
G temperature

G.1 Thermal energy

Thermodynamics is a very abstract physical theory which defines state variables and
establishes relationships between them. Most importantly, it provides a definition
of temperature for systems in a state of thermal equilibrium. But thermodynamics
does not make any assumption about the internal structure of systems and how they
would give rise to relations between their state variables: that particular relation is
provided by statistical mechanics, i.e. the mechanical theory of systems with many
degrees of freedom. One can think of thermodynamics as an effective theory of these
systems (typically, the number of degrees of freedom is of the order of Avogadro’s
number or higher) in thermal equilibrium, where on average each mode carries the
same share of the total thermal energy: this is meant by equipartition.

It is only sensible to speak about thermal energy in thermal equilibrium: While
microscopically there is a continuous reshuffling of energy between all degrees of
freedom of a system, macroscopically there is no discernible dynamics at all. The
amount Q of thermal energy that an object of mass m stores at temperature T is given
by

Q = c(T)mT (G.332)

with the specific energy c(T), possibly a function of T. It summarises how much
thermal energy can be stored in a system, effectively by counting the degrees of
freedom the substance provides if the total mass is m.

G.2 Axioms of thermodynamics

Thermodynamics is a sensibly defined theory even if one does not have the slightest
clue about the internal structure of matter. But we can turn this around to our advan-
tage: There are sensible thermodynamical properties and definitions of temperature
for almost every physical system, even if we do not know a prior how it works in-
ternally. For instance, it is quite reasonable to consider the electrodynamic field in
thermal equilibrium or to imagine thermodynamical properties of black holes, i.e. of
gravity.

Thermodynamics is defined axiomatically, and it’s really a good place to appreciate
the abstractness of it:

0. Heat flows from hot to cold until a thermal equilibrium is established, charac-
terised by a common temperature T.

1. The energy content U of a system can be changed by dU, either by performing
mechanical work δW on it or by changing its thermal energy by δQ: Effectively,
the law of energy conservation encompasses thermal energy, too: dU = δW + δQ

2. A system can not perform mechanical work out of thermal equilibrium; you
need a non-equilibrium to generate work out of a heat flow, and that is done
imperfectly.

3. Entropy approaches zero at absolute zero in temperature.

With reference to the first law I’d like to clarify that changing the internal energy
content can be done in very different ways:

dU = TdS − pdV + µdN + ΦdQ + B · dM + . . . (G.333)
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g. temperature

where one sees typically the combination of an extensive (i.e. proportional to the
size of the system or the amount of substance) state variable with an intensive
(independent of the size of the system) one: work can be performed by a change dV in
volume against pressure p, or by changing the charge dQ against an external electric
potential Φ, by changing the magnetisation dM against an external magnetic field B,
by changing the number of particles in the system dN against the chemical potential
µ and lastly, by changing the entropy dS against temperature T.

The separation between intensive and extensive state variables is sometimes
washed out, and please be very careful in these cases of ”non-extensive thermody-
namics”: If the potential Φ is in fact sourced by Q itself, it would become extensive.

G.3 Measuring temperature

Temperature is perhaps the most abstract concept in theoretical physics, despite the
fact that everyone has the feeling of intuitiveness about temperature: This is because
the fundamental definition of temperature T is

∂S
∂E

=
1

kBT
(G.334)

so one needs to have an intuition about entropy S first and how it depends on E,
before thinking about temperature T. When measuring temperature, one can go
about in very different ways: Firstly, one can use some empirical relationship between
an easily observable quantity, for instance the length of a column of mercury as
it is determined by the thermal expansion coefficient or the volume of a gas as an
expression of Gay-Lussac’s law to estimate T. Specifically, for an ideal gas we have a
constant V/T at constant pressure p, so

V1

T1
=

V2

T2
→ T2 =

V2

V1
T1 (G.335)

with a reference V1, T1 and a measurement of V2, where for instance, the refer-
ence could be defined through the molar volume of 22.41396954 litres at standard
conditions p = 101.325 kPa and T = 273.15 Kelvin.

But conceptually, one would like to measure temperature mechanically: By con-
version of thermal energy to mechanical energy, the world of thermodynamics is
linked to the world of mechanics, and mechanical energies can be measured unam-
biguously and in accordance with the laws of Galilean or Lorentzian relativity, for
instance by accelerating an object of known mass. Surely, this can not be achieved in
thermal equilibrium, as clarified by the second law of thermodynamics, but if there
is a disequilibrium one can employ a Carnot-engine to convert thermal energy δQ to
mechanical energy δW

δW = η δQ (G.336)

at a known and unique efficiency η, which is only a function of temperatures

η = 1 − T2

T1
< 1 (G.337)

with the temperature T1 of the hot reservoir and T2 fo the cold reservoir: With
a Carnot-engine one can determine at least temperature differences relative to a
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g.4. carnot-engines

reference temperature that needs to be fixed. For this one chooses the triple point of
water at T = 273.1600 Kelvin at p = 611.657 Pa. At the triple point, the phases of ice,
water and vapour exist simultaneously which is easy to observe.

G.4 Carnot-engines

Carnot-engines are thermal engines: They can convert thermal energy back to me-
chanical energy (or pump thermal energy from the cold to the hot reservoir against
the natural tendency of heat to flow from hot to cold). The conversion from thermal
to mechanical energy is not ideal but happens at an ideal efficiency η = 1 − T2/T1,
which is identical for all Carnot-engines irrespective of how they are built: All that
matters is perfect reversibility in their working principle: If the temperatures are
changed, the efficiency changes without any delay. And Carnot-engines work in a
cyclic fashion: There is no energy stored internally after one sequence is completed.

A traditional construction is the steam-engine-type, where one proceeds in four
phases through (i) isothermal expansion at T1, sucking in the heat Q1, followed
by (ii) adiabatic expansion to bring the temperature from T1 down to T2 with no
heat exchange, (iii) isothermal compression at T2, squeezing out the heat Q2, and
completed by (iv) adiabatic compression to get the temperature from T2 up to T1
again. The amounts of work gained in step (ii) is equal to the work to be invested in
step (iv), so all that matters are the energies in step (i) and (iii):

Q1 =
∫

dS T = T1∆S > 0 and Q2 =
∫

dS T = T2∆S < 0 (G.338)

After one complete cycle of the engine there is no change dU in internal energy as it
works cyclically, so one can conclude

dU = δW + δQ = 0 → W = −Q = −(Q1 + Q2) = (T1 − T2)∆S (G.339)

so we can find for the Carnot-efficiency η the iconic result

η =
W
Q1

= 1 − T2

T1
(G.340)

But actually this is only one way of constructing a Carnot-engine. A completely
different engine would be a propeller on an axis submerged in a gas at temperature T1
on which there is a ratched and pawl-mechanism that only allows the engine to turn
into one direction, lifting a weight in the process and performing mechanical work. In
forward motion, one needs an energy ϵ to disengage the ratched such that an amount
W of work can be gained, and this happens at a rate exp(−(ϵ + W)/(kBT1)). Motion in
the opposite direction frees work W, but nevertheless needs an activation energy ϵ
of the ratched. W is lost, or more exactly, transferred to the gas and dissipated there,
while a random thermal fluctuation provides ϵ to the ratched, at a rate exp(−ϵ/(kBT2)).
In a reversible engine, the two rates are equal,

exp
(
− ϵ + W

kBT1

)
= exp

(
− ϵ

kBT2

)
(G.341)

from which we can define the efficiency η as
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g. temperature

η =
W
ϵ

= 1 − T2

T1
(G.342)

as before! It is perhaps a funny image to combine the steam engine with the ratchet
and pawl-machine, one operating as a thermal engine and the other one as a heat
pump: They would exactly cancel each other out. And in fulfilment of the second
law of thermodynamics: In thermal equilibrium, T1 = T2, the efficiency drops to zero
η = 0 and no mechanical work can be performed.

G.5 Thermal wavelength and quantum statistics

We can take this idea of determining temperature with a mechanical measurement
one step further, specifically by bringing in quantum mechanics and focusing on
kinetic systems, i.e. systems where the thermal energy is present in the form of kinetic
energy in the motion of the particles: The de Broglie-wavelength λ of a particle at
momentum p is given by the relation

p =
h
λ

(G.343)

with Planck’s constant h. On the other hand, the particle’s typical energy would be

E = kBT (G.344)

as a consequence of equipartition. The two ideas are linked through the dispersion
relation

E =
√

(cp)2 + (mc2)2 =

cp, for large momenta cp ≫ mc2

p2

2m for small momenta cp ≪ mc2
(G.345)

Then, we can define the thermal wavelength for relativistic particles,

E = kBT = cp =
ch
λ

→ λ =
ch
kBT

(G.346)

and analogously for non-relativistic particles,

E = kBT =
p2

2m
=

1
2m

(
h
λ

)2

→ λ =
h

√
2mkBT

(G.347)

In both cases, the thermal wavelength becomes shorter with increasing temperature,
as a reflection of the particle’s higher momenta. Measuring λ spectroscopically by
means of a diffraction grid is a perfectly valid determination of temperature: From
the fact that the light of the Sun is visible and yellow in colour we can conclude that
the surface temperature of the Sun must be around 6000 Kelvin.

Thermal wavelength as a scale matters physically as it is intricately linked to the
particle’s being indistinguishable: If the separation of two particles is small compared
to the thermal wavelength, their wave functions, which have a typical extension of
the order λ overlap heavily and a localisation of the particles is not able to determine
which particle is which!
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g.6. boltzmann-factor and the fundamental postulate

Additionally, thermal wavelength λ and the associated volume λ3 of a wave
packet provide a scale for the volume of the system, as can be seen for instance in the
canonical partition Z(T, V, N) for an ideal, non-relativistic gas:

Z(T, V, N) =
1

N!

∫ ∏
i

d3pid3qi
h3 exp

− 1
kBT

∑
i

p2
i

2m

 (G.348)

which, due to the non-interaction of particles, separates:

Z(T, V, N) = Z(T, V, 1)N (G.349)

Evaluating the partition sum shows that
∫

d3q is just the volume V of the system and
substituting the thermal wavelength λ gives

Z(T, V, N) =
1

N!

( V
λ3

)N
(G.350)

Funnily, exactly the same expression is valid for a relativistic ideal gas! Writing

Z(T, V, N) =
1

N!

∫ ∏
i

d3pid3qi
h3 exp

− 1
kBT

∑
i

cpi

 (G.351)

by substitution of the definition of λ for the relativistic case. Clearly, λ3 is a scale for
V and we would expect some kind of quantum-mechanical interference effect when
the wave functions are extended and become comparable to the size of the system,
V ≃ Nλ3. And the example of these two classical gases show that h plays a role even
in apparently non-quantum mechanical systems.

G.6 Boltzmann-factor and the fundamental postulate

To imagine a system in thermal equilibrium is not straightforward: On the macro-
scopic level, nothing at all is happening as the system does not evolve mechanically,
and there are no heat fluxes in or out either. But on the microscopic level, there is a
lot going on! All degrees of freedom follow their dynamics defined in Hamiltonian
mechanics and are continuously reshuffling energy, but maintaining equipartition on
average, with a typical energy of kBT present in every degree of freedom. In addition,
there is the fundamental postulate to be fulfilled, that finding the system in any of
the microstates is equally probable, and that observing a degree of freedom acquiring
an amount of energy ϵ by a thermal fluctuation is given by the Boltzmann-probability
exp(−ϵ/(kBT)).

There are various ways which suggest the Boltzmann-factor convincingly, but it is
clearly one way to enforce transitivity: The probability p(ϵ, T) to find a fluctuation of
ϵ at temperature T should be a function of energy difference, i.e.

p(ϵ2, T)
p(ϵ1, T)

= g(ϵ2 − ϵ1, T) (G.352)

where we can introduce an intermediate step,
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g(ϵ3 − ϵ1, T) =
p(ϵ3, T)
p(ϵ1, T)

=
p(ϵ3, T)
p(ϵ2, T)

p(ϵ2, T)
p(ϵ1, T)

= g(ϵ3 − ϵ2, T)g(ϵ2 − ϵ1, T) (G.353)

This suggests a functional equation for the unknown function g(ϵ, T) which is
uniquely solved by g(ϵ, T) = exp(−β(T)ϵ). The dependence of β on temperature T is
heuristically given by

β =
1

kBT
(G.354)

with the Boltzmann-constant kB. Heuristically, this is very sensible, as higher temper-
atures make large thermal fluctuations more likely, and the minus-sign is a reflection
of stability if the system is energetically bounded from below and if the temperature
is positive. This would be the opposite in systems with negative absolute temperature:
Please refer to Sect. G.9 for this.

Let’s see whether thermal fluctuations are real and how they would enter in a
discrete picture of matter versus a continuum picture. A molecule in the atmosphere
experiences continuous collisions with the other molecules maintaining thermal
equilibrium, and by interactions with more than one particle the energy ϵ fluctuates.
The particle can invest this energy to rise up in the gravitational field of the Earth to
the height h determined by the potential energy, ϵ = mgh. This process would take
place at the Boltzmann-probability

p = exp
(
− E
kBt

)
= exp

(
−
mgh

kBt

)
(G.355)

such that the fraction of molecules that can reach the height h, i.e. the density ρ
becomes proportional to exp(−h): This is just the barometric formula.

In a continuum picture the same result has to be explained by this: The atmosphere
as a continuum is described by density ρ, velocity υi and pressure p by the Euler-
equation of ideal fluid mechanics,

∂tυ
i + (υj∂j )υ

i = −
∂ip

ρ
− ∂iΦ (G.356)

from which we derive the hydrostatic equation

∂ip

ρ
= −∂iΦ (G.357)

if the velocities vanish, υi = 0 and if there are no accelerations ∂tυ
i = 0. To continue,

we need to assume a relationship between pressure and density, for instance that
p ∝ ρ at fixed temperature as predicted by the law by Boyle and Mariotte for ideal
gases. Then,

∂iρ

ρ
= ∂i ln ρ ∝ −∂iΦ → ρ ∝ exp(−Φ) (G.358)

with the scaling ρ ∝ exp(−h) for a homogeneous gravitational potential, again leading
to the barometric formula. You see that these two pictures have almost nothing in
common yet lead to the same result, and that the equation of state p ∝ ρ at fixed T
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g.7. ultra-relativistic bose gases and the planck-spectrum

brushes over a lot of physics but establishes the equivalence between the two pictures.
It is clear that on the level of molecules a fluctuation of kBT ≃ 10−21 Joules matters a
lot (kB = 1.380649 × 10−23J/K and room temperature is about 300 Kelvin), but that it
is completely irrelevant for macroscopic objects.

G.7 Ultra-relativistic Bose gases and the Planck-spectrum

The Planck-spectrum of a thermal gas of photons was one of the decisive systems
which established quantum mechanics along with the hydrogen atom: As abstract as
it may seem, the electromagnetic field can be in a state of thermal equilibrium! As
Maxwell-electrodynamics is perfectly linear, the field can not reach equilibrium by
itself, it can only do so through the interaction with matter. This is important because
otherwise the superposition principle would apply to the modes of the field, and
it would not be possible to transfer energy from one mode to another. In Planck’s
original works he conjures up the picture of a container with perfectly mirrored walls
to contain the electromagnetic field and a grain of coal as a means of interaction and
thermal equilibration. The grain of coal is able to absorb energy from the field and
re-emit it in another mode, called photon, and there is really no resistance of the
system to change the photon number, expressed by the chemical potential µ = 0. The
situation would be different if we’re dealing with particles with a finite rest mass.
Then, one would need to invest at least mc2 to change the particle number and the
chemical potential would be consequently nonzero.

As the particle number is not fixed but controlled by the chemical potential µ
with the specific value µ = 0, corresponding to the fugacity z = exp(β) = 1, along
with a fixed volume V and a temperature T, we have to work with a macrocanonical
partition Z(T, V, µ),

lnZ(T, V, µ) = − 4πV
(hc)3

∞∫
0

ϵ2dϵ ln [1 − exp(βϵ)] =
4πV
(hc)3

β

3

∞∫
0

dϵ
ϵ3

exp(βϵ) − 1
(G.359)

where we use the linear dispersion ϵ = cp valid for photons and β = 1/(kBT). Integrals
like the one in eqn. G.359 involving a monomial ϵn and the Bose-factor are typical
for calculations with bosons: Substituting x = βϵ and dx = βdϵ gives

lnZ(T, V, µ) =
4πV

3(hc)3
1
β3

∞∫
0

dx
x3

exp(x) − 1
=

4π5V
90(hc)3 (kBT)3 (G.360)

using
∞∫

0

dx
xn−1

exp(x) − 1
= ζ(n)Γ (n) = ζ(n)(n − 1)! (G.361)

with Riemann’s ζ-function and the Γ -function as a generalisation of the factorial.
Here, we need the specific value ζ(4)3! = π4/90. With these results, one finds for the
macrocanonical potential J(T, V, µ) the expression

J(T, V, µ) = −kBT lnZ(T, V, µ) =
8π5V

90(hc)3 (kBT)4 (G.362)
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where we include an additional pre-factor of 2 to take care of the two possible spin
states of photons. From this result derives many properties of the Planck-spectrum
automatically: Entropy S and photon number N are both proportional to T3, pressure
is proportional to T4 as well as total energy, as an expression of the Stefan-Boltzmann-
law.

One of the decisive properties is the appearance of the Bose factor

1
exp(βϵ) − 1

→ exp(−βϵ) (G.363)

which falls back on the familiar Boltzmann-factor for βϵ ≫ 1. Primarily the con-
sequences are slight numerical differences to a classical computation involving the
Boltzmann-factor only, as carried out by Wien originally, who found puzzling pre-
factors that he could not make much sense of. If we isolate the spectral energy density
S(ω) from eqn.G.360 and rewrite it in terms of frequency ω, x = ω̄/(kBT) we get

S(ω) =
ℏ

4π2c2
ω3

exp (βℏω) − 1
(G.364)

which transitions for high frequencies ℏω≫ kBT into the classical Wien-limit as the
Bose-factor can be replaced by the Boltzmann-factor

S(ω) =
ℏ

4π2c2ω
3 exp(−βℏω) (G.365)

while for small frequencies ℏω≪ kBT one recovers the Rayleigh-Jeans limit,

S(ω) =
ω2

4π2c2 kBT (G.366)

which of course does not yield a finite result when integrating over all frequencies:
That’s the ultraviolet catastrophy. The key result in this context is that at high energies,
the system behaves classically and at low energies quantum mechanically with an
overabundance of photons at low energies. The two regimes are separated roughly by
the peak of the Planck-spectrum as the Wien displacement law shows:

dS(ω)
dω

= 0 → ℏωmax ≃ 2.8kBT (G.367)

This overabundance of photons at low energies leads to a super-Poissonian counting
statistic experimentally verified by the Hanbury-Brown and Twiss experiment.

G.8 Entropy

The concept of entropy is mysterious and perhaps as complex to understand as
temperature, so let’s go through different aspects of entropy:

• Weirdly, the most straightforward view on entropy is a system of ultra-relativistic
bosons. As we’ve shown in Sect. G.7, entropy S ∝ T3 as well as particle number
N ∝ T3, so that both S and N increase in proportion with increasing temper-
ature T, as the system generates new photons. Therefore, entropy is just the
number of photons in the system and is perfectly extensive, and clearly one
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does not have independent control over S and N: As a macrocanonical system,
the ultra-relativistic photon gas has T, V and µ as independent state variables,
with the particular property µ = 0 as a reflection of the masslessness of photons.

• In a classical ideal gas the particle number is fixed (and the state variable in
the canonical ensemble are T, V and N): Entropy is rather a reflection of the
volume of the energetically allowed phase space.

• The Carnot-engine offers a completely different view on entropy: The Carnot-
engine absorbs Q1 from one reservoir at T1 and dumps Q2 = T2/T1 Q1 onto
the reservoir at T2, because Qi /Ti = Si , which is equal: Entropy controls the
conversion from thermal to mechanical energy. W/Q1 = η = 1 − T2/T1 is then
the efficiency.

• The first law of thermodynamics states that dU = TdS − pdV ± . . .: Entropy is
an extensive quantity. If one changes it, one performs work against temperature,
similarly to changes in volume perform work against pressure. Vice versa,
∂S/∂E = 1/T is the formal definition of temperature as a derived quantity.

A nice example of entropy in a discrete system a polymer chain: Please assume
that a polymer string is made from N monomers, which can be built into the chain
in the long configuration with length a and the short configuration with length
b < a. From the outside, one controls temperature T (through a heat bath), string
tension σ (effectively as an analogue to pressure p) while N is fixed; With T, σ and
N the suitable state function is the enthalpy G(T, σ, N), and as N is fixed, we’ll use
a canonical description, with a replacement of l (or V) by σ (or p): The canonical
partition is given by

ZG(T, σ, N) =
∑
i

(
N
i

)
exp

(
−σl(i)
kBT

)
(G.368)

summing over all possible states weighted by the Boltzmann-factor, with the chain
length l(i)

l(i) = ai + (n − i)b (G.369)

The canonical partition can be summed out to yield

ZG(T, σ, N) =
(
exp

(
− σa
kBT

)
+ exp

(
− σb
kBT

))N

(G.370)

which factorises, which is typical for non-interacting states, ZG(T, σ, N) = ZG(T, σ, 1)N .
The enthalpy G is given by

G(T, σ, N) = −kBT ln Z(T, σ, N) = −TS + σl + µN (G.371)

along with the differential dG

dG = −SdT + ldσ + µdN (G.372)

such that we get

75



g. temperature

S = −∂G
∂T

= NkB ln ZG(T, σ, 1) +
N

Z(T, σ, 1)

(
a exp

(
− σa
kBt

)
+ b exp

(
− σb
kBT

))
σ

T
(G.373)

as well as

l =
∂G
∂σ

= N ×
a exp

(
− σa
kBT

)
+ b exp

(
− σb
kBT

)
exp

(
− σa
kBT

)
+ exp

(
− σb
kBT

) (G.374)

The equation of state l(T, σ, N) has a curious property, as the length of the chain
decreases with increasing temperature: Higher temperatures enable the system to
transition from elements in the long configuration to the energetically disfavoured
short configuration by providing thermal fluctuations more easily. This unusual
behaviour is an example of an entropic force, as the shortening of the chain comes
with an increase in entropy. In addition, the proportionality of S with the number N
of chain elements underlines the extensivity of S.

G.9 Negative absolute temperatures

To make things even weirder, it’s perfectly valid to construct systems of negative
absolute temperature! Imagine a system that is energetically bounded from above,
with fewer and fewer possibilities to realise states of increasing energy. Then, the
derivative ∂S/∂E that defines temperature, would be negative, and consequently, T
would be smaller than zero as well, according to

∂S
∂E

=
1

kBT
(G.375)

Of course, this could never be realised in a gas-dynamical system! There, the energy
is bounded from below, and S increases as a function of E, as there is a larger phase
space at higher energies, and T is necessarily positive.

It gets even weirder when powering a Carnot-engine with two reservoirs, one at
positive and one at negative T: Then, the Carnot-efficiency η becomes larger than one!
In some sense, thermal energy is in this case the more useful form of energy compared
to mechanical energy and while the first law of thermodynamics formulating energy
conservation for mechanical and thermal energy combined is of course valid, it
becomes more attractive to store energy in these systems combining a reservoir with
T > 0 with one where T′ < 0. By powering the Carnot-engine with mechanical energy
one makes T more positive and T′ more negative, and using the Carnot-engine as
a thermal engine one decreases T and make T′ less negative, and gets mechanical
energy back at the efficiency:

η = 1 − T′

T
> 1 (G.376)

so in some sense, thermal energy is the more useful energy form compared to
mechanical energy.

The efficiency ηwould be strictly lower than one for thermal engines operating
between only positive absolute temperatures or only negative absolute tempera-
tures. Examples of systems with negative absolute temperature are for instance
spin-systems, where the state of highest energy (all spins aligned) corresponds to a
state of low entropy because of the high degree of order, and in approaching the state
of highest energy would find fewer and fewer realisations compatible with the energy,
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such that ∂S/∂E becomes negative: Imagine a grid of spins, where the state of highest
alignment (all spins pointing into the same direction) would be the state of highest
energy. Then, having one spin point into the other direction could be realised in n
different ways, having two spins point into the other direction already by n(n − 1)
possibilities, so the number of possible realisations increases with decreasing energy,
or decreases with increasing energy: That would imply a negative temperature.

G.10 Reversibility

It seems that statistics of systems with many degrees of freedom brings in something
new: While all fundamental laws of Nature are perfectly time reversible (due to the
second derivatives in the field equations or the equations of motion), we see that there
are irreversible processes like mixing of liquids accompanied by entropy increase.

But this difference is quantitative and not fundamental: Imagine a ball pit filled
with balls; 1000 balls of each of 10 different colours, and a group of children mixing
the balls continuously. The state where the ball pit is unmixed is only a single one
out of 101000 different realisations! (Unmixed means that each ball is situated in
one corner of the ball pit assigned to its colour.) If the children playing in the ball
pit stir the balls continuously and if there is a new realisation every second, on can
expect a spontaneous unmixing in 101000 seconds. As the Universe is ”only” 1017

seconds old, one would need to wait 10983 times the age of the Universe for this to
occur. And a system of 104 particles is really nothing compared to Avogadro’s number
NA = 6.02214076 × 1023/mol!

G.11 Information entropies

The fundamental postulate of statistical mechanics, namely that in thermal equilib-
rium all states of a given energy are equally probable to be assumed by the system and
that states of different energy are weighted relative to each other with the Boltzmann-
factor exp(−β(ϵ2 − ϵ1)) opened the way to a fundamental microscopic theory behind
thermodynamics. We can ask the question whether the fundamental postulate can be
motivated. You might have already guessed that this is the case: Thermal equilibrium
could be characterised by making the least assumption about the system in the sense
that the random process that distributes the system among its possible states is as
random and non-committal as possible.

For a given discrete random distribution pi one can define the Shannon-entropy S

S = −
∑
i

pi ln pi (G.377)

as a measure of randomness. Shannon’s entropy S has these properties:

• S ≥ 0, because the overall minus-sign takes care of the fact that pi ≤ 1, and the
entropy is bounded from below.

• S = 0 if one of the pi = 1. Because
∑
i
pi = 1, the other pi need to be zero, and

there is no randomness involved.

• For equally probable outcomes, pi = 1/n and consequently S = ln n, such that
the entropy increases with the number of possible outcomes.
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• S is additive for statistically independent events, pij = pipj implies

S = −
∑
ij

pij ln pij = −
∑
i

∑
j

pipj ln(pipj ) =

−
∑
j

pj
∑
i

pi ln pi −
∑
i

pi
∑
j

pj ln pj = Si + Sj (G.378)

• Shannon’s entropy is maximal for equally probable outcomes. Think of S as
a functional dependent on the set of probabilities pi , so that variation of S
would determine pi , under the condition that

∑
i
pi = 1 is met, which can be

incorporated with a Lagrange multiplier λ:

S = −
∑
i

pi ln pi − λ

∑
i

pi − 1

 (G.379)

such that the variation δS with respect to pi becomes

δS = −
∑
i

δpi ln pi + pi
1
pi
δpi − λ

∑
i

δpi = −
∑
i

(ln pi + 1 + λ) δpi = 0 (G.380)

such that pi is constant with the value exp(−(1 + λ)), where λ can be fixed with
the boundary condition

∑
i
pi = 1.

In particular the last point suggests already now a uniform distribution in maximisa-
tion of the information entropy S.

The generalisation of Shannon’s entropy to a continuum of outcomes is very
interesting but contains a few dangerous spots: For a probability density p(x)dx one
can define

S = −
∫

dx p(x) ln p(x) (G.381)

which shares with the definition eqn. G.377 for the discrete case the value S = 0 for
the certain outcome, is additive for independent events and is proportional to the
logarithm of the interval length b − a for a uniform distribution, which incidentally
maximises S, too. But it is not bounded from below by zero, which can be seen in the
example of the uniform distribution: S = ln(b − a) can assume arbitrarily negative
values if the interval size b − a is small enough.

Perhaps even more importantly, S changes under transforms of the random vari-
able: p(x)dx = p(y)dy as a transformation law is suggested by integration by substitu-
tion, ∫

dx p(x) =
∫

dy
dx
dy

p(x(y)) (G.382)

so that p(x)dx is invariant, but ln p(x) is not as it becomes ln p(y) + ln dx/dy. This,
however, does not play a role in relative information entropies like the Kullback-
Leibler-divergence

∆S = −
∫

dx p(x) ln
p(x)
q(x)

(G.383)
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which quantify the relative amount of randomness between the distributions p(x)
and q(x): The transformation Jacobian drops out in the ratio p(x)/q(x).
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