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F.1 Dynamics of gravity

Surely this script is not supposed to be an introduction to general relativity with its
heavy usage of differential geometry as its mathematical language. For that reason,
everything in this chapter is restricted to weak gravity, with perturbations of an
otherwise flat Minkowskian spacetime, where the physical picture of fields on top of
a Minkowski spacetime is perfectly valid. Weak and strong gravity are quantitative
concepts: The curvature of spacetime is defined through second derivatives of a
quantity called metric, and as composed of second derivatives the curvature R defines
a length scale ∆x,

∆x =
1
√

R
(F.302)

For distances larger than ∆x, curvature effects are important and gravity is strong,
but for distances smaller than ∆x, gravity is only a small correction on the Minkowski-
metric.

Secondly, the gravitational potential Φ as it appears in the Poisson-equation
(already including here the classical cosmological constant λ)

∆Φ = 4πGρ + λ (F.303)

has no dynamics on its own, it changes instantaneously at every point in space
if ρ is not stationary. But we’ve seen that hyperbolic field equations usually show
propagation along the light cones and the existence of wave-like solutions, so we
would expect this to apply to gravity, too. Table 2 gives an overview over different
regimes of gravity in physical systems.

An attempt to make the Poisson-equation relativistic could be the replacement
∂i → ∂µ, along with γij → ηµν. And in addition, the kinetic energy in the random
motion of particles in a substance, i.e. the pressure p, should contribute along the
matter density to the gravitational field, arriving at

□
Φ

c2 = −4πG
c4 (ρc2 + 3p) + Λ (F.304)

with Λ = λ/c2. This relation is interesting as well because it makes a statement about
the dimensionless potential Φ/c2, so c2 provides a scale for Φ. Looking ahead at the
Schwarzschild-radius rS one could imagine this argumentation. Φ/c2 = 1 marks a
particular strength of the potential, which could be given by a mass M observed at
distance rS, GM/c2 = rS, which is correct up to a factor of 2. At the same time you see
that the factor G/c2 has units of length/mass, so it enables us to assign a length scale
to a mass.

There were actual observational findings that suggested a new theory of gravity,
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weak Newton-gravity gravitational waves
strong black holes FLRW-cosmologies

Table 2: regimes of gravity
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albeit with a lot of experimental uncertainty. While Newton-gravity predicts the
orbits of Planets to be closed ellipses with a fixed ratio between the orbital period and
the large semi-axis in form of Kepler’s third law, Mercury was found not to obey this.
In particular, Mercury’s orbit showed a precession of the point of closest proximity
to the Sun, which implied a slight deviation Φ ∝ r−(1+ϵ), ϵ > 0, from the Newtonian
potential.

The standard Poisson-equation ∆Φ = 4πGρ as the field equation of classical
gravity, can be motivated with these arguments: The gravitational acceleration g i

is the field strength of the the gravitational field and appears in an appropriate
Gauß-law,

∂ig
i = −4πGρ (F.305)

such that the Poisson-equation is recovered when setting g i = −∂iΦ. Applying the
Gauß-integral law and assuming spherical symmetry gives∫

V

d3r ∂ig
i =

∫
∂V

dSi g
i = g 4πr2 = −4πG

∫
V

d3r ρ = −4πGM (F.306)

with the mass M. This implies

g = −GM
r2 and consequently, Φ = −GM

r
(F.307)

Effectively, the scaling g ∝ 1/r2 and Φ ∝ 1/r is a consequence of the surfaces of
spheres in 3-dimensional Euclidean space, where the Gauß-law ensures that the flux∫

dSig
i is conserved across every surface ∂V = S ∝ r2. Mechanical similarity applied

to the 1/r-potential delivers Kepler’s third law t2 ∝ r3, so that the reason for Kepler’s
law is ultimately geometric, and the origin of Mercury’s precession is unclear. Please
keep in mind that a Yukawa-type screening modifies Φ at large and not at small
distances, so it could not serve as an explanation.

F.2 Inertial accelerations and equivalence

It is a central tenet in relativity that forces are velocity dependent to conserve the
normalisation of velocities, which in turn is needed by causal motion. The prime
example are Lorentz-forces,

duµ

dτ
=

q

m
Fµνuν =

q

m
Fµtut +

q

m
Fµiui (F.308)

which can not accelerate a particle with specific charge q/m from timelike velocities
uµu

µ = c2 > 0 to spacelike velocities uµu
µ < 0. The split in the summation over ν

shows a contribution that doesn’t depend on velocity due to the electric fields Fµt and
a contribution proprotional to the velocities υ due to the magnetic fields Fµi .

Making a giant conceptual leap to gravity we realise that there is no such thing
as specific charge: The inertial of a particle and its coupling to a gravitational field
are both equal to its mass, so gravity affects all particles in exactly the same way:
From this point of view it might be better to speak about gravitational acceleration
instead of gravitational force. Gravitational accelerations share this property with
inertial accelerations such as the Coriolis- or centrifugal accelerations: This prompted
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Einstein to postulate the equivalence principle with a general indistinguishability
between gravitational and inertial accelerations.

Looking at inertia it becomes clear very quickly that these accelerations are
velocity dependent, and could this be an expression that gravity is relativistic? That is
in fact the case, as equation of motion in general relativity for a freely falling particle
is the geodesic equation

duα

dτ
= −Γ αµν uµuν = −Γ αtt utut − 2Γ αit u

tui − Γ αij u
iuj (F.309)

with uµ = dxµ/dτ = γ(c, ui)t as always. Γ αµν is the Christoffel-symbol. In a weakly
perturbed Minkowski-spacetime one has Γ αtt = ∂αΦ/c2, which would give rise to a
Newtonian equation of motion in the slow-motion limit, d2xi /dt2 + ∂iΦ = 0, if the
field is static and if γ ≃ 1 such that t = τ. 2Γ αit u

tui = 2Γ αit cu
i would correspond

to the Coriolis-acceleration with its proportionality to 2υ, and lastly Γ αij u
iuj would

give rise to the centrifugal acceleration ∝ υ2.

F.3 Classical Raychaudhury-equation and geodesic deviation

The idea of a test particle is very transparent: It couples through its charge to the
corresponding field (without changing the field itself!) and moves according to
its equation of motion, indicating the strength and orientation of the field. It is
worthwhile noticing that in this way the relativity principle concerning the motion
of the test particle is applied to the dynamics and transformation properties of the
field, in order to have the two consistent with each other: The transformation of the
velocity unter Lorentz-transforms is given by uµ → Λ

µ
αuα, and of the field tensor

Fµν → Λ
µ
αΛ

ν
βFαβ.

Exactly the same applies to the motion of particles through the gravitational field,
with one peculiarity: If the particle is in a state of free-fall, one has the impression
of perfect weightlessness when travelling along with the particle, and Einstein’s
equivalence principle then stipulates that the metric is locally Minkowskian and
that the first derivative of the metric vanishes. So you might wonder where gravity
actually is contained! Gravity determines the relative acceleration between freely
falling test particles separated by a distance δµ:

d2δµ

dτ2 = −Rµαβνu
αuβδν (F.310)

with the Riemann-curvature Rµαβν: If spacetime is flat with no curvature, Rµαβν = 0
and consequently

d2δµ

dτ2 = 0 → δµ = aµτ + bµ (F.311)

with two integration constants aµ and bµ, indicating that there is a linear change in
the particle’s relative distance δµ. If the curvature, however, is non-vanishing, test
particles get accelerated relative to each other (despite the fact that nobody travelling
along with the particles would feel this acceleration).

Let’s understand this in Newton-gravity: Two particles follow trajectories accord-
ing to Newton’s equation of motion, ẍi +∂iΦ(x) = 0 and ÿ i +∂iΦ(y) = 0. Their relative
distance δi = y i − xi follows then the equation of motion
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δ̈i = ÿ i − ẍi = −∂iΦ(y) + ∂iΦ(x) = −∂i∂jΦ δ
j (F.312)

with the Taylor-expansion Φ(y) ≃ Φ(x) + ∂jΦ (y − x)j . Therefore, the tidal field ∂i∂jΦ

is responsible for the relative acceleration. This is effectively the Newtonian version
of the geodesic deviation equation F.310.

It is very illustrative to imagine the following experiment: Let’s have a couple of
test particles situated at the corners of a cube fall through space(time) and monitor
the change in volume or the change in shape of that cube, because intuitively, the
volume change should be related to the enclosed mass. For the relative motion of two
corners we would write y i = xi + υi∆t, so that we can observe a shear

∂y i

∂xj
= δij +

∂υi

∂xj
∆t (F.313)

if there are velocity gradients. Thinking back of the chapter about Lie-symmetries,
we might think that these are just the first two terms of a Taylor-expansion of

∂y i

∂xj
= exp

(
∂υi

∂xj
∆t

)
(F.314)

Volumes transform under this coordinate change according to

d3y = det
(
∂y i

∂xj

)
d3x (F.315)

with the functional determinant, so that we get

ln det
(
∂y i

∂xj

)
= tr ln

(
∂y i

∂xj

)
≃ tr

(
∂υi

∂xj
∆t

)
= ∂iυ

i∆t (F.316)

such that the rate of change of the volume is proportional to the divergence of the
velocity field, which is immediately apparent and intuitive. We have used the relation
ln detA = tr ln A and the approximation ln(1 + ϵ) ≃ ϵ for small ϵ. For a very small
time interval, the velocity is

υi = −∂iΦ ∆t (F.317)

and consequently
∂υi

∂xj
= −∂i∂jΦ ∆t (F.318)

The tidal field tensor can be decomposed into a trace and a traceless part,

∂i∂jΦ =
(
∂i∂jΦ − ∆Φ

3
δij

)
+
∆Φ

3
δij (F.319)

where the velocity divergence would only pick up ∆Φ, which in turn is given by
4πGρ through the Poisson-equation:
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ln det
(
∂y i

∂xj

)
= 4πGρ ∆t2 (F.320)

That means, that the cloud of freely falling test particles changes its volume dynam-
ically in proportion to ∆Φ or, equivalently, 4πGρ. If the cloud falls through empty
space, the volume would change linearly with ∆t as the corners of the cloud would
follow inertial motion, and the traceless part of the tidal shear field can only have an
influence on the shape of the cloud but not its volume.

F.4 Gravitational lensing

We should spend a couple of minutes on the issue of gravitational light deflection to
clear up misconceptions about how light could be at all influenced by gravity or cur-
vature. There is a perfectly valid set of Maxwell’s equations on a curved background
which allow for wave-like solutions, but here we should see how null-lines defined
by ds2 = 0 as photon trajectories notice gravity.

A good starting point is a weakly perturbed Minkowski line element,

ds2 =
(
1 + 2

Φ

c2

)
c2dt2 −

(
1 − 2

Φ

c2

)
γijdx

idxj (F.321)

valid with a Cartesian coordinate choice and if |Φ| ≪ c2. γij is the Euclidean metric.
A conventional, non-relativistic particle experiences the line element as the pas-

sage of proper time, ds2 = c2dτ2, and if the particle is non-relativistic, it moves
essentially only in the dt-direction and doesn’t change its spatial coordinates by a
large amount, dxi = 0. Then there will be a gravitational dilation of proper time
relative to coordinate time

ds2 = c2dτ2 =
(
1 + 2

Φ

c2

)
c2dt2 → τ =

√
1 + 2

Φ

c2 dt ≃
(
1 +

Φ

c2

)
dt (F.322)

caused by the gravitational potential Φ, which is negative as Φ = −GM/r, such that
dτ < dt, with the approximation

√
1 + ϵ ≃ 1 + ϵ/2.

A photon, however, traces out a trajectory characterised by ds2 = 0 and proper
time is not sensibly defined. The effective speed of propagation of the photon is the
rate at which the coordinates dx pass by in units of coordinate time dt, leading to

c′ =
dx
dt

= ±

√√
1 + 2 Φ

c2

1 − 2 Φ
c2

c ≃ ±
(
1 + 2

Φ

c2

)
c (F.323)

with the approximation 1/(1 − ϵ) ≃ 1 + ϵ for small ϵ. That is a surprising result, as
the effect of a gravitational field on a relativistic particle is twice as strong as on a
non-relativistic particle. If again Φ = −GM/r, the effective speed of propagation c′

becomes zero at 2GM/c2 = rS, which is known as the Schwarzschild radius. You see,
it’s not a matter of energy or of time of flight when a photon can not escape from a
black hole; in these coordinates it’s the case that the effective speed of propagation
reaches zero at rS, so the photon does not make any headway (in either direction!).

It’s a good idea to follow this thought a bit further: For a radially moving photon
in the potential Φ = −GM/r, we have
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dr
dt

= ±
(
1 − 2GM

c2r

)
c → dr

1 − rS/r
= ±cdt (F.324)

which is solved by rS ln(r − rS) + r = ±ct up to an integration constant, let’s call it p
for the + branch and q for the − branch. This integration constant can be made the
new radial coordinate,

p = rS ln(r − rS) + r + ct and q = rS ln(r − rS) + r − ct (F.325)

or differentially with α = (1 − rS/r)−1:

dp = cdt + αdr and dq = cdt − αdr (F.326)

with these new coordinates, the line element becomes

ds2 ≃ α−1c2dt2 − αdr2 = α−1(dp − αdr)(dq + αdr) − αdr2 =

α−1
(
dpdq + α(dp − dq)dr − αdr2

)
− αdr2 (F.327)

which becomes by using dp − dq = 2αdr simply

ds2 =
(
1 − rS

r

)
dpdq (F.328)

The line element is effectively given now in terms of light cone coordinates, with
a so-called conformal factor in front: This conformal factor doesn’t change light
propagation as ds2 = 0 and the factor is never zero, so dpdq = 0 already characterises
the trajectory of a photon: We have absorbed the action of the gravitational field in a
redefinition of the coordinates.

F.5 Gravitational field equation

From what we’ve learned the gravitational field equation should be a second-order
hyperbolic field equation which is at least covariant under Lorentz-transforms. A first
guess could be that gravity is some kind of electrodynamics for masses, so we could
write

□Aµ = −4πG
c

ȷµ (F.329)

with At being the gravitational potential Φ and ȷt the matter density ρ, the idea being
that momentum density along with rest mass sources the gravitational field. Already
now it might be a bit weird that ȷt is not the rest mass energy density.

Surely, in the case of static field one would fall back onto the Poisson-equation,
but for instance the incorporation of the cosmological constant λ would be unclear,
as the equation is vectorial and not scalar as our intuitive rewriting of the Poisson
equation

□
Φ

c2 = −4πG
c4 (c2ρ + 3p) +

λ

c2 (F.330)

But there is a more fundamental problem: The rest mass energy density c2ρ

transforms differently than the electric charge density. If you imagine a cloud of
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electrical charges viewed from a moving system, one perceives that cloud Lorentz-
contracted by a factor of γ such that the charge density is higher by that factor, in
agreement with the transformation property of a vector ȷµ → Λ

µ
αȷα. A cloud of matter

viewed from another Lorentz-system has the same effect of Lorentz-contraction of the
volume along the direction of motion, but also a relativistic mass increase by another
factor of γ (indirectly, as a consequence of time dilation: one assigns a higher amount
of inertia to the system). To get two powers of γ in the transformation, c2ρ must be
the tt-component of a tensor, in this case the energy momentum tensor Tµν. The
transformation property would be Tµν → Λ

µ
αΛ

ν
βTαβ, and with the proportionality of

Λ
µ
α ∝ γ this actually works out. In summary, the gravitational field equation would

need to be at least tensorial, in the form

□hµν = −4πG
c2 Tµν (F.331)

A second large conceptual difference is the nonlinearity in energy-momentum
conservation, expressed by the innocently looking conservation law ∂µTµν = 0, with
typical nonlinear terms arising in the equations of relativistic fluid mechanics. This
in turn implies that eqn. F.331 can only be valid in a linearised limit.

The solution to these problems is much more complex and requires differential
geometry: Gravity is thought to be equivalent to spacetime geometry, where curvature
is sourced by the energy-momentum content. If that relationship is to be (i) a second-
order, hyperbolic relation, which (ii) respects energy-momentum conservation, if (iii)
spacetime is 4-dimensional and if the (iv) metric of spacetime is linked to the energy-
momentum tensor in a (v) local way, then general relativity is uniquely defined, as
stated by Lovelock’s theorem.
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