
C fields

C.1 Lagrange-description of field dynamics

Relativistic field equations in Nature, for instant for the Maxwell-field Aµ or for
the metric gµν are commonly hyperbolic, second-order partial differential equations,
and due to their hyperbolicity there is wave-like propagation of excitations along
a light-cone, which is defined by the underlying geometric structure of spacetime.
The first notion of a field was Newton’s idea of an action at a distance: Somehow
gravity from and on Earth needed to extent to the Moon and other celestial bodies.
This is really a revolutionary thought as it was the first time in physics where the
constituents of a system are not in direct physical contact. The question whether the
fields are real or just a convenient way of computing forces between charges that
couple to the field, is a bit philosophical but after all, all physical concepts that apply
to the ”material world” apply to fields in exactly the same way, including the point
that the associated energy and momentum content of a field is able to source gravity.

C.2 Lagrange-description of scalar field dynamics

Deriving the field equation of a scalar field φ is almost like dissipationless continuum
mechanics. Let’s ignore dynamical evolution for a second and derive the most general
linear theory with a second-order partial differential field equation, which would be
necessarily elliptical if there’s no proper time evolution. As expected one would write
down a kinetic and potential term in a suitable Lagrange-density,

L(φ, ∂iφ) = γij∂
iφ∂jφ− 8πρφ (C.154)

and establish Hamilton’s principle δS for varying the action S

δS = δ

∫
d3x L(φ, ∂iφ) =

∫
d3x

(
∂L
∂φ

δφ+
∂L
∂∂iφ

δ∂iφ

)
=

∫
d3x

(
∂L
∂φ
− ∂i ∂L

∂∂iφ

)
δφ

(C.155)

after writing δ∂iφ = ∂iδφ and a successive integration by parts. Substitution of the
Lagrange-density eqn. C.154 into the Euler-Lagrange-equation

∂L
∂φ
− ∂i ∂L

∂∂iφ
= 0 (C.156)

which can be isolated from eqn. C.155 yields the Poisson-equation

∂i∂iφ = ∆φ = −4πρ (C.157)

by realising that

∂

∂∂iφ
(γab∂

aφ∂bφ) = γab

(
∂∂aφ

∂∂iφ
∂bφ+ ∂aφ

∂∂bφ

∂∂iφ

)
= γab

(
δai ∂

bφ+ ∂aφδbi

)
= 2∂iφ

(C.158)

while the rest of the terms in the Euler-Lagrange-equation is pretty easy.
Repeating the arguments for finding the most general Lagrange-function for a

point particle leads to the Lagrange-density
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c. fields

L(φ, ∂iφ) =
1
2
γij∂

iφ∂jφ− 4πρφ+ λφ+
m2

2
φ2 (C.159)

with the associated field equation(
∆ −m2

)
φ = −4πρ + λ (C.160)

for the most general scalar field equation that is linear and compatible with Ostro-
gradsky’s theorem. If φ is the Newtonian gravitational potential Φ and interpreting
the generalised Poisson-equation in terms of a gravitational theory we now know that
m must be truly small, and that λ is small but certainly nonzero. While all this looks
straightforward from an arithmetic point of view, the conceptual interpretation is
not so easy: Hamilton’s principle δS = δ

∫
d3x L = 0 looks for a field configuration

φwhich minimises the action, and for a vacuum solution the kinetic term ∂L/∂∂iφ

would be required to be perpendicular to δ∂iφ, which is perhaps a bit reminiscent of
d’Alembert’s principle.

Often you’ll see m interpreted as the mass of the field φ, or at least as its inertia,
even though at this point it’s not more than a scale-invariance breaking inverse length
scale. If the field φ is allowed to have its own dynamics in accordance with special
relativity one would make the replacements γij → ηµν and ∂i → ∂µ to arrive at

S =
∫

d4x L(φ, ∂µφ) with L(φ, ∂µφ) =
1
2
ηµν∂

µφ∂νφ− m2

2
φ2 (C.161)

where we omitted the coupling to ρ on purpose because its transformation property
is yet unclear, and let’s focus on scales small compared to 1/

√
λ. Variation then gives(

□ + m2
)
φ = 0 → ηµνk

µkν = m2 > 0 in Fourier space (C.162)

such that the wave vector kµ is timelike and points to a location inside the light cone:
Excitations of φ travel at speeds less than the speed of light which justifies to think
of m as a mass. Please watch out for the minus signs here, as □ exp(±iηαβkαxβ) =
−ηµνkµkν exp(±iηαβkαxβ) from i2 = −1. We need the opposite sign in eqn. C.161
relative to eqn. A.3 as in the ”mostly minus” sign convention ηij are negative and ηtt
is positive.

C.3 Maxwell-electrodynamics and the gauge-principle

We should step up the game after this example of scalar field dynamics and turn
to the Maxwell-field Aµ: Firstly, it has internal degrees of freedom and transforms
like a Lorentz-vector, Aµ → Λ

µ
αAα, secondly, it has the charge density ȷµ as a source,

likewise a Lorentz vector, ȷµ → Λ
µ
αȷα. Thirdly, the charge density is conserved

in the sense that ∂µȷ
µ = ∂ct(cρ) + ∂i ȷ

i = 0, and the field equation itself is linear,
∂µFµν = 4π/c ȷµ with the field tensor Fµν = ∂µAν − ∂νAµ containing the electric and
magnetic fields. Clearly, this equation can not contain the entire information about
six field components Ei and Bi to be derived from the field tensor which is coupled to
just 4 components of charge ȷµ. That’s the reason why one needs the Bianchi-identity
in addition, ∂µF̃µν = 0, most conveniently written with the dual field tensor F̃µν,

F̃µν = +
1
2
ϵµναβFαβ and F̃µν = −1

2
ϵµναβFαβ (C.163)
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c.3. maxwell-electrodynamics and the gauge-principle

with the 4-dimensional Levi-Civita symbol ϵµναβ: One needs an object that is anti-
symmetric at least in every index pair to give a non-vanishing result. Fµν is auto-dual,

˜̃Fµν = +
1
2
ϵµναβF̃αβ = −1

4
ϵµναβϵαβρσFρσ = Fµν. (C.164)

That is a lot to digest, in particular the property of the field tensor being antisym-
metric, Fνµ = −Fµν, as well as the existence of the dual field tensor Fµν and its role
in the dynamics of the electromagnetic field: First of all, the Maxwell-equations are
hyperbolic partial differential equations in Aµ, with propagations traveling along the
light cone, as the wave vectors are lightlike, kµkµ = 0. The source ȷµ can be dynami-
cally changing but under conservation, and the transformation properties of ȷµ and
Aµ are identical.

Deriving the Maxwell-field equation from a variational principle asks the question
how the invariance-covariance principle could be incorporated. As a square of first
derivatives of Aµ as a kinetic term which is invariant under Lorentz-transformations
one could use FµνFµν, such that one can ensure a linear field equation after variation
from this particular quadratic invariant. F̃µνF̃µν = FµνFµν ∝ EiEi − BiBi , so there is
nothing new from using the Frobenius-norm of F̃ instead of F. The other possible
quadratic invariant F̃µνFµν = FµνF̃µν ∝ EiBi would likewise give a linear field equation,
but there is an issue because EiBi is a scalar product between and axial and a polar
vector, and is as such pseudoscalar, i.e. it changes sign under parity inversion and
is therefore not a proper scalar. Already at this point one may conjecture that the
Lagrange-function is bounded by 0 and that this value corresponds to vacuum solu-
tions: The magnetic and electric field energies of an electromagnetic wave are always
exactly equal, such that EiEi − BiBi = 0, and they are necessarily perpendicular to
each other, EiBi = 0. On the side coupling the fields to charges, Aµȷ

µ would be perfect
in a linear field equation. Collecting these ideas suggests that the Maxwell-action is
given by

S =
∫

d4x
(1

4
FµνFµν +

4π
c

Aµȷ
µ
)

(C.165)

What about terms like AµAµ? It would in fact be compatible with a linear field
equation with a term proportional to Aµ, but it would violate gauge-symmetry as
a new symmetry principle. Maxwell’s field equation ∂µFµν = 4π/c ȷν is unchanged
under the gauge transform Aµ → Aµ + ∂µχwith a scalar field χ, as

Fµν → ∂µ (Aν + ∂νχ) − ∂ν (Aµ + ∂µχ) = Fµν (C.166)

with the interchangeability ∂µ∂νχ = ∂ν∂µχ. And of course, with the invariance of Fµν

under gauge transforms one does not possibly observe any change in the observable
fields Ei and Bi . The freedom to transform Aµ can be used to make the computation
of fields easier and to decouple field equations. For instance,

∂µFµν = ∂µ∂
µAν − ∂ν∂µAµ = □Aν − ∂ν∂µAµ =

4π
c
ȷν (C.167)

would need to be solved for computing Aµ from ȷµ, such that the fields Fµν are
obtained from Aµ by successive derivation. There are known Green-functions for
solving □Aµ = 4π/c ȷµ, even index-by-index, but the divergence ∂µAµ couples these
four equations together. Under gauge transforms one obtains the transformation
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c. fields

∂µAµ → ∂µAµ + ∂µ∂
µχ = 0→ □χ = −∂µAµ (C.168)

implying that one can always find a transform that sets ∂µAµ to zero, it is even
uniquely defined by the relation □χ = −∂µAµ, as the χ needed follows from solving
the wave equation with −∂µAµ as a source. ∂µAµ = 0 is called Lorenz-gauge.

It is very interesting how gauge-transforms operate on the action or the Lagrange-
density:

S→
∫

d4x
(1

4
FµνFµν +

4π
c

(Aµ + ∂µχ)ȷµ
)

= S +
4π
c

∫
d4x (∂µχ)ȷµ (C.169)

as Fµν is gauge invariant anyway. The coupling of Aµ to ȷµ can be reformulated using
the Leibnitz-theorem,∫

d4x ȷµ∂µχ =
∫

d4x ∂µ(ȷµχ) −
∫

d4x (∂µȷ
µ)χ (C.170)

where the first term can be reformulated with the Gauß-theorem,∫
V

d4x ∂µ(ȷµχ) =
∫
∂V

dQµ ȷ
µχ = 0 (C.171)

which can be made to vanish if χ = 0 on ∂V by choice. The second term is automati-
cally zero for conserved sources, where ∂µȷ

µ = 0. So effectively, the Lagrange-function
is unchanged by the gauge transform if the electric charge density as the source of
the Maxwell-field is conserved, which ultimately is the foundation of the knot-rule in
electric circuits: That the sum of inflowing and outflowing electric currents at one
knot in a circuit cancel exactly if there is not builtup of charge is the consequence of
the continuity equation ∂µȷ

µ = 0, which appears consistent with the gauge-freedom
of Aµ.

C.4 Electromagnetic duality and axions

Maxwell-electrodynamics in vacuum obeys a peculiar symmetry called electromag-
netic duality: In the absence of sources, the field equation ∂µFµν = 0 and the Bianchi-
identity ∂µF̃µν = 0 become equal, so the duality transform Fµν ↔ F̃µν doesn’t give
rise to any difference in the field dynamics. In terms of fields, the duality transform
reads Ei → Bi and Bi → −Ei , which makes perfect sense as ∂µFµν = 0 contains the
two statements ∂iBi = 0 and ϵijk∂jEk = −∂ctBi , whereas ∂µF̃µν = 0 makes sure that
∂iEi = 0 and ϵijk∂jBk = +∂ctEi : Effectively, the two pairs of Maxwell-equations inter-
change their meaning under the duality transform. Or, to formulate this in a stronger
way: Only the presence of charges ȷµ defines a difference between Fµν and F̃µν.

In a fantasy world with electric charges ȷµ and magnetic charges ıµ one could set
up a perfectly reasonable Maxwell-like theory just by postulating

∂µFµν =
4π
c
ȷν as well as ∂µF̃µν =

4π
c
ıν (C.172)

provided that both charges are conserved, ∂µȷµ = 0 and independently ∂µı
µ = 0. Both

field equations are, due to the antisymmetry of the field tensor, made compatible with
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c.5. poynting-law and conservation of energy and momentum

conservation of the respective charge, ∂µ∂νF̃µν = 4π/c ∂νıν = 0, as a contraction of the
antisymmetric F̃µν with the symmetric ∂µ∂ν, and likewise ∂µ∂νFµν = 4π/c ∂νȷν = 0,
for exactly the same reason.

While everything is perfectly well-defined on the basis of the field equations,
there is a problem when trying to write down a Lagrange-density: The potential Aµ

would not exist. In fact, Aµ relies on the dual field equation being zero, which can be
most easily seen in terms of the components: ∂iBi = 0 implies that the magnetic field
can be written as Bi = ϵijk∂jAk derived from a vector potential Ak , and at the same
time ϵijk∂jEk = −∂ctBi = −∂ctϵ

ijk∂jAk , such that ϵijk∂j (Ek + ∂ctAk) = 0. That in turn
implies, that the term in brackets can be written as a gradient, Ek + ∂ctAk = −∂kΦ

with a scalar potential Φ. In summary, the components Ak and Φ of the potential Aµ

rely in their existence on the absence of magnetic charges, ıµ = 0.
But one needs Aµ for a Lagrange-description of electrodynamics, otherwise the

coupling to the sources could not be formulated in the Aµȷ
µ-term: Electrodynamics

with ȷµ , 0 , ıµ could be defined on the level of the field equations but not with a
Lagrange-density.

Let’s investigate the second possible quadratic invariant F̃µνFµν which is expressed
in field components ∝ EiBi and therefore pseudoscalar: parity inversion xi → −xi or
inversion of ct → −ct would result in a change in sign and excludes the term from
the Lagrange-density as it is not properly scalar. This can be remedied by including a
pseudoscalar field θ along with its own dynamics

S =
∫

d4x
(1

4
FµνFµν − 4π

c
Aµȷ

µ + θFµνF̃µν +
1
2
ηµν∂

µθ∂νθ− V(θ)
)

(C.173)

where θFµνF̃µν and ηµν∂
µθ∂νθ are perfectly scalar. The interaction potential V(θ)

could include a term ∝ m2θ2 which itself is scalar again. Then, the Lagrange-density
describes a massive pseudoscalar field θ, which in this context is called axion, and
variation of eqn. C.173 gives rise to a coupled set of partial differential equations for
Fµν and θ.

C.5 Poynting-law and conservation of energy and momentum

Fields are not only affecting test charges by accelerating them, but they are physically
real in their own right: They have their own dynamics, they can transport energy and
momentum, and would be ultimately sources of gravity. The energy and momentum
content is derived from the independence of the Lagrange-density of position xµ,
i.e. the working principle of the fields is supposed to be the same at every location
and at every instant in time. One notices how effectively momentum and energy
conservation have the same origin now, unlike classical mechanics.

The starting point is to define a shift of the Lagrange-function to a new position
in spacetime by a separation aα, which can be done by defining the operator aα∂

α

and apply it to the Lagrange density,

δL = aα∂
αL with the variation being δL =

∂L
∂φ

δφ+
∂L

∂∂µφ
δ∂µφ (C.174)

which changes as the fields and their deriatives take one new values as one moves by
aα across spacetime. Working for simplicity with a scalar field φ one gets variations
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φ→ φ+ aα∂
αφ︸ ︷︷ ︸

δφ

and ∂µφ→ ∂µφ+ aα∂
α∂µφ︸    ︷︷    ︸

δ∂µφ

(C.175)

To deal with the term δ∂µφwe apply the Leibnitz-rule as follows:

∂µ

(
∂L

∂∂µφ
δφ

)
= ∂µ

∂L
∂∂µφ

δφ+
∂L

∂∂µφ
∂µδφ︸       ︷︷       ︸

δL− ∂L
∂φ δφ

(C.176)

such that we can write

δL =
(
∂L
∂φ
− ∂µ

∂L
∂∂µφ

)
δφ+ ∂µ

(
∂L

∂∂µφ
δφ

)
(C.177)

where the first bracket is necessarily zero, as a consequence of the Euler-Lagrange-
equations for the field φ. Then,

δL = ∂µ

(
∂L

∂∂µφ
δφ

)
(C.178)

where we can now substitute the displacements by aα:

aα

(
∂αL − ∂µ

(
∂L

∂∂µφ
∂αφ

))
= 0 (C.179)

and by rewriting ∂α = ηµα∂µ one can isolate the energy momentum tensor,

aα∂µ

(
ηµαL − ∂L

∂∂µφ
∂αφ

)
︸                   ︷︷                   ︸

−Tµα

= 0 (C.180)

with a corresponding conservation law ∂µTµα = 0 as aα is arbitrary: Perhaps it’s
interesting to note that ∂L/∂∂µφwould be the canonical field momentum, so we are
actually carrying out a Legendre-transform of L to arrive at the energy-momentum
tensor.

The same arguments apply to the Maxwell-field Aµ but with a small exception
as there is gauge-symmetry to be respected in addition. We should not differentiate
with respect to the straightforward derivatives ∂µAν but rather with respect to the
anti-symmetrised variant, ∂µAν − ∂νAµ = Fµν, which is gauge-invariant. Therefore,
the variation of the field Aµ under a shift aα would be

δAµ = aα(∂αAµ − ∂µAα) = aαFαµ (C.181)

Therefore, the variation of L becomes

δL = aα∂µ

(
∂L

∂∂µAσ

Fασ

)
(C.182)
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Rewriting δL = aα∂
αL and ∂α = ηαµ∂µ then gives

aα∂µ

(
ηαµL − ∂L

∂∂µAσ

Fασ

)
= 0 (C.183)

with the corresponding energy momentum tensor Tαµ and its covariant conservation
law ∂µTαµ = 0. For the Maxwell-Lagrange-density we have

∂L
∂∂µAσ

= − 1
4π

Fµσ (C.184)

so that
Tµν =

1
4π

(
ηαβFµαFβν +

1
4
ηµνFαβFαβ

)
(C.185)

which is naturally symmetric and traceless:

4πηµνTµν = ηµνηαβFµαFβν +
1
4
ηµνη

µνFαβFαβ = FαβFβα + FαβFαβ = 0 (C.186)

by switching the index order in one of the terms.

C.6 Covariant electrodynamics in matter

The Maxwell-equations in matter, written down in an index notation but after choos-
ing an explicit frame, read:

∂iD
i = 4πρ, ∂iB

i = 0, ϵijk∂jEk = −∂ctB
i , and ϵijk∂jHk = +∂ctD

i +
4π
c
ȷi

(C.187)

and a peculiar difference between the fields Di and Bi (noted as vectors) and the
excitations Ei and Hi (written as linear forms) emerges. Of course it’s a choice which
of the two pairs is written as vectors and which as linear forms, so

∂iDi = 4πρ, ∂iBi = 0, ϵijk∂
jEk = −∂ctBi , and ϵijk∂

jHk = +∂ctDi +
4π
c
ȷi

(C.188)

is equally valid. Normally, one would need to define tensors to relate the vectors
with the linear forms, Bi = µijHj with the permeability tensor µij and Di = ϵijEj

with the dielectric tensor ϵij . Apart from symmetry (which ensures that there is an
orthogonal principal axis frame with three real-valued eigenvalues) the two tensors
are free and would describe the general linear relationship in a possibly anisotropic
medium between the fields and excitations. If the medium is isotropic, µij = µδij

and ϵij = ϵδij , so that the usual relation Bi = µδijHj = µHi and Di = ϵδijEj = ϵEi is
recovered.

Taking this one step further, one would notice that the two homogeneous Maxwell-
equations

∂iB
i = 0, ϵijk∂jEk = −∂ctB

i , (C.189)

depend on Bi and Ei , while the two inhomogeneous Maxwell-equations depend on
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the other pair,

∂iDi = 4πρ, ϵijk∂jHk = +∂ctD
i +

4π
c
ȷi . (C.190)

Because of this separation, one should package Ei and Bi into a tensor F̃µν to repro-
duce the homogeneous equations from ∂µF̃µν = 0. Analogously, Di and Hi should then
be part of a tensor Gµν to generate the inhomogeneous equations from ∂µGµν = 4π/c ȷν.
Clearly, there is now a second breaking of the duality taking place, because Gµν , F̃µν!
That, however is not straightforward: One has Bi as a vector and Ei as a linear form
for F̃µν, and likewise Di as a vector and Hi as a linear form for Gµν is given, so one
needs to invoke the dielectric and permeability tensors to convert the linear forms Ei

and Hi to vectors first.

C.7 Finsler-geometry and Lorentz-forces

A massive test particle tries to minimise proper time as the relativistic generalisation
of the action S

S = −mc

∫
ds = −mc2

∫
dτ (C.191)

which is solved in the absence of forces by a straight line, d2xµ/dτ = 0, or equivalently,
xµ(τ) = aµτ+ bµ with two integration constants aµ and bµ. If there is a nonzero specific
charge q/m the particle is accelerated by Lorentz-forces

d2xµ

dτ2 =
q

m
Fµν

dxν
dτ

(C.192)

Let’s re-derive this equation of motion from a variational principle, because it gives
rise to a new geometric structure, called a Finsler-geometry. To cut things short, let’s
postulate

S = −mc2
∫

dτ + q

∫
dxµ Aµ (C.193)

with a potential Aµ . While the first term is defined by the metric structure ofCan you show that the term∫
dxµ Aµ is gauge-invariant? spacetime, ds2 = c2dτ2 = ηµνdxµdxν, the second term involves the scalar product

between Aµ and dxµ. If Aµ is given directly in terms of a linear form, one actually
does not need a metric structure to compute dxµAµ = ηµνdxµAν. So effectively, there
are two geometric structures at work, the metric structure ηµν and the structure
defined by the scalar product of vectors with the linear form Aµ: This is called a
Finsler-geometry. The interpretation of the Aµdxµ-term is not easy, but perhaps one
could imagine Aµ as some kind of headwind or tailwind that changes the proper time
of the particle depending on in which direction it moves relative to the direction and
magnitude of the vector field Aµ.

As the values of Aµ that the particle sees depends on the trajectory, the variation
of the action gives

δ

∫
Aµdxµ =

∫
δAµdxµ +

∫
Aµδdx

µ =
∫
δAµdxµ −

∫
dAµδx

µ (C.194)

with the usual procedure to write δdxµ = dδxµ and a successive integration by parts.
Then, we trace back the variation and the differential of Aµ to a coordinate shift,
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δAµ =
∂Aµ

∂xα
δxα and dAµ =

∂Aµ

∂xα
dxα (C.195)

such that the variation becomes

δ

∫
Aµdxµ =

∫
∂Aµ

∂xα
δxαdxµ −

∂Aµ

∂xα
dxαδxµ =

∫ (
∂Aµ

∂xα
− ∂Aα

∂xµ

)
δxαdxµ (C.196)

after renaming the indices µ↔ α in the second term (all indices are fully saturated
and the terms are both scalar, so it does not matter how the indices are called).
Introducing the velocity dxα/dτ and identifying the field tensor brings the integral
into the final shape

δ

∫
Aµdxµ =

∫
dτ Fαµ

dxα

dτ
δxµ (C.197)

which, combined with the variation of −mc2
∫

dτ already worked out in eqn. A.93,
gives the Lorentz-equation of motion C.192:

m
d2xµ

dτ2 = qFµα
dxα
dτ

. (C.198)

C.8 Light-cone structure beyond metric spacetimes

Let’s write out the kinetic term of the Lagrange-density of electrodynamics explicitly

S =
∫

d4x ηαµηβνFαβFµν =
∫

d4x
ηαµηβν − ηανηβµ

2
FαβFµν =

∫
d4x GαβµνFαβFµν

(C.199)

using antisymmetry Fνµ = −Fµν and renaming indices. The quantity Gαβµν is anti-
symmetric in the first and second index pair and defines a measure of area instead of
a measure of length, as a metric ηµν would. In 3 dimensions one determines the area
of the parallelogram spanned by two vectors ai and bi from the norm of ci = ϵijka

jbk ,
so effectively through

area = δilcicl = δilϵijkϵlmna
jbkambn =

[
δjmδkn − δjnδkm

]
ajbkambn = a2b2 − (aib

i)2

(C.200)

where the square brackets have the same index structure as Gαβµν, so it is justified
to speak of Gαβµν as a measure of area. In fact, aibj = ab cos α for a standard scalar
product, so

area = a2b2(1 − cos2 α) = a2b2 sin2 α (C.201)

as expected. Perhaps one could imagine that the Maxwell action S measures the area
between the vectors ∂µ and Aν over the spacetime volume.
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