
Complex Problem Solving and Dynamic

Decision Making: What is the

Difference?

CLEOTILDE GONZALEZ

Carnegie Mellon University, USA

Abstract. Complex Problem Solving (CPS) and Dynamic Decision Making (DDM) are

often used as synonymous concepts. In this paper, I will document the similarities be-

tween CPS and DDM that emerge from the environments that researchers investigate and

from the methodologies they use. However, I will argue that some of the demands and

required cognitive processes for general complex problem solving are different from those

needed for making decisions in dynamic environments. The distinction between CPS and

DDM is of practical and theoretical relevance; it matters for how researchers address

the question of people’s complex problem solving in dynamic environments, and it also

matters to represent cognitive processes precisely in algorithms that can be translated into

a computational form. Generating predictive theories of DDM may be very distinct from

computational representations of CPS processes.

Herbert Simon used the metaphor of an ant making his way home in a rugged

beach landscape to introduce the initial ideas of problem solving (Simon,

1969). The ant makes her way from a starting point to a goal (home or a food

source) around a path that is hard to describe: it appears irregular, complex, and not

a straight line. Generally, the wavy path emerges because the ant cannot foresee

all the obstacles in between the starting point and the goal. Instead, the ant must
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adapt its course based on the difficulties that she might encounter on the way. This

metaphor was used to exemplify how humans may address complex problems, and

to postulate the study of human reasoning in the information processing theory

entitledHuman Problem Solving (Newell & Simon, 1972). In this theory, a thinking

human being is an adaptive system, and the behavior is a result of the properties

of the human mind and the properties of the environment.

However, it became clear that the kind of problems that a human could address

under the general problem solving idea would need to be relatively simple and well

defined, in contrast to real-world problems that are ill-defined and cannot easily be

translated to mathematical solutions (see Dörner & Funke, 2017, for a historical

discussion). The concept of Complex Problem Solving (CPS) advanced the general

notion of problem solving with the need to consider “complex” environments. In

a historical review of the origins of CPS, Dörner and Funke (2017) document

the introduction of the CPS concept to the mid-1970s (Dörner, 1975), and the

increased popularity of CPS research after the edited volumes by Sternberg and

Frensch (1991) and Frensch and Funke (1995).

The key point of CPS is the problem complexity, the type of ill-defined environ-

ments that have no clear goal state or well-defined means of moving towards the

goal state. In a related and contemporary research tradition, Dynamic Decision

Making (DDM) was defined by the characteristics of a complex and dynamic

environment in which decisions are made (Brehmer, 1992; Brehmer & Dörner,

1993). DDM involves “conditions which require a series of decisions, where the

decisions are not independent, where the state of the world changes, both auton-

omously and as a consequence of the decision maker’s actions, and where the

decisions have to be made in real time” (Brehmer, 1992, p. 211). The core aspect

of any decision theory is the act of choice, the agent’s selection among options that

might be available concurrently or in a sequence (Payne et al., 1993). An essential

element of DDM is the idea of making a sequence of decisions (in contrast to

making a single choice among simultaneously presented alternatives), based on

what was learned from the consequences of decisions made in the past (Edwards,

1962).
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This background explains why CPS and DDM are often used as synonymous

concepts (e.g., Dörner & Funke, 2017; Dörner & Güss, 2022). They both depend

on ill-defined environments of similar characteristics, and they both appear to

require a process by which an agent moves towards a goal by making a sequence

of decisions, often based on what the agent has learned from past choices. But,

are CPS and DDM synonymous? I will argue that while there are similarities

between CPS and DDM, they are not synonymous. Differences between CPS and

DDM take place in the theoretical developments of algorithmic representations

that require significantly more precision and systematic processes. A distinction

between these research areas matters for how researchers address the question of

people’s complex problem solving in dynamic environments and for how research

on algorithmic representations will advance.

Two Determinants of Human Behavior

Perhaps the distinction between CPS and DDM can be best illustrated by high-

lighting the two different but interrelated determinants of human behavior: human

mind and the environment. These two elements of human behavior are explained

by another famous Simon’s metaphor: A pair of scissors in which one blade is

the human mind and the other blade is the structure of the environment (Simon,

1991). The idea is that human behavior must be understood by the joint effect

of the two blades in the scissors. One cannot understand behavior by separately

studying the human mind from the environmental structure. In fact, the idea of the

scissors metaphor dates back to Simon’s earlier work on rational choice and the

concept of bounded rationality (Simon, 1956). In the work that led to his Nobel

Prize, he introduced the “satisficing” human, who cannot optimize her decisions

because the computational demands of the decision environment might be beyond

her mental capabilities. Thus, a satisficing human decision maker makes choices

that are “good enough” for the demands of the particular environment.

To clarify the similarities and highlight the differences between CPS and DDM,

it is relevant to go back to the two blades of Simon’s scissors. I will argue that the
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similarities between CPS and DDM emerge from the environments that researchers

of CPS and DDM investigate and from the methodologies they use. But I will also

argue that their distinction relies on the demands and required mental processes

which need to be made precise and systematically described to generate predictive

theories of CPS and DDM.

Complex Cognition and Complex Environments

In the study of CPS, there has been confusion about where the complexity emerges

from, whether it emerges from the cognition or from the environment. Complex

cognition has been understood as involving high-level cognitive processes such as

problem solving and decision making, as well as their interaction with basic cog-

nitive processes including perception, learning, motivation and emotion (Schmid

et al., 2011). But in many problem solving situations, as in the ant metaphor, the

agent (i.e., the ant) is quite simple. Simon suggested that the apparent complexity

of the agent’s behavior over time is largely a reflection of the complexity of the

environment, not of the ant’s cognition (Simon, 1969). In fact, an organism might

be simple if it has a single goal, it has a fixed aspiration level that does not change,

and a definite path to achieve the goal. In contrast, complex organisms might

have the capability of searching and responding to multiple goals, and satisfying

the needs that reach a threshold that may change dynamically (Simon, 1957). In

other words, the complexity of the cognition depends on the complexity of the

environment demands.

While much effort in psychological research has been dedicated to generate

integrated theories of cognition (Newell, 1994), less effort in psychology has been

dedicated to create an integrated theory or a taxonomy of environments. Newell

and many followers argued for the need to create a unified theory of cognition. For

example, the Adaptive Control of Thought-Rational (ACT-R, Anderson & Lebiere,

1998) evolved into an integrated set of mental modules that produce a wide range of

behavior including perceptual-motor modules, declarative and procedural learning.

These efforts have been essential for the development of common understanding
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of the mental processes involved in CPS and DDM. However, similar efforts are

required for developing integrated theories of environments.

Use of Microworlds to Represent Environmental Complexity

CPS and DDM research share similarities in the investigation of complex envi-

ronments and their effects on human behavior as they are studied using graphical

interactive simulations, called microworlds. In psychological research, CPS and

DDM are perhaps the areas that have contributed most insights regarding an inte-

grated view of complex environments. Complex environments, particularly in CPS

research, have often been characterized by the number of elements represented:

the number of variables, the number of interconnectivities among those variables,

and the way these variables and connections change over time (Schmid et al.,

2011). Complex environments would correspond to a large number of variables,

many interconnectivities, and complex dynamics (Dörner & Funke, 2017). For

example, early CPS work involved scenarios with a large number of variables (e.g.,

more than 2000 variables in “Lohhausen”) in simulated microworlds. Lohhausen

involved a group of activities in a small town where participants played the role of

a mayor that controlled the well-being of the population (Dörner, 1980; Funke,

1988).

These highly complex scenarios are represented computationally in microworlds

(Brehmer & Dörner, 1993; Gonzalez et al., 2005; Omodei & Wearing, 1995;

Turkle, 1984). Microworlds represent the essential characteristics of real-world

decision making and problem solving environments. However, microworlds range

in the characteristics of complexity that are included. For example, structural

complexity refers to the number of elements in the environments; number of

variables, exogenous changes, and opaqueness, while dynamic complexity refers

to the interrelationships of all these elements over-time (Gonzalez et al., 2005).

Microworlds used to study DDM have been characterized in a continuum of

structural and dynamic complexity (Gonzalez et al., 2017). Dynamic environments

may involve various degrees of change, as alternatives may vary independently
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from external events or endogenously because of the decisions made previous-

ly (Edwards, 1962). Thus, DDM environments vary from structurally complex

(i.e., they consist of a large number of alternatives, high time constraints, and

high uncertainty) to structurally simple (i.e., they have few alternatives, no time

constraints, and little uncertainty), and structurally simple tasks can have high

or low dynamic complexity. Dynamic complexity emerges from the relationship

between choices and their effects over time, from the sequential nature of these

interdependencies, and from the various lags between actions and their effects on

the environment (Gonzalez, 2017; Sterman, 1989).

Both, CPS and DDM researchers have investigated complex cognition using

complex environments represented in microworlds. From this research, we have

learned about extreme demands that complex environments place on human cog-

nition and the role of experience to improve performance in such tasks (Brehmer,

1980; Diehl & Sterman, 1995; Sterman, 1994). We know that humans are generally

poor at handling systems with long feedback delays (Brehmer, 1992; Sterman,

1989), and they have difficulty learning in situations involving environmental

constraints, such as workload and time pressure (Gonzalez, 2004, 2005; Kerstholt

& Raaijmakers, 1997).

However, recently a concrete taxonomy of human errors in CPS has revealed

some of the distinctions between CPS and DDM. The errors reported along the

CPS steps reflect the influence of factors beyond cognitive inability to handle

complex tasks: motivation and emotions (Dörner & Güss, 2022). A taxonomy of

human errors in CPS was developed using classic microworlds including: CHOCO

FINE, a simulation of a chocolate production company; MORO, a simulation of a

tribe with semi-nomads; andWINFIRE, a simulation of firefighting units engaging

in protecting cities from wildfires (Dörner & Güss, 2022). The three microworlds

differ in their characteristics of exogenous changes, number of variables, opaque-

ness, and over-time interrelationships. The observations of individuals working on

these three microworlds led to the characterization of 24 errors generally grouped

in categories defined by the steps required for CPS (Dörner & Güss, 2022): (1)

problem identification, (2) goal definition, (3) information gathering, (4) elabora-
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tion and prediction, (5) planning, decision making and action, and (6) evaluation

of outcome and self-reflection. The influence of motivational, emotional, and

cognitive processes, and how they interact together has been formalized in a theory

of CPS, called PSI, named as an abbreviation for the word psychology (Dörner &

Güss, 2022; 2013). It is precisely in the details of this PSI theory defined for CPS,

that the differences emerge from the theories of DDM.

Theories and Predictive Models

The most well-known theory of DDM is Instance-Based Learning Theory (IBLT)

(Gonzalez et al., 2003). IBLT emerged from a set of behavioral phenomena dis-

covered in experiments using microworlds, and from the efforts to implement

computational algorithms that would replicate the decision process involved in the

microworlds, using a cognitive architecture (Gonzalez et al., 2003; Gonzalez, 2013,

2022). ACT-R (Anderson & Lebiere, 1998) is a cognitive architecture that intends

to represent mathematically and computationally, the various aspects of human

mind, including perception and action, learning, memory, and other processes.

To demonstrate IBLT, ACT-R was used initially as the implementation platform

of a concrete predictive model of the decisions that humans took in a complex

microworld, called the Water Purification Plant (WPP) (Gonzalez et al., 2003).

WPP is an example of a microworld that encompasses all the characteristics of

DDM: multiple sequential decisions need to be made under uncertainty, in an

environment that changes exogenously, and as a result of the decisions made, and

in which there is high workload and time constraints (Brehmer, 1992). As such,

WPP is a task that is structurally and dynamically complex and needs to be resolved

from experience and extended practice by noticing patterns of exogenous events

(Gonzalez, 2004, 2005; Gonzalez et al., 2003).

The theoretical process and mechanisms proposed in IBLT have been used in

the computational implementation of a large number of models. It is important to

highlight that IBLT is not only a picture with a description of the processes involved

in DDM, but IBLT presents a concrete algorithm and the associated mathematical
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mechanisms that are used to implement the algorithm in computational form.

IBLT’s algorithm has been published in multiple places, but I recommend Gonzalez

et al. (2003), Gonzalez and Dutt (2011), Gonzalez (2013), and to more recent

presentations of the theory, Nguyen, Phan, and Gonzalez (2023) for the details.

The IBL decision process involves the following steps: (1) recognition and

retrieval of past experiences (i.e., instances) according to their similarity to an

ongoing decision situation, (2) generation of the expected utility of various decision

alternatives by using past experiences, (3) choice of the option that best generalizes

past experiences to new decisions, and (4) feedback processes that update past

experiences based on the observation of decision outcomes.

In IBLT, an “instance” is a memory unit that results from the potential alterna-

tives evaluated. These memory representations consist of three elements, which

are constructed over time: a situation (a set of attributes that give a context to the

decision), a decision (the action taken corresponding to an alternative in a state),

and a utility (expected utility or experienced outcome of the action taken in a state).

Each instance in memory has an activation value, which represents how readily

available that information is in memory, and it is determined by similarity to past

situations, recency, frequency, and noise (Anderson & Lebiere, 2008). Activation

of an instance is used to determine the probability of retrieval of an instance from

memory (i.e., cognitive probability) which is a function of its activation relative to

the activation of all instances in memory. The expected utility of a choice option is

calculated based on blending past outcomes. This blending mechanism for choice

has its origins in a more general blending formulation (Lebiere, 1999), but in

discrete choice models, blending is defined as the sum of all past experienced

outcomes weighted by their probability of retrieval (e.g., Gonzalez & Dutt, 2011;

Lejarraga et al., 2012). This formulation of blending represents the general idea of

an expected value in decision making, where instead of using the factual probabili-

ty, blending uses a cognitive probability, a function of the activation equation in

ACT-R. At each time step, the IBL algorithm recognizes a situation in the envi-

ronment (based on similarity), calculates the expected utility of the option being

evaluated, determines when to stop evaluating additional alternatives, and at that
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point decides to make a choice by selecting the option that has the highest blended

value. Feedback, which might be immediate or delayed, updates all instances in

memory that lead to a particular outcome in the task. This process goes on over

time.

IBLT and the power of the predictions of IBL models compared to human

decisions have been demonstrated in a large diversity of tasks that vary in structural

and dynamic complexity. The demonstrations include structurally and dynamically

simple tasks, such as binary choice (Gonzalez & Dutt, 2011; Lejarraga et al.,

2012); structurally simple but dynamically complex tasks such as control of carbon

dioxide in the atmosphere (Gonzalez & Dutt, 2011) and supply chain inventory

management; structurally complex and dynamically simple tasks such as search

and rescue and navigation in non-stochastic situations (Nguyen et al., 2023); and

structurally and dynamically complex tasks, such as dynamic resource allocation

of resources (Gonzalez et al., 2003) and cyber defense (Cranford et al., 2020;

Aggarwal et al., 2022).

Theories of Complex Problem Solving

For CPS, amain theory is PSI (Dörner&Güss, 2013, 2022). In contrast to IBLT, PSI

aims at integrating not only the cognitive processes but motivational and emotional

processes as well. Because of addressing the complex challenge of integrating

motivation, cognition, and emotion into a single theory, PSI is extremely complex,

and it can be difficult to validate (Dörner & Güss, 2013). The validation approach

of PSI has been to determine whether the theory predicts potential reactions of

humans to specific conditions. Researchers have attempted to conduct experimental

research to compare the behavior predicted by PSI with the actual behavior of

humans. For example, researchers analyzed the strategies of 30 participants and

compared their behavior with 30 different PSI agents to explore a simulated

island and how they solved the problem of survival on the island. The authors

compared information on “when planning occurred and to what extent, the number

of locations on the island visited by participants at the beginning and at the end
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of the simulation, what emotions were shown, when those emotions changed and

how often” (according to Dörner & Güss, 2013, p. 312, these results are reported

in Dörner et al., 2002, and in Detje, 1999, but both of these references are written

in German, not translated to English). Other efforts to validate PSI involve using

the steps in the theory to explain cases of complex historical events (e.g., Dörner

& Güss, 2011). Using historical documents, the authors analyzed decision making

errors and potential causes for those errors using PSI.

Dörner and Güss (2013) suggest that PSI theory may be compared to other

theories, for example, toACT-R. However, for such a comparison to take place, the

process and mechanisms proposed in PSI will need to be converted into algorithmic

and mathematical form. To make an algorithm computational, the set of steps

proposed in a theory should have a level of precision and systematic calculation so

that they could be carried out automatically (Chabert, 1999). Unfortunately, PSI

appears to be imprecise, thus making the generation of computational algorithms

impossible. Furthermore, to achieve the level of computational algorithms, the

mathematical formulations of the PSI steps would need to be developed and

validated against human behavior.

Conclusions

This manuscript aims at clarifying the similarities and differences between CPS

and DDM. In many publications CPS and DDM are used as synonymous con-

cepts. However, I argue that they are not synonymous and should not be used

interchangeably.

In this paper, I clarify that there are important similarities between CPS and

DDM. The similarities emerge from the common interest and definitions of the

study of complex environments. Both CPS and DDM engage in the investigation

of ill-defined environments that demand a series of interdependent decisions, made

in real-time, while the state of the world changes, both autonomously and because

of the decision maker’s actions (Dörner & Funke, 2017; Gonzalez et al., 2017).

Furthermore, both CPS and DDM use microworlds, which are computational
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interactive representations of complex tasks, to investigate human behavior in

experimental studies (Brehmer, 1992; Gonzalez et al., 2005).

However, CPS and DDM differ in the demands and required cognitive processes,

and in the theoretical representations of these processes. When the goal is to ad-

vance theory and to develop precise predictive computational models of behavior,

the specific processes and mechanisms used in these advancements are very di-

stinct for CPS and DDM. PSI, the relevant theory for CPS is a large-encompassing

endeavor, aiming at including cognitive, motivational, and emotional processes

and their interactions (Dörner & Güss, 2013, 2022). In contrast, IBLT, the re-

levant theory for DDM, is a cognitive theory that has little or no relevance for

motivational and emotional processes (Gonzalez et al., 2003; Gonzalez, 2013).

Furthermore, regarding the development of predictive behavioral models, IBLT

provides clear and precise algorithmic and mathematical formulations that are

needed to implement computational representations and make predictions in a

large variety of tasks (e.g., Gonzalez et al., 2003; Nguyen, et al., 2023). Significant

work will be required to turn PSI into an algorithmic and mathematical theory.

Author Note. Joachim Funke’s work represents key intersections between Com-

plex Problem Solving (CPS) and Dynamic Decision Making (DDM) research.
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