞ − ‖x||∞

∣∣ ≤ ‖xk − x‖∞ → 0 (k → ∞),

we have x ∈ S1 . On the other hand, for all k ∈ N , there holds

‖x‖ ≤ ‖x− xk‖+ ‖xk‖ ≤M‖x− xk‖∞ + ‖xk‖.

This implies for k → ∞ that ‖x‖ = 0 and therefore x = 0 , which contradicts x ∈ S1.
Q.E.D.

Remark 1.2: i) For the two foregoing theorems, the theorem of Bolzano-Weierstrass and
the theorem of norm equivalence, the finite dimensionality of Kn is decisive. Both theo-
rems do not hold in infinite-dimensional normed spaces such as the space l2 of (infinite)
l2-convergent sequences or the space C[a, b] of continuous functions on [a, b].

ii) A subset M ⊂ Kn is called “compact” (or more precisely “sequentially compact”),
if each sequence of vectors in M possesses a convergent subsequence with limit in M .
Then, the theorem of Bolzano-Weierstrass implies that the compact subsets in Kn are
exactly the bounded and closed subsets in Kn .

iii) A point x ∈ Kn is called “accumulation point” of a set M ⊂ Kn if each neighborhood
of x contains at least one point from M \ {x} . The set of accumulation points of M is
denoted by H(M) (closed “hull” of M ). A point x ∈M \ H(M) is called “isolated” .

Remark 1.3: In many applications there occur pairs {x, y} (or more generally tuples)
of points x, y ∈ Kn. These form the so-called “product space” V = Kn×Kn , which may

be equipped with the generic norm ‖{x, y}‖ :=
(‖x‖2 + ‖y‖2)1/2. Since this space may

be identified with the 2n-dimensional Euclidian space K2n all results on subsets of Kn

carry over to subsets of Kn ×Kn . This can be extended to more general product spaces
of the form V = Kn1 × · · · ×Knm .

The basic concept in the geometry of K
n is that of “orthogonality” of vectors or

subspaces. For its definition, we use a “scalar product”.

Definition 1.3: A mapping (·, ·) : Kn ×K
n → K is called “scalar product” if it has the

following properties:

(S1) Conjugate Symmetry: (x, y) = (y, x) , x, y ∈ Kn.

(S2) Linearity: (αx+ βy, z) = α(x, z) + β(y, z) , x, y, z ∈ Kn, α, β ∈ K.

(S3) Definiteness: (x, x) ∈ R, (x, x) > 0, x ∈ Kn \ {0}.

In the following, we will mostly use the “euclidian” scalar product

(x, y)2 =

n∑
j=1

xjyj , (x, x)2 = ‖x‖22.
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Remark 1.4: i) If the strict definiteness (S3) is relaxed, (x, x) ∈ R, (x, x) ≥ 0, the
sesquilinear form becomes a so-called “semi-scalar product”.

ii) From property (S2) (linearity in the first argument) and (S1) (conjugate symmetry),
we obtain the conjugate linearity in the second argument. Hence, a scalar product is a
special kind of “sesquilinear form” (if K = C ) or “bilinear form” (if K = R )

Lemma 1.1: For a scalar product on Kn there holds the “Cauchy-Schwarz inequality”

|(x, y)|2 ≤ (x, x)(y, y), x, y ∈ K
n. (1.1.3)

Proof. The assertion is obviously true for y = 0 . Hence, we can now assume that y �= 0 .
For arbitrary α ∈ K there holds

0 ≤ (x+ αy, x+ αy) = (x, x) + α(y, x) + α(x, y) + αα(y, y).

With α := −(x, y)(y, y)−1 this implies

0 ≤ (x, x)− (x, y)(y, y)−1(y, x)− (x, y)(y, y)−1(x, y) + (x, y)(x, y)(y, y)−1

= (x, x)− |(x, y)|2(y, y)−1

and, consequently, 0 ≤ (x, x)(y, y)− |(x, y)|2. This is the asserted inequality. Q.E.D.

The Cauchy-Schwarz inequality in Kn is a special case of the “Hölder1 inequality”.

Corollary 1.1: Any scalar product (·, ·) on K
n generates a norm ‖ · ‖ on K

n by

‖x‖ := (x, x)1/2, x ∈ K
n.

The “Euclidian” scalar product (·, ·)2 corresponds to the “Euclidian” norm ‖x‖2.

Proof. The norm properties (N1) and (N2) are obvious. It remains to show (N3). Using
the Cauchy-Schwarz inequality, we obtain

‖x+ y‖2 = (x+ y, x+ y) = (x, x) + (x, y) + (y, x) + (y, y)

≤ ‖x‖2 + 2|(x, y)|+ ‖y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ||y||)2,

what was to be shown. Q.E.D.

Next, we provide a useful inequality, which is a special case of so-called “Young2

inequalities”.

1Ludwig Otto Hölder (1859–1937): German mathematician; Prof. in Tübingen; contributions first to
the theory of Fourier series and later to group theory; found 1884 the inequality named after him.

2William Henry Young (1863–1942): English mathematician; worked at several universities world-
wide, e. g., in Calcutta, Liverpool andWales; contributions to differential and integral calculus, topological
set theory and geometry.
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Lemma 1.2 (Young inequality): For p, q ∈ R with 1 < p, q <∞ and 1/p+1/q = 1,
there holds the inequality

|xy| ≤ |x|p
p

+
|y|q
q
, x, y ∈ K. (1.1.4)

Proof. The logarithm ln(x) is on R+ , in view of ln′′(x) = −1/x2 < 0, a concave
function. Hence, for x, y ∈ K there holds:

ln
(
1
p
|x|p + 1

q
|y|q) ≥ 1

p
ln(|x|p) + 1

q
ln(|y|q) = ln(|x|) + ln(|y|).

Because of the monotonicity of the exponential function ex it further follows that for
x, y ∈ K :

1
p
|x|p + 1

q
|y|q ≥ exp

(
ln(|x|) + ln(|y|)) = exp

(
ln(|x|)) exp ( ln(|y|)) = |x||y| = |xy|,

what was to be proven. Q.E.D.

Lemma 1.3 (Hölder inequality): For the Euclidian scalar product there holds, for ar-
bitrary p, q ∈ R with 1 < p, q <∞ and 1/p+ 1/q = 1, the so-called “Hölder inequality”

|(x, y)2| ≤ ‖x‖p ‖y‖q, x, y ∈ K
n. (1.1.5)

This inequality also holds for the limit case p = 1, q = ∞ .

Proof. For x = 0 or y = 0 the asserted estimate is obviously true. Hence, we can
assume that ‖x‖p �= 0 and ‖y‖q �= 0 . First, there holds

|(x, y)2|
‖x||p‖y‖q =

1

‖x‖p‖y‖q
∣∣∣ n∑
i=1

xiȳi

∣∣∣ ≤ n∑
i=1

|xi||yi|
‖x‖p‖y‖q .

Using the Young inequality it follows that

|(x, y)2|
‖x‖p‖y‖q ≤

n∑
i=1

{ |xi|p
p‖x‖pp +

|yi|q
q‖y‖qq

}
=

1

p‖x‖pp
n∑

i=1

|xi|p + 1

q‖y‖qq
n∑

i=1

|yi|q = 1

p
+

1

q
= 1.

This implies the asserted inequality. Q.E.D.

As consequence of the Hölder inequality, we obtain the so-called “Minkowski3 inequal-
ity”, which is the triangle inequality for the lp norm.

3Hermann Minkowski (1864–1909): Russian-German mathematician; Prof. in Göttingen; several
contributions to pure mathematics; introduced the non-euclidian 4-dimensional space-time continuum
(“Minkowski space”) for describing the theory of relativity of Einstein.
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Lemma 1.4 (Minkowski inequality): For arbitrary p ∈ R with 1 ≤ p < ∞ as well
as for p = ∞ there holds the “Minkowski inequality”

‖x+ y‖p ≤ ‖x‖p + ‖y‖p, x, y ∈ K
n. (1.1.6)

Proof. For p = 1 and p = ∞ the inequality follows from the triangle inequality on R :

‖x+ y‖1 =
n∑

i=1

|xi + yi| ≤
n∑

i=1

|xi|+
n∑

i=1

|yi| = ‖x‖1 + ‖y‖1,

‖x+ y‖∞ = max
1≤i≤n

|xi + yi| ≤ max
1≤i≤n

|xi|+ max
1≤i≤n

|yi| = ‖x‖∞ + ‖y‖∞.

Let now 1 < p <∞ and q be defined by 1/p+ 1/q = 1 , i. e., q = p/(p− 1) . We set

ξi := |xi + yi|p−1, i = 1, . . . , n, ξ := (ξi)
n
i=1.

This implies that

‖x+ y‖pp =
n∑

i=1

|xi + yi||xi + yi|p−1 ≤
n∑

i=1

|xi|ξi +
n∑

i=1

|yi|ξi

and further by the Hölder inequality

‖x+ y‖pp ≤ ‖x‖p‖ξ‖q + ‖y‖p‖ξ‖q = (‖x‖p + ‖y‖p)‖ξ‖q.

Observing q = p/(p− 1), we conclude

‖ξ‖qq =
n∑

i=1

|ξi|q =
n∑

i=1

|xi + yi|p = ‖x+ y‖pp,

and consequently,

‖x+ y‖pp ≤ (‖x‖p + ‖y‖p)‖x+ y‖p/qp = (‖x‖p + ‖y‖p)‖x+ y‖p−1
p .

This implies the asserted inequality. Q.E.D.

Using the Euclidian scalar product, we can introduce a canonical notion of “orthogo-
nality”, i. e., two vectors x, y ∈ Kn are called “orthogonal” (in symbols x ⊥ y) if

(x, y)2 = 0.

Two subspaces N,M ⊂ Kn are called “orthogonal” (in symbols N ⊥M) if

(x, y)2 = 0, x ∈ N, y ∈M.

Accordingly to each subspace M ∈ Kn, we can assign its “orthogonal complement”
M⊥ := {x ∈ Kn, span(x)⊥M}, which is uniquely determined. Then, Kn = M ⊕M⊥,
the “direct sum” of M and M⊥. Let M ⊂ Kn be a (nontrivial) subspace. Then, for
any vector x ∈ Kn the “orthogonal projection” PMx ∈M is determined by the relation
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‖x− PMx‖2 = min
y∈M

‖x− y‖. (1.1.7)

This “best approximation” property is equivalent to the relation

(x− PMx, y)2 = 0 ∀y ∈M, (1.1.8)

which can be used to actually compute PMx.

For arbitrary vectors there holds the “parallelogram identity” (exercise)

‖x+ y‖22 + ‖x− y‖22 = 2‖x‖22 + 2‖y‖22, x, y ∈ K
n, (1.1.9)

and for orthogonal vectors the “Theorem of Pythagoras” (exercise):

‖x+ y‖22 = ‖x‖22 + ‖y‖22, x, y ∈ K
n, x ⊥ y. (1.1.10)

A set of vectors {a1, . . . , am}, ai �= 0 , of Kn , which are mutually orthogonal, (ak, al) = 0,
for k �= l, is necessarily linearly independent. Because for

∑m
k=1 cka

k = 0 , successively
taking the scalar product with al, l = 1, . . . , m , yields

0 =

m∑
k=1

ck(a
k, al)2 = cl(a

l, al)2 ⇒ cl = 0.

Definition 1.4: A set of vectors {a1, . . . , am}, ai �= 0 of Kn , which are mutually orthog-
onal, (ak, al)2 = 0, k �= l , is called “orthogonal system” (in short “ONS”) and in the case
m = n “orthogonal basis” (in short “ONB”). If (ak, ak) = 1, k = 1, . . . , m, one speaks of
an “orthonormal system” and an “orthonormal basis”, respectively. The cartesian basis
{e1, . . . , en} is obviously an orthonormal basis of Rn with respect to the Euclidian scaler
product. However, there are many other (actually infinitely many) of such orthonormal
bases in Rn .

Lemma 1.5: Let {ai, i = 1, . . . , n} be an orthonormal basis of K
n (with respect to the

canonical Euclidian scalar product). Then, each vector x ∈ Kn possesses a representation
of the form (in analogy to the “Fourier expansion” with trigonometric functions)

x =
n∑

i=1

(x, ai)2 a
i, (1.1.11)

and there holds the “Parseval 4identity”

‖x‖22 =
n∑

i=1

|(x, ai)2|2, x ∈ K
n. (1.1.12)

4Marc-Antoine Parseval des Chênes (1755–1836): French mathematician; worked on partial differen-
tial equations in physics (only five mathematical publications); known by the identity named after him,
which he stated without proof and connection to Fourier series.
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Proof. From the representation x =
∑n

j=1 αja
j taking the product with ai it follows

that

(x, ai)2 =

n∑
j=1

αj(a
j , ai)2 = αi, i = 1, . . . , n,

and consequently the representation (1.1.11). Further there holds:

‖x‖22 = (x, x)2 =

n∑
i,j=1

(x, ai)2(x, aj)2 (a
i, aj)2 =

n∑
i=1

|(x, ai)2|2,

what was to be proven. Q.E.D.

By the following Gram5-Schmidt6 algorithm, we can orthonormalize an arbitrary basis
of Kn , i. e., construct an orthonormal basis.

Theorem 1.3 (Gram-Schmidt algorithm): Let {a1, . . . , an} be any basis of Kn .
Then, the following so-called “Gram-Schmidt orthonormalization algorithm”,

b1 := ‖a1‖−1
2 a1,

b̃k := ak −
k−1∑
j=1

(ak, bj)2b
j , bk := ‖b̃k‖−1

2 b̃k, k = 2, . . . , n,
(1.1.13)

yields an orthonormal basis {b1, . . . , bn} of Kn.

Proof. First, we show that the construction process of the bk does not stop with k < n .
The vectors bk are linear combinations of the a1, . . . , ak . If for some k ≤ n

ak −
k−1∑
j=1

(ak, bj)2b
j = 0,

the vectors {a1, . . . , ak} would be linearly dependent contradicting the a priori assumption
that {a1, . . . , an} is a basis. Now, we show by induction that the Gram-Schmidt process
yields an orthonormal basis. Obviously ‖b1‖2 = 1 . Let now {b1, . . . , bk}, for k ≤ n, be
an already constructed orthonormal system. Then, for l = 1, . . . , k, there holds

(bk+1, bl)2 = (ak+1, bl)2 −
k∑

j=1

(ak+1, bj)2 (b
j , bl)2︸ ︷︷ ︸
= δjl

= 0

and ‖bk+1‖2 = 1 , i. e., {b1, . . . , bk+1} is also an orthonormal system. Q.E.D.

5Jørgen Pedersen Gram (1850–1916): Danish mathematician, employee and later owner of an insurance
company, contributions to algebra (invariants theory), probability theory, numerics and forestry; the
orthonormalization algorithm named after him had already been used before by Cauchy 1836.

6Erhard Schmidt (1876–1959): German mathematician, Prof. in Berlin, there founder of the Institute
for Applied Mathematics 1920, after the war Director of the Mathematical Institute of the Academy of
Sciences of DDR; contributions to the theory of integral equations and Hilbert spaces and later to general
topology.
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The Gram-Schmidt algorithm in its “classical” form (1.1.13) is numerically unstable
due to accumulation of round-off errors. Below, in Section 4.3.1, we will consider a stable
version, the so-called “modified Gram-Schmidt algorithm”, which for exact arithmetic
yields the same result.

1.1.2 Linear mappings and matrices

We now consider linear mappings from the n-dimensional vector space Kn into the m-
dimensional vector space Km, where not necessarily m = n . However, the special case
m = n plays the most important role. A mapping ϕ = (ϕ1, . . . , ϕm) : K

n → Km is called
“linear”, if for x, y ∈ Kn and α, β ∈ K there holds

ϕ(αx+ βy) = αϕ(x) + βϕ(y). (1.1.14)

The action of a linear mapping ϕ on a vector space can be described in several ways. It
obviously suffices to prescribe the action of ϕ on the elements of a basis of the space,
e. g., a Cartesian basis {ei, i = 1, . . . , n},

x =
n∑

i=1

xie
i → ϕ(x) = ϕ

( n∑
i=1

xie
i
)
=

n∑
i=1

xiϕ(e
i).

Thereby, to each vector (or point) x ∈ Kn a “coordinate vector” x̂ = (xi)
n
i=1 is uniquely

associated. If the images ϕ(x) are expressed with respect to a Cartesian basis of Km,

ϕ(x) =
m∑
j=1

ϕj(x)e
j =

m∑
j=1

( n∑
i=1

ϕj(e
i)︸ ︷︷ ︸

=: aji

xi

)
ej ,

with the coordinate vector ϕ̂(x) = (ϕj(x))
m
j=1 , we can write the action of the mapping ϕ

on a vector x ∈ K
n in “matrix form” using the usual rules of matrix-vector multiplication

as follows:

ϕj(x) = (Ax̂)j :=
n∑

i=1

ajixi, j = 1, . . . , m,

with the n×m-array of numbers A = (aij)
n,m
i,j=1 ∈ Km×n, a “matrix”,⎛

⎜⎜⎝
ϕ1(e

1) · · · ϕ1(e
n)

...
. . .

...

ϕm(e
1) · · · ϕm(e

n)

⎞
⎟⎟⎠ =:

⎛
⎜⎜⎝

a11 · · · a1n
...

. . .
...

am1 · · · amn

⎞
⎟⎟⎠ = A ∈ K

m×n.

By this matrix A ∈ K
m×n the linear mapping ϕ is uniquely described with respect to

the chosen bases of Kn and Km. In the following discussion, for simplicity, we identify
the point x ∈ Kn with its special cartesian coordinate representation x̂ . Here, we follow
the convention that in the notation Km×n for matrices the first parameter m stands for
the dimension of the target space Km , i. e., the number of rows in the matrix, while the
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second one n corresponds to the dimension of the initial space Kn , i. e., the number of
columns. Accordingly, for a matrix entry aij the first index refers to the row number and
the second one to the column number of its position in the matrix. We emphasize that this
is only one of the possible concrete representations of the linear mapping ϕ : Kn → Km .
In this sense each quadratic matrix A ∈ Kn×n represents a linear mapping in Kn . The
identity map ϕ(x) = x is represented by the “identity matrix” I = (δij)

n
i,j=1 where

δij := 1 for i = j and δij = 0 else (the usual “Kronecker symbol”).

Clearly, two matrices A,A′ ∈ Km×n are identical, i. e., aij = a′ij if and only if Ax =
A′x, x ∈ K

n. To a general matrix A ∈ K
m×n, we associate the “adjoint transpose”

ĀT = (aTi,j)
n×m
i,j=1 by setting aTij := āji . A quadratic matrix A ∈ Kn×n is called “regular”, if

the corresponding linear mapping is injective and surjective, i. e., bijective, with “inverse”
denoted by A−1 ∈ Kn×n. Further, to each matrix A ∈ Kn×n , we associate the following
quantities, which are uniquely determined by the corresponding linear mapping ϕ :

– “determinant” of A : det(A) .

– “adjugate” of A: adj(A) := CT , cij := (−1)i+jAij (Aij the cofactors of A ).

– “trace” of A: trace(A) :=
∑n

i=1 aii.

The following property of the determinant will be useful below: det(ĀT ) = det(A).

Lemma 1.6: For a square matrix A = (aij)
n
i,j=1 ∈ Kn×n the following statements are

equivalent:

i) A is regular with inverse A−1.

ii) The equation Ax = 0 has only the zero solution x = 0 (injectivity).

iii) The equation Ax = b has for any b ∈ Kn a solution (surjectivity).

iv) det(A) �= 0 .

v) The adjoint transpose ĀT is regular with inverse (ĀT )−1 = (A−1)T .

Proof. For the proof, we refer to the standard linear algebra literature. Q.E.D.

Lemma 1.7: For a general matrix A ∈ Km×n, we introduce its “range” and its “kernel”
(or “null space”)

range(A) := {y ∈ K
m| y = Ax for some x ∈ K

n},
kern(A) := {x ∈ K

n |Ax = 0}.

There holds

range(A) = kern(ĀT )T , range(ĀT ) = kern(A)T , (1.1.15)

i. e., the equation Ax = b has a solution if and only if (b, y)2 = 0 for all y ∈ kern(ĀT ) .
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Proof. For the proof, we refer to the standard linear algebra literature. Q.E.D.

In many practical applications the governing matrices have special properties, which
require the use of likewise special numerical methods. Some of the most important prop-
erties are those of “symmetry” or “normality” and “definiteness”.

Definition 1.5: i) A quadratic matrix A ∈ Kn×n is called “Hermitian” if it satisfies

A = ĀT (⇔ aij = āji, i, j = 1, . . . , n), (1.1.16)

or equivalently,

(Ax, y)2 = (x,Ay)2, x, y ∈ K
n. (1.1.17)

ii) It is called “normal” if ĀTA = AĀT .

iii) It is called “positive semi-definite” if

(Ax, x)2 ∈ R, (Ax, x)2 ≥ 0, x ∈ K
n. (1.1.18)

and “positive definite” if

(Ax, x)2 ∈ R, (Ax, x)2 > 0, x ∈ K
n \ {0}. (1.1.19)

iv) A real Hermitian matrix A ∈ Rn×n is called “symmetric” .

Lemma 1.8: For a Hermitian positive definite matrix A ∈ K
n×n the main diagonal

elements are real and positive, aii > 0 , and the element with largest modulus lies on the
main diagonal.

Proof. i) From aii = āii it follows that aii ∈ R. The positiveness follows via testing by
the Cartesian unit vector ei yielding aii = (Aei, ei)2 > 0.

ii) Let aij �= 0 be an element of A with maximal modulus and suppose that i �= j .
Testing now by x = ei − sign(aij)e

j �= 0 , we obtain the following contradiction to the
definiteness of A :

0 < (Ax, x)2 = (Aei, ei)2 − 2 sign(aij)(Ae
i, ej)2 + sign(aij)

2(Aej, ej)2

= aii − 2 sign(aij)aij + ajj = aii − 2|aij |+ ajj ≤ 0.

This completes the proof. Q.E.D.

Remark 1.5 (Exercises): i) If a matrix A ∈ Kn×n is positive definite (or more generally
just satisfies (Ax, x)2 ∈ R for x ∈ Cn), then it is necessarily Hermitian. This does not
need to be true for real matrices A ∈ Rn×n.

ii) The general form of a scalar product (·, ·) on Kn is given by (x, y) = (Ax, y)2 with
a (Hermitian) positive definite matrix A ∈ Kn×n.
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Definition 1.6 (Orthonormal matrix): A matrix Q ∈ Km×n is called “orthogonal”
or “orthonormal” if its column vectors form an orthogonal or orthonormal system in Kn,
respectively. In the case n = m such a matrix is called “unitary”.

Lemma 1.9: A unitary matrix Q ∈ Kn×n is regular and its inverse is Q−1 = Q̄T .
Further, there holds:

(Qx,Qy)2 = (x, y)2, x, y ∈ K
n, (1.1.20)

‖Qx‖2 = ‖x‖2, x ∈ K
n. (1.1.21)

Proof. First, we show that Q
T

is the inverse of Q . Let qi ∈ K
n denote the column

vectors of Q satisfying by definition (qi, qj)2 = qTi qj = δij . This implies:

Q
T
Q =

⎛
⎜⎜⎝

qT1 q1 . . . qT1 qn
...

. . .
...

qTnq1 . . . qTnqn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 . . . 0
...

. . .
...

0 . . . 1

⎞
⎟⎟⎠ = I.

From this it follows that

(Qx,Qy)2 = (x, Q̄TQx)2 = (x, y)2, x, y ∈ K
n,

and further
‖Qx‖2 = (Qx,Qx)

1/2
2 = ‖x‖2, x ∈ K

n,

which completes the proof. Q.E.D.

Example 1.2: The real unitary matrix

i j

Q
(ij)
θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 cos(θ) 0 − sin(θ) 0

0 0 1 0 0

0 sin(θ) 0 cos(θ) 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

i

j

describes a rotation in the (xi, xj)-plane about the origin x = 0 with angle θ ∈ [0, 2π) .

Remark 1.6: i) In view of the relations (1.1.20) and (1.1.21) Euclidian scalar product
and norm of vectors are invariant under unitary transformations. This explains why it is
the Euclidian norm, which is used for measuring length or distance of vectors in R

n .

ii) The Schwarz inequality (1.1.3) allows the definition of an “angle” between two vectors



26 Linear Algebraic Systems and Eigenvalue Problems

in Rn . For any number α ∈ [−1, 1] there is exactly one θ ∈ [0, π] such that α = cos(θ).
By

cos(θ) =
(x, y)2

‖x‖2‖y‖2 , x, y ∈ K
n \ {0},

a θ ∈ [0, π] is uniquely determined. This is then the “angle” between the two vectors
x and y . The relation (1.1.20) states that the Euclidian scalar product of two vectors
in Kn is invariant under rotations. By some rotation Q in Rn, we can achieve that
Qx,Qy ∈ span{e(1), e(2)} and Qx = ‖x‖2e(1). Then, there holds

(x, y)2 = (Qx,Qy)2 = ‖x‖2(e(1), Qy)2 = ‖x‖2(Qy)1 = ‖x‖2‖Qy‖2 cos(θ) = ‖x‖2‖y‖2 cos(θ),

i. e., θ is actually the “angle” between the two vectors in the sense of elementary geometry.

x1

x2

Qx

Qy

cos(θ) = (Qy)1/‖Qy‖2

(Qy)1

(Qy)2

θ

Figure 1.1: Angle between two vectors x = ‖x‖e1 and y in R2 .

1.1.3 Non-quadratic linear systems

Let A ∈ R
m×n be a not necessarily quadratic coefficient matrix and b ∈ Rm a given

vector. We concentrate in the case m �= n and consider the non-quadratic linear system

Ax = b, (1.1.22)

for x ∈ Rn. Here, rank(A) < rank[A, b] is allowed, i. e., the system does not need to
possess a solution in the normal sense. In this case an appropriately extended notion
of “solution” is to be used. In the following, we consider the so-called “method of least
error-squares”, which goes back to Gauss. In this approach a vector x̄ ∈ Rn is seeked
with minimal defect norm ‖d‖2 = ‖b−Ax̄‖2. Clearly, this extended notion of “solution”
coincides with the traditional one if rank(A) = rank([A, b]).

Theorem 1.4 (“Least error-squares” solution): There exists always a “solution”
x̄ ∈ R

n of (1.1.22) in the sense of least error-squares (“least error-squares” solution)
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‖Ax̄− b‖2 = min
x∈Rn

‖Ax− b‖2. (1.1.23)

This is equivalent to x̄ being solution of the so-called “normal equation”

ATAx̄ = AT b. (1.1.24)

If m ≥ n and rank(A) = n the “least error-squares” solution x̄ is uniquely determined.
Otherwise each other solution has the form x̄ + y with y ∈ kern(A). In this case, there
always exists such a solution with minimal Euclidian norm, i. e., a “minimal” solution
with least error-squares,

‖xmin‖2 = min{‖x̄+ y‖2, y ∈ kern(A)}. (1.1.25)

Proof. i) Let x̄ be a solution of the normal equation. Then, for arbitrary x ∈ Rn there
holds

‖b−Ax‖22 = ‖b− Ax̄+ A(x̄− x)‖22
= ‖b− Ax̄‖22 + 2 (b− Ax̄︸ ︷︷ ︸

∈kern(AT )

, A[x̄− x])︸ ︷︷ ︸
∈ range(A)

+‖A(x̄− x)‖22 ≥ ‖b− Ax̄‖22,

i. e., x̄ has least error-squares. In turn, for such a least error-squares solution x̄ there
holds

0 =
∂

∂xi
‖Ax− b‖22|x=x̄ =

∂

∂xi

( n∑
j=1

∣∣ n∑
k=1

ajkxk − bj
∣∣2)

|x=x̄

= 2
n∑

j=1

aji

( n∑
k=1

ajkx̄k − bj

)
= 2(ATAx̄−AT b)i,

i. e., x̄ solves the normal equation.

ii) We now consider the solvability of the normal equation. The orthogonal complement
of range(A) in R

m is kern(AT ) . Hence the element b has a unique decomposition

b = s+ r , s ∈ range(A) , r ∈ kern(AT ).

Then, for any x̄ ∈ R
n satisfying Ax̄ = s there holds

ATAx̄ = AT s = AT s+ AT r = AT b,

i. e., x̄ solves the normal equation. In case that range(A) = n there holds kern(A) = {0}
and range(A) = Rn . Observing ATAx = 0 and kern(AT )⊥ range(A), we conclude
Ax = 0 and x = 0 . The matrix ATA ∈ Rn×n is regular and consequently x̄ uniquely
determined. In case that range(A) < n , for any other solution x1 of the normal equation,
we have

b = Ax1 + (b−Ax1) ∈ range(A) + kern(AT ) = range(A) + range(A)T .
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In view of the uniqueness of the orthogonal decomposition, we necessarily obtain Ax1 =
Ax̄ and x̄− x1 ∈ kern(A) .

iii) We finally consider the case rank(A) < n. Among the solutions x̄ + kern(A) of the
normal equation, we can find one with minimal euclidian norm,

‖xmin‖2 = min{‖x̄+ y‖2, y ∈ kern(A)}.

This follows from the non-negativity of the function F (y) := ‖x̄ + y‖2 and its uniform
strict convexity, which also implies uniqueness of the minimal solution. Q.E.D.

For the computation of the “solution with smallest error-squares” of a non-quadratic
system Ax = b, we have to solve the normal equation ATAx = AT b. Efficient methods
for this task will be discussed in the next chapter.

Lemma 1.10: For any matrix A ∈ K
m×n the matrices ĀTA ∈ K

n×n and AĀT ∈
Km×m are Hermitian (symmetric) and positive semi-definite. In the case m ≥ n and if
rank(A) = n the matrix ĀTA it is even positive definite.

Proof. Following the rules of matrix arithmetic there holds

(ĀTA)T = AT Ā = ĀTA, x̄T (ĀTA)x = (Ax)
T
Ax = ‖Ax‖22 ≥ 0,

i. e., ĀTA is Hermitian and positive semi-definite. The argument for AĀT is analogous.
In case that m ≥ n and rank(A) = n the matrix viewed as mapping A : Rn → Rm is
injective, i. e., ‖Ax‖2 = 0 implies x = 0 . Hence, the matrix ĀTA is positive definite.
Q.E.D.

1.1.4 Eigenvalues and eigenvectors

In the following, we consider square matrices A = (aij)
n
i,j=1 ∈ Kn×n.

Definition 1.7: i) A number λ ∈ C is called “eigenvalue” of A , if there is a corre-
sponding “eigenvector” w ∈ Cn , w �= 0 , such that the “eigenvalue equation” holds:

Aw = λw. (1.1.26)

ii) The vector space of all eigenvectors of an eigenvalue λ is called “eigenspace” and
denoted by Eλ . Its dimension is the “geometric multiplicity” of λ . The set of all eigen-
values of a matrix A ∈ Kn×n is called its “spectrum” and denoted by σ(A) ⊂ C . The
matrix function RA(z) := zI − A is called the “resolvent” of A and Res(A) := {z ∈
C | zI −A is regular} the corresponding “resolvent set”.

iii) The eigenvalues are just the zeros of the “characteristic polynomial” χA ∈ Pn of A ,

χA(z) := det(zI − A) = zn + b1z
n−1 + . . .+ bn.
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Hence, by the fundamental theorem of algebra there are exactly n eigenvalues counted
accordingly to their multiplicity as zeros of χA , their so-called “algebraic multiplicities”.
The algebraic multiplicity is always greater or equal than the geometric multiplicity. If it
is strictly greater, then the eigenvalue is called “deficient” and the difference the “defect”
of the eigenvalue.

iv) The eigenvalues of a matrix can be determined independently of each other. One speaks
of the “partial eigenvalue problem” if only a small number of the eigenvalues (e. g., the
largest or the smallest one) and the corresponding eigenvectors are to be determined. In
the “full eigenvalue problem” one seeks all eigenvalues with corresponding eigenvectors.
For a given eigenvalue λ ∈ C (e. g., obtained as a zero of the characteristic polynomial)
a corresponding eigenvector can be determined as any solution of the (singular) problem

(A− λI)w = 0. (1.1.27)

Conversely, for a given eigenvector w ∈ Kn (e. g., obtained by the “power method” de-
scribed below), one obtains the corresponding eigenvalue by evaluating any of the quotients
(choosing wi �= 0 )

λ =
(Aw)i
wi

, i = 1, . . . , n, λ =
(Aw,w)2
‖w‖22

.

The latter quotient is called the “Rayleigh7quotient”.

The characteristic polynomial of a matrix A ∈ Kn×n has the following representation
with its mutually distinct zeros λi :

χA(z) =
m∏
i=1

(z − λi)
σi ,

m∑
i=1

σi = n,

where σi is the algebraic multiplicity of eigenvalue λi. Its geometric multiplicity is
ρi := dim(kern(A − λiI)) . We recall that generally ρi ≤ σi , i. e., the defect satisfies
αi := σi − ρi ≥ 0 . The latter corresponds to the largest integer α = α(λ) such that

kern(A− λI)α+1) �= kern((A− λI)α). (1.1.28)

Since
det(ĀT − z̄I) = det(AT − zI) = det(A− zI)T ) = det(A− zI)

the eigenvalues of the matrices A and ĀT are related by

λ(ĀT ) = λ(A). (1.1.29)

7John William Strutt (Lord Rayleigh) (1842–1919): English mathematician and physicist; worked at
the beginning as (aristocratic) private scholar, 1879–1884 Professor for Experimental Physics in Cam-
bridge; fundamental contributions to theoretical physics: scattering theory, acoustics, electro-magnetics,
gas dynamics.
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Hence, associated to a normalized “primal” (right) eigenvector w ∈ Kn, ‖w‖2 = 1,
corresponding to an eigenvalue λ of A there is a “dual” (left) eigenvector w∗ ∈ Kn\{0}
corresponding to the eigenvalue λ̄ of ĀT satisfying the “adjoint” eigenvalue equation

ĀTw∗ = λ̄ w∗ (⇔ w̄∗TA = λw̄∗T ). (1.1.30)

The dual eigenvector w∗ may also be normalized by ‖w∗‖2 = 1 or, what is more suggested
by numerical purposes, by (w,w∗)2 = 1 . In the “degenerate” case (w,w∗)2 = 0 , and
only then, the problem

Aw1 − λw1 = w (1.1.31)

has a solution w1 ∈ Kn . This follows from the relations w∗ ∈ kern(ĀT − λ̄I), w ⊥
kern(ĀT − λ̄I), and range(A−λI) = kern(ĀT − λ̄I)T , the latter following from the result
of Lemma 1.7. The vector w1 is called “generalized eigenvector (of level one)” of A (or
“Hauptvektor erster Stufe” in German) corresponding to the eigenvalue λ . Within this
notion, eigenvectors are “generalized eigenvectors” of level zero. By definition, there holds

(A− λI)2w1 = (A− λI)w = 0,

i. e., w1 ∈ kern((A− λI)2) and, consequently, in view of the above definition, the eigen-
value λ has “defect” α(λ) ≥ 1 . If this construction can be continued, i. e., if (w1, w∗)2 =
0, such that also the problem Aw2 − λw2 = w1 has a solution w2 ∈ K

n , which is then
a “generalized eigenvector” of level two, by construction satisfying (A − λI)3w2 = 0 .
In this way, we may obtain “generalize eigenvectors” wm ∈ Kn of level m for which
(A− λI)m+1wm = 0 and (wm, w∗)2 �= 0. Then, the eigenvalue λ has defect α(λ) = m .

Example 1.3: The following special matrices Cm(λ) occur as building blocks, so-called
“Jordan blocks”, in the “Jordan8 normal form” of a matrix A ∈ Kn×n (see below):

Cm(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 0

λ 1
. . .

. . .

λ 1

0 λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ K
m×m , eigenvalue λ ∈ C

χCm(λ)(z) = (z − λ)m ⇒ σ = m, rank(Cm(λ)− λI) = m− 1 ⇒ ρ = 1 .

8Marie Ennemond Camille Jordan (1838–1922): French mathematician; Prof. in Paris; contributions
to algebra, group theory, calculus and topology.
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1.1.5 Similarity transformations

Definition 1.8: Two matrices A,B ∈ Kn×n are called “similar (to each other)”, if there
is a regular matrix T ∈ K

n×n such that

B = T−1AT. (1.1.32)

The transition A→ B is called “similarity transformation”.

Suppose that the matrix A ∈ Kn×n is the representation of a linear mapping ϕ :
Kn → Kn with respect to a basis {a1, . . . , an} of Kn . Then, using the regular matrix
T ∈ K

n×n, we obtain a second basis {Ta1, . . . , Tan} of Kn and B is the representation of
the mapping ϕ with respect to this new basis. Hence, similar matrices are representations
of the same linear mapping and any two representations of the same linear mapping are
similar. In view of this fact, we expect that two similar matrices, representing the same
linear mapping, have several of their characteristic quantities as matrices in common.

Lemma 1.11: For any two similar matrices A,B ∈ Kn×n there holds:

a) det(A) = det(B).

b) σ(A) = σ(B).

c) trace(A) = trace(B).

Proof. i) The product theorem for determinants implies that det(AB) = det(A) det(B)
and further det(T−1) = det(T )−1. This implies that

det(B) = det(T−1AT ) = det(T−1) det(A) det(T ) = det(T )−1 det(A) det(T ) = det(A).

ii) Further, for any z ∈ C there holds

det(zI − B) = det(zT−1T − T−1AT ) = det(T−1(zI − A)T )

= det(T−1) det(zI − A) det(T ) = det(zI − A),

which implies that A and B have the same eigenvalues.

iii) The trace of A is just the coefficient of the monom zn−1 in the characteristic poly-
nomial χA(z) . Hence by (i) the trace of A equals that of B . Q.E.D.

Any matrix A ∈ Kn×n is similar to its “canonical form” (Jordan normal form) which
has the eigenvalues λi of A on its main diagonal counted accordingly to their algebraic
multiplicity. Hence, in view of Lemma 1.11 there holds

det(A) =
n∏

i=1

λi, trace(A) =
n∑

i=1

λi. (1.1.33)

Definition 1.9 (Normal forms): i) Any matrix A ∈ Kn×n is similar to its “canonical
normal form” JA (“Jordan normal form”) which is a block diagonal matrix with main
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diagonal blocks, the “Jordan blocks”, of the form as shown in Example 1.3. Here, the
“algebraic” multiplicity of an eigenvalue corresponds to the number of occurrences of this
eigenvalue on the main diagonal of JA, while its “geometric” multiplicity corresponds to
the number of Jordan blocks containing λ .

ii) A matrix A ∈ K
n×n, which is similar to a diagonal matrix, then having its eigenvalues

on the main diagonal, is called “diagonalizable” ,

WAW−1 = Λ = diag(λi) (λi eigenvalues of A).

This relation implies that the transformation matrix W = [w1, . . . , wn] has the eigenvec-
tors wi corresponding to the eigenvalues λi as column vectors. This means that orthog-
onalizability of a matrix is equivalent to the existence of a basis of eigenvectors.

iii) A matrix A ∈ Kn×n is called “unitarily diagonalizable” if it is diagonalizable with
a unitary transformation matrix. This is equivalent to the existence of an orthonormal
basis of eigenvectors.

Positive definite Hermitian matrices A ∈ Kn×n have very special spectral properties.
These are collected in the following lemma and theorem, the latter one being the basic
result of matrix analysis (“spectral theorem”).

Lemma 1.12: i) A Hermitian matrix has only real eigenvalues and eigenvectors to dif-
ferent eigenvalues are mutually orthogonal.

ii) A Hermitian matrix is positive definite if and only if all its (real) eigenvalues are pos-
itive.

iii) Two normal matrices A,B ∈ Kn×n commute, AB = BA, if and only if they possess
a common basis of eigenvectors.

Proof. For the proofs, we refer to the standard linear algebra literature. Q.E.D.

Theorem 1.5 (Spectral theorem): For square Hermitian matrices, A = ĀT , or more
general for “normal” matrices, ĀTA = AĀT , algebraic and geometric multiplicities of
eigenvalues are equal, i. e., these matrices are diagonalizable. Further, they are even
unitarily diagonalizable, i. e., there exists an orthonormal basis of eigenvectors.

Proof. For the proof, we refer to the standard linear algebra literature. Q.E.D.

1.1.6 Matrix analysis

We now consider the vector space of allm×n-matrices A ∈ Km×n . This vector space may
be identified with the vector space of mn-vectors, Kn×n ∼= Kmn . Hence, all statements for
vector norms carry over to norms for matrices. In particular, all norms form×n-matricen
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are equivalent and the convergence of sequences of matrices is again the componentwise
convergence

Ak → A (k → ∞) ⇐⇒ akij → aij (k →∞) , i = 1, . . . , m , j = 1, . . . , n .

Now, we restrict the further discussion to square matrices A ∈ Kn×n . For an arbitrary
vector norm ‖ · ‖ on K

n a norm for matrices A ∈ K
n×n is generated by

‖A‖ := sup
x∈Kn\{0}

‖Ax‖
‖x‖ = sup

x∈Kn,‖x‖=1

‖Ax‖.

The definiteness and homogeneity are obvious and the triangle inequality follows from
that holding for the given vector norm. This matrix norm is called the “natural matrix
norm” corresponding to the vector norm ‖ · ‖ . In the following for both norms, the
matrix norm and the generating vector norm, the same notation is used. For a natural
matrix norm there always holds ‖I‖ = 1 . Such a “natural” matrix norm is automatically
“compatible” with the generating vector norm, i. e., it satisfies

‖Ax‖ ≤ ‖A‖ ‖x‖ , x ∈ K
n, A ∈ K

n×n . (1.1.34)

Further it is “submultiplicative”,

‖AB‖ ≤ ‖A‖ ‖B‖ , A, B ∈ K
n×n. (1.1.35)

Not all matrix norms are “natural” in the above sense. For instance, the square-sum norm
(also called “Frobenius9-norm”)

‖A‖F :=
( n∑

j,k=1

|ajk|2
)1/2

is compatible with the Euclidian norm and submultiplicative but cannot be a natural
matrix norm since ‖I‖F =

√
n (for n ≥ 2 ). The natural matrix norm generated from

the Euclidian vector norm is called “spectral norm”. This name is suggested by the
following result.

Lemma 1.13 (Spectral norm): For an arbitrary square matrix A ∈ K
n×n the product

matrix A
T
A ∈ Kn×n is always Hermitian and positive semi-definitsemi-definite. For the

spectral norm of A there holds

‖A‖2 = max{|λ|1/2, λ ∈ σ(ĀTA)}. (1.1.36)

If A is Hermitian (or symmetric), then,

‖A‖2 = max{|λ|, λ ∈ σ(A)}. (1.1.37)

9Ferdinand Georg Frobenius (1849–1917): German mathematician; Prof. in Zurich and Berlin; con-
tributions to the theory of differential equations, to determinants and matrices as well as to group theory.
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Proof. i) Let the matrix A ∈ Kn×n be Hermitian. For any eigenvalue λ of A and
corresponding eigenvector x there holds

|λ| = ‖λx‖2
‖x‖2 =

‖Ax‖2
‖x‖2 ≤ ‖A‖2.

Conversely, let {ai, i = 1, · · · , n} ⊂ Cn be an ONB of eigenvectors of A and x =∑
i xia

i ∈ Cn be arbitrary. Then,

‖Ax‖2 =
∥∥A(∑

i
xia

i
)∥∥

2
=
∥∥∑

i
λixia

i
∥∥
2
≤ max

i
|λi|

∥∥∑
i
xia

i
∥∥
2
= max

i
|λi| ‖x‖2,

and consequently,
‖Ax‖2
‖x‖2 ≤ max

i
|λi|.

ii) For a general matrix A ∈ Kn×n there holds

‖A‖22 = max
x∈Cn\0

‖Ax‖22
‖x‖22

= max
x∈Cn\0

(ĀTAx, x)2
‖x‖22

≤ max
x∈Cn\0

‖ĀTAx‖2
‖x‖2 = ‖ĀTA‖2.

and ‖ĀTA‖2 ≤ ‖ĀT‖2‖A‖2 = ‖A‖22 (observe that ‖A‖2 = ‖ĀT‖2 due to ‖Ax‖2 =
‖ĀT x̄‖2). This completes the proof. Q.E.D.

Lemma 1.14 (Natural matrix norms): The natural matrix norms generated by the
l∞ norm ‖ · ‖∞ and the l1 Norm ‖ · ‖1 are the so-called “maximal-row-sum norm” and
the “maximal-column-sum norm” , respectively,

‖A‖∞ := max
1≤i≤n

n∑
j=1

|aij|, ‖A‖1 := max
1≤j≤n

n∑
i=1

|aij | . (1.1.38)

Proof. We give the proof only for the l∞ norm. For the l1 norm the argument is analogous.
i) The maximal row sum ‖ · ‖∞ is a matrix norm. The norm properties (N1) - (N3) follow
from the corresponding properties of the modulus. For the matrix product AB there
holds

‖AB‖∞ = max
1≤i≤n

∣∣∣ n∑
j=1

( n∑
k=1

aikbkj

)∣∣∣ ≤ max
1≤i≤n

n∑
k=1

(
|aik|

n∑
j=1

|bkj|
)

≤ max
1≤i≤n

n∑
k=1

|aik| max
1≤k≤n

n∑
j=1

|bkj | = ‖A‖∞‖B‖∞.

ii) Further, in view of

‖Ax‖∞ = max
1≤j≤n

|
n∑

k=1

ajkxk| ≤ max
1≤j≤n

n∑
k=1

|ajk| max
1≤k≤n

|xk| = ‖A‖∞‖x‖∞
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the maximal row-sum is compatible with the maximum norm ‖ · ‖∞ and there holds

sup
‖x‖∞=1

‖Ax‖∞ ≤ ‖A‖∞.

iii) In the case ‖A‖∞ = 0 also A = 0 , i. e.,

‖A‖∞ = sup
‖x‖∞=1

‖Ax‖∞.

Therefore, let ‖A‖∞ > 0 and m ∈ {1, . . . , n} an index such that

‖A‖∞ = max
1≤j≤n

n∑
k=1

|ajk| =
n∑

k=1

|amk|.

For k = 1, . . . , n, we set

zk :=

{ |amk|/amk für amk �= 0,

0, sonst,

i. e., z = (zk)
n
k=1 ∈ K

n, ‖z‖∞ = 1 . For v := Az it follows that

vm =

n∑
k=1

amkzk =

n∑
k=1

|amk| = ‖A‖∞.

Consequently,
‖A‖∞ = vm ≤ ‖v‖∞ = ‖Az‖∞ ≤ sup

‖y‖∞=1

‖Ay‖∞,

what was to be shown. Q.E.D.

Let ‖ · ‖ be an arbitrary vector norm and ‖ · ‖ a corresponding compatible matrix
norm. Then, with a normalized eigenvector ‖w‖ = 1 corresponding to the eigenvalue λ
there holds

|λ| = |λ| ‖w‖ = ‖λw‖ = ‖Aw‖ ≤ ‖A‖ ‖w‖ = ‖A‖, (1.1.39)

i. e., all eigenvalues of A are contained in a circle in C with center at the origin and
radius ‖A‖. Especially with ‖A‖∞, we obtain the eigenvalue bound

max
λ∈σ(A)

|λ| ≤ ‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij|. (1.1.40)

Since the eigenvalues of ĀT and A are related by λ(ĀT ) = λ̄(A) , using the bound
(1.1.40) simultaneously for ĀT and A yields the following refined bound:
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max
λ∈σ(A)

|λ| ≤ min{‖A‖∞, ‖ĀT‖∞}

= min
{
max
1≤i≤n

n∑
j=1

|aij|, max
1≤j≤n

n∑
i=1

|aij|
}
.

(1.1.41)

The following lemma contains a useful result on the regularity of small perturbations
of the unit matrix.

Lemma 1.15 (Perturbation of unity): Let ‖·‖ be any natural matrix norm on Kn×n

and B ∈ Kn×n a matrix with ‖B‖ < 1 . Then, the perturbed matrix I+B is regular and
its inverse is given as the (convergent) “Neumann10 series”

(I +B)−1 =
∞∑
k=0

Bk. (1.1.42)

Further, there holds

‖(I +B)−1‖ ≤ 1

1− ‖B‖ . (1.1.43)

Proof. i) First, we show the regularity of I +B and the bound (1.1.43). For all x ∈ Kn

there holds

‖(I +B)x‖ ≥ ‖x‖ − ‖Bx‖ ≥ ‖x‖ − ‖B‖‖x‖ = (1− ‖B‖)‖x‖ .

In view of 1 − ‖B‖ > 0 this implies that I + B is injective and consequently regular.
Then, the following estimate implies (1.1.43):

1 = ‖I‖ = ‖(I +B)(I +B)−1‖ = ‖(I +B)−1 +B(I +B)−1‖
≥ ‖(I +B)−1‖ − ‖B‖ ‖(I +B)−1‖ = ‖(I +B)−1‖(1− ‖B‖) > 0 .

ii) Next, we define

S := lim
k→∞

Sk, Sk =

k∑
s=0

Bs.

S is well defined due to the fact that {Sn}n∈N is a Cauchy sequence with respect to the
matrix norm ‖ · ‖ (and, by the norm equivalence in finite dimensional normed spaces,

10Carl Gottfried Neumann (1832–1925): German mathematician; since 1858 “Privatdozent” and since
1863 apl. Prof. in Halle. After holding professorships in Basel and Tübingen he moved 1868 to Leipzig
where he worked for more than 40 years. He contributed to the theory of (partial) differential and integral
equations, especially to the Dirichlet problem. The “Neumann boundary condition” and the “Neumann
series” are named after him. In mathematical physics he worked on analytical mechanics and potential
theory. together with A. Clebsch he founded the journal “Mathematische Annalen”.
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with respect to any matrix norm). By employing the triangle inequality, using the matrix
norm property and the limit formula for the geometric series, we see that

‖S‖ = lim
k→∞

‖Sk‖ = lim
k→∞

∥∥ k∑
s=0

Bs
∥∥ ≤ lim

n→∞

k∑
s=0

‖B‖s = lim
k→∞

1− ‖B‖k+1

1− ‖B‖ =
1

1− ‖B‖ .

Furthermore, Sk (I −B) = I −Bk+1 and due to the fact that multiplication with I −B
is continuous,

I = lim
k→∞

(
Sk(I −B)

)
=
(
lim
k→∞

Sk

)
(I − B) = S(I −B).

Hence, S = (I −B)−1 and the proof is complete. Q.E.D.

Corollary 1.2: Let A ∈ Kn×n be a regular matrix and Ã another matrix such that

‖Ã− A‖ < 1

‖A−1‖ . (1.1.44)

Then, also Ã is regular. This means that the “resolvent set” Res(A) of a matrix A ∈
Kn×n is open in Kn×n and the only “singular” points are just the eigenvalues of A , i. e.,
there holds C = Res(A) ∪ σ(A) .

Proof. Notice that Ã = A+ Ã− A = A(I + A−1(Ã− A)) . In view of

‖A−1(Ã−A)‖ ≤ ‖A−1‖ ‖Ã−A‖ < 1

by Lemma 1.15 the matrix I + A−1(Ã − A) is regular. Then, also the product matrix
A(I + A−1(Ã−A)) is regular, which implies the regularity of Ã . Q.E.D.

1.2 Spectra and pseudo-spectra of matrices

1.2.1 Stability of dynamical systems

We consider a finite dimensional dynamical system of the form

u′(t) = F (t, u(t)), t ≥ 0, u(0) = u0, (1.2.45)

where u : [0,∞) → Rn is a continuously differentiable vector function and the system
function F (·, ·) is assumed (for simplicity) to be defined on all of R × Rn and twice
continuously differentiable. The system (1.2.45) may originate from the discretization
of an infinite dimensional dynamical system such as the nonstationary Navier-Stokes
equations mentioned in the introductory Chapter 0. Suppose that u is a particular
solution of (1.2.45). We want to investigate its stability against small perturbations
u(t0) → u(t0) +w0 =: v(t0) at any time t0 ≥ 0 . For this, we use the strongest concept of
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stability, which is suggested by the corresponding properties of solutions of the Navier-
Stokes equations.

Definition 1.10: The solution u ∈ C1[0,∞;Rn) of (1.2.45) is called “exponentially
stable” if there are constants δ,K, κ ∈ R+ such that for any perturbation w0 ∈ Rn ,
‖w0‖2 ≤ δ , at any time t0 ≥ 0, there exists a secondary solution v ∈ C1(t0,∞;Rn) of
the perturbed system

v′(t) = F (t, v(t)), t ≥ 0, v(t0) = u(t0) + w0, (1.2.46)

and there holds

‖v(t)− u(t)‖2 ≤ Ke−κ(t−t0)‖w0‖2, t ≥ t0. (1.2.47)

For simplicity, we restrict the following discussion to the special situation of an au-
tonomous system, i. e., F (t, ·) ≡ F (·), and a stationary particular solution u(t) ≡ u ∈ Rn ,
i. e., to the solution of the nonlinear system

F (u) = 0. (1.2.48)

The investigation of the stability of u leads us to consider the so-called “perturbation
equation” for the perturbation w(t) := v(t)− u ,

w′(t) = F (v(t))− F (u) = F ′(u)w(t) +O(‖w(t)‖22), t ≥ 0, w(0) = w0, (1.2.49)

where the higher-order term depends on bounds on u and u′ as well as on the smoothness
properties of F (·) .

Theorem 1.6: Suppose that the Jacobian A := F ′(u) is diagonalizable and that all its
eigenvalues have negative real part. Then, the solution u of (1.2.48) is exponentially stable
in the sense of Definition 1.10 with the constants κ = |Reλmax| and K = cond2(W ) ,
where λmax is the eigenvalue of A with largest (negative) real part and W = [w1, . . . , wn]
the column matrix formed by the (normalized) eigenbasis of A . If A is normal then
K = cond2(W ) = 1 .

Proof. i) Consider the linearized system (linearized perturbation equation)

w′(t) = Aw(t), t ≥ t0, w(0) = w0. (1.2.50)

Since the Jacobian A is diagonalizable there exists an ONB {w1, . . . , wn} of eigenvectors
of A :

Awi = λiw
i, i = 1, . . . , n.

With the matrices W := [w1, . . . , wn] and Λ := diag(λi) there holds

W−1AW = Λ, A =WΛW−1.
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Using this notation the perturbation equation can be rewritten in the form

w′(t) = Aw(t) ⇔ w′(t) = WΛW−1w(t) ⇔ (W−1w)′(t) = ΛW−1w(t),

or for the transformed variable v := W−1w componentwise:

v′i(t) = λivi(t), t ≥ 0, vi(0) = (W−1w)i(0).

The solution behavior is (observe that eiImλit = 1 )

|vi(t)| ≤ eReλit|(W−1w)i(0)|, t ≥ 0.

This implies:

‖v(t)‖22 ≤
n∑

i=1

|vi(t)|2 ≤
n∑

i=1

e2Reλit|(W−1w)i(0)|2 ≤ e2Reλmint‖(W−1w)(0)‖22,

and consequently,

‖w(t)‖2 ≤ ‖Wv(t)‖2 ≤ ‖W‖2‖v(t)‖2 ≤ ‖W‖2 eReλmint ‖(W−1w)(0)‖2
≤ ‖W‖2 eReλmint ‖W−1‖2‖w(0)‖2
= cond2(W ) eReλmint‖w(0)‖2.

(1.2.51)

The condition number of W can become arbitrarily large depending on the “non-orthogo-
nality” of the eigenbasis of the Jacobian A .

ii) The assertion now follows by combining (1.2.51) and (1.2.49) within a continuation
argument. The proof is complete. Q.E.D.

Following the argument in the proof of Theorem 1.6, we see that the occurrence of
just one eigenvalue with Reλ > 0 inevitably causes dynamic instability of the solution
u , i. e., arbitrarily small perturbations may grow in time without bound. Denoting by
S : Rn → C1[0,∞;Rn) the “solution operator” of the linearized perturbation equation
(1.2.50), i. e., w(t) = S(t)w0 , this can be formulated as

max
λ∈σ(A)

Reλ > 0 ⇒ sup
t≥0

‖S(t)‖2 = ∞. (1.2.52)

The result of Theorem 1.6 can be extended to the case of a non-diagonalizable Jacobian
A = F ′(u) . In this case, one obtains a stability behavior of the form

‖S(t)‖2 ≈ K(1 + tα)eReλmaxt, t ≥ 0, (1.2.53)

where α ≥ 1 is the defect of the most critical eigenvalue λmax , i. e., that eigenvalue with
largest real part Reλmax < 0 . This implies that

sup
t>0

‖S(t)‖ ≈
(α
e

)α 1

|Reλmax|α , (1.2.54)
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i. e., for −1 � Reλmin < 0 initially small perturbations may grow beyond a value at
which nonlinear instability is triggered. Summarizing, we are interested in the case that
all eigenvalues of A = F ′(u) have negative real part, suggesting stability in the sense of
Theorem 1.6, and especially want to compute the most “critical” eigenvalue, i. e., that
λ ∈ σ(A) with maximal Reλ < 0 to detect whether the corresponding solution operator
S(t) may behave in a critical way.

The following result, which is sometimes addressed as the “easy part of the Kreiss11

matrix theorem” indicates in which direction this analysis has to go.

Lemma 1.16: Let A := F ′(u) and z ∈ C \ σ(A) with Re z > 0 . Then, for the solution
operator S(t) of the linearized perturbation equation (1.2.50), there holds

sup
t≥0

‖S(t)‖2 ≥ |Re z| ‖(zI − A)−1‖2. (1.2.55)

Proof. We continue using the notation from the proof of Theorem 1.6. If ‖S(t)‖2 is
unbounded over [0,∞) , the asserted estimate holds trivially. Hence, let us assume that

sup
t≥0

‖w(t)‖2 = sup
t≥0

‖S(t)w0‖0 ≤ sup
t≥0

‖S(t)‖2‖w0‖2 <∞.

For z �∈ σ(A) the resolvent RA(z) = zI − A is regular. Let w0 ∈ Kn be an arbitrary
but nontrivial initial perturbation and w(t) = S(t)w0 . We rewrite equation (1.2.50) in
the form

∂tw − zw + (zI −A)w = 0,

and multiply by e−tz, to obtain

∂t(e
−tzw) + e−tz(zI − A)w = 0.

Next, integrating this over 0 ≤ t < T and observing Re z > 0 and limt→∞ e−tzw = 0
yields

−(zI − A)−1w0 =
( ∫ ∞

0

e−tzS(t) dt
)
w0.

From this, we conclude

‖(zI − A)−1‖2 ≤
( ∫ ∞

0

e−t|Re z| dt
)
sup
t>0

‖S(t)‖2 ≤ |Re z|−1 sup
t>0

‖S(t)‖2,

which implies the asserted estimate. Q.E.D.

The above estimate (1.2.55) for the solution operator S(t) can be interpreted as
follows: Even if all eigenvalues of the matrix A have negative real parts, which in view

11Heinz-Otto Kreiss (1930–2015): Swedish/US-American mathematician; worked in Numerical Analy-
sis and in the new field Scientific Computing in the early 1960s; born in Hamburg, Germany, he studied
and worked at the Kungliga Tekniska Hgskolan in Stockholm, Sweden; he published a number of books;
later he became Prof. at the California Institute of Technology and University of California, Los Angeles
(UCLA).
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of Theorem 1.6 would indicate stability of solutions to (1.2.50), there may be points z in
the right complex half plane for which ‖(zI −A)−1‖2  |Re z|−1 and consequently,

sup
t≥0

‖S(t)‖2  1. (1.2.56)

Hence, even small perturbations of the particular solution u may be largely amplified
eventually triggering nonlinear instability.

1.2.2 Pseudo-spectrum of a matrix

The estimate (1.2.55) makes us search for points z ∈ C \ σ(A) with Re z > 0 and

‖(zI − A)−1‖2  |Re z|−1.

This suggests the concept of the “pseudo-spectrum” of the matrix A , which goes back
to Landau [9] and has been extensively described and applied in the stability analysis of
dynamical systems, e. g., in Trefethen [20] and Trefethen&Embree [22].

Definition 1.11 (Pseudo-spectrum): For ε ∈ R+ the “ε-pseudo-spectrum” σε(A) ⊂
C of a matrix A ∈ Kn×n is defined by

σε(A) :=
{
z ∈ C \ σ(A)∣∣ ‖(A− zI)−1‖2 ≥ ε−1

} ∪ σ(A). (1.2.57)

Remark 1.7: The concept of a pseudo-spectrum is interesting only for non-normal opera-
tors, since for a normal operator σε(A) is just the union of ε-circles around its eigenvalues.
This follows from the estimate (see Dunford&Schwartz [8] or Kato [12])

‖(A− zI)−1‖2 ≥ dist(z, σ(A))−1, z /∈ σ(A), (1.2.58)

where equality holds if A is normal.

Remark 1.8: The concept of the “pseudo-spectrum” can be introduced in much more
general situations, such as that of closed linear operators in abstract Hilbert or Banach
spaces (see Trefethen&Embree [22]). Typically hydrodynamic stability analysis concerns
differential operators defined on bounded domains. This situation fits into the Hilbert-
space framework of “closed unbounded operators with compact inverse”.

Using the notion of the pseudo-spectrum the estimate (1.2.55) can be expressed in the
following form

sup
t≥0

‖S(t)‖2 ≥ sup
{ |Re z|

ε

∣∣∣ ε > 0, z ∈ σε(A), Re z > 0
}
, (1.2.59)

or

max
λ∈σε(A)

Reλ > Kε ⇒ sup
t≥0

‖S(t)‖2 > K. (1.2.60)
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Below, we will present methods for computing estimates for the pseudo-spectrum of a
matrix. This will be based on related methods for solving the partial eigenvalue problem.
To this end, we provide some results on several basic properties of the pseudo-spectrum.

Lemma 1.17: i) For a matrix A ∈ Kn×n the following definitions of an ε-pseudo-
spectrum are equivalent:

a) σε(A) :=
{
z ∈ C \ σ(A)∣∣ ‖(A− zI)−1‖2 ≥ ε−1

} ∪ σ(A).
b) σε(A) :=

{
z ∈ C

∣∣ z ∈ σ(A+ E) for some E ∈ K
n×n with ‖E‖2 ≤ ε

}
.[2mm]

c) σε(A) :=
{
z ∈ C

∣∣ ‖(A− zI)v‖2 ≤ ε for some v ∈ K
n with ‖v‖2 = 1

}
.

ii) Let 0 �∈ σ(A) . Then, the ε-pseudo-spectra of A and that of its inverse A−1 are related
by

σε(A) ⊂
{
z ∈ C \ {0} ∣∣ z−1 ∈ σδ(z)(A

−1)
} ∪ {0}, (1.2.61)

where δ(z) := ε‖A−1‖2/|z| and, for 0 < ε < 1 , by

σε(A
−1) ∩ B1(0)

c ⊂ {
z ∈ C \ {0} ∣∣ z−1 ∈ σδ(A)

}
, (1.2.62)

where B1(0) := {z ∈ C, |z| ≤ 1} and δ := ε/(1− ε) .

Proof. The proof of part (i) can be found in Trefethen&Embree [22]. For completeness,
we recall a sketch of the argument. The proof of part (ii) is taken from Gerecht et al.
[35].

ia) In all three definitions, we have σ(A) ⊂ σε(A) . Let z ∈ σε(A) in the sense of definition
(a). There exists a w ∈ Kn with ‖w‖2 = 1 , such that ‖(zI − A)−1w‖2 ≥ ε−1 . Hence,
there is a v ∈ Kn with ‖v‖2 = 1 , and s ∈ (0, ε) , such that (zI − A)−1w = s−1v or
(zI −A)v = sw . Let Q(v, w) ∈ Kn×n denote the unitary matrix, which rotates the unit
vector v into the unit vector w , such that sw = sQ(v, w)v . Then, z ∈ σ(A+E) where
E := sQ(v, w) with ‖E‖2 ≤ ε , i. e., z ∈ σε(A) in the sense of definition (b). Let now
be z ∈ σε(A) in the sense of definition (b), i. e., there exists E ∈ Kn×n with ‖E‖2 ≤ ε
such that (A+ E)w = zw , with some w ∈ K

n, w �= 0 . Hence, (A− zI)w = −Ew , and
therefore,

‖(A− zI)−1‖2 = sup
v∈Kn\{0}

‖(A− zI)−1v‖2
‖v‖2 = sup

v∈Kn\{0}

‖v‖2
‖(A− zI)v‖2

=
(

inf
v∈Kn\{0}

‖(A− zI)v‖2
‖v‖2

)−1

≥
(‖(A− zI)w‖2

‖w‖2
)−1

=
(‖Ew‖2
‖w‖2

)−1

≥ ‖E‖−1
2 ≥ ε−1.

Hence, z ∈ σε(A) in the sense of (a). This proves the equivalence of definitions (a) and
(b).
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ib) Next, let again z ∈ σε(A) \ σ(A) in the sense of definition (a). Then,

ε ≥ ‖(A− zI)−1‖−1
2 =

(
sup

w∈Kn\{0}

‖(A− zI)−1w‖2
‖w‖2

)−1

= inf
v∈Kn\{0}

‖(A− zI)v‖2
‖v‖2 .

Hence, there exists a v ∈ Kn with ‖v‖2 = 1 , such that ‖(A− zI)v‖ ≤ ε , i. e., z ∈ σε(A)
in the sense of definition (c). By the same argument, now used in the reversed direction,
we see that z ∈ σε(A) in the sense of definition (c) implies that also z ∈ σε(A) in the
sense of definition (a). Thus, definition (a) is also equivalent to condition (c).

iia) We use the definition (c) from part (i) for the ε-pseudo-spectrum. Let z ∈ σε(A) and
accordingly v ∈ Kn, ‖v‖2 = 1 , satisfying ‖(A− zI)v‖2 ≤ ε . Then,

‖(A−1 − z−1I)v‖2 = ‖z−1A−1(zI − A)v)‖2 ≤ |z|−1
2 ‖A−1‖2 ε.

This proves the asserted relation (1.2.61).

iib) To prove the relation (1.2.62), we again use the definition (c) from part (i) for the
ε-pseudo-spectrum. Accordingly, for z ∈ σε(A

−1) with |z| ≥ 1 there exists a unit vector
v ∈ Kn, ‖v‖2 = 1 , such that

ε ≥ ‖(zI −A−1)v‖2 = |z|‖(A− z−1I)A−1v‖2.

Then, setting w := ‖A−1v‖−1
2 A−1v with ‖w‖2 = 1 , we obtain

‖(A− z−1I)w‖2 ≤ |z|−1‖A−1v‖−1
2 ε.

Hence, observing that

‖A−1v‖2 = ‖(A−1 − zI)v + zv‖2 ≥ ‖zv‖2 − ‖(A−1 − zI)v‖2 ≥ |z| − ε,

we conclude that
‖(A− z−1I)w‖2 ≤ ε

|z|(|z| − ε)
≤ ε

1− ε
.

This completes the proof. Q.E.D.

The next proposition relates the size of the resolvent norm ‖(zI − A)−1‖2 to easily
computable quantities in terms of the eigenvalues and eigenvectors of the matrix A =
F ′(u) .

Theorem 1.7: Let λ ∈ C be a non-deficient eigenvalue of the matrix A := F ′(u) with
corresponding primal and dual eigenvectors v, v∗ ∈ Kn normalized by ‖v‖2 = (v, v∗)2 = 1.
Then, there exists a continuous function ω : R+ → C with limε↘0+ ω(ε) = 1 , such that
for λε := λ− εω(ε)‖v∗‖2 , there holds

‖(A− λεI)
−1‖2 ≥ ε−1, (1.2.63)

i. e., the point λε lies in the ε-pseudo-spectrum of the matrix A .
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Proof. The argument of the proof is recalled from Gerecht et. al. [35] where it is
developed within a function space setting and has therefore to be simplified here for the
finite dimensional situation.

i) Let B ∈ Kn×n be a matrix with ‖B‖2 ≤ 1. We consider the perturbed eigenvalue
problem

(A+ εB)vε = λε vε. (1.2.64)

Since this is a regular perturbation and λ non-deficient, there exist corresponding eigen-
values λε ∈ C and eigenvectors vε ∈ Kn, ‖vε‖2 = 1, such that

|λε − λ| = O(ε), ‖vε − v‖2 = O(ε).

Furthermore, from the relation

(Av − λεI)vε = −εBvε, ϕ ∈ J1,

we conclude that
‖(A− λεI)vε‖2 ≤ ε‖B‖2‖vε‖2 ≤ ε‖vε‖2,

and from this, if λε is not an eigenvalue of A ,

‖(A− λεI)
−1‖−1

2 =
(
sup
y∈Kn

‖(A− λεI)
−1y‖2

‖y‖2
)−1

=
(
sup
x∈Kn

‖x‖2
‖(A− λεI)x‖2

)−1

= inf
x∈Kn

‖(A− λεI)x‖2
‖x‖2 ≤ ‖(A− λεI)vε‖2

‖vε‖2 ≤ ε.

This implies the asserted estimate

‖(A− λεI)
−1‖2 ≥ ε−1. (1.2.65)

ii) Next, we analyze the dependence of the eigenvalue λε on ε in more detail. Subtracting
the equation for v from that for vε , we obtain

A(vε − v) + εBvε = (λε − λ)vε + λ(vε − v).

Multiplying this by v∗ yields

(A(vε − v), v∗)2 + ε(Bvε, v
∗)2 = (λε − λ)vε, v

∗)2 + λ(vε − v, v∗)2

and, using the equation satisfied by v∗,

ε(Bvε, v
∗)2 = (λε − λ)(vε, v

∗)2.

This yields λε = λ+ εω(ε)(Bv, v∗)2 , where, observing vε → v and (v, v∗) = 1,

ω(ε) :=
(Bvε, v

∗)2
(vε, v∗)2(Bv, v∗)2

→ 1 (ε→ 0).



1.3 Perturbation theory and conditioning 45

iii) It remains to construct an appropriate perturbation matrix B . For convenience, we
consider the renormalized dual eigenvectors ṽ∗ := v∗‖v∗‖−1

2 , satisfying ‖ṽ∗‖2 = 1 . With
the vector w := (v − ṽ∗)‖v − ṽ∗‖−1

2 , we set for ψ ∈ Kn:

Sψ := ψ − 2Re (ψ,w)2w, B := −S.

The unitary matrix S acts like a Householder transformation mapping v into ṽ∗ (s. the
discussion in Section 2.3.1, below). In fact, observing ‖v‖2 = ‖ṽ∗‖2 = 1 , there holds

Sv = v − 2Re (v, v − ṽ∗)2
‖v − ṽ∗‖22

(v − ṽ∗) =
{2− 2Re (v, ṽ∗)2}v − 2Re (v, v − ṽ∗)2(v − ṽ∗)

2− 2Re (v, ṽ∗)2

=
2v − 2Re (v, ṽ∗)2v − 2v + 2Re (v, ṽ∗)2v + (2− 2Re (v, ṽ∗)2)ṽ∗

2− 2Re (v, ṽ∗)2
= ṽ∗.

This implies that

(Bv, v∗)2 = −(Sv, v∗)2 = −(ṽ∗, v∗)2 = −‖v∗‖2.

Further, observing ‖w‖2 = 1 and

‖Sv‖22 = ‖v‖22 − 2Re (v, w)2(v, w)2 − 2Re (v, w)2(w, v)2 + 4Re (v, w)22‖w‖22 = ‖v‖22,

we have ‖B‖2 = ‖S‖2 = 1. Hence, for this particular choice of the matrix B , we have

λε = λ− εω(ε)‖v∗‖2, lim
ε→0

ω(ε) = 1,

as asserted. Q.E.D.

Remark 1.9: i) We note that the statement of Theorem 1.7 becomes trivial if the matrix
A is normal. In this case primal and dual eigenvectors coincide and, in view of Remark
1.7, σε(A) is the union of ε-circles around its eigenvalues λ . Hence, observing ‖w∗‖2 =
‖w‖2 = 1 and setting ω(ε) ≡ 1 , we trivially have λε := λ− ε ∈ σε(A) as asserted.

ii) If A is non-normal it may have a nontrivial pseudo-spectrum. Then, a large norm
of the dual eigenfunction ‖w∗‖2 corresponding to a critical eigenvalue λcrit with −1 �
Reλcrit < 0 , indicates that the ε-pseudo-spectrum σε(A) , even for small ε , reaches into
the right complex half plane.

iii) If the eigenvalue λ ∈ σ(A) considered in Theorem 1.7 is deficient, the normalization
(w,w∗)2 = 1 is not possible. In this case, as discussed above, there is still another
mechanism for triggering nonlinear instability.

1.3 Perturbation theory and conditioning

First, we analyze the “conditioning” of quadratic linear systems. There are two main
sources of errors in solving an equation Ax = b :
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a) errors in the “theoretical” solution caused by errors in the data, i. e,, the elements
of A and b ,

b) errors in the “numerical” solution caused by round-off errors in the course of the
solution process.

1.3.1 Conditioning of linear algebraic systems

We give an error analysis for linear systems

Ax = b (1.3.66)

with regular coefficient matrix A ∈ Kn×n . The matrix A and the vector b are faulty by
small errors δA and δb , so that actually the perturbed system

Ãx̃ = b̃, (1.3.67)

is solved with Ã = A + δA , b̃ = b + δb and x̃ = x + δx . We want to estimate the error
δx in dependence of δA and δb . For this, we use an arbitrary vector norm ‖ · ‖ and the
associated natural matrix norm likewise denoted by ‖ · ‖.

Theorem 1.8 (Perturbation theorem): Let the matrix A ∈ K
n×n be regular and the

perturbation satisfy ‖δA‖ < ‖A−1‖−1 . Then, the perturbed matrix Ã = A + δA is also
regular and for the resulting relative error in the solution there holds

‖δx‖
‖x‖ ≤ cond(A)

1− cond(A)‖δA‖/‖A‖
{‖δb‖
‖b‖ +

‖δA‖
‖A‖

}
, (1.3.68)

with the so-called “condition number” cond(A) := ‖A‖ ‖A−1‖ of the matrix A .

Proof. The assumptions imply

‖A−1δA‖ ≤ ‖A−1‖ ‖δA‖ < 1,

such that also A+ δA = A[I + A−1δA] is regular by Lemma 1.15. From

(A + δA)x̃ = b+ δb , (A+ δA)x = b+ δAx

it follows that then for δx = x̃− x

(A+ δA)δx = δb− δAx,

and consequently using the estimate of Lemma 1.15,
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‖δx‖ ≤ ‖(A+ δA)−1‖{‖δb‖ + ‖δA‖ ‖x‖}
= ‖(A(I + A−1δA)

)−1‖{‖δb‖ + ‖δA‖ ‖x‖}
= ‖(I + A−1δA)−1A−1‖{‖δb‖ + ‖δA‖ ‖x‖}
≤ ‖(I + A−1δA)−1‖ ‖A−1‖{‖δb‖+ ‖δA‖ ‖x‖}
≤ ‖A−1‖

1− ‖A−1δA‖
{‖δb‖+ ‖δA‖ ‖x‖}

≤ ‖A−1‖ ‖A‖ ‖x‖
1− ‖A−1‖ ‖δA‖ ‖A‖ ‖A‖−1

{ ‖δb‖
‖A‖ ‖x‖ +

‖δA‖
‖A‖

}
.

Since ‖b‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖ it eventually follows that

‖δx‖ ≤ cond(A)

1− cond(A)‖δA‖‖A‖−1

{‖δb‖
‖b‖ +

‖δA‖
‖A‖

}
‖x‖,

what was to be shown. Q.E.D.

The condition number cond(A) depends on the chosen vector norm in the estimate
(1.3.68). Most often the max-norm ‖ · ‖∞ or the euclidian norm ‖ · ‖2 are used. In the
first case there holds

cond∞(A) := ‖A‖∞‖A−1‖∞
with the maximal row sum ‖ · ‖∞ . Especially for Hermitian matrices Lemma 1.13 yields

cond2(A) := ‖A‖2‖A−1‖2 = |λmax|
|λmin|

with the eigenvalues λmax and λmin of A with largest and smallest modulus, respectively.
Accordingly, the quantity cond2(A) is called the “spectral condition (number)” of A . In
the case cond(A)‖δA‖ ‖A‖−1 � 1 , the stability estimate (1.3.68) takes the form

‖δx‖
‖x‖ ≈ cond(A)

{‖δb‖
‖b‖ +

‖δA‖
‖A‖

}
,

i. e., cond(A) is the amplification factor by which relative errors in the data A and b
affect the relative error in the solution x .

Corollary 1.3: Let the condition of A be of size cond(A) ∼ 10s . Are the elements of
A and b faulty with a relative error if size

‖δA‖
‖A‖ ≈ 10−k ,

‖δb‖
‖b‖ ≈ 10−k (k > s),

then the relative error in the solution can be at most of size of A and b faulty with a
relative error if size ‖δx‖

‖x‖ ≈ 10s−k.

In the case ‖ · ‖ = ‖ · ‖∞, one may lose s decimals in accuracy.
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Example 1.4: Consider the following coefficient matrix A and its inverse A−1 :

A =

[
1.2969 0.8648

0.2161 0.1441

]
, A−1 = 108

[
0.1441 −0.8648

−0.2161 1.2969

]

‖A‖∞ = 2.1617 , ‖A−1‖∞ = 1.513 · 108 ⇒ cond(A) ≈ 3.3 · 108.
In solving the linear system Ax = b, one may lose 8 decimals in accuracy by which the
elements ajk and bj are given. Hence, this matrix is very ill-conditioned.

Finally, we demonstrate that the stability estimate (1.3.68) is essentially sharp. Let
A be a positive definite n × n-matrix with smallest and largest eigenvalues λ1 and λn
and corresponding normalized eigenvectors w1 and wn , respectively. We choose

δA ≡ 0, b ≡ wn, δb ≡ εw1 (ε �= 0).

Then, the equations Ax = b and Ax̃ = b+ δb have the solutions

x = λ−1
n wn , x̃ = λ−1

n wn + ε λ−1
1 w1 .

Consequently, for δx = x̃− x there holds

‖δx‖2
‖x‖2 = ε

λn
λ1

‖w1‖2
‖wn‖2 = cond2(A)

‖δb‖2
‖b‖2 ,

i. e., in this very special case the estimate (1.3.68) is sharp.

1.3.2 Conditioning of eigenvalue problems

The most natural way of computing eigenvalues of a matrix A ∈ Kn×n appears to go
via its definition as zeros of the characteristic polynomial χA(·) of A and to compute
corresponding eigenvectors by solving the singular system (A−λI)w = 0 . This approach
is not advisable in general since the determination of zeros of a polynomial may be highly
ill-conditioned, at least if the polynomial is given in canonical form as sum of monomials.
We will see that the determination of eigenvalues may be well- or ill-conditioned depending
on the properties of A , i. e., its deviation from being “normal”.

Example 1.5: A symmetric matrix A ∈ R20×20 with eigenvalues λj = j , j = 1, . . . , 20,
has the characteristic polynomial

χA(z) =

20∏
j=1

(z − j) = z20−210︸ ︷︷ ︸
b1

z19 + . . .+ 20!︸︷︷︸
b20

.

The coefficient b1 is perturbed: b̃1 = −210 + 2−23 ∼ −210, 000000119 . . . , which results
in
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relative error
∣∣∣ b̃1 − b1

b1

∣∣∣ ∼ 10−10.

Then, the perturbed polynomial χ̃A(z) has two roots λ± ∼ 16.7 ± 2.8i, far away from
the trues.

The above example shows that via the characteristic polynomial eigenvalues may be
computed reliably only for very special matrices, for which χA(z) can be computed with-
out determining its monomial from. Examples of some practical importance are, e. g.,
“tridiagonal matrices” or more general “Hessenberg12 matrices”.

⎡
⎢⎢⎢⎢⎢⎣
a1 b1

c2
. . .

. . .
. . . bn−1

cn an

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
a11 · · · a1n

a21
. . .

...
. . . an−1,n

0 an,n−1 ann

⎤
⎥⎥⎥⎥⎥⎦

tridiagonal matrix Hessenberg matrix

Next, we provide a useful estimate which will be the basis for estimating the condi-
tioning of the eigenvalue problem.

Lemma 1.18: Let A,B ∈ Kn×n be arbitrary matrices and ‖ · ‖ a natural matrix norm.
Then, for any eigenvalue λ of A , which is not eigenvalue of B there holds

‖(λI −B)−1 (A− B)‖ ≥ 1. (1.3.69)

Proof. If w is an eigenvector corresponding to the eigenvalue λ of A it follows that

(A−B)w = (λI − B)w,

and for λ not being an eigenvalue of B,

(λI − B)−1 (A−B)w = w.

Consequently

1 ≤ sup
x∈Kn\{0}

‖(λI −B)−1 (A−B) x‖
‖x‖ = ‖(λI − B)−1 (A−B)‖,

what was to be shown. Q.E.D.

As consequence of Lemma 1.18, we obtain the following important inclusion theorem
of Gerschgorin13 (1931).

12Karl Hessenberg (1904–1959): German mathematician; dissertation “Die Berechnung der Eigenwerte
und Eigenl”osungen linearer Gleichungssysteme”, TU Darmstadt 1942.

13Semyon Aranovich Gershgorin (1901–1933): Russian mathematician; since 1930 Prof. in Leningrad
(St. Petersburg); worked in algebra, complex function theory differential equations and numerics.
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Theorem 1.9 (Theorem of Gerschgorin): All eigenvalues of a matrix A ∈ Kn×n are
contained in the union of the corresponding “Gerschgorin circles”

Kj :=
{
z ∈ C : |z − ajj| ≤

n∑
k=1,k =j

|ajk|
}
, j = 1, . . . , n. (1.3.70)

If the sets U ≡ ∪m
i=1Kji and V ≡ ∪n

j=1Kj \ U are disjoint then U contains exactly m
and V exactly n−m eigenvalues of A (counted accordingly to their algebraic multiplic-
ities).

Proof. i) We set B ≡ D = diag(ajj) in Lemma 1.18 and take the “maximal row sum”
as natural matrix norm. Then, it follows that for λ �= ajj:

‖(λI −D)−1 (A−D)‖∞ = max
j=1,...,n

1

|λ− ajj|
n∑

k=1,k =j

|ajk| ≥ 1,

i. e., λ is contained in one of the Gerschgorin circles.

ii) For proving the second assertion, we set At ≡ D + t(A − D) . Obviously exactly m
eigenvalues of A0 = D are in U and n − m eigenvalues in V . The same then also
follows for A1 = A since the eigenvalues of At (ordered accordingly to their algebraic
multiplicities) are continuous functions of t . Q.E.D.

The theorem of Gerschgorin yields much more accurate information on the position of
eigenvalues λ of A than the rough estimate |λ| ≤ ‖A‖∞ derived above. The eigenvalues
of the matrices A and ĀT are related by λ(ĀT ) = λ(A) . By applying the Gerschgorin
theorem simultaneously to A and ĀT , one may obtain a sharpening of the estimates for
the eigenvalues.

Example 1.6: Consider the 3× 3-matrix:

A =

⎡
⎢⎢⎣

1 0.1 −0.2

0 2 0.4

−0.2 0 3

⎤
⎥⎥⎦ ‖A‖∞ = 3.2 , ‖A‖1 = 3.6.

��
��
�� �

�

||Α||1||Α||∞

1 2 3

Figure 1.2: Gerschgorin circles of A and AT
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K1 = {z ∈ C : |z − 1| ≤ 0.3}
K2 = {z ∈ C : |z − 2| ≤ 0.4}
K3 = {z ∈ C : |z − 3| ≤ 0.2}

KT
1 = {z ∈ C : |z − 1| ≤ 0.2}

KT
2 = {z ∈ C : |z − 2| ≤ 0.1}

KT
3 = {z ∈ C : |z − 3| ≤ 0.6}

|λ1 − 1| ≤ 0.2 , |λ2 − 2| ≤ 0.1 , |λ3 − 3| ≤ 0.2

Next, from the estimate of Lemma 1.18, we derive the following basic stability result
for the eigenvalue problem.

Theorem 1.10 (Stability theorem): Let A ∈ Kn×n be a diagonalizable matrix, i. e.,
one for which n linearly independent eigenvectors {w1, . . . , wn} exist, and let B ∈ Kn×n

be an arbitrary second matrix. Then, for each eigenvalue λ(B) of B there is a cor-
responding eigenvalue λ(A) of A such that with the matrix W = [w1, . . . , wn] there
holds

|λ(A)− λ(B)| ≤ cond2(W) ‖A− B‖2 . (1.3.71)

Proof. The eigenvalue equation Awi = λi(A)w
i can be rewritten in matrix form AW =

W diag(λi(A)) with the regular matrix W = [w1, . . . , wn] . Consequently,

A =W diag(λi(A)) W
−1,

i. e., A is “similar” to the diagonal matrix Λ = diag(λi(A)). Since λ = λ(B) is not an
eigenvalue of A ,

‖(λI −A)−1‖2 = ‖W (λI − Λ)−1W−1‖2
≤ ‖W−1‖2‖W‖2‖(λI − Λ)−1‖2
= cond2(W) max

i=1,...,n
|λ− λi(A)|−1.

Then, Lemma 1.18 yields the estimate,

1 ≤ ‖(λI − A)−1 (B − A)‖ ≤ ‖(λI − A)−1‖‖(B − A)‖
≤ cond2(W) max

i=1,...,n
|λ− λi(A)|−1‖(B− A)‖,

from which the assertion follows. Q.E.D.

For Hermitian matrices A ∈ K
n×n there exists an ONB in K

n of eigenvectors so that
the matrix W in the estimate (1.3.71) can be assumed to be unitary, WW̄ T = I . In this
special case there holds

cond2(W) = ‖W̄T‖2 ‖W‖2 = 1, (1.3.72)

i. e., the eigenvalue problem of “Hermitian” (or more general “normal”) matrices is well
conditioned. For general “non-normal” matrices the conditioning of the eigenvalue prob-
lem may be arbitrarily bad, cond2(W)  1 .
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1.4 Exercises

Exercise 1.1 (Some useful inequalities):
Verify the following inequalities:

a) ab ≤ εa2 + 1
4ε
b2, a, b ∈ R, ε ∈ R+.

b)
(∑n

i=1 xiλi
)−1 ≤∑n

i=1 x
−1
i λi, xi ∈ R+, 0 ≤ λi ≤ 1,

∑n
i=1 λi = 1.

c) max0≤x≤1

{
x2(1− x)2n

} ≤ (1 + n)−2.

Exercise 1.2 (Some useful facts about norms and scalar products):
Verify the following claims for vectors x, y ∈ Rn and the Euclidean norm ‖·‖2 and scalar
product (·, ·)2 :
a) 2‖x‖22 + 2‖y‖22 = ‖x+ y‖22 + ‖x− y‖22 (Parallelogram identity).

b) |(x, y)2| ≤ ‖x‖2‖y‖2 (Schwarz inequality).

c) For any symmetric, positive definite matrix A ∈ Rn×n the bilinear form (x, y)A :=
(Ax, y)2 is a scalar product. i) Can any scalar product on Rn×n be written in this form?
ii) How has this to be formulated for complex matrices A ∈ Cn×n?

Exercise 1.3 (Some useful facts about matrix norms):
Verify the following relations for matrices A,B ∈ Kn×n and the Euclidean norm ‖ · ‖2 :
a) ‖A‖2 := max

{‖Ax‖2/‖x‖2, x ∈ Kn, x �= 0
}
= max

{‖Ax‖2, x ∈ Rn, ‖x‖2 = 1
}
.

b) ‖Ax‖2 ≤ ‖A‖2‖x‖2.
c) ‖AB‖2 ≤ ‖A‖2‖B‖2 (Is this relation true for any matrix norm?).

d) For Hermitian matrices A ∈ Cn×n there holds ‖A‖2 = max{|λ|, λ eigenvalue of A}.
e) For general matrices A ∈ Cn×n there holds ‖A‖2 = max{|λ|1/2, λ eigenvalue of ĀTA}.

Exercise 1.4 (Some useful facts about vector spaces and matrices):
a) Formulate the Gram-Schmidt algorithm for orthonormalizing a set of linearly indepen-
dent vectors {x1, . . . , xm} ⊂ Rn :

b) How can one define the square root A1/2 of a symmetric, positive definite matrix
A ∈ Rn×n ?

c) Show that a positive definite matrix A ∈ Cn×n is automatically Hermitian, i. e.,
A = ĀT . This is not necessarily true for real matrices A ∈ Rn×n , i. e., for real matrices
the definition of positiveness usually goes together with the requirement of symmetry.

Exercise 1.5: Recall the definitions of the following quantities:

a) The “maximum-norm” ‖ · ‖∞ and the “l1-norm” ‖ · ‖1 on Kn.

b) The “spectrum” Σ(A) of a matrix A ∈ K
n×n.

c) The “Gerschgorin circles” Ki ⊂ C, i = 1, . . . , n , of a matrix A ∈ Kn×n.
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d) The “spectral radius” ρ(A) of a matrix A ∈ Kn×n.

e) The “spectral condition number” κ2(A) of a matrix A ∈ Kn×n.

Exercise 1.6: Recall the proofs of the following facts about matrices:

a) The diagonal elements of a (Hermitian) positive definite matrix A ∈ Kn×n are real
and positive.

b) For the trace tr(A) :=
∑n

i=1 aii of a Hermitian matrix A ∈ Kn×n with eigenvalues
λi ∈ Σ(A) there holds

tr(A) =
n∑

i=1

λi.

c) A strictly diagonally dominant matrix A ∈ Kn×n is regular. If it is also Hermitian
with (real) positive diagonal entries, then it is positive definite.

Exercise 1.7: Let B ∈ Kn×n be a matrix, which for some matrix norm ‖ · ‖ satisfies
‖B‖ < 1 . Prove that the matrix I −B is regular with inverse satisfying

‖(I −B)−1‖ ≤ 1

1− ‖B‖ .

Exercise 1.8: Prove that each connected component of k Gerschgorin circles (that are
disjoined to all other n−k circles) of a matrix A ∈ Cn×n contains exactly k eigenvalues of
A (counted accordingly to their algebraic multiplicities). This implies that such a matrix,
for which all Gerschgorin circles are mutually disjoint, has exactly n simple eigenvalues
and is therefore diagonalizable.

Exercise 1.9: Let A,B ∈ Kn×n be two Hermitian matrices. Then, the following state-
ments are equivalent:

i) A and B commute, i. e., AB = BA .

ii) A and B possess a common basis of eigenvectors.

iii) AB is Hermitian.

Does the above equivalence in an appropriate sense also hold for two general “normal”
matrices A,B ∈ Kn×n, i. e., if ĀTA = AĀT and B̄TB = BB̄T ?

Exercise 1.10: A ”‘sesquilinear form”’ on Kn is a mapping ϕ(·, ·) : Rn × Rn → K ,
which is bilinear in the following sense:

ϕ(αx+ βy, z) = ᾱϕ(x, z) + β̄ϕ(y, z), ϕ(z, αx+ βy) = αϕ(z, x) + βϕ(z, y), α, β ∈ K.

i) Show that for any regular matrix A ∈ Kn×n the sesquilinear form ϕ(x, y) := (Ax,Ay)2
is a scalar product on K

n .

ii) In an earlier exercise, we have seen that each scalar product (x, y) on Kn can be written
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in the form (x, y) = (x,Ay)2 with a (Hermitian) positive definite matrix A ∈ Kn×n . Why
does this statement not contradict (i)?

Exercise 1.11: Let A ∈ Kn×n be Hermitian.

i) Show that eigenvectors corresponding to different eigenvalues λ1(A) and λ2(A) are
orthogonal. Is this also true for (non-Hermitian) “normal” matrices, i. e., if ĀTA = AĀT ?

ii) Show that there holds

λmin(A) = min
x∈Kn\{0}

(Ax, x)2
‖x‖22

≤ max
x∈Kn\{0}

(Ax, x)2
‖x‖22

= λmax(A),

where λmin(A) and λmax(A) denote the minimal and maximal (real) eigenvalues of A ,
respectively. (Hint: Use that a Hermitian matrix possesses an ONB of eigenvectors.)

Exercise 1.12: Let A ∈ K
n×n and 0 �∈ σ(A) . Show that the ε-pseudo-spectra of A

and that of its inverse A−1 are related by

σε(A) ⊂
{
z ∈ C \ {0} ∣∣ z−1 ∈ σδ(z)(A

−1)
} ∪ {0},

where δ(z) := ε‖A−1‖/|z| and, for 0 < ε < 1 , by

σε(A
−1) \B1(0) ⊂

{
z ∈ C \ {0} ∣∣ z−1 ∈ σδ(A)

}
,

where B1(0) := {z ∈ C, ‖z‖ ≤ 1} and δ := ε/(1− ε) .




