Chapter 5

Implementation

A computer implementation of the content and processes of AstadhyayT can
be aptly compared with the automatic machines for buying railway tickets.
When interacting with such a machine, a traveller needs to supply specific
information about the destination, route, date and time, number of travellers,
class etc. Depending upon the interactive design of the program this informa-
tion is required by the machine as and when it needs to take some decision
for which the wish and consent of the traveller is necessary. On its part, the
machine can put constraints upon the choices depending upon the current sit-
uation, e.g. whether an option to take a particular route or train on a particular
day is possible or not. Finally, the desired ticket is printed.

In a similar manner, a computer program that implements the derivation of
a linguistic expression requires input by the user regarding her or his inten-
tion (vivaksa). This information is necessary to make appropriate decisions so
that finally the desired expression is formed. The program, on its part, puts
constraints upon the possible choices that are admissible.

In the following, I provide an overview of the computer implementation of
the Paninian system. As discussed in the previous chapters, my rendering of
the grammar is through its formal representation. Therefore, the basis of the
present computerisation is the formalisation discussed in chapters 3 and 4.

The programming codes specified here aim to show that my model of the
AstadhyayT facilitates its computer implementation. Because of the con-
straints of the space, there is no attempt to furnish the details which run into
several thousand lines of program codes. Moreover, thus far there is no user
interface for the system. This is because it does not directly contribute to the re-
search questions and would simultaneously require considerable time which
is beyond the scope of the present work. The programs are written in the
Python Programming Language which runs on Windows, Linux/Unix, Mac

107

QN Q= W N =

108 5 Implementation

OS X and is available under open source license.! Needless to mention, there
can be different ways of implementation depending upon the overall design
of the program, the nature of the programming environment as well as the
choices of the implementational platform.

There are two main aspects of the computer implementation which I will deal
with in this chapter. Firstly, how to implement the grammatical content on
a computer, and secondly, how to simulate the processes of derivation. The
former has to deal with the data-structures of the program and the latter with
its application and dynamics.

The basic categories of the formal framework introduced in chapters 2 and 3
aim to represent the grammar in such a way that its application can be effected
in an algorithmic manner. The data-structures specified below are developed
to render the categories of this formal framework.

5.1 Data-structures
5.1.1 Elements

A collection of elements—components, attributes and meaning-expressions—
constitutes the basic database. A typical entry of this database looks as follows:
paTha_a;

ait_9 udAttet_9;

p_0;
a_0 hrasva_O0;
Th_1;

a_0 hrasva_0 it_O udAtta_O

The above string is separated by semi-colons (;). Here, the first entry (line 1)
is the ID of the element. It is the ID of the verbal root paTha_a. After this (line
2) the IDs of its attributes are noted with a blank space in between. There
are two IDs mentioned here: ait_9 which stands for the attribute that has
the phoneme a_0 as it_0 marker. Secondly, the attribute udAttet_9 says that
the marker sound here is high-pitched. This is followed by entries for each
phoneme and their attributes. There are four phonemes here (lines 3-6). The
final phoneme a_0 carries the attribute it_0 and udAtta_0, that makes the
whole component ait_9 and udAttet_9.

The collection of elements is implemented by the Elements class.

! The Python Programming Language—Official website https://www.python.org (ac-
cessed on 22.03.2016) supplies free download of the Python interpreter as well as compre-
hensive documentation.

= W N =

5.1 Data-structures 109

class Elements:
def __init__(self):
self.elements = dictionary_of_elements (ELEMENTS_FILE_NAME)

The class variable is a dictionary of elements initialized by the file
ELEMENTS_FILE_NAME. The class of elements can be instantiated as follows.

>>> from elements import Elements
>>> element = Elements ()

The first command imports the class of Elements and the second one instan-
tiates it. The variable element is now an object variable belonging to the El-
ements class. The class functions can now be executed. For example, the fol-
lowing function returns the boolean value True or False, depending upon
whether an element is present in the database or not.

>>> element.is_an_element ('paTha_a')
True

Another function of this class returns a component as a list of sets, which can
be represented as language-components.

>>> element.get_component_in_langComp_form('paTha_a')
[set(['paTha_a','udAttet_9','p_0','ait_9'1),

set (['hrasva_0','paTha_a','udAttet_9','a_0','ait_9']1),
set (['paTha_a','udAttet_9','Th_1','ait_9'])]

A list consisting of three sets is returned in the above example. These three sets
correspond to the three sounds of the said component. It should be noted that
certain attributes, like ait_9 i.e. having a as it-marker or udAttet_9 having
an udatta-marker are included in the database itself.

The value returned is suitable for representation in the new framework. Thus,
the final marker sound is not included as part of the form of the component,
but as an attribute. Thus, it has only three sets corresponding to the three
sounds /p a th/, and not four sets. This is because the final phoneme in the
original corpus is only a marker sound.

5.1.2 Sound-sets

Each of the three sets representing the three phonemes of the compo-
nent paTha_a are stored as sound-sets which are implemented by the class
SoundSets.

class SoundSets:
def init__(self,a_set_of_item_ids):

self.soundSet = a_set_of_item_ids

N OO W N

O 0N U W N =

e el e e e
U= W N = O

110 5 Implementation

It is instantiated by a set of IDs. For example, the above list of three sets can
be represented through three SoundSets.

>>> from soundSets import SoundSets

>>> soundSet_1 = SoundSets(set(['paTha_a','udAttet_9',
'p_0','ait_9'1))

>>> soundSet_2 = SoundSets(set(['paTha_a','udAttet_9',
'hrasva_0','a_0','ait_9']))

>>> soundSet_3 = SoundSets(set(['paTha_a','udAttet_9',
"Th_1','ait_9'1))

A sound-set contains a collection of IDs. There is, however, an important con-
straint: it must have exactly one element from the following set of fundamental
sounds.

FUNDAMENTAL_SQUNDS=['a 0','i 0','u 0",

'R_1','"1R_O0"',

'e_0','0_0"',

'ai_0','au_0"',

'h_ 0','y_0','v_0','r_O",
'1.0',
'J1','m_0','G_1"','N_1','n_O0",
'jh_0','bh_0"',

'gh_0','Dh_1','dh_0"',
|j_0|’|b_0l’lg_0|’ID_1|’Id_O|’
'kh_0','ph_0','ch_0','Th_1','th_0','c_0','T_1','t_0",

'k_0','p_0",

'z_ 0','S_1','s_0"',
'h_0"',
'H_1','M_1",
'x_0"']

In the above list, IDs in the first fourteen lines correspond to the fourteen Siva-
sttras. In the 15th line, H_1 and M_1 correspond to the aspirated sound visar-
jantya and the nasal sound anusvara respectively. Finally, x_0 in the 16th line
is for a pause or virama.

Because of the constraint that exactly one ID from the above set must be
present within a sound-set, the following set of IDs are invalid candidates
for a sound-set.

>>> from soundSets import SoundSets
>>> soundSet_4 = SoundSets(set(['paTha_a']))
Invalid sound-set!

The soundSet_4 does not contain any ID from the above set of
FUNDAMENTAL _SOUNDS and hence is an invalid set for a sound-set.

>>> soundSet_5 = SoundSets(set(['a_0','i _0']1))
Invalid sound-set!

Here, soundSet_5 has more than one ID from the set of FUNDAMENTAL _SOUNDS.

= W N =

5.1 Data-structures 111

The following function of the class returns the phonetic form of a sound-set.
The phonetic form may contain additional attributes like the length or into-
nation of vowels.

>>> soundSet_1.get_phoneme_as_a_set ()
set(['p_0'1)

>>> soundSet_2.get_phoneme_as_a_set ()
set(['hrasva_0','a_0'])

A new attribute can be added to a sound-set. The following function imple-
ments it.

>>> soundSet_2.addAttributes(set(['at_1']))
>>> soundSet_2.get_soundSet ()
set (['paTha_a', 'udAttet_9','a_0','hrasva_0','at_1','ait_9'])

Here, the attribute at_1 is added to a sound-set. While adding the attributes,
the consistency condition of the sound-set is taken care of. Thus, an attribute
like dIrgha_0 can not coexist with hrasva_0 within the same sound-set.

>>> soundSet_2.addAttributes(set(['dIrgha_0']))
dIrgha_O cannot coexist with hrasva_O0 !!

Similarly, existing attributes can be removed from a sound-set.

>>> soundSet_2.remAttributes(set(['at_1']1))
>>> soundSet_2.get_soundSet ()
set (['paTha_a', 'udAttet_9','a_0','hrasva_0','ait_9'])

5.1.3 Language-components

Language-components constitute an intermediate unit between the whole
sentences and the individual sounds. They may roughly (but not necessarily)
correspond to an inflected word within a sentence. From the point of view of
data-structures, they are a list of sound-sets. The LangComps class implements
the language-components.

class LangComps:
def init__(self,list_of_sets=[]):

self.langComp=[SoundSets(ss) for ss in list_of_sets]

In order to initialize a language-component, the component should be ren-
dered in a special form, namely as a sequence of sets of IDs. This is achieved
by a function from the Elements class.

>>> from elements import Elements
>>> element = Elements ()
>>> paTha=element.get_component_in_langComp_form('paTha_a')

NN U

U= W N =

N OO W

112 5 Implementation

>>> print paTha
[set(['paTha_a','udAttet_9','p_0','ait_9'1),

set (['hrasva_0','paTha_a','udAttet_9','a_0','ait_9']1),
set (['paTha_a','udAttet_9','Th_1','ait_9'])]

An object of the class LangComps can now be instantiated by using the above
rendering of the component paTha_a.

>>> from langComps import LangComps

>>> langComp = LangComps (paTha)

>>> print langComp

p : p_0,ait_9,paTha_a,udAttet_9 *

a : hrasva_0,a_0,ait_9,paTha_a,udAttet_9 *

Th : Th_1,ait_9,paTha_a,udAttet_9

The output shows that the language-component has three sound-sets repre-
senting the sounds /p, a, Th/ respectively. The sound-sets contain several
other IDs that characterise them as well as the language-component.

A number of functions are required to execute operations on language-
components. For example, in order to check the conditions, it is important to
identify the range of indices in which some attribute occurs. The question as
to which sound-set in a particular language-component has any of the given
attributes is implemented by the following function.

>>> langComp.range_withAny (['hrasva_0'])
[1]

It says that the attribute hrasva_0 is in the second sound-set of the current
language-component.? In case more than one IDs are searched, then this func-
tion returns all indices where any of the IDs occur.

>>> langComp.range_withAny(['a_0','p_0'1)
(o, 11

In the example above, indices of those sound-sets that contain any of the IDs
inthelist ['a_0', 'p_0'] are returned.

If one wants to attach the attribute dhAtu_0 to those parts of language-
component which contains the ID paTha_a then the range of indices with the
ID paTha_a needs to be identified first, followed by the addition of the at-
tribute dhAtu_0 to the respective indices.

>>> langComp.range_withAny (['paTha_a'])

[o, 1, 2]

>>> langComp.addAttributes(set(['dhAtu_0']),[0,1,2])
>>> print langComp

p : p_0,ait_9,dhAtu_O,paTha_a,udAttet_9 *

a : hrasva_0,a_0,ait_9,dhAtu_O,paTha_a,udAttet_9 x*
Th : Th_1,ait_9,dhAtu_O,paTha_a,udAttet_9

2 The lists in Python programming language are indexed beginning with 0. So the first ele-
ment of a list 1ist is 1ist [0] and the second one is 1ist [1] etc.

B W N =

5.1 Data-structures 113

The above example shows that the attribute dhAtu_0 is added to the indices
corresponding to the sound-sets that contain paTha_a.

5.1.4 Sentences

Sentences consist of one or more language-components. They represent the
whole unit of a typical linguistic expression with the possibility of a number
of inflected words. This class is necessary since the rules of grammar consider
the whole sentence and not just one word to be the unit of derivation.

From the point of view of a formal representation of grammatical processes,
sentences can simply be defined as a sequence of language-components. Ac-
cordingly, the class of Sentences is implemented as a list of LangComps.
class Sentences:

def __init__(self,list_of_LangComps=[LangComps()]1):
self.sentence = list_of_LangComps

The present formal framework uses three levels to represent any linguistic
expression. Sentences correspond to the whole unit of a particular linguistic
expression, while sound-sets correspond to the individual sounds. Language-
components are an intermediate level between the two and are tentatively re-
lated to an inflected word. Depending upon the level from which conditional
information can be gathered in a sufficient manner, the grammatical opera-
tions can be distinguished as those that apply to a sound-set or to a language-
component or at the level of the whole sentence.

5.1.5 Derivational states

The process of derivation is carried out when an operational statement is ap-
plied to a sentence or to its constituents, i.e. the language-components or the
sound-sets. Together with an operational statement, a sentence forms the next
data-structure of the system, namely the class DStates.

class DStates: # Derivational state

def __init__(self,(sentence,statement_string)=(None,None)):
self.dState = sentence
self.applied_statement_str = statement_string

The application of a particular statement brings about some change in the
current state of a sentence. This change may be at the level of a sound-set if,
for example, it gets a new attribute, or at the level of a language-component,

114 5 Implementation

for example, addition of a new sound-set, or even at the level of a sentence
itself, in the case of addition of new language-components. The dState vari-
able of the class saves the changed state of the sentence after the application
of some statement. The operational statement which is applied is stored in the
variable applied_statement_str (see section 5.1.8 for the nature of an oper-
ational string).

5.1.6 Slices

The current state of a sentence saved in a derivational state is the result of
application of an operational statement on the previous state of that sentence.
The sequence of such derivational states is stored in a slice and is implemented
by the class Slices. From the point of view of data-structures, a slice is simply
a sequence or list of derivational states or DStates.

class Slices:

def __init__(self,list_of_DStates=[]):
self.slice = list_of_DStates

There are two kinds of changes that the operational rules of grammar bring
about: either the derivational state is saturated or it progresses towards com-
pletion. The process of saturation is associated with attachment of attributes,
while addition of new components is related with incremental steps of com-
pletion of the derivational process. Slices contain only those changes where
the derivational process is saturated, i.e. only when attributes are added to
the components. The other case, when a new component is introduced, leads
to the formation of a new slice.

5.1.7 Process-strips

The incremental steps of completion of the process of derivation results in a
sequence of slices. Process-strips record this sequences of slices. This is imple-
mented through the class PStrips.

class PStrips: # process-strips

def __init__(self,list_of_Slices=[]):
self .pStrip=1list_of_Slices

The data-structures introduced thus far adequately represent the constituents
and processes of the grammar in an integral manner. The processes of gram-
mar are enacted through the operational rules. The next data-structure com-
prehends them.

Ul = W N =

5.1 Data-structures 115

5.1.8 Statements

In the previous chapter, the concept of statements in comparison with the
sitras was introduced and specified. Statements are operational rules that are
formulated in a formal framework and can be implemented through algorith-
mic functions.

The information related to a statement is stored in a particular format within
the database. In order to point out the structure of the database of statements,
consider the entry corresponding to the attachment of the attribute vRddhi 0.
In the original corpus it is the very first sitra.

Xm_ATT_a *

ATT_a & vRddhi_0 *

Xm:[At_2,aic_0] AND Xm_NOT:[vRddhi_0] =

ST_TYPE: [STABILIZING]

A_RULES:[a_11001]

The above entry consists of five parts that are separated by a * sign. Each part
is listed here in a separate line.

1. The first part denotes the type of the statement. In the present case, it is
given by Xm_ATT_a. It implies that this statement is about ATTachment of
an attribute a to some sound-set Xm.

2. The second part specifies the operation. In the present case it is given by
ATT_a & vRddhi_0. It implies that vRddhi_0 is the ATTachment here.

3. The third part notes the conditions that should be fulfilled in order to ex-
ecute the operation. There are two parts and both of them need to be ful-
filled. Hence they are conjoined by the logical AND.

a. The first part of the condition is given by Xm: [At_2,aic_0] that canbe
interpreted as the presence of either the attribute At_2 or the attribute
aic_0in the sound-set Xm.

b. The second part Xm_NOT: [vRddhi_0] ensures that the attribute is at-
tached only if it is not already included in the said sound-set. This is
important to avoid recursive attachment of an attribute.

4. The inter-relations between other statements within the database are
noted in the fourth part. It also records the nature of the statements. Here,
for example, it says that this statement is a STABILIZING statement which
contributes to the saturation of the slice.

5. Finally, the fifth part records the links to the external associations, es-
pecially the correspondence with the original corpus of the Astadhyaysi.
Here, the siitra number a_11001 is noted.

= W N =

N OO W

116 5 Implementation

An individual operational statement is implemented by the Statements class
and is instantiated by the corresponding entry string within the database.

class Statements:
def __init__(self,st_str='"):
self.statement_string=st_str
self.statement = parse_a_statement_str(st_str)

The function parse_a_statement_str(st_str) parses and returns the out-
put as a five-tuple for the instantiation variable.

>>> statement_string = 'Xm_ATT_a *
ATT_a & vRddhi_O0 x*
Xm:[At_2,aic_0] AND Xm_NOT:[vRddhi_0] *
ST_TYPE: [STABILIZING] *
A_RULES:[a_11001]"
>>> from statements import Statements
>>> statement = Statements(statement_string)

This class implements several functions that are important for the application
of the statements. One such function is to get the signature of a given statement.

>>> statement.get_signature ()
'Xm_ATT_a__ATT_a__Xm_Xm_NOT'

The signature of a statement specifies its structure. Associated with a state-
ment, there is a function which executes its application. The nature of this
applicational function is defined by the signature of the statement. All state-
ments with the same signature can be applied by using the same function.

Another function supplies the information about the conditions that need to
be fulfilled in order to apply that statement.
>>> statement.get_condition_type_vals_dict ()
{"Xm': [['At_2','aic_0"']],
"Xm_NOT': [['vRddhi_0'11}

Here, the return value is a dictionary. Its keys are the types or nature of the
conditions together with the corresponding values for the particular case.
Thus, the first condition type is Xm implying that the sound-set must contain
any of the IDs At_2 or aic_0. The type of the second condition is Xm_NOT and
it says that the ID vRddhi_0 should not be in that sound-set.

5.1.9 Statement groups

The collection of Statements is implemented through the StatementGroups
class.

N Q= W N =

@ N U W N =

N OO WD

5.2 Processes of grammar 117

class StatementGroups:
def __init__(self):
self.statementGroup = list_of_Statements

The functions of this class are primarily meant for organizing and referencing
the statements.

>>> from statements import StatementGroups

>>> statementGroup = StatementGroups ()

>>> statementGroup.get_statements_for_some_operation(
"ATT_a & guru_0"')
[<statements.Statements instance at 0x10a24c3f8>,
<statements.Statements instance at 0x10a24c488>]

The list returned by the above function consists of two Statements instances
corresponding to the two statements that provide for application of the at-
tribute guru_0.

>>> stl,st2=statementGroup.get_statements_for_some_operation(
"ATT_a & guru_0')

>>> stl.statement_string
"Xm_ATT_a * ATT_a & guru_O * Xm:[hrasva_O] AND Xn:[saMyoga_O]*
ST_TYPE:[STABILIZING] * A_RULES:[a_14010][a_14011]"

>>> st2.statement_string
'Xm_ATT_a * ATT_a & guru_O * Xm:[dIrgha_O0] *
ST_TYPE: [STABILIZING] * A_RULES:[a_14012]"'

Similarly, the following function returns a dictionary with signature of state-
ments as keys and the corresponding statements as their values.

>>> d=statementGroup.get_signature_statements_dict ()
>>> d
{'Xm_ATT_a__ATT_a__Xm_Xm_NOT': [
<statements.Statements instance at 0x10a382638>,
<statements.Statements instance at 0x10a382950>,
<statements.Statements instance at 0x10a382998>,
d, .0}

5.2 Processes of grammar

During the process of their derivation, linguistic expressions are represented
through a sentence which consists of one or more language-components
corresponding to the individual inflected words. Each language-component
contains a sequence of sound-sets. Each sound-set corresponds to a single
phoneme.

The derivational process is effected through a number of operational state-
ments which are applied to a sentence. A sentence, together with an opera-

O 0NN U W N

=W N =

118 5 Implementation

tional statement, constitutes a derivational state. There are two fundamental
types of operations: (i) to saturate a sentence, in that all attributes that can
be attached are added to it, and (ii) to add a new component and graduate
towards completion of the derivational process. Accordingly, a slice contains
a sequence of derivational states that arise during the process of saturation.
A new slice is added, once a new component is introduced. A process-strip
records a sequence of slices and thus registers the process of completion.

Given the above framework and corresponding data-structures, the general
algorithm of the derivational process can be specified as follows.
initialize a process-strip
repeat the following steps:
saturate the process-strip
look for completing statements
if there is no statement to be applied
return the process-strip
else:
select a completing statement
apply it to the process-strip

After initialisation, the process-strip is populated with new components and
saturated repeatedly, till there is no admissible component available. This
brings the process of derivation to an end.

5.2.1 Initialisation

The process of initialisation is implemented by the function initialize().
The initial process-strip contains an empty slice.

>>> from pStrips import PStrips
>>> pStrip = PStrips()

>>> pStrip.get_list_of_Slices()
1

The empty pStrip needs to be populated with some components. At this mo-
ment the meaning-expressions and a user become relevant. The user must be
able to express her /his intention (vivaksa) by interacting with the system. Sup-
pose, for example, the user wants to express the sentence balakah pathati (a boy
recites). Then the choice of the components bAlaka_k and paTha_a become
imminent.® The following statement is chosen for application.

>>> st01 = Statements(
'E_ADD_y *

3 For the sake of simplicity and space, I will continue with the derivation of the verbal
conjugation only.

NN O W

O 0 N U W N =

—_
o

O 0 N U W N =

5.2 Processes of grammar 119

ADD_y & paTha_a *

yM: [vyaktAyAM_x vAci_x] x*

ST_TYPE:[COMPLETING] * ')
>>> st0l.get_signature()

"E_ADD_y__ADD_y__yM'

The signature of the above statement is significant for choosing the appro-
priate signature-functions. These are required to execute some statement.
Consider the following function for the application of statements with signa-
ture: E_ADD_y__ADD_y__yM.

def E_ADD_y__ADD_y__yM(pStrip,statement):
(op_type,op_val) = statement.get_operation_part()
list_of_sets=Elements().get_component_in_langComp_form(op_val)
langComp = LangComps(list_of_sets)
sentence = Sentences(

([langComp] ,statement.get_vals_for_condition_type('yM')))
dState = DStates((sentence,statement.get_statement_string()))
slice = Slices([dStatel)
pStrip = PStrips([slicel)
return pStrip

[1] The function takes pStrip and statement objects and returns the updated

pStrip after application of the statement. [2] The values of operation-type
and operation-value are stored in the variables op_type and op_val respec-
tively. These are 'ADD_y' and 'paTha_a'. [3] The variable 1ist_of_sets con-
tains the list of sets of IDs corresponding to the op_val which in this case is
'paTha_a'. [4] The langComp is instantiated, followed by [5] sentence, [7]
dState, [8] slice and [9] pStrip. [10] The updated pStrip is returned.

The application of the above signature function results in the introduction of
anew slice within the process-strip. Within this slice a new derivational state
is added which records the changes in the sentence and saves the statement
that is applied as well. The results are as follows.

>>> from signatureFunctions import E_ADD_y__ADD_y__yM
>>> pStrip = E_ADD_y__ADD_y__yM(pStrip,st01l)
>>> print pStrip
p : p_0,ait_9,paTha_a,udAttet_9 *
a : hrasva_0,a_0,ait_9,paTha_a,udAttet_9 *
Th : Th_1,ait_9,paTha_a,udAttet_9
:-: E_ADD_y * ADD_y & paTha_a *
yM: [vyaktAyAM_x vAci_x] *
ST_TYPE: [COMPLETING] =*

U= W N =

O 0N U W N =

= =
N = o

120 5 Implementation

5.2.2 Saturation

At this stage the process of saturation is carried out. Consider the following
statement.

>>> st02 = Statements(
'Xm_ATT_a *
ATT_a & at_1 x*
Xm:[a_0O] [hrasva_0] AND Xm_NOT:[at_1] *
ST_TYPE: [STABILIZING] *
A_RULES:[a_110701")

This statement attaches the attribute at_1 to a sound-set Xm that fulfils the
following two conditions:

1. Xm: [a_0] [hrasva_0] i.e. the sound-set Xm must contain the phoneme a_0
and the attribute hrasva_0.

2. Xm_NOT: [at_1] implies that the attribute should not already be present in
the said sound-set. This is necessary to avoid recursive attachment of an
attribute.

The signature of this statement is as follows.

>>> st02.get_signature ()
'"Xm_ATT_a__ATT_a__Xm_Xm_NOT'

The implementation of this statement is effected through the following
signature-function.

def Xm_ATT_a__ATT_a__Xm_Xm_NOT(pStrip,statement):
sentence = _get_a_deepcopy_of_sentence(pStrip)
for langComp in sentence.sentence:
for soundSet in langComp.langComp:
chk_results_dict = _Xm_ATT_a__ATT_a__Xm_Xm_NOT__CHECK(
soundSet ,statement)
if chk_results_dict.get ('APPLICABILITY'):
soundSet.addAttributes (
set ([chk_results_dict.get('ATT_a')]))
pStrip.get_last_Slice().extend_Slice(
DStates ((sentence,statement.get_statement_string())))
return pStrip

[1] Again the function takes up the pStrip and a statement and [12] returns
the updated strip after the application of the statement. [2] A deep copy of
the sentence is needed to avoid over writing. [3-4] Since the operation is ex-
ecuted at the level of sound-sets, the two for loops are carried out. [5-6] The
function _. .. __CHECK checks the conditions whether the statement is appli-
cable to the soundSet or not. The results of this check function are stored in the
dictionary chk_results_dict. [7] If applicable, then [8-9] the appropriate
attribute is added to that soundSet, and [10-11] pStrip gets updated.

N OO WD

O 0 N ONU AN -

e e Y
U= W N = O

O 0 N U W N =

_
=]

5.2 Processes of grammar 121

The above function uses another function to check the conditions.

def _Xm_ATT_a__ATT_a__Xm_Xm_NOT__CHECK (soundSet,statement):
chk_results_dict = {}
oper_part_key, oper_part_val = statement.get_operation_part ()
if CHK_Xm_Xm_NOT (soundSet,statement):
chk_results_dict ['APPLICABILITY'] = True
chk_results_dict [oper_part_key] = oper_part_val
return chk_results_dict

[1] The _...__CHECK function takes a soundSet and a statement and re-
turns chk_results_dict a dictionary of results. [4] It uses another function
CHK_Xm_Xm_NOT that checks whether the Xm and Xm_NOT conditions are ful-
filled.

The statement st02 can now be applied.

>>> from signatureFunctions import Xm_ATT_a__ATT_a__Xm_Xm_NOT
>>> pStrip = Xm_ATT_a__ATT_a__Xm_Xm_NOT(pStrip,st02)
>>> print pStrip
p : p_0,ait_9,paTha_a,udAttet_9 x*
a : hrasva_0O,a_0,ait_9,paTha_a,udAttet_9 *
Th : Th_1,ait_9,paTha_a,udAttet_9
:—: E_ADD_y * ADD_y & paTha_a *
yM: [vyaktAyAM_x vAci_x] =
ST_TYPE: [COMPLETING] =*

: p_0,ait_9,paTha_a,udAttet_9 *
a : hrasva_0,a_0,ait_9,at_1,paTha_a,udAttet_9 *
Th : Th_1,ait_9,paTha_a,udAttet_9

:—: Xm_ATT_a *x ATT_a & at_1 *
Xm: [a_0] [hrasva_0] AND Xm_NOT:[at_1] =*
ST_TYPE: [STABILIZING] * A_RULES:[a_11070]

o]

The application of the above statement has resulted in an extension of the
slice. [10] A new derivational state is added. [12] The effect of this function
is visible in this line, where the sound-set gets the attribute at_1 added to it.
This is the only sound-set where the conditions of the statement are fulfilled.

It should be noted that multiple application of this statement to the same
pStrip does not result in any further changes.

>>> pStrip = Xm_ATT_a__ATT_a__Xm_Xm_NOT(pStrip,st02)
>>> pStrip = Xm_ATT_a__ATT_a__Xm_Xm_NOT(pStrip,st02)
>>> print pStrip
p : p_0,ait_9,paTha_a,udAttet_9 *
a : hrasva_0O,a_0O,ait_9,paTha_a,udAttet_9 *
Th : Th_1,ait_9,paTha_a,udAttet_9
:—: E_ADD_y * ADD_y & paTha_a *
yM: [vyaktAyAM_x vAci_x] =
ST_TYPE: [COMPLETING] =*

p : p_0,ait_9,paTha_a,udAttet_9 *

12
13
14
15
16

=
O O 0N ONUl W N =

B W N =

O 0 N OGN

el e
Q= W N = O

= W N =

122 5 Implementation

a : hrasva_0,a_0,ait_9,at_1,paTha_a,udAttet_9 *
Th : Th_1,ait_9,paTha_a,udAttet_9
:-: Xm_ATT_a * ATT_a & at_1 =*
Xm:[a_O0] [hrasva_0] AND Xm_NOT:[at_1] =*
ST_TYPE: [STABILIZING] * A_RULES:[a_11070]

Consider now the following two statements.

>>> st03 = Statements(
'Xm_ATT_a *
ATT_a & vRddhi_O0 =*
Xm:[At_2,aic_0] AND Xm_NOT:[vRddhi_0] *
ST_TYPE:[STABILIZING] * A_RULES:[a_110011")
>>> st04 = Statements(
'Xm_ATT_a *
ATT_a & guNa_O0 *
Xm: [at_1,eG_0] AND Xm_NOT:[guNa_0] *
ST_TYPE:[STABILIZING] * A_RULES:[a_11002]1")

Both of them have the same signature as the previous statement.

>>> st03.get_signature ()
"Xm_ATT_a__ATT_a__Xm_Xm_NOT'

>>> st04.get_signature ()
"Xm_ATT_a__ATT_a__Xm_Xm_NOT'

This implies that both of them can be applied by using the same signature
function. The execution of st03 shows that it is not applied at all. This is ob-
vious as none of the sound-sets fulfill the required conditions. The pStrip
remains as it is. This is evident from the output below.

>>> pStrip = Xm_ATT_a__ATT_a__Xm_Xm_NOT(pStrip,st03)
>>> print pStrip
p : p_0,ait_9,paTha_a,udAttet_9 *
a : hrasva_0,a_0,ait_9,paTha_a,udAttet_9 *
Th : Th_1,ait_9,paTha_a,udAttet_9
:-: E_ADD_y * ADD_y & paTha_a *
yM: [vyaktAyAM_x vAci_x] =
ST_TYPE: [COMPLETING] *

p_0,ait_9,paTha_a,udAttet_9 *
a : hrasva_0O,a_0,ait_9,at_1,paTha_a,udAttet_9 *
Th : Th_1,ait_9,paTha_a,udAttet_9

:—: Xm_ATT_a * ATT_a & at_1 *
Xm:[a_0] [hrasva_0] AND Xm_NOT:[at_1] =*
ST_TYPE:[STABILIZING] * A_RULES:[a_11070]

el

The execution of st04 however brings out some changes.

>>> pStrip = Xm_ATT_a__ATT_a__Xm_Xm_NOT(pStrip,st04)
>>> print pStrip

p : p_0,ait_9,paTha_a,udAttet_9 *

a : hrasva_0O,a_0,ait_9,paTha_a,udAttet_9 *

O 0N N U

10

12
13
14
15
16
17
18
19
20
21
22

N OO W=

O 0 N U W N =

= =
N = O

5.2 Processes of grammar 123

Th : Th_1,ait_9,paTha_a,udAttet_9
:—: E_ADD_y * ADD_y & paTha_a *
yM: [vyaktAyAM_x vAci_x] =
ST_TYPE: [COMPLETING] *

: p_0,ait_9,paTha_a,udAttet_9 *
a : hrasva_0,a_0,ait_9,at_1,paTha_a,udAttet_9 *
Th : Th_1,ait_9,paTha_a,udAttet_9

:-: Xm_ATT_a * ATT_a & at_1 =*
Xm:[a_O] [hrasva_0] AND Xm_NOT:[at_1] =*
ST_TYPE: [STABILIZING] * A_RULES:[a_11070]

e}

: p_0,ait_9,paTha_a,udAttet_9 *
a : hrasva_0O,a_0,ait_9,at_1,guNa_O,paTha_a,udAttet_9 *
Th : Th_1,ait_9,paTha_a,udAttet_9
:—: Xm_ATT_a * ATT_a & guNa_O *
Xm:[at_1,eG_0] AND Xm_NOT:[guNa_0] =*
ST_TYPE: [STABILIZING] * A_RULES:[a_11002]

o]

[18] The attribute guNa_0 is now attached to the sound-set having the at-
tribute at_1. There is a hierarchy among the saturating statements that is de-
cided by the dependency of their conditions together with the operational
attachment. Thus, while st03 and st04 can be applied in any order, st04 can
only be applied after the application of st02.

The next statement attaches an attribute not only to just one sound-set, but to
several of them.

>>> st05 = Statements(
"X_ATT a *
ATT_a & bhvAdi_O =
X:[bhU_a,paTha_a, ji_a,pUG_a,dheT_a] AND X_NOT:[bhvAdi_0] =*
ST_TYPE: [STABILIZING] * ')
>>> st05.get_signature ()
'X_ATT_a__ATT_a__X_X_NOT'

This statement attaches the group name bhvAdi_0 for the bhvadi-gana of the
verbal roots. Here, for the sake of readability, have not listed all the roots that
are mentioned in this group.

>>> from signatureFunctions import X_ATT_a__ATT_a__X_X_NOT
>>> pStrip = X_ATT_a__ATT_a__X_X_NOT(pStrip,st05)
>>> print pStrip

: p_0,ait_9,bhvAdi_O,paTha_a,udAttet_9 x*
a : hrasva_0,a_0,ait_9,at_1,bhvAdi_O,guNa_O,paTha_a,
udAttet_9 *
Th : Th_1,ait_9,bhvAdi_O,paTha_a,udAttet_9
:—: X_ATT_a * ATT_a & bhvAdi_O0 x*
X:[bhU_a,paTha_a,ji_a,pUG_a,dheT_a]l AND X_NOT:[bhvAdi_O0] *
ST_TYPE: [STABILIZING] x*

o]

124 5 Implementation

The attribute bhvAdi_0 is added to all three of the sound-sets that constitute
the component paTha_a. In the above output, T have deleted the earlier deriva-

O 0N U W N =

N RN NN = R s e e e
W N = O WOV N U = W= o

tional states to save space and to aid readability.

The next statement that attaches the attribute dhAtu_0 is similar.

>>> st06 = Statements(
'X_ATT_a *
ATT a & dhAtu_O *
X:[bhvAdi_0,adAdi_O, juhotyAdi_0,divAdi_0,svAdi_O,
tudAdi_O,rudhAdi_O,tanAdi_O,kryAdi_O,curAdi_0] AND
X_NOT:[dhAtu_0] =
ST_TYPE:[STABILIZING] * A_RULES:[a_13001]1")
>>> st06.get_signature ()
"X_ATT_a__ATT_a__X_X_NOT'
>>> from signatureFunctions import X_ATT_a__ATT_a__X_X_NOT
>>> pStrip = X_ATT_a__ATT_a__X_X_NOT(pStrip,st06)
>>> print pStrip

: p_0,ait_9,bhvAdi_O0,dhAtu_O,paTha_a,udAttet_9 *
a : hrasva_0O,a_0,ait_9,at_1,bhvAdi_0,dhAtu_O,guNa_O,
paTha_a,udAttet_9 =
Th : Th_1,ait_9,bhvAdi_O0,dhAtu_O,paTha_a,udAttet_9
:—: X_ATT_a * ATT_a & dhAtu_O0 x*
X:[bhvAdi_0,adAdi_O, juhotyAdi_O0,divAdi_O,svAdi_O,
tudAdi_O,rudhAdi_O,tanAdi_O,kryAdi_O,curAdi_O0] AND
X_NOT: [dhAtu_0] =*
ST_TYPE: [STABILIZING] * A_RULES:[a_13001]

o]

5.2.3 Completion

N oG W N

The next statement introduces the component 1aT_0. This component is
added after the language-component Xi. The semantic condition for its ad-
dition is stated in the condition yM: [vartamAna_x]. This condition is satisfied
once the user confirms her or his intention to express vartamAna_x or present
tense.
>>> st07 = Statements(

"Xi_ADD_y *

ADD_y & 1laT_0 *

Xi:[dhAtu_O] AND Xj_NOT:[lakAra_9] AND yM:[vartamAna_x] *

ST_TYPE: [COMPLETING] = A_RULES:[a_32123]"')

>>> st07.get_signature ()
"Xi_ADD_y__ADD_y__Xi_Xj_NOT_yM'

The above statement is applied through the corresponding signature function.
Itis a completing statement and therefore a new slice is added. Line [16] notes
the slice boundary.

O 0N U W N =

N RN N RN NN P 2 e s e
Qi W N = O WOV N U b W = O

O 0N U W N =

e e e =
W N ONU WD RO

5.2 Processes of grammar

>>> from signatureFunctions import Xi_ADD_y__ADD_y__Xi_Xj_NOT_yM

>>> pStrip = Xi_ADD_y__ADD_y__Xi_Xj_NOT_yM(pStrip,st07)
>>> print pStrip

: p_0,ait_9,bhvAdi_O,dhAtu_O,paTha_a,udAttet_9 x*

a : hrasva_0O,a_0,ait_9,at_1,bhvAdi_0,dhAtu_O,guNa_O,
paTha_a,udAttet_9 *

Th : Th_1,ait_9,bhvAdi_0,dhAtu_O,paTha_a,udAttet_9

:—: X_ATT_a *
ATT_a & dhAtu_0 =*
X:[bhvAdi_0,adAdi_O, juhotyAdi_O0,divAdi_O,svAdi_O,
tudAdi_O,rudhAdi_O,tanAdi_O,kryAdi_O,curAdi_0] AND

X_NOT: [dhAtu_0] =*

ST_TYPE: [STABILIZING] * A_RULES:[a_13001]

e}

p : p_0,ait_9,bhvAdi_O0,dhAtu_O,paTha_a,udAttet_9 *

a : hrasva_0O,a_0O,ait_9,at_1,bhvAdi_0,dhAtu_O,guNa_O,
paTha_a,udAttet_9 =

Th : Th_1,ait_9,bhvAdi_O0,dhAtu_O,paTha_a,udAttet_9 *

1 : 1.0,Tit_9,ait_9,1aT_0,lakAra_9

:—: Xi_ADD_y =

ADD_y & 1laT_0 =
Xi:[dhAtu_0] AND Xj_NOT:[lakAra_9] AND yM:[vartamAna_x] *
MEXGRP_0001 * A_RULES:[a_32123]

125

[21] The above statement also extends the language-component and a new
sound-set for 1aT_0 is added. 1aT_OisaTit_9 and ait_9 lakAra_9 and these

attributes are already specified in the database.

The next statement specifies whether the components within a particular
language-component form a sentence in active, passive or middle voice.
Again, the decision to employ active voice is reached on the basis of the se-

mantic condition, which the user must address directly.

>>> st08 = Statements(
'X_ATT_a *
ATT_a & xkartR_9 *
X:[dhAtu_O0] AND X_NOT:[xkarman_9] [xbhAva_9] [xkartR_9] AND
X_M:[kartRprayoga_x] *
ST_TYPE:[STABILIZING] *')
>>> st08.get_signature ()

>>> pStrip = X_ATT_a__ATT_a__X_X_M_X_NOT(pStrip,st08)
>>> print pStrip

p : p_0,ait_9,bhvAdi_O0,dhAtu_O,paTha_a,udAttet_9,xkartR_9 *
a : hrasva_0O,a_0,ait_9,at_1,bhvAdi_O0,dhAtu_O,guNa_O,
paTha_a,udAttet_9,xkartR_9 =*
Th : Th_1,ait_9,bhvAdi_O0,dhAtu_O,paTha_a,udAttet_9,
xkartR_9 x
1 : 1.0,Tit_9,ait_9,1aT_0,lakAra_9

19
20
21
22
23

O 0N U W N

NN NN = = = s e e e e
W N = O WOV U &= W = O

0 N U W N =

= W N =

126 5 Implementation

:—: X_ATT_a *
ATT_a & xkartR_9 =
X:[dhAtu_0] AND X_NOT:[xkarman_9] [xbhAva_9] [xkartR_9] AND
X_M:[kartRprayoga_x] *
ST_TYPE: [STABILIZING] *

The following statement attaches the attribute parasmaipada_0 to the
language-component.

>>> st09 = Statements(
"X_ATT_a *
ATT_a & parasmaipada_0 =
X:[dhAtu_O0] [xkartR_9] AND X_NOT:[Atmanepada_0] *
ST_TYPE: [STABILIZING] *')
>>> st09.get_signature ()
"X_ATT a__ATT a__X_X_NOT'
>>> from signatureFunctions import X_ATT_a__ATT_a__X_X_NOT
>>> pStrip = X_ATT_a__ATT_a__X_X_NOT(pStrip,st09)
>>> print pStrip

p : p_0,ait_9,bhvAdi_0,dhAtu_O,paTha_a,parasmaipada_O,

udAttet_9,xkartR_9 x*
a : hrasva_0O,a_0,ait_9,at_1,bhvAdi_0,dhAtu_O,guNa_O,

paTha_a,parasmaipada_O ,udAttet_9,xkartR_9 *

Th : Th_1,ait_9,bhvAdi_O,dhAtu_0,paTha_a,parasmaipada_O,
udAttet_9,xkartR_9 x*

1 : 1.0,Tit_9,ait_9,1aT_0,lakAra_9

:—: X_ATT_a *

ATT_a & parasmaipada_O0 *
X:[dhAtu_O] [xkartR_9] AND X_NOT:[Atmanepada_0] *
ST_TYPE: [STABILIZING] *

The following statement provides for the substitution of 1aT_0 by the third
person singular suffix tip_0.

>>> st10 = Statements(
"Xi_REP_y *
REP_y & tip_0 *
Xh: [dhAtu_O] [parasmaipada_0] AND Xi:[lakAra_9] AND
yM: [prathama_O] [ekavacana_0] *
ST_TYPE: [COMPLETING] * A_RULES:[a_34077][a_34078]")
>>> ST10_obj.get_signature ()
"Xi_REP_y__REP_y__Xh_Xi_yM'

Again, the decision to opt for the third person and singular is taken by the
user on the basis of the semantic conditions prathama_0 and ekavacana_0
respectively.

>>> from signatureFunctions import Xi_REP_y__REP_y__Xh_Xi_yM
>>> pStrip = Xi_REP_y__REP_y__Xh_Xi_yM(pStrip,st10)
>>> print pStrip

O 0N N U

10

12
13
14
15
16
17
18

Qs W N

O 0 N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

26

27
28

5.2 Processes of grammar 127

p : p_0,ait_9,bhvAdi_O0,dhAtu_O,paTha_a,parasmaipada_O,
udAttet_9,xkartR_9 x*
a : hrasva_0O,a_0,ait_9,at_1,bhvAdi_0,dhAtu_O,guNa_O,

paTha_a,parasmaipada_O0 ,udAttet_9,xkartR_9 *
Th : Th_1,ait_9,bhvAdi_O0,dhAtu_0,paTha_a,parasmaipada_O,
udAttet_9,xkartR_9 x*
1 : 1_0,REPLACED_9,Tit_9,ait_9,1aT_0,lakAra_9 *
: t_0,pit_9,tip_0 *
: hrasva_0,i_O0,pit_9,tip_0O
:—: Xi_REP_y =
REP_y & tip_0 *
Xh:[dhAtu_O] [parasmaipada_0] AND Xi:[lakAra_9] AND
yM: [prathama_0] [ekavacana_0] *
ST_TYPE: [COMPLETING] * A_RULES:[a_34077][a_34078]

Replacement is implemented by attaching the attribute REPLACED_9 to those
parts that are replaced (line [11]) and adding the replacement components at
the appropriate index (line [12-13]).

The following statement attaches the attribute tiG_0 to the third person sin-
gular suffix tip_0.

>>> stll = Statements(
'X_ATT_a =*
ATT_a & tiG_0 =*
X:[tip_O,tas_0,jhi_0,sip_0,thas_O,tha_O,mip_O,vas_O0,mas_O,
ta_0,AtAm_O,jha_O,thAs_1,AthAm_O,dhvam_0,iT_1,vahi_O0,mahiG_0]
AND
X_NOT:[tiG_0] =*
ST_TYPE:[STABILIZING] * A_RULES:[a_34078][a_11071]1")
>>> stll.get_signature()
'X_ATT_a__ATT_a__X_X_NOT'
>>> from signatureFunctions import X_ATT_a__ATT_a__X_X_NOT
>>> pStrip = X_ATT_a__ATT_a__X_X_NOT(pStrip,stil)
>>> print pStrip

p : p_0,ait_9,bhvAdi_O0,dhAtu_O,paTha_a,parasmaipada_O,
udAttet_9,xkartR_9 x*
a : hrasva_0O,a_0,ait_9,at_1,bhvAdi_0,dhAtu_O,guNa_O,

paTha_a,parasmaipada_0O ,udAttet_9,xkartR_9 *
Th : Th_1,ait_9,bhvAdi_O0,dhAtu_0,paTha_a,parasmaipada_O,
udAttet_9,xkartR_9 x*

1 : 1_0,REPLACED_9,Tit_9,ait_9,1aT_0,lakAra_9 *
: t_0,pit_9,tiG_0,tip_0 *
i : hrasva_0,i_O0,pit_9,tiG_0,tip_0
:—: X_ATT_a *

ATT_a & tiG_0 *
X:[tip_O,tas_0,jhi_0,sip_O,thas_O,tha_O,mip_O,vas_O,mas_O,
ta_O,AtAm_O, jha_O,thAs_1,AthAm_O,dhvam_0,iT_1,vahi_O,
mahiG_0] AND
X_NOT:[tiG_0] =*
ST_TYPE: [STABILIZING] * A_RULES:[a_34078][a_11071]

N OO WD

O 0 NN U N -

e e = e e e e e
W N U A WN RO

N OO WO

0 N U W N =

128 5 Implementation

To a tiG_0 or a zit_9 component, the attribute sArvadhAtuka_0 is attached
by the following statement.

>>> stl12 = Statements(
"X_ATT a *
ATT_a & sArvadhAtuka_O0 =
X:[tiG_0,zit_9] AND X_NOT:[sArvadhAtuka_ O] =*
ST_TYPE:[STABILIZING] * A_RULES:[a_34113]1")
>>> stl12.get_signature ()
'X_ATT_a__ATT_a__X_X_NOT'

The application of this statement is similar to the other attachments of the
attributes.

>>> from signatureFunctions import X_ATT_a__ATT_a__X_X_NOT
>>> pStrip = X_ATT_a__ATT_a__X_X_NOT(pStrip,stl12)
>>> print pStrip

p : p_0,ait_9,bhvAdi_O0,dhAtu_O,paTha_a,parasmaipada_O,

udAttet_9,xkartR_9 x*
a : hrasva_0,a_0,ait_9,at_1,bhvAdi_O,dhAtu_0O,guNa_O,

paTha_a,parasmaipada_O0 ,udAttet_9,xkartR_9 *
Th : Th_1,ait_9,bhvAdi_O0,dhAtu_0,paTha_a,parasmaipada_O,
udAttet_9,xkartR_9 x*
1 : 1_O,REPLACED_9,Tit_9,ait_9,1aT_0,lakAra_9 *
: t_0,pit_9,sArvadhAtuka_O0,tiG_O0,tip_0 *
: hrasva_0,i_0,pit_9,sArvadhAtuka_0,tiG_O,tip_0O
:—: X_ATT_a *
ATT_a & sArvadhAtuka_O0 x*
X:[tiG_0,zit_9] AND X_NOT:[sArvadhAtuka_0] *
ST_TYPE: [STABILIZING] * A_RULES:[a_34113]

Finally, the infix zap_0 is introduced by the following statement.

>>> st13 = Statements(
"Xi_ADD_y *
ADD_y & zap_0 *
Xi:[dhAtu_0] AND Xj:[sArvadhAtuka_O] AND Xj_M:[kartR_0] * x*
A_RULES:[a_31068]")
>>> st13.get_signature ()
"Xi_ADD_y__ADD_y__Xi_Xj_Xj_M'

The conditions also provide the index where the new components should
properly be added.

>>> from signatureFunctions import Xi_ADD_y__ADD_y__Xi_Xj_Xj_M
>>> pStrip = Xi_ADD_y__ADD_y__Xi_Xj_Xj_M(pStrip,st13)
>>> print pStrip

p : p_0,ait_9,bhvAdi_O0,dhAtu_O,paTha_a,parasmaipada_O,
udAttet_9,xkartR_9 x*
a : hrasva_0O,a_0O,ait_9,at_1,bhvAdi_O0,dhAtu_O,guNa_O,

10
11
12
13
14
15
16
17
18
19

O 0 N O U RN =

—_
(=)

5.2 Processes of grammar 129

paTha_a,parasmaipada_O ,udAttet_9,xkartR_9 *
Th : Th_1,ait_9,bhvAdi_O0,dhAtu_O,paTha_a,parasmaipada_O,
udAttet_9,xkartR_9 *
hrasva_0,a_O,pit_9,zap_0,zit_9 *
1_0,REPLACED_9,Tit_9,ait_9,1aT_0,lakAra_9 *
t_0,pit_9,sArvadhAtuka_0,tiG_O0,tip_0 *
: hrasva_0,i_O0,pit_9,sArvadhAtuka_0,tiG_O,tip_0O
:—: Xi_ADD_y =
ADD_y & zap_0 *
Xi:[dhAtu_O0] AND Xj:[sArvadhAtuka_O] AND Xj_M:[kartR_0] * *
A_RULES:[a_31068]

)

The above steps demonstrate the dynamics of the process of derivation. At
each step, a larger number of characterising statements are employed. The
main algorithm of the derivational process is summarized in the following
main function.

def execute():
pStrip = initialize()
while 1:
pStrip = saturate(pStrip)
possible_statements = interpret(pStrip)
if len(possible_statements) == 0:
return pStrip
else:
statement = select(pStrip,possible_statements)
pStrip = apply(pStrip,statement)

[1]1 The main function which returns a process-strip. [2] The function
initialize() initializes the process-strip. [3] The third line specifies a loop.
[4] At this stage, a given process-strip is saturated, i.e. attributes are attached
to the language-components or sound-sets. [5] Once the process-strip is satu-
rated, it is tested for any possible completing statement that could be applied.
The list of all such candidates is stored in possible_statements. [6] In case
the list is empty, i.e. there is no statement that may be applied, [7] then the
process-strip is returned. Otherwise, [9] one statement is selected, depending
upon the semantic considerations and the intention (vivaksa) of the user. [10]
Finally, that statement is applied and the process-strip is updated.

