
B waves

B.1 Taxonomy of waves

Waves, i.e. periodic phenomena in x and t are found everywhere in physics and can be
differentiated to be in two categories: classical mechanical waves usually rely on the
elastic properties of a medium which, due to its internal structure, resists deformation
from its equilibrium. The magnitude of the restoring force that the medium provides
drives the wave and allows it to travel.

In mechanical waves where the medium could be a fluid described by some type of
Navier-Stokes equation, any term on the right hand side could be a suitable restoring
force, for instance
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+ . . . (B.111)

In sound waves, pressure gradients can accelerate the fluid and if the equation
of state provides ∂p/∂ρ > 0, pressure gradients introduce velocities that rarefy the
medium, so that it returns to its equilibrium state. Gravity waves are for instance
large waves on the surface of water (also called Airy-waves) where the weight of
the ”mountain” of water is the restoring force. In elastic waves the restoring force is
derived from the internal structure of the medium, and even the Coriolis-acceleration
can act as a restoring force: This is the case in atmospheric Rossby-waves. Typically,
the magnitude of the restoring force is contrasted with the inertia of the medium, and
the ratio between the two determine the propagation velocity, which then entirely
depends on the material properties of the fluid.

In contrast, relativistic waves are excitations of a field, whose dynamics is de-
scribed with a field equation, and typically these field equation have a particular
mathematical structure allowing for oscillations: Field equations in fundamental
physics are hyperbolic partial differential equations which is a natural consequence
of the spacetime structure. Personally I find it very interesting, that the same wave
equations are found in very different contexts, and that propagation speeds can be
determined by relativity on one side and by the internal structure of a medium on
the other. When thinking about ideas on the lumiferous aether over a hundred years
ago and the measurements of the speed of light that were already available with high
precision at that time, it must have been truly daunting to explain the high value of c
from the low inertia and the high restoring force of the aether, if light was imagined
to be an elastic wave.

B.2 Elastic waves and wave equations

Perhaps the most intuitive example of an elastic mechanical wave is that of a string
with mass per length ρ under tension σ: Already now one would intuitively think that
the ratio between ρ and σ should determine the velocity of elastic waves. In a string
instrument, the ratio between velocity and fixed string length gives the frequency ω
of a sound, and one observes an increase of frequency with higher string tension and
one typically uses thicker strings for lower frequency notes.

The kinetic energy dT for each differential bit of string is given by the velocity
∂y/∂t = ẏ by which the amplitude y changes along the string with coordinate x,
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dT =
ρ

2
ẏ2dx → T =

∫
dT =

ρ

2

∫
dx ẏ2 (B.112)

For the corresponding potential energy dW we need to compute by how much
the amplitudes y(x) change the overall length of the string: dl2 = dx2 + dy2 from
Pythagoras’ theorem gives dl =

√
1 + y′2dx with y′ = dy/dx, and consequently

dW = σ(dl − dx) = σ

(√
1 + y′2 − 1

)
dx ≃ σ

2
y′2dx → W =

∫
dW =

σ

2

∫
dx y′2

(B.113)

Assembling both into a classical Lagrange-function yields

L(ẏ, y′) =
∫

dx
(
ρ

2
ẏ2 − σ

2
y′2

)
(B.114)

from which we get the action S straight away:
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∫
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∫
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(
ρ

2
ẏ2 − σ

2
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)
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The Lagrange-function L depends on ẏ as well as on y′ , which Hamilton’s principle
needs to respect. The correct variation of S would then be
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∫
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∫
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∂L
∂ẏ
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∂L
∂y′

δy′
)
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while the coordinate y is cyclic and the first term does not play a role, the variations
in the second and third term can be rewritten as δẏ = ∂(δy)/∂t and δy′ = ∂(δy)/∂x to
enable integration by parts, with respect to dt in the second and with respect to dx in
the third term:

δS =
∫

dt
∫
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∂L
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δy = 0 (B.117)

where we can isolate the Euler-Lagrange-function

∂
∂t
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+
∂
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∂L
∂y′
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Substitution of eqn. B.114 into eqn. B.118 then gives:

ρÿ − σy′′ = 0 or
(

∂2

∂(ct)2 −
∂2

∂x2

)
y = 0 with c2 =

σ

ρ
(B.119)

where the speed of propagation of the elastic wave is in fact determined by the ratio
of the tension as the restoring force and the inertia of the string. The wave equation
can be solved by separating the temporal and spatial dependence with the ansatz
y(x, t) = φ(x)ψ(t), such that

1
ψ(t)

∂2

∂(ct)2ψ(t) =
1
φ(x)

∂2

∂x2φ(x) = −k2 (B.120)
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after a separation of variables, and because every term depends only on t or on x,
they need to be independently equal to a constant, which we choose to be negative (for
enforcing oscillating solutions). Individually, every term is then solved by a harmonic
oscillation, and substitution then shows that

y(x, t) ∝ exp (±i (kx − ωt)) (B.121)

with the dispersion relation ω = ±ck and the speed of the elastic wave c =
√
σ/ρ. The

sign between kx and ωt follows from requiring whether a plane of constant phase
travels into positive or negative x-direction. Both directions are clearly allowed, as
∂2
ct − ∂2

x = (∂ct − ∂x)(∂ct + ∂x) from the binomial formula.
It is important to realise that an elastic wave is able to transport energy even

without any transport of the medium on which it travels.

B.3 Partial differential equations: hyperbolic vs. elliptic

Wave-equations are typically partial differential equations involving second deriva-
tives, for instance for a scalar field

□φ = ηµν∂
µ∂νφ =

(
∂2
ct − ∆

)
φ = 0 (B.122)

At this point it is well worth to go through the classification of second-order partial
differential equations: Comparing □φ = 0 as a wave equation with ∆φ = 0 as a static
field equation shows that the signs of the derivative operators is (−,+,+,+) in the
first case and (+,+,+) without a change in the second case. This seems to be highly
significant, as one obtains oscillatory solutions in the first, and (decreasing, at least in
3 dimensions or more) power-law solutions in the second case.

Before we go through the classification of partial differential equation, we need to
introduce some slang, borrowed from the theory of conic sections. Please consider a
quadratic form of two coordinates x and y,(

x
y

)t (
a b/2
b/2 c

)
︸          ︷︷          ︸

∆

(
x
y

)
= ax2 + bxy + cy2 = const. (B.123)

Depending on the structure of eigenvalues of the matrix ∆, the quadratic form
describes very different curves: If b = 0 (for simplicity) and a = c = 1 > 0 one obtains
x2 + y2 = const, which can be rewritten in a parametric form by setting x = cos t
and y = sin t such that the quadratic form describes a circle as a consequence of
cos2 t + sin2 t = 1, and if a , c an ellipse. If a = 1 and c = −1, the quadratic form
becomes x2 − y2 = const, i.e hyperbolae with the hyperbolic functions as parametric
forms, using cosh2 t − sinh2 t = 1. More generally, the picture arises that det∆ > 0 for
the elliptical conic section and conversely, det∆ < 0 for the hyperbolic conic section.

Applying this idea to the classification of partial differential equations, we start
with a homogeneous second-order PDE in two variables,

a(x, y)
∂2

∂x2φ(x, y) + b(x, y)
∂2

∂x∂y
φ(x, y) + c(x, y)

∂2

∂y2φ(x, y) = A(x, y)φ(x, y) (B.124)

and assemble the matrix ∆
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∆ =
(

a(x, y) 1
2b(x, y)

1
2b(x, y) c(x, y)

)
(B.125)

The determinant of ∆ then determines, whether the PDE is elliptical det∆ > 0,
parabolic det∆ = 0 or hyperbolic det∆ < 0.

Sticking to 2 dimensions and pairs of variables for simplicity, a PDE like the
Poisson-equation

∆φ =
∂2

∂x2φ(x, y) +
∂2

∂y2φ(x, y) = 0 (B.126)

would be elliptical, as the determinant of ∆ would come out positive: a = c = 1 and
b = 0. Elliptical differential equations have only unique solutions after boundary
conditions are specified, either of the Dirichlet or Neumann-type. Typical solutions
are decreasing (at least in 3 dimensions or higher) with increasing coordinates and
parity invariant, as (x, y)→ (−x,−y) does not change anything. On the other hand, a
wave-equation exhibits a sign change,

□φ(t, x) =
∂2

∂(ct)2φ(t, x) − ∂2

∂x2φ(t, x) = 0 (B.127)

with a = 1, c = −1 and b = 0 in these coordinates and would be hyperbolic as
det∆ < 0. In this case, it is enough to specify initial conditions and the PDE evolves
them in a well-defined and unique way into the future. There is clearly the notion of
a light-cone and it is actually the case that the metric structure of spacetime with the
Minkowski-metric is uniquely suited for hyperbolic PDEs: It is even the fact, that the
Lorentzian spacetime as a metric spacetime that allows for hyperbolic evolution is
unique! Switching to light-cone coordinates ∂ct + ∂x = ∂u and ∂ct − ∂x = ∂v brings
the wave equation into the form

□φ(u, v) =
∂2

∂u∂v
φ(u, v) = 0 (B.128)

this time with a = c = 0 and b = 1, but the determinant det∆ < 0 nonetheless:
The wave equation is hyperbolic in light cone coordinates just as well. In the wave
equation there is parity invariance and time-reversal invariance. Perhaps it’s a very
good exercise to go through all iconic PDEs in theoretical physics and classify them
as elliptical, parabolic or hyperbolic partial differential equations.

B.4 Relativistic waves and hyperbolicity

The dynamics of relativistic fields is described by hyperbolic PDE with their clear
notion of a light cone and their time evolution from any field-configuration specified
as initial conditions. As an example, we can substitute Fµν = ∂µAν − ∂νAµ into the
Maxwell-equation,

∂µFµν =
4π
c

ȷν → ∂µ∂
µAν − ∂ν ∂µAµ︸︷︷︸

=0

= □Aν =
4π
c
ȷν (B.129)
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b.5. causal structure of spacetime

which becomes clearly a hyperbolic wave equation. But the Lorenz-gauge ∂µAµ = 0
is not required for hyperbolicity, in fact, even without any gauge fixing it would
be hyperbolic. As a linear PDE this is most conveniently solved by constructing a
Green-function including retardation as the potential for a point charge.

There is a similar wave equation for the field tensor itself: Starting at the Bianchi-
identity,

∂λFµν + ∂µFνλ + ∂νFλµ = 0 (B.130)

which can immediately be verified by substituting Fµν = ∂µAν − ∂νAµ, one can have
∂λ act on it,

∂λ∂
λ︸︷︷︸

□

Fµν − ∂µ ∂λFλν︸︷︷︸
4π
c ȷν

+∂ν ∂λFλµ︸︷︷︸
4π
c ȷµ

= 0 (B.131)

and arrive at a wave equation with a nicely antisymmetrised source term,

□Fµν =
4π
c

(∂µȷν − ∂νȷµ) (B.132)

The vacuum solutions are □Aµ = 0 as well as □Fµν = 0 are archetypically hyper-
bolic and solved by plane waves exp(±iηµνkµxν), provided that the wave vector kµ is
light-like, ηµνkµkν = 0, which has important consequences: Writing kµ = (ω/c, ki)t

shows that
ω = ±k (B.133)

from the null-condition ηµνk
µkν = (ω/c)2 − k2 = 0, such that there can not be any

dispersion:

υphase =
dω
dk

= c =
ω

k
= υgroup (B.134)

as group and phase velocity are identical, and consistent with υphase × υgroup =
ω/k × dω/dk = dω2/dk2 = c2 for a massless particle: ω2 = c2k2, and (ω/c)2 − k2 = 0.
At the same time, it is universally true that relativistic waves are always transverse:
The field equation requires ∂µFµν = 0 in vacuum, so that kµFµν = 0 and kiEi = 0 is
always given, and the electric fields are perpendicular to the direction of propagation.
Transversality of the magnetic fields is most easily seen with the dual field tensor
F̃µν = ϵµναβFαβ/2, for which ∂µFµν = 0 is true: Then, kµF̃µν = 0 from which one obtains
kiBi = 0.

The analogous statement on the vector potential Aµ, however, depends on the
gauge: Lorenz-gauge ∂µAµ = 0 implies kµAµ = 0 for a plane wave, so that kiAi =
ωAt/c , 0, but Coulomb-gauge rather makes sure that ∂iAi = ikiAi = 0, such that the
potential Ai is perpendicular to ki : That’s why it’s sometimes called transverse gauge.

B.5 Causal structure of spacetime

In the last section we have seen that there is a tight connection between hyperbolicity
of the wave equation □φ = 0 and the lightlike-ness of the wave-vector ηµνkµkν = 0,
which is not too surprising because □ = ηµν∂

µ∂ν, so the representation of □ in
Fourier-space is ηµνkµkν anyways. The wave equation as a hyperbolic PDE provides a
time evolution of initial conditions (and the solution becomes unique if those initial
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b. waves

phenomenon dimensionality
Huygens’ principle n odd, n = 1 or n = 3 best
relativistic gravity n + 1 ≥ 4
stable planetary systems n ≤ 3
Bose-Einstein-condensation n ≥ 3
random walks getting lost (Polya’s theorem) n ≥ 3
as many electric as magnetic fields n = 3
Poisson-solutions vanish at infinity n ≥ 3
knots exist n ≥ 3

Table 1: dimensionality required by certain physical phenomna

conditions are specified) in a very peculiar way: For the evolution of φ at a specific
spacetime point xµ only the field amplitudes on the past light cone are necessary,
clearly as the field excitations can only travel along the light cone. This is perfect,
because the light cone structure is Lorentz-invariant, so the field amplitudes that are
responsible as initial conditions for φ at xµ are always the same, despite the fact that
xµ will get new coordinates.

This idea is truly funny in Galilean relativity: Here, c is just a velocity and trans-
forms along under Galilei-transforms. Therefore, the two branches of the light cone
get velocities c+υ and c−υ formally. Would this be a problem? Well, in the limit c→ 0
(i.e. as the formal limit of Galilei-relativity from Lorentz-relativity or for everyday,
small velocities compared to c) the light cone opens up and the field amplitudes
on an entire spatial hyperplane set the initial conditions for φ. This is consistent
with all derivatives ∂ctφ becoming small as c→∞, so that □→ ∆ in this limit: The
field equation has lost its dynamics and has become elliptical, such that boundary
conditions (possibly on boundaries at xi → ±∞) need to be specified for uniqueness.

And before you get funny ideas for this: Among all metric spacetimes only the
Lorentzian one allows hyperbolic evolution of field equations, but one can construct
hyperbolic equations without a metric structure for spacetime! The classic example
for this would be covariant electrodynamics in the most general linear model for
matter, and we’ll come to that in section C.

B.6 Dimensionality of spacetime

Spacetime has n + 1 = 4 dimensions, 1 temporal and n = 3 spatial, and it is the case
that Nature really needs a minimum number of (spatial) dimensions to make certain
phenomena possible, a few are summarised in table 1.

The Poisson-equation has the peculiar property that potentials Φ only vanish
towards infinity in 3 or more dimensions: Looking for vacuum solutions in the
spherically symmetric case

∆Φ =
1

rn−1
∂
∂r

(
rn−1∂Φ

∂r

)
= 0 (B.135)

is solved when the term in the brackets becomes constant, i.e. when

∂Φ
∂r

= r−(n−1) → Φ ∝ r−n+2 if n ≥ 3, or Φ ∝ ln r if n = 2 (B.136)

so that one really needs certainly 3 spatial dimensions or more for the potentials to

26



b.6. dimensionality of spacetime

decrease towards infinity, and one gets logarithmic solutions Φ ∝ ln r in 2 dimensions.
General relativity as a theory of gravity can only exist in n + 1 = 4 dimensions or
more, if gravity as spacetime curvature should be allowed to propagate away from
the sources, but this is really beyond the scope of the lecture.

From the scaling of Φ in n dimensions one can derive that planetary systems are
not stable if the dimensionality is too high, and the argument would be like that: For
the specific energy ϵ = E/m of a particle in the potential Φ one would write

ϵ =
E
m

=
1
2

(
ṙ2 + r2ϕ̇2

)
+ Φ(r) (B.137)

in polar coordinates, with Φ(r) = −GM/rn−2 generated by the central object of
mass M. The motion of planets is restricted to be in a plane, because of angular
momentum conservation in a spherically symmetric potential, with the specific
angular momentum λ

λ =
L
m

= r2ϕ̇ → ϕ̇ =
λ

r2 (B.138)

which will appear as a repulsive centrifugal potential when replacing ϕ̇.

ϵ =
1
2

(
ṙ2 +

λ2

r2

)
− GM
rn−2 (B.139)

and counteracts the attractive gravitational potentials. For a stable orbit it is now
necessary that the repulsive part of the potential is dominating at small r, for which
n can not be too large. In fact, in a true Coulomb-potential with n = 3 one gets a long-
range attractive 1/r potential superimposed on a short range repulsive 1/r2-potential,
with a nice minimum that harbours the most stable circular orbits. If n is too high,
the roles interchange: There would be a short range attractive gravitational poten-
tial superimposed on a long range repulsive potential, with effectively a maximum
between the two regimes with unstable orbits. Solving the equation of motion yields

ṙ2 = 2
(
ϵ +

GM
rn−2

)
− λ

2

r2 → t =

t∫
0

dt =

rmax∫
rmin

dr
1√

2
(
ϵ + GM

rn−2 − λ2

2r2

) (B.140)

by separation of variables: There is an oscillatory motion in the effective potential
(if there is a minimum allowing stable orbits), while the planet gets carried around
the Sun by the conservation of angular momentum. Bertrand’s theorem now states
that among all potentials, only two allow for closed orbits: Those are the Keplerian
ellipses in 1/r-potentials and the Lissajous-figures in the harmonic r2-potential.

As the last point let’s investigate the issue that only in n = 3 dimensions there
is an equal number of electric and magnetic field components: This becomes most
apparent in the field tensor Fµν = ∂µAν − ∂νAµ, which is antisymmetric under index
exchange, Fνµ = −Fµν. The electric field components are contained in the first row
or first column, Ei = Fti = −Fit , and there are n possible choices, as Ftt = 0. As
off-diagonal elements representing the magnetic fields one counts n(n − 1)/2, and
n(n − 1)/2 = n is solved by n = 3 (and n = 0, but this is senseless).
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B.7 Huygens-principle

There is a remarkable peculiarity in the propagation of spherical waves that depends
on dimensionality. Writing down a conventional hyperbolic wave equation in n
dimensions

ηµν∂
µ∂νψ =

(
∂2
ct − γij∂i∂j

)
ψ =

∂2
ct −

n∑
i=1

∂2
i

ψ = 0 (B.141)

with an isotropic spatial part, as γij∂i∂j with the Euclidean (inverse) metric γij is
perfectly invariant under rotations. A spherical wave ψ(t, r) with r2 = γijx

ixj = xix
i

excited at the origin should propagate outwards, and we will try to answer the
question whether the wave front is a well-defined shell with radius r increasing
linearly in time, r = ct. Surprisingly, this is only in 3 dimensions the case. Let’s build
quickly the derivatives

∂i r =
xi
r
→

∑
i

(∂i r)
2 =

∑
i

(xi
r

)2
=

1
r2

∑
i

x2
i = 1 (B.142)

and

∂2
i r =

r2 − x2
i

r3 →
∑
i

∂2
i r =

∑
i

r2 − x2
i

r3 =
1
r

∑
i

1 − 1
r3

∑
i

x2
i =

n − 1
r

(B.143)

from r =
√
xjxj for later use. When introducing spherical coordinates one would like

to replace the ∂i-differentiations with respect to Cartesian coordinates by ∂r using
the chain rule,

∂iψ = ∂i r · ∂rψ (B.144)

where I put the · to ”stop” the differentiation at this point. For the second derivative
one gets

∂2
i ψ = ∂2

i r · ∂rψ + ∂i r · ∂i∂rψ (B.145)

where the second term can be reshaped

∂i∂rψ = ∂r∂iψ = ∂r (∂i r)∂rψ = ∂i∂r r · ∂rψ + ∂i r∂
2
rψ = ∂i r∂

2
rψ (B.146)

with ∂r r = 1 such that the derivative vanishes. Subsitution back into the wave
equation gives

∂2
i ψ = ∂2

i r∂rψ + (∂i r)
2∂2

rψ (B.147)

which, summing over i and using eqns. B.142 and B.143, leads us to∑
i

∂2
i ψ = ∆ψ =

n − 1
r

∂rψ + ∂2
rψ (B.148)

such that the wave equation for a spherical wave becomes
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∂2
ctψ = ∂2

rψ +
n − 1
r

∂rψ (B.149)

with the additional term (n − 1)/r ∂rψ due to spherical symmetry. Of course you can
start at

∆ψ =
1

rn−1∂r

(
rn−1∂rψ

)
=

n − 1
r

∂rψ + ∂2
rψ (B.150)

as well to arrive at the same result.
For solving the spherical wave equation, one chooses a separation ansatz ψ = r−kφ

for factoring out a power-law decrease of the amplitudes. One would expect that
the squares of the amplitudes determines the energy flux of the spherical wave, that
needs to be conserved over ever increasing surfaces of spherical shells scaling ∝ rn−1

in area with radius r, implying k = (n − 1)/2.
The corresponding derivatives then are

∂rψ = −kr−(k+1)φ+ r−k∂rφ (B.151)

and
∂2
rψ = k(k + 1)r−(k+2)φ− 2kr−(k+1)∂rφ+ r−k∂2

rφ (B.152)

which can be used to reformulate the wave equation in terms of φ rather than ψ:

∂2
ctφ− ∂2

rφ−
(n − 1)(n − 3)

4r
∂rφ = 0 (B.153)

which is a truly remarkable result: Of course, there is no concept of spherical
symmetry in 1 dimension, so automatically the wave equation for the amplitude
φ (which incorporates energy conservation in its suggested scaling with distance,
in this case it is constant) is fulfilled. In all other spacetimes with the exception of
n = 3 one sees additional terms in the wave equation, which actually slow down the
wave relative to c and fill up the light cone with partial waves, such that (i) neither a
spherical wave front would be defined and (ii) there is no clear relation r = ct: This,
however is exactly the case in n = 3 dimensions! In summary, n + 1 = 4 dimensions is
the only case where wave propagation of spherical waves is described by a plane wave
equation with a relation r = ct for the radius. If one would decompose an arbitrary
wave front into elementary spherical waves according to Huygens’ principle, they
only propagate with a well-defined wave front defined by r = ct in 3d to interfere
again at a later time.
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