
0 Introduction

Subject of this course are numerical algorithms for solving problems in Linear Algebra,
such as linear algebraic systems and corresponding matrix eigenvalue problems. The
emphasis is on iterative methods suitable for large-scale problems arising, e. g., in the
discretization of partial differential equations and in network problems.

0.1 Basic notation of Linear Algebra and Analysis

At first, we introduce some standard notation in the context of (finite dimensional) vector
spaces of functions and their derivatives. Let K denote the field of real or complex
numbers R or C , respectively. Accordingly, for n ∈ N , let Kn denote the n-dimensional
vector space of n-tuples x = (x1, . . . , xn) with components xi ∈ K, i = 1, . . . , n . For
these addition and scalar multiplication are defined by:

x+ y := (x1 + y1, . . . , xn + yn), αx := (αx1, . . . , αxn), α ∈ K.

The elements x ∈ Kn are, depending on the suitable interpretation, addressed as “points”
or “vectors” . Here, one may imagine x as the end point of a vector attached at the origin
of the chosen Cartesian1 coordinate system and the components xi as its “coordinates”
with respect to this coordinate system. In general, we consider vectors as “column vec-
tors”. Within the “vector calculus” its row version is written as (x1, . . . , xn)

T . The
null (or zero) vector (0, . . . , 0) may also be briefly written as 0 . Usually, we prefer
this coordinate-oriented notation over a coordinate-free notation because of its greater
clearness. A set of vectors {a1, . . . , ak} in Kn is called “linearly independent” if

k∑
i=1

cia
i = 0, ci ∈ K ⇒ ci = 0, i = 1, . . . , k.

Such a set of k = n linearly independent vectors is called a “basis” of K
n , which spans

all of Kn , i. e., each element x ∈ Kn can be (uniquely) written as a linear combination
of the form

x =

n∑
i=1

cia
i, ci ∈ K.

Each (finite dimensional) vector space, such as Kn , possesses a basis. The special “Carte-
sian basis” {e1, . . . , en} is formed by the “Cartesian unit vectors” ei := (δ1i, . . . , δni) ,
δii = 1 and δij = 0, for i �= j, being the usual Kronecker symbol. The elements of this
basis are mutually orthonormal, i. e., with respect to the Euclidian scalar product, there
holds (ei, ej)2 :=

∑n
k=1 e

i
ke

j
k = δij . “Matrices” A ∈ K

n×n are two-dimensional square
arrays of numbers from K written in the form A = (aij)

n
i,j=1 , where the first index, i ,

1René Descartes (1596–1650): French mathematician and philosopher (“(ego) cogito ergo sum”);
worked in the Netherlands and later in Stockholm; first to recognize the close relation between geometry
and arithmetic and founded analytic geometry.
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refers to the row and the second one, j , to the column (counted from the left upper corner
of the array) at which the element aij is positioned. Usually, matrices are square arrays,
but in some situations also rectangular matrices may occur. The set of (square) matri-
ces forms a vector space with addition and scalar multiplication defined in the natural
elementwise sense,

A = (aij)
n
i,j=1, B = (bij)

n
i,j=1, c ∈ K ⇒ cA+B = (caij + bij)

n
i,j=1.

For matrices and vectors natural multiplications are defined by

Ax =
( d∑

k=1

aikxk

)n

i=1
∈ K

n, AB =
( d∑

k=1

aikbkj

)n

i,j=1
∈ K

n×n.

Matrices are used to represent linear mappings in Kd with respect to a given basis, mostly
a Cartesian basis, ϕ(x) = Ax . By ĀT = (aTij)

n
i,j=1 , we denote the conjugate “transpose”

of a matrix A = (aij)
n
i,j=1 ∈ K

n×n with the elements aTij = āji. For matrices A,B ∈ K
n×n

there holds (AB)T = BTAT . Matrices for which A = ĀT are called “symmetric” in the
case K = R and “Hermitian” in the case K = C.

0.2 Linear algebraic systems and eigenvalue problems

Let A be an m× n-matrix and b an m-vector,

A = (ajk)
m,n
j,k=1 =

⎡
⎢⎢⎣
a11 · · · a1n
...

...

am1 · · · amn

⎤
⎥⎥⎦ , b = (bj)

m
j=1 =

⎡
⎢⎢⎣
b1
...

bm

⎤
⎥⎥⎦ .

We seek an n-vector x = (xk)k=1,...,n such that

a11x1 + a12x2 + · · · + a1nxn = b1
...

am1x1 + am2x2 + · · · + amnxn = bm

(0.2.1)

or written in short as Ax = b . This is called a “linear system” (of equations). It is
called “underdetermined” for m < n , “quadratic” for m = n, and “overdetermined” for
m > n . The linear system is solvable if and only if rank(A) = rank([A, b]) (rank(A) =
number of linearly independent columns of A ) with the composed matrix

[A, b] =

⎡
⎢⎢⎣
a11 · · · a1n b1
...

...
...

am1 · · · amn bm

⎤
⎥⎥⎦ .
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In the “quadratic” case the solvability of the system (0.2.1) is equivalent to any one of
the following properties of the coefficient matrix A ∈ Kn×n :

- Ax = 0 implies x = 0 .

- rank(A) = n .

- det(A) �= 0 .

- All eigenvalues of A are nonzero.

A number λ ∈ C is called “eigenvalue” of the (quadratic) matrix A ∈ K
n×n if there

exists a corresponding vector w ∈ Kn \ {0}, called ”eigenvector”, such that

Aw = λw. (0.2.2)

Eigenvalues are just the zeros of the characteristic polynomial χA(z) := det(A − zI)
of A , so that by the fundamental theorem of Algebra each n × n-matrix has exactly
n eigenvalues counted accordingly to their (algebraic) multiplicities. The corresponding
eigenvectors span linear subspaces of Kn called “eigenspaces”.

Eigenvalue problems play an important role in many problems from science and engi-
neering, e. g., they represent energy levels in physical models (e. g., Schrödinger equation
in Quantum Mechanics) or determine the stability or instability of solutions of dynamical
systems (e. g., Navier-Stokes equations in hydrodynamics).

0.3 Numerical approaches

We will mainly consider numerical methods for solving quadratic linear systems and asso-
ciated eigenvalue problems. The emphasis will be on medium- and large-scale problems,
i. e., problems of dimension n ≈ 104 − 109, which at the upper end impose particularly
strong requirements on the algorithms with respect to storage and work efficiency. Prob-
lems of that size usually involve matrices with special structure such as “band structure”
and/or extreme “sparsity”, i. e., only very few matrix elements in each row are non-zero.
Most of the classical methods, which have originally been designed for “full” but smaller
matrices, cannot be realistically applied to such large problems. Therefore, modern meth-
ods extensively exploit the particular sparsity structure of the matrices. These methods
split into two classes, “direct methods” and “iterative methods”.

Definition 0.1: A “direct” method for the solution of a linear system Ax = b is an
algorithm, which (neglecting round-off errors) delivers the exact solution x in finitely
many arithmetic steps. “Gaussian elimination” is a typical example of such a “direct
method”. In contrast to that an “iterative method” constructs a sequence of approximate
solutions {xt}t∈N, which only in the limit t → ∞ converge to the exact solution, i. e.,
limt→∞ xt = x. “Richardson iteration” or more general fixed-point methods of similar
kind are typical example of such “iterative methods”. In analyzing a direct method, we are
mainly interested in the work count, i. e., the asymptotic number of arithmetic operations
needed for achieving the final result depending on the problem size, e. g., O(n3) , while
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in an iterative method, we look at the work count needed for one iteration step and the
number of iteration steps for reducing the initial error by a certain fixed factor, e. g., 10−1,
or the asymptotic speed of convergence (“linear”, “quadratic, etc.).

However, there is no sharp separation between the two classes of “direct” or “iterative”
methods as many theoretically “direct” methods are actually used in “iterative” form in
practice. A typical method of this type is the classical “conjugate gradient (CG) method”,
which in principle is a direct method (after n iteration steps) but is usually terminated
like an iterative methods already after m� n steps.

0.4 Applications and origin of problems

we present some applications, from which large linear algebra problems originate. This
illustrates how the various possible structures of matrices may look like. Thereby, we have
to deal with scalar or vector-valued functions u = u(x) ∈ Kn for arguments x ∈ Kn . For
derivatives of differentiable functions, we use the notation

∂xu :=
∂u

∂x
, ∂2xu :=

∂2u

∂2x
, . . . , ∂iu :=

∂u

∂xi
, ∂2iju :=

∂2u

∂xi∂xj
, . . . ,

and analogously also for higher-order derivatives. With the nabla operator ∇ the “gra-
dient” of a scalar function and the “divergence” of a vector function are written as
gradu = ∇u := (∂1u, ..., ∂du)

T and div u = ∇ · u := ∂1u1 + ... + ∂dud , respectively.
For a vector β ∈ Rd the derivative in direction β is written as ∂βu := β · ∇u . Combi-
nation of gradient and divergence yields the so-called “Laplacian operator”

∇ · ∇u = Δu = ∂21u+ ...+ ∂2du.

The symbol ∇mu denotes the “tensor” of all partial derivatives of order m of u , i. e., in
two dimensions u = u(x1, x2) , ∇2u = (∂i1∂

j
2u)i+j=2.

0.4.1 Gaussian equalization calculus

A classical application in Astronomy is the Gaussian equalization calculus (method of
least error-squares): For given functions u1, . . . , un and points (xj , yj) ∈ R2 , j =
1, . . . , m , m > n, a linear combination

u(x) =

n∑
k=1

cku
k(x)

is to be determined such that the “mean deviation”

Δ2 :=
( m∑

j=1

|u(xj)− yj|2
)1/2
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becomes minimal. (The “Chebyshev2 equalization problem” in which the “maximal de-
viation” Δ∞ := maxj=1,...,m |u(xj)− yj | is minimized poses much more severe difficulties
and is therefore used only for smaller n.) For the solution of the Gaussian equalization
problem, we set y := (y1, . . . , ym), c := (c1, . . . , cn) and

ak := (uk(x1), . . . , u
k(xm)) , k = 1, . . . , n , A ≡ [a1, . . . , an].

Using this notation, now the quadratic functional

F (c) =
( m∑

j=1

|(Ac− y)j|2
)1/2

is to be minimized with respect to c ∈ R
n . This is equivalent to solving the overde-

termined linear system Ac = y in the sense of finding a vector c with minimal mean
error-squares, i. e., with minimal “defect”. In case that rank(A) = n this “minimal-defect
solution” c is determined by the so-called “normal equation”

ATAc = ATy, (0.4.3)

a linear n×n-system with a positive definite (and hence regular) coefficient matrix ATA.
In the particular case of polynomial fitting, i. e., uk(x) = xk−1 , the “optimal” solution

u(x) =
n∑

k=1

ckx
k−1

called “Gaussian equalization parabola” for the points (xj , yj), j = 1, . . . , m . Because of
the regularity of the “Vandermondian3 determinant”

det

⎡
⎢⎢⎢⎢⎢⎣

1 x1 · · · xn−1
1

1 x2 · · · xn−1
2

...
...

...

1 xn · · · xn−1
n

⎤
⎥⎥⎥⎥⎥⎦ =

n∏
j,k=1,j<k

(xk − xj) �= 0,

for mutually distinct points xj there holds rank(A) = n , i. e., the equalization parabola
is uniquely determined.

2Pafnuty Lvovich Chebyshev (1821–1894): Russian mathematician; prof. in St. Petersburg; contribu-
tions to number theory, probability theory and especially to approximation theory; developed the general
theory of orthogonal polynomials.

3Alexandre-Thophile Vandermonde (1735–1796): French mathematician; gifted musician, came late
to mathematics and published here only four papers (nevertheless member of the Academy of Sciences
in Paris); contributions to theory of determinants and combinatorial problem (curiously enough the
determinant called after him does not appear explicitly in his papers).
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0.4.2 Discretization of elliptic PDEs

The numerical solution of partial differential equations requires an appropriate “discretiza-
tion” of the differential operator, e. g., by a “difference approximation” of the derivatives.
Consider, for example, the “first boundary value problem of the Laplacian4 operator”,

Lu := −Δu = f in Ω, u = g on ∂Ω, (0.4.4)

posed on a domain Ω ⊂ Rn with boundary ∂Ω . Here, for a given (continuous) right-hand
side function f = f(x1, x2) and boundary function g = g(x1, x2) a function u = u(x1, x2)
is to be determined, which is twice differentiable on Ω and continuous on Ω̄, such that
(0.4.4) holds. The region Ω , e. g., the unit square, is covered by an equidistant Cartesian
mesh Ωh with “mesh boundary” ∂Ωh. The mesh points P ∈ Ωh may be numbered
row-wise.
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16

h

h

h = 1
m+1

mesh width

n = m2 “interior” mesh points

Figure 1: Finite difference mesh

At “interior” mesh points P ∈ Ωh the differential operators in x1- and x2-direction are
approximated by second-order central difference quotients, which act on mesh functions
uh(P ) . This results in “difference equations” of the form

Lhuh(P ) :=
∑

Q∈N(P )

σ(P,Q)uh(Q) = fh(P ), P ∈ Ωh, (0.4.5)

uh(P ) = gh(P ), P ∈ ∂Ωh, (0.4.6)

with certain mesh neighborhoods N(P ) ⊂ Ω∪∂Ωh of points P ∈ Ωh and approximations
fh(·) to f and gh(·) to g . We set the coefficients σ(P,Q) := 0 for points Q �∈ N(P ).
The considered difference operator based on second-order central difference quotients for
approximating second derivatives is called “5-point difference operator” since it uses 5
points (Accordingly, its three-dimensional analogue is called “7-point difference opera-

4Pierre Simon Marquis de Laplace (1749–1827): French mathematician and astronomer; prof. in Paris;
founded among other fields probability calculus.
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tor”). Then, for P ∈ Ωh there holds∑
Q∈Ωh

σ(P,Q)uh(Q) = fh(P )−
∑

Q∈∂Ωh

σ(P,Q)gh(Q). (0.4.7)

For any numbering of the mesh points in Ωh and ∂Ωh, Ωh = {Pi, i = 1, ..., n} , ∂Ωh =
{Pi, i = n+1, ..., n+m}, we obtain a quadratic linear system for the vector of approximate
mesh values U = (Ui)

N
i=1, Ui := uh(Pi) .

AU = F, (0.4.8)

with A = (aij)
n
i,j=1, F = (bj)

n
j=1 , where

aij := σ(Pi, Pj), bj := fh(Pj)−
n+m∑
i=n+1

σ(Pj, Pi)gh(Pi).

In the considered special case of the unit square and row-wise numbering of the interior
mesh points Ωh the 5-point difference approximation of the Laplacian yields the following
sparse matrix of dimension n = m2:

A =
1

h2

⎡
⎢⎢⎢⎢⎢⎣

Bm −Im
−Im Bm −Im

−Im Bm
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
n Bm =

⎡
⎢⎢⎢⎢⎢⎣

4 −1

−1 4 −1

−1 4
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
m,

where Im is the m×m-unit matrix. The matrix A is a very sparse band matrix with
half-band width m , symmetric and (irreducibly) diagonally dominant. This implies that
it is regular and positive definite. In three dimensions the corresponding matrix has di-
mension n = m3 and half-band width m2 and shares all the other mentioned properties
of its two-dimensional analogue. In practice, n
 104 up to n ≈ 107 in three dimensions.
If problem (0.4.4) is only part of a larger mathematical model involving complex domains
and several physical quantities such as (in chemically reacting flow models) velocity, pres-
sure, density, temperature and chemical species, the dimension of the complete system
may reach up to n ≈ 107 − 109.

To estimate a realistic size of the algebraic problem oriented by the needs of a practical
application, we consider the above model problem (Poisson equation on the unit square)
with an adjusted right-hand side and boundary function such that the exact solution is
given by u(x, y) = sin(πx) sin(πy) ,

−Δu = 2π2u =: f in Ω, u = 0 on ∂Ω. (0.4.9)

For this setting the error analysis of the difference approximation yields the estimate

max
Ωh

|u− uh| ≈ 1
24
d2ΩM4(u)h

2 ≈ 8h2, (0.4.10)



8 Introduction

where M4(u) = maxΩ̄ |∇4u| ≈ π4 (see the lecture notes Rannacher [3]). In order to
guarantee a relative error below TOL = 10−3, we have to choose h ≈ 10−2 corresponding
to n ≈ 104 in two and n ≈ 106 in three dimension. The concrete structure of the matrix
A depends on the numbering of mesh points used:

i) Row-wise numbering: The lexicographical ordering of mesh points leads to a band
matrix with band width 2m+ 1. The sparsity within the band would be largely reduced
by Gaussian elimination (so-called “fill-in”).

1 52 3 4

6 7 8 9 10

11 12 13

21

14 15

16 17 18 19 20

2322 2524

Figure 2: Lexicographical ordering of mesh points

ii) Diagonal numbering: The successive numbering diagonally to the Cartesian coor-
dinate directions leads to a band matrix with less band volume. This results in less fill-in
within Gaussian elimination.

13

14

16

18

19

22

2 5 9

84

1 3 6 10 15

127

11 20 23 25

242117

Figure 3: Diagonal mesh-point numbering

iii) Checker-board numbering: The staggered row-wise and column-wise numbering
leads to a 2× 2-block matrix with diagonal main blocks and band width 2m+ 1 ≈ h−1.
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Figure 4: Checkerboard mesh-point numbering

For large linear systems of dimension n > 105 direct methods such as Gaussian elim-
ination are difficult to realize since they are generally very storage and work demanding.
For a matrix of dimension n = 106 and band width m = 102 Gaussian elimination re-
quires already about 108 storage places. This is particularly undesirable if also the band
is sparse as in the above example with at most 5 non-zero elements per row. In this
case those iterative methods are more attractive, in which essentially only matrix-vector
multiplications occur with matrices of similar sparsity pattern as that of A .

As illustrative examples, we consider simple fixed-point iterations for solving a linear
system Ax = b with a regular n×n-coefficient matrix. The system is rewritten as

ajjxj +
n∑

k=1
k �=j

ajkxk = bj , j = 1, . . . , n.

If ajj �= 0, this is equivalent to

xj =
1

ajj

{
bj −

n∑
k=1
k �=j

ajkxk

}
, j = 1, . . . , n.

Then, the so-called “Jacobi method” generates iterates xt ∈ Rn, t = 1, 2, . . . , by succes-
sively solving

xtj =
1

ajj

{
bj −

n∑
k=1
k �=j

ajkx
t−1
k

}
, j = 1, . . . , n. (0.4.11)

When computing xtj the preceding components xtr, r < j, are already known. Hence, in
order to accelerate the convergence of the method, one may use this new information in
the computation of xtj . This idea leads to the “Gauß-Seidel5method”:

xtj =
1

ajj

{
bj −

∑
k<j

ajkx
t
k −

∑
k>j

ajkx
t−1
k

}
, j = 1, . . . , n. (0.4.12)

5Philipp Ludwig von Seidel (1821–1896): German mathematician; Prof. in Munich; contributions to
analysis (method of least error-squares) and celestial mechanics and astronomy.
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The Gauß-Seidel method has the same arithmetic complexity as the Jacobi method but
under certain conditions (satisfied in the above model situation) it converges twice as fast.
However, though very simple and maximal storage economical, both methods, Jacobi as
well as Gauß-Seidel, are by far too slow in practical applications. Much more efficient iter-
ative methods are the Krylov-space methods. The best known examples are the classical
“conjugate gradient method” (“CG method”) of Hestenes and Stiefel for solving linear
systems with positive definite matrices and the “Arnoldi method” for solving correspond-
ing eigenvalue problems. Iterative methods with minimal complexity can be constructed
using multi-scale concepts (e. g., geometric or algebraic “multigrid methods”). The latter
type of methods will be discussed below.

0.4.3 Hydrodynamic stability analysis

Another origin of large-scale eigenvalue problems is hydrodynamic stability analysis. Let
{v̂, p̂} be a solution (the “base flow”) of the stationary Navier-Stokes equation

− νΔv̂ + v̂ · ∇v̂ +∇p̂ = 0, ∇ · v̂ = 0, in Ω,

v̂|Γrigid
= 0, v̂|Γin

= vin, ν∂nv̂ − p̂n|Γout = P, ν∂nv̂ − p̂n|ΓQ
= q,

(0.4.13)

where v̂ is the velocity vector field of the flow, p̂ its hydrostatic pressure, ν the kinematic
viscosity (for normalized density ρ ≡ 1), and q the control pressure. The flow is driven
by a prescribed flow velocity vin at the Dirichlet (inflow) boundary (at the left end), a
prescribed mean pressure P at the Neumann (outflow) boundary (at the right end) and
the mean pressure q at the control boundary ΓQ . The (artificial) “free outflow” (also
called “do nothing”) boundary condition in (0.4.13) has proven successful especially in
modeling pipe flow since it is satisfied by Poiseuille flow (see Heywood et al. [42]).

.

Γin S Γout

ΓQ

ΓQ

Figure 5: Configuration of the flow control problem.

Fig. 5 shows the configuration of a channel flow around an obstacle controlled by pressure
prescription at ΓQ , and Figure 6 the computational mesh and streamline plots of two
flows for different Reynolds numbers and control values, one stable and one unstable.
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Figure 6: Computational mesh (top), uncontrolled stable (middle) and controlled unstable
(bottom) stationary channel flow around an obstacle.

For deciding whether these base flows are stable or unstable, within the usual linearized
stability analysis, one investigates the following eigenvalue problem corresponding to the
Navier-Stokes operator linearized about the considered base flow:

− νΔv + v̂ · ∇v + v · ∇v̂ +∇q = λv, ∇ · v = 0, in Ω,

v|Γrigid∪Γin
= 0, ν∂nv − qn|Γout∪ΓQ

= 0.
(0.4.14)

From the location of the eigenvalues in the complex plane, one can draw the following
conclusion: If an eigenvalue λ ∈ C of (0.4.14) has Re λ < 0 , the base flow is unstable,
otherwise it is said to be “linearly stable”. This means that the solution of the linearized
nonstationary perturbation problem

∂tw − νΔw + v̂ · ∇w + w · ∇v̂ +∇q = 0, ∇ · w = 0, in Ω,

w|Γrigid∪Γin
= 0, ν∂nw − qn|Γout∪ΓQ

= 0
(0.4.15)

corresponding to an initial perturbation w|t=0 = w0 satisfies a bound

sup
t≥0

‖w(t)‖ ≤ A‖w0‖, (0.4.16)

with some constant A ≥ 1 . After discretization the eigenvalue problem (0.4.14) in func-
tion space is translated into an nonsymmetric algebraic eigenvalue problem, which is
usually of high dimension n ≈ 105 − 106. Therefore its solution can be achieved only by
iterative methods.

However, “linear stability” does not guarantee full “nonlinear stability” due to effects
caused by the “non-normality” of the operator governing problem (0.4.14), which may
cause the constant A to become large. This is related to the possible “deficiency” (dis-
crepancy of geometric and algebraic multiplicity) or a large “pseudo-spectrum” (range
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of large resolvent norm) of the critical eigenvalue. This effect is commonly accepted as
explanation of the discrepancy in the stability properties of simple base flows such as
Couette flow and Poiseuille flow predicted by linear eigenvalue-based stability analysis
and experimental observation (see, e. g., Trefethen&Embree [22] and the literature cited
therein).




