Inhaltsverzeichnis

0 Einleitung				1		
1	Kontinuumsmechanische Grundlagen					
	1.1	Grund	llagen aus Linearer Algebra und Analysis	5		
		1.1.1	Hilfsmittel aus der Tensoralgebra	5		
		1.1.2	Hilfsmittel aus der Vektoranalysis	8		
	1.2	Masse	kontinua	11		
		1.2.1	Lagrange und Eulersche Koordinaten	12		
		1.2.2	Kinematische Eigenschaften (Verzerrungstensor)	14		
		1.2.3	Statische Eigenschaften (Spannungstensor)	17		
2	Die Grundgleichungen der Strömungsmechanik					
	2.1	Erhalt	zungsgleichungen	23		
		2.1.1	Das Reynolds'sche Transporttheorem	23		
		2.1.2	Masseerhaltung	25		
		2.1.3	Impulserhaltung	25		
		2.1.4	Drehimpulserhaltung	26		
		2.1.5	Energieerhaltung	27		
		2.1.6	Bilanzgleichungen	29		
	2.2	Mater	ialgleichungen	29		
		2.2.1	Viskositätsmodell	30		
		2.2.2	Thermodynamische Aspekte	33		
		2.2.3	Erhaltungsgleichungen in nicht-konservativer Form	36		
	2.3	Gasdy	mamische Gleichungen (Euler-Gleichungen)	37		
3	Die	Grund	dgleichungen der Strukturmechanik	45		
	3.1	Mathe	ematische Modelle	45		
		3.1.1	Das allgemeine nichtlineare Modell	45		
		3.1.2	Linearisierte Modelle	49		
		3.1.3	Die Lamé-Naviersche Anfangs-Randwertaufgabe	54		
		3.1.4	Einfache Anwendungen ("Semi-inverse Methode")	55		

	3.2	Mathe	ematische Theorie der Lamé-Navierschen Gleichungen	. 60
		3.2.1	Eigenschaften des Elastizitätstensors	. 61
		3.2.2	Eindeutigkeitsssatz und Extremalprinzipien	. 64
		3.2.3	Existenz von Lösungen und Wohlgestelltheit	. 73
		3.2.4	Inkompressible Materialien	. 83
		3.2.5	Die Lamé-Naviersche Schwingungsaufgabe	. 85
	3.3	Theor	ie der Biegung dünner Platten	. 88
		3.3.1	Das Kirchhoffsche Plattenmodell	. 90
		3.3.2	Das nichtlineare von Kármánsche Plattenmodell	. 96
		3.3.3	Physikalisch nichtlineare Plattentheorie	. 99
		3.3.4	Extremalprinzipien	. 100
4	Inco	ompres	ssible und schwach-kompressible Fluide	103
	4.1	Inkom	apressible Fluide (Navier-Stokes-Gleichungen)	. 103
		4.1.1	Ähnlichkeitslösungen (Reynolds-Zahl)	. 106
		4.1.2	Beispiele: Couette- und Poiseuille-Strömung	. 109
		4.1.3	Laminare Grenzschichten	. 111
	4.2	Therm	nisch getriebene Stömungen	. 115
		4.2.1	Der Grenzprozess $Ma \to 0$. 116
		4.2.2	Die "low-Mach-number"-Approximation	. 119
		4.2.3	$Thermische \ "Konvektionsströmung" \ (Boussinesq-Approximation)$. 121
		4.2.4	Ähnlichkeit kompressibler Strömungen	. 122
		4.2.5	Beispiel "heat-driven cavity"	. 123
		4.2.6	Chemisch regierende Strömungen	. 125
		4.2.7	Beispiel "chemischer Strömungsreaktor"	. 126
	4.3	Mathe	ematische Theorie der Navier-Stokes-Gleichungen	. 127
		4.3.1	Die stationären Navier-Stokes-Gleichungen	. 127
		4.3.2	Die instationären Navier-Stokes-Gleichungen	. 138
		4.3.3	Stabilität von Lösungen	. 140
		4.3.4	2D-Approximation und Stromfunktionsformulierung	. 146
		4.3.5	Konfigrationen mit Rotationssymmetrien	. 150

INHALTSVERZEICHNIS

5	FE-	Metho	oden in der linearen Elastizität	157		
	5.1	Die kl	lassische "Methode der finiten Elemente"	. 158		
	5.2	Die "r	mathematische" Finite-Elemente-Methode	. 163		
		5.2.1	Abstrakte Formulierung der FEM	. 163		
		5.2.2	Praktische Realisierung der FEM	. 172		
	5.3	Finite	-Elemente-Methoden für die Kirchhoffsche Platte	. 178		
		5.3.1	Konforme primale Ansätze	. 179		
		5.3.2	Nichtkonforme primale Ansätze	. 183		
		5.3.3	Konvergenzanalyse für nichtkonforme Ansätze	. 185		
		5.3.4	Gemischte Ansätze	. 191		
6	FE-Methoden für inkompressible Strömungen 20					
	6.1	FEM	für die Stromfunktionsformulierung	. 203		
		6.1.1	Konforme primale Ansätze	. 204		
		6.1.2	Nicht-konforme primale Ansätze	. 206		
		6.1.3	Konvergenzanalyse für nichtkonforme Ansätze	. 208		
		6.1.4	Gemischte Ansätze	. 211		
	6.2	iskretisierung des Stokes-Problems	. 216			
		6.2.1	"Exakt" divergenzfreie Stokes-Elemente	. 217		
		6.2.2	Allgemeine "Stokes-Elemente"	. 220		
		6.2.3	Stabilisierte Stokes-Elemente	. 235		
		6.2.4	Lösung der diskreten Stokes-Probleme	. 240		
		6.2.5	Schur-Komplement-Verfahren	. 241		
	6.3	Lösun	g der stationären Navier-Stokes-Gleichungen	. 245		
		6.3.1	Diskretisierung des Konvektionsterms	. 245		
		6.3.2	Linearisierung	. 253		
		6.3.3	Algebraische Lösung der linearisierten Probleme	. 254		
		6.3.4	Mehrgitter-Verfahren	. 255		
	6.4	Lösun	g der instationären Navier-Stokes-Gleichungen	. 259		
		6.4.1	Zeitschrittschemata	. 260		
		6.4.2	Projektionsverfahren	. 265		
		6.4.3	Lösung der algebraischen Teilprobleme	. 276		

7	FE-Methoden für kompressible Strömungen			27 9
	7.1	Berech	nnung von Strömungen kleiner Mach-Zahl	. 279
		7.1.1	Das zugrunde liegende "low-Mach number"-Modell	. 279
		7.1.2	Finite-Elemente-Diskretisierung im Ort	. 280
		7.1.3	Projektionsverfahren	. 280
	7.2	Lösun	g der Euler-Gleichungen	. 282
		7.2.1	DG-Verfahren für lineare Transportprobleme	. 283
		7.2.2	Das DG-Verfahren für hyperbolische Systeme	. 288
Li	terat	urverz	zeichnis	295
In	dex			305