
E quanta

E.1 Schrödinger-equation as a Helmholtz-differential equation

The iconic Schrödinger-equation

iℏ∂tψ = Hψ (E.231)

determines the time-evolution of the wave function ψ with the Hamilton-operator H
of the system. If you’d categorise the Schrödinger equation, it is elliptical rather than
hyperbolical, so we need to provide boundary conditions to make the solution for ψ
unique. Please remember the example about particles in an infinitively deep square
potential well where ψ = 0 at the edges: This is effectively a Dirichlet boundary
condition, likewise, the wave functions for the Coulomb-potential in the hydrogen-
problem vanish for r →∞, in fulfilment of Dirichlet boundaries.

Separating out the time-dependent part by a separation of variables ψ(x, t) =
exp(iEt/ℏ)φ(x) recovers the time-independent Schrödinger equation,

Hφ(x) = Eφ(x) (E.232)

where the phase of the wave function undergoes oscillations with exp(iEt/ℏ). Working
in a position representation the Schrödinger equation becomes(

−ℏ
2∆

2m
+ Φ(x)

)
φ = Eφ →

(
∆ +

2m
ℏ2 [E − Φ]

)
φ = 0 (E.233)

which is the archetypical form of a Helmholtz-differential equation
(
∆ + k2

)
φ = 0

for constant Φ. Weirdly enough, one would arrive at exactly this differential equation
starting from a properly hyperbolic wave equation, even though the Schrödinger
equation is elliptical, but with the added benefit that because the range of values has
been extended to complex numbers, k2 can be negative and one can switch between
oscillatory behaviour for positive energies to exponentially decaying solutions for
negative energies.

Non-relativistic quantum mechanics is based on Galilei-invariant classical me-
chanics, where time is a universal parameter to describe evolution, and as such it
is not an observable. Thinking of expectation values ⟨t⟩ is pretty much devoid of
meaning, and that’s the reason why the energy-time uncertainty is just a different ex-
pression of the momentum-position uncertainty. From E = p2/(2m) we can conclude
that ∆E = dE/dp ∆p = p/m ∆p and x = p/m t implies ∆x = dx/dt ∆t = p/m ∆t such
that

∆E∆t = ∆p∆x ≥ ℏ
2

(E.234)

without the need of defining an uncertainty ∆t from (non-existent!) expectation
values ⟨t2⟩ and ⟨t⟩.

E.2 Born’s postulate and the conservation of probability

Born’s postulate gives a probabilistic interpretation to the wave function: ρ(x) =
ψ∗(x)ψ(x) is the probability to find the particle at position x in a localisation. With
this interpretation, the total probability should be conserved in time evolution
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d
dt

∫
d3x ψ∗ψ = 0 (E.235)

if the particles are stable and do not decay. From the time derivative ∂tρ of of the
probability density one can in fact derive a continuity relation:

∂tρ = ∂t(ψ
∗ψ) = (∂tψ

∗)ψ + ψ∗∂tψ = − i
ℏ

(Hψ∗)ψ +
i
ℏ
ψ∗(Hψ) (E.236)

by substituting the Schrödinger-equation and its conjugate (keeping in mind that
H is hermitean, H+ = H). For a standard form of the Hamilton-operator in position
representation

H =
p2

2m
+ Φ = −ℏ

2∆

2m
+ Φ (E.237)

one can immediately see that the Φ-term is not relevant, such that with ∆ = ∂i∂
i one

gets

∂tρ =
ℏ

2mi
[(∆ψ∗)ψ − ψ∗∆ψ] =

ℏ
2mi

∂i

[
(∂iψ∗)ψ − ψ∗∂iψ

]
= ∂i ȷ

i (E.238)

with the probability current density ȷi

ȷi =
ℏ

2mi

[
(∂iψ∗)ψ − ψ∗∂iψ

]
(E.239)

Please be careful here: Schrödinger-quantum mechanics is built on Galilean relativity
and it’s not possible to combine the time derivative of ρ with the divergence of ȷi in to
an expression like ∂µȷ

µ = 0.
One could violate the probability conserving continuity equation by adding an

anti-hermitean term to the Hamilton-operator, for instance H→ H − iΓ , with (iΓ )+ =
−iΓ , iΓ with a real-valued Γ . Then, focusing on this term alone, we would get

∂tρ = (∂tψ
∗)ψ + ψ∗∂tψ = −

(
Γ

ℏ
ψ∗

)
ψ − ψ∗

(
Γ

ℏ
ψ

)
= −2

Γ

ℏ
ψ∗ψ = −2

Γ

ℏ
ρ (E.240)

which, depending on the sign of Γ , leads to exponential increase or decrease: The
Γ -term would be suitable to describe creation or decay of particles.

E.3 Ehrenfest’s theorem

The transition from quantum mechanics to classical mechanics is conceptually very
complicated but needs in some way take care of the fact that in the limit ℏ → 0
classical mechanics should be recovered. The transition is gradual as ℏ provides a scale
for the action S, as will be explained in Sect. E.5. But there is a more direct relation
between quantum mechanics and classical mechanics in the form of Ehrenfest’s
theorem: For any hermitean operator A, A+ = A, one can derive the time evolution of
its expectation value ⟨A⟩,

d
dt
⟨A⟩ =

d
dt

∫
d3x ψ∗Aψ =

∫
d3x ∂tψ

∗Aψ + ψ∗A∂tψ (E.241)
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if A is stationary. The time derivatives ∂tψ and ∂tψ
∗ can be replaced by the Schrödinger-

equation and its complex conjugate, keeping in mind that the Hamilton-operator H
is itself hermitean, H+ = H,

d
dt
⟨A⟩ =

∫
d3x

Hψ∗

−iℏ
Aψ + ψ∗A

Hψ
iℏ

=
i
ℏ

∫
d3x ψ∗ [H, A]ψ =

i
ℏ
⟨[H, A]⟩ (E.242)

which is very reminiscent of the Poisson-equation of motion. Let’s go through a
couple of particular cases: The simplest choice would be the identity operator A = id,
which commutes with everything, [H, id] = 0, so the statement we’d derive would be

d
dt
⟨id⟩ =

d
dt

∫
d3x ψ∗ψ =

d
dt

∫
d3x ρ = 0 (E.243)

such that the normalisation of the wave function is conserved in time evolution
and the probability density ρ = ψ∗ψ integrates up to one at every instant in time.
Similarly easy is the choice A = H, and as H commutes with itself, [H, H] = 0 and the
expectation value of energy is conserved,

d
dt
⟨H⟩ = 0 (E.244)

which is the quantum mechanical version of the Poisson-bracket dH/dt = {H,H}
applied to the Hamilton-function H. A slightly more interesting case is A = x with
the position operator x: Then,

d
dt
⟨x⟩ =

i
ℏ
⟨[H, x]⟩ (E.245)

and evaluating the commutator proceeds like this. The potential Φ in H commutes
with x because it is just a function of position, so [p2, x] is left over: Working in the
position-representation

[p2, x]ψ = p2xψ − xp2ψ = (iℏ)2
[
∂2
x(xψ) − x∂2

xψ
]

= (iℏ)2
[
∂x(ψ + x∂xψ) − x∂2

xψ
]

(E.246)

which simplifies to

[p2, x]ψ = (iℏ)2
[
∂xψ + ∂xψ + x∂2

xψ − x∂2
xψ

]
= 2(iℏ)2∂xψ = 2iℏpψ (E.247)

such that
d
dt
⟨x⟩ =

⟨p⟩
m

(E.248)

taking care of the −1/(2m)-prefactor in the Hamilton-operator. The result implies
that the expectation value of position changes in time with the expecation value of
momentum,

d
dt
⟨x⟩ =

⟨p⟩
m

→ m⟨x⟩ =
∫

dt ⟨p⟩ (E.249)

as one would expect in classical mechanics. Similarly, the evolution of ⟨p⟩ can be
evaluated: This time, p commutes with the kinetic energy, [p, p2] = 0 but does not

49



e. quanta

commute with the potential energy, [p,Φ] , 0 because Φ is a function of x. Using
again the position representation of p shows

[p,Φ]ψ = pΦψ − Φpψ = iℏ [∂x(Φψ) − Φ∂xψ] = iℏ [∂xΦ ψ + Φ∂xψ − Φ∂xψ] = iℏ∂xΦ ψ

(E.250)

such that
d
dt
⟨p⟩ = −⟨∂xΦ⟩ → ⟨p⟩ = −

∫
dt ⟨∂xΦ⟩ (E.251)

as a Newton-equation of motion for the expectation values. Perhaps it’s a nice
catch how Ehrenfest’s theorem can be derived using unitary time evolution with an
operator U instead of substituting the Schrödinger equation (of course, the two would
be absolutely equivalent). Then, ψ(t) = Uψ0 and ψ∗(t) = U+ψ∗0 with initial conditions
ψ0:

d
dt
⟨A⟩ =

d
dt

∫
d3x ψ∗Aψ =

d
dt

∫
d3x ψ∗0U+AUψ0 (E.252)

and consequently, the time derivatives only operate on U and U+:

d
dt
⟨A⟩ =

∫
d3x

(
ψ∗0(∂tU

+)AUψ0 + ψ∗0U+A(∂tU)ψ0

)
(E.253)

As U = exp(−iHt/ℏ) and U+ = exp(+iHt/ℏ) the differentiation just gives ±iH/ℏ as a
factor, and because H and U commute, one arrives at

d
dt
⟨A⟩ =

i
ℏ

∫
d3x ψ∗0U+[H, A]Uψ0 =

i
ℏ

∫
d3x ψ∗[H, A]ψ =

i
ℏ
⟨[H, A]⟩ (E.254)

Here, we’ve used that

∂tU
+ = ∂t exp

( iHt
ℏ

)
= ∂t

∑
n

1
n!

( iHt
ℏ

)n
=

iH
ℏ

∑
n

1
n!

( iHt
ℏ

)n
=

iH
ℏ

U+ (E.255)

and similarly for U.
Loosely speaking, the centres of wave packets follow the classical equation of

motions: This is the central statement of the Ehrenfest-theorem. Any quantification
by how much the wave packets are focused on these locations in x and p requires the
computation of the uncertainties ∆x2 = ⟨x2⟩ − ⟨x⟩2 as well as ∆p2 = ⟨p2⟩ − ⟨p⟩2

E.4 Dispersion of wave packets and propagation with Green-functions

Restarting with unitary time evolution of a wave function and introducing the bra-
ket-notation∣∣∣ψ(tf )

〉
= U(tf , ti)

∣∣∣ψ(ti)
〉

with U(tf , ti) = exp
(
−

iH(tf − ti)
ℏ

)
(E.256)

with a unitary time evolution operator U(tf , ti), which is true in generality as it solves
the time-dependent Schrödinger equation, asks the question whether we can find a
position representation in which the Hamilton-operator H is usually written down,

50



e.5. path integrals

essentially by setting p2 = −ℏ2∆/(2m). This is in fact possible by projection

ψ(xf , tf ) =
〈
xf |ψ(tf )

〉
=

〈
xf |U(tf , ti)|ψ(ti)

〉
(E.257)

Squeezing in an orthonormal basis set to write the state |ψ(ti)⟩ in position represen-
tation as well

ψ(xf , tf ) =
∫

d3xi
〈
xf |U(tf , ti)|xi

〉 〈
xi |ψ(ti)

〉
(E.258)

shows that the final state is related to the initial one in a convolution relation

ψ(xf , tf ) =
∫

d3xi K(xi , ti → xf , tf ) ψ(xi , ti) (E.259)

with the Green-function (or propagator) K(xi , ti → xf , tf ) evolving the wave function
by collecting up all amplitudes of the initial state and assembling the final state.

For getting a specific shape of K(xi , ti → xf , tf ), we would specialise the case
to the propagation of a free particle with H = p2/(2m) and working in momentum
representation, as the eigenfunctions of p and p2 are particularly simple:

K(xi , ti → xf , tf ) =
∫

d3pf

∫
d3pi

〈
xf |pf

〉 〈
pf | exp

(
−iH(tf − ti)/ℏ

)
|pi

〉 〈
pi |xi

〉
(E.260)

as
〈
xf |pf

〉
and

〈
pi |xi

〉
are only plane waves exp(+ipf xf ) and exp(−ipixi), one can sub-

stitute them and integrate the expression, essentially performing a Fourier-transform,

K(xi , ti → xf , tf ) =

√
mℏ

2πi(tf − ti)
exp

− im
2ℏ

(xf − xi)2

tf − ti

 (E.261)

which can be loosely interpreted as a diffusion kernel with the typical behaviour that
the width of an initially δD-shaped wave function increases ∝

√
t.

E.5 Path integrals

Path integrals are a great view on the relation between the quantum mechanical
propagation of probability and the classical variational principles, and they establish
ℏ as a scale for the action S. But please keep R. MacKenzie’s words in mind who said:
”As far as I am aware, path integrals give us no dramatic new results in quantum mechanics
of a single particle. Indeed, most, if not all calculations in quantum mechanics which can
be done by path integrals can be done with considerable greater ease with the standard
formulations”.

Ignoring MacKenzie’s advice for this section, let’s introduce an intermediate time
ti in the propagation of a free particle and see how the propagators need to be linked
together, i.e. whether they form a group: Time as the parameter in the unitary time
evolution operator is additive, therefore

U(tf − ti) = U(tf − t1 + t1 − ti) = U(tf − t1)U(t1 − ti) (E.262)
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and therefore the Green-function K(xi , ti → xf , tf ) becomes

〈
xf |U(tf , ti)|xi

〉
=

〈
xf |U(tf − t1)U(t1 − ti)|xi

〉
=∫

d3x1

〈
xf |U(tf − t1)|x1

〉
⟨x1|U(t1 − ti)|xi⟩ (E.263)

which implies that

K(xi , ti → xf , tf ) =
∫

d3x1 K(xi , ti → x1, t1)K(x1, t1 → xf , tf ) (E.264)

with effectively a marginalisation over all possible stop-over points x1. This result
can be generalised to more stop-over points such that the time interval tf − ti is
subdivided into n steps, δ = (tf − ti)/n:〈

xf |U(tf , ti)|xi
〉

=
〈
xf |(exp(−iHδ/ℏ)n|xi

〉
=

〈
xf |(exp(−iHδ/ℏ) . . . exp(−iHδ/ℏ)|xi

〉
(E.265)

using exp(iH(tf − ti)) = exp(iHnδ) = exp(iHδ)n. This can be decomposed by introduc-
ing complete basis sets into all n − 1 gaps between the individual factors of exp(iHδ):

K(xi , ti → xf , tf ) =
n−1∏
j

∫
d3xj K(xj , tj → xj+1, tj + δ) (E.266)

with x0 = xi and xn = xf , likewise t0 = ti and tn = tf = ti + nδ. Of course you’re
already suspecting that we should take the limit δ → 0 or n → ∞, while keeping
tf − ti = nδ fixed, and link this to the idea of generating the time evolution U with H.

E.5.1 Phase space path integral

Our view on quantum-mechanical propagation is now very abstract: There are Green-
functions that depend on the Hamilton-operator, which collect up the amplitudes of
ψ at ti and assemble them at tf . Introducing intermediate steps requires to combine
the Greens-functions in a convolution relation. The unitary time evolution operator,
which is equivalent to the Green-function in position representation, can be replaced
by its generator H in the limit of very small time intervals δ:

K(xj , tj → xj+1, tj + δ) =
〈
xj | exp(−iHδ/ℏ)|xj+1

〉
≃

〈
xj |1 − iHδ/ℏ|xj+1

〉
(E.267)

Let’s inspect the two resulting terms separately: Firstly, the term

〈
xj |xj+1

〉
=

∫ d3pj
(2π)3 exp

(
ipj (xj − xj+1)

)
=

∫ d3pj
(2π)3 exp

(
ipj ẋjδ

)
(E.268)

is effectively the δD-function, which we rewrite as a dp-integral. A clever step is to
extend the term by δ/δ and identify (xi − xj+1)/δ as ẋj . Secondly, we obtain

〈
xj |H|xj+1

〉
=

∫ d3pj
(2π)3 H exp

(
ipj (xj − xj+1)

)
(E.269)

52



e.5. path integrals

by substitution of the Hamilton-operator in position representation. Reconstructing
the Taylor-series then gives

K(xj , tj → xj+1, tj + δ) =
∫ d3pj

(2π)3 exp
( iδ
ℏ

(pj ẋj − H)
)

(E.270)

and collecting all intermediate steps results in

K(xi , ti → xf , tf ) =
∏
j

∫
d3xj

∫ d3pj
(2π)3 exp

 i
ℏ
δ

n−1∑
j

pj ẋj − H

 (E.271)

where in the exponential a very interesting term appears: pj ẋj − H is the reverse
Legendre-transform of H which would result in the Lagrange-function L, and the
summation over n − 1 time steps of size δ over L would correspond to the action S,
which is being de-dimensionalised by the Planck-constant ℏ. In the continuum limit
one arrives at the phase space path integral,

K(xi , ti → xf , tf ) =
∫
Dx

∫
Dp exp

(
i
ℏ

∫
dt L

)
=

∫
Dx

∫
Dp exp

( i
ℏ

S
)

(E.272)

Please be careful that we did in fact carry out the derivation in a simplified case for
H = p2/(2m) without any potential Φ, but we generalised the expression ẋp − H to be
the Lagrange-function (or rather, operator in this case) L.

E.5.2 Configuration-space path integral

At least half of the integrals in the phase space path integral can be solved for a
standard form

H =
p2

2m
+ Φ (E.273)

for the Hamilton operator H. Realising that for this form of the Hamilton-operator
the phase space path integral separates in a factor involving only momenta and a
factor involving only coordinates and returning to the discrete representation for a
second we can write

K =
∏
j

∫
d3xj exp

 i
ℏ
δ

n−1∑
j

Φ(xj )

 ×
∫ d3pj

(2π)3 exp

 i
ℏ
δ

n−1∑
j

pj ẋj −
p2
j

2m

 (E.274)

The second factor only involves Gaussian-integrals which can be solved by comple-
tion of the square in the exponent, whereas this strategy would only work for the
first term for a very specific physical system: the harmonic oscillator. Carrying out all
d3p-integrations yields:

K =
∏
j

∫
d3xj

( mℏ
2πiδ

)n/2
exp

 i
ℏ
δ

n−1∑
j

m
2
ẋ2
j − Φ(xj )

 (E.275)

where one again recognises the Lagrange-function L in the exponent: The squares
of ẋ needed for kinetic energy mẋ2 was provided by the Gaussian integrals over
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momentum space at the step of completing the square. Therefore, the final result
reads:

K(xi , ti → xf , tf ) =
∫
Dx exp

(
i
ℏ

∫
dt L

)
=

∫
Dx exp

( i
ℏ

S
)

(E.276)

The interpretation of the path-integral for the propagation Green-function is
highly interesting, as it joins quantum mechanics with classical mechanics. First of all,
all possible paths between xi and xf can be taken without any energy consideration:
Didn’t strike you as odd that there was no boundary condition on the classical varia-
tional principles if a particle can ”afford” a certain path energetically? In quantum
mechanics this is not so dramatic as there is tunneling and a penetration of the wave
function into energetically disallowed regions. Making the transition from quantum
mechanics to classical mechanics in the limit ℏ→ 0 should collapse the path integral
and the ”tube” where the wave function propagates, onto an infinitely thin line as the
classical trajectory. Introducing a variation

x′(t)→ x(t) + η(t) (E.277)

gives a corresponding variation of the action

δS = S[x′] − S[x] =
∫

dt
(
δS
δx
η+

δ2S
δx2

η2

2
+ . . .

)
(E.278)

This difference in the action gives rise to a variation of the Green-function

δK = exp
(

i
ℏ

∫
dt

δS
δx
η+

δ2S
δx2

η2

2
+ . . .

)
(E.279)

The classical path is defined as an extremum of the action, so δS = 0 and δS/δx = 0,
as required by Hamilton’s principle, so the decisive term is ∝ η2: Any large deviation
from the classical path, no matter if positive or negative, introduces strong oscillations
into K if

δ2S
δx2

η2

2
≫ ℏ (E.280)

and in the path-integration Dx these oscillating terms cancel each other out. In this
sense, the Planck-constant ℏ is a scale for the action S, differentiating between classical
motion and quantum mechanical propagation. With a little overinterpretation one
could even imagine that the particle wave duality is the mechanism by which the
action is extremised: A particle sends out the probability waves and could propagate
along all possible paths, but the classical one is singled out as it is assigned the highest
probability by constructive interference. Deviations around the classical path are
of order ℏ in S, and whether this matters or not depends on the magnitude of S/ℏ.
Therefore, we have identified three key properties in the transition from quantum
to classical mechanics: ℏ as a the action S becomes less and less important, the
uncertainty ∆p∆x ≥ ℏ/2 becomes irrelevant and the averages needed for Ehrenfest’s
theorem become perfectly defined without any dispersion.
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E.6 Uncertainty

All observables are represented by hermitean operators, whose spectrum of eigen-
values (which are necessarily real-valued) are possible outcomes of a measurement.
Sometimes the situation arises that two observables are not measurable at arbitrary
precision at the same time, and the criterion whether a simultaneous measurement is
possible is the value of the commutator [A, B] = AB − BA of the two operators A and
B. Defining the expectation values and variances

⟨A⟩ =
∫

d3x |ψ|2A and ⟨A2⟩ =
∫

d3x |ψ|2A2 (E.281)

leads to the uncertainty ∆A =
√
⟨A2⟩ − ⟨A⟩2, where we’ll use the simplification

∆A =
√
⟨A2⟩ because setting ⟨A⟩ = 0 is always possible by redefining the operator.

The Cauchy-Schwarz-inequality implies that(∫
d3x |ψ|2AB+

)2

≤
∫

d3x |ψ|2A2 ×
∫

d3x |ψ|2B2 (E.282)

or short, ⟨AB⟩2 ≤ ⟨A2⟩⟨B2⟩. We can use the Cauchy-Schwarz-inequality as a lower
bound:

∆A∆B =
√
⟨A2⟩ ×

√
⟨B2⟩ ≥

∣∣∣∣∣ 1
2i

(⟨AB⟩ − ⟨AB⟩∗)
∣∣∣∣∣ =

1
2
|⟨AB⟩ − ⟨BA⟩| =

1
2
|⟨[A, B]⟩|

(E.283)

where we’ve used that the modulus of a complex number is always larger than its
imaginary part, that the scalar product is hermitean,

⟨AB⟩∗ = ⟨B+A+⟩ = ⟨BA⟩ (E.284)

and that the operators themselves are hermitean. Fundamental commutators between
coordinates and their canonical momenta are for instance [p, x] = iℏ:

[p, x]ψ = (px − xp)ψ = iℏ [∂x(xψ) − x∂xψ] = iℏ [ψ + x∂xψ − x∂xψ] = iℏψ. (E.285)

E.7 Relativistic quantum mechanics

The rationale behind the Schrödinger-equation is a classical dispersion relation,
E = pip

i /(2m) with the canonical displacements E → iℏ∂t and pi → iℏ∂i . But we
know already that the classical dispersion relation is only valid for small cp ≪ mc2

compared to the rest mass m.
One possibility to generalise the Schrödinger-equation is to use the fully relativis-

tic dispersion relation
E2 = (cp)2 + (mc2)2 (E.286)

and perform canonical replacement on this equation: This procedure leads to the
Klein-Gordon-equation,

∂2
ctψ − ∂i∂

iψ +
(mc
ℏ

)2
ψ = 0 (E.287)
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or shorthand (
□ + λ−2

)
ψ = 0 with λ =

ℏ
mc

(E.288)

with a fully Lorentz-covariant □ = ηµν∂
µ∂ν. The constant term is rather interesting,

as it defines the de Broglie-wavelength, λ = ℏ/(mc) pertaining to the momentum mc.
And for static situations, where ∂ctψ = 0 and consequently □→ ∆, we recover the
Yukawa-field equation A.3 (

∆ − λ−2
)
ψ = 0 (E.289)

and now the de Broglie-scale λ = ℏ/(mc) gets the interpretation of a screening length,
which effectively truncates the Coulomb-potential at λr ≃ 1. We now understand
perfectly Yukawa’s reasoning: By introducing a mass-term into the field equation
one can deviate from Φ ∝ 1/r and make the potential finite-ranged. The range is
controlled by the mass of the particle that is described by the Klein-Gordon-equation,
so choosing about 100 MeV as a mass gives a restriction to nuclear dimensions, exactly
what has been found in the π-mesons.

Effectively, we could even take this idea one step further and define directly a
canonical substitution to the relativistic momentum pµ:

pµ =
(

E/c
pi

)
→ iℏ

(
∂ct

−∂i

)
= iℏ∂µ (E.290)

and obtain pµpµ = −ℏ2□ = (mc)2 directly. There is a second path which leads to the
Dirac-equation and the inclusion of spin-degrees of freedom of the wave functions
(so-called spinors), but this is beyond the scope of this lecture.

E.8 Coupling to fields

Coupling of wave functions ψ to fields Fµν is rather subtle as it proceeds over the
potential Aµ with all kinds of conceptual difficulties involving the Aharonov-Bohm-
experiment. Establishing a relation between the momentum pµ and the potential Aµ

is done by minimal coupling,

pµ → pµ −
q

c
Aµ (E.291)

If one tries this with the Klein-Gordon equation E.287:

pµpµψ =
(
iℏ∂µ −

q

c
Aµ

) (
iℏ∂µ −

q

c
Aµ

)
ψ = (mc)2ψ (E.292)

which becomes under the assumption of Lorenz-gauge ∂µAµ = 0

□ψ +
( q

cℏ

)2
AµAµψ =

(mc
ℏ

)2
ψ (E.293)

which is in this form difficult to interpret, in particular the AµAµ-term looks weird.
Let’s therefore try this again in a fixed frame, where Aµ = (Φ, Ai)t :

pµpµψ =
(
iℏ∂ct −

q

c
Φ

)2
ψ −

(
iℏ∂i −

q

c
Ai

) (
iℏ∂i −

q

c
Ai

)
ψ = (mc)2ψ (E.294)

56



e.8. coupling to fields

With a very similar calculation, assuming stationary electric potentials ∂ctΦ = 0 and
Coulomb-gauge ∂iAi = 0 for simplicity,

□ψ −
( q

ℏc

)2 (
Φ2 + AiA

i
)
ψ =

(mc
ℏ

)2
ψ (E.295)

where clearly the AµAµ- and AiAi-terms are not gauge invariant. There seems to
be an issue, which gets resolved by considering the action of gauging on the wave
function ψ itself:

The gauge principle states that one can change the potentials Aµ → Aµ + ∂µχ
with a gauge function χ, without changing the physical fields Fµν. The purpose of
gauging is to simplify and decouple the field equations, for instance by enforcing
∂µAµ = 0. Up to this point, we’ve shown as well, that the Lagrange-function of
electrodynamics is gauge invariant if charges are conserved, so we’ve got reason to
assume that gauge invariance is the symmetry principle behind charge conservation.
Charge conservation is a property of the matter, though, it needs to function in a
way that the charge density can only change locally if there are currents converging
on that point and accumulate charge. In summary, we would want to have a gauge
invariant wave equation for the matter fields, and understand why gauge-invariance
implies charge conservation.

What change could one apply to a wave function without changing any of the
physical observables? The answer is clearly a phase transformation,

ψ→ ψ exp(+iα(x)) ψ∗ → ψ∗ exp(−iα(x)) (E.296)

with a real-valued field α(x), and it is obvious that for instance the probability
density ρ = ψ∗ψ is invariant under these phase transformations. Derivatives of the
wave function pick up an additional term,

∂µψ→ ∂µ(ψ exp(iα)) = (∂µψ) exp(iα) + iψ exp(iα)∂µα (E.297)

so terms like ψ∗∂µψ or ∂µψ∗∂µψ are not gauge invariant. Let’s try out a new derivative
Dµ with this property:

Dµψ→ exp(iα)Dµψ (E.298)

where for instance Dµψ
∗ Dµψ would be perfectly invariant.

These gauge-covariant derivatives do not commute

[Dµ, Dν]ψ =
[
∂µ − i

q

c
Aµ, ∂ν − i

q

c
Aν

]
ψ =(

∂µ − i
q

c
Aµ

) (
∂ν − i

q

c
Aν

)
ψ −

(
∂ν − i

q

c
Aν

) (
∂µ − i

q

c
Aµ

)
ψ (E.299)

where a tedious but straightforward calculation shows that

[Dµ, Dν]ψ =
[
∂µ − i

q

c
Aµ, ∂ν − i

q

c
Aν

]
ψ = −i

q

c

(
∂µAν − ∂νAµ

)
ψ = −i

q

c
Fµνψ (E.300)

with the gauge-invariant field tensor Fµν appearing. This idea, that the second (gauge)-
covariant differentiations do not interchange, is central to general relativity and define
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e. quanta

the Riemann-curvature Rαβµν:

[∇µ,∇ν]υα = −Rαβµνυ
β (E.301)

through the non-interchangeability of the second covariant derivatives acting on the
vector υα.
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