
A motion

A.1 Scales in physical laws: Poisson vs. Yukawa

A good example of a scale-free physical law is the 1/r-potential in electrostatics or
in Newton-gravity in 3d dimensions: It follows as a vacuum solution of the Poisson-
equation

∆Φ = −4πρ (A.1)

in the Gauß-system of units. Assuming spherical symmetry for the field away from a
point charge one can verify that Φ ∝ 1/r is in fact a solution to

∆Φ =
1
r2

∂
∂r

(
r2∂Φ

∂r

)
= 0 (A.2)

The solution Φ ∝ 1/r is perfectly scale free as a power law; increasing the charge
can be absorbed in an increased distance. This can be seen directly by the scale
transformation r → αr, under which ∂r → α−1∂r and consequently ∆→ α−2∆. Then,
Φ → α−1Φ because ρ→ α−3ρ, and two powers of α cancel, making Φ consistent with
the scaling of r.

This scale-invariance expressed by the power law is broken in the Yukawa-
equation [

∆ − λ2
]
Φ = −4πρ (A.3)

with a parameter λ: It has units of inverse length and allows to distinguish between
the regimes λr ≪ 1 and λr ≫ 1, because despite the fact that the field equation is
still linear, scale-invariance is violated. As a solution one finds Φ ∝ exp(−λr)/r in 3
dimensions, which behaves Φ ∝ 1/r for small distances, where exp(−λr) ≃ 1− λr ± . . .,
but at large distances the solution drops faster to zero than 1/r. Therefore, one has
constructed a scale-dependent modification of the Poisson-equation. From a physical
point of view, Yukawa aimed at a short-range force for explaining the binding of
nucleons, and almost at exactly the same time, Debye considered electric fields in
electrolytes, where the shielding of ions led to a fast decrease of electric fields around
charges.

Please note that much of the arguments are only applicable in 3 dimensions or
more. In two dimensions the Poisson-equation reads

∆Φ =
1
r
∂
∂r

(
r
∂Φ
∂r

)
=

1
r
∂Φ
∂r

+
∂2Φ

∂r2 = 0 (A.4)

which is solved by Φ ∝ ln r: While this is mathematically perfect, there are a couple
of issues concerning the physical application. The potential does not vanish for
r →∞ and there is no scale-free behaviour of the solution despite the fact that the
Poisson-equation is scale free. Adding a Yukawa-type term[

∆ − λ2
]
Φ =

1
r
∂Φ
∂r

+
∂2Φ

∂r2 − λ
2Φ = 0 (A.5)

gives rise to a differential equation that is known as Emden-Fowler-type and has a
(very complicated) solution in terms of Bessel-functions J0 and Y0, where λ appears
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a. motion

as the wavenlength of the oscillation in the Bessel-functions: Surely it plays the role
of a scale, but not as clearly as in 3 dimensions.

A.2 Buckingham’s Π-theorem and the Navier-Stokes-equation

The example about the Poisson- and Yukawa-equation showed how scales can be
introduced in a linear equation, and we should investigate if there can be scale-free
behaviour in a nonlinear equation. This is in fact the case, as the example of the
dimensionless Navier-Stokes-equation in fluid mechanics shows:

∂tυ
i + (υj∂

j )υi = −1
ρ
∂ip − ∂iΦ + µ∂j∂

jυi (A.6)

The Navier-Stokes equation describes the acceleration of a fluid with velocity υi

under the action of forces, for instance gradients in pressure p, in the gravitational
potential Φ and viscous forces with the shear viscosity µ, all under the condition of
incompressible fluids with ∂iυ

i = 0. Multiplying with ρ to make things a bit more
transparent gives an equation where every term has units of mass/length2/time2.

If we introduce typical scales, we could reach a form of the Navier-Stokes equation
where it would become scale free: It would become an dimensionless equation,
and flow patterns of different physical dimension, if they fall back onto the same
dimensionless equation, would be scaled versions of each other: Introducing a length
scale L for x → x∗ = x/L, a time scale T for t → t∗ = t/T, a velocity scale V for
υ → υ∗ = υ/V, a pressure scale P for p → p∗ = p/P and finally a scale for the
gravitational acceleration G for g → g∗ = g/G yields

ρV
T

∂∗tυ
∗i +

ρV2

L
(υ∗j∂

∗j )υ∗i = −P
L
∂∗ip∗ −

ρG
L

∂∗iΦ∗ +
µρV
L2 ∂∗j∂

∗jυ∗i (A.7)

with the dimensionless derivatives

∂
∂x

=
∂x∗

∂x
∂
∂x∗

=
1
L
∂∗x and

∂
∂t

=
∂t∗

∂t
∂
∂t∗

=
1
T
∂∗t (A.8)

It should be noted that L and T are typical scales on which the flow changes, and
that the scale V is independent of L/T: You can have a slowly-varying high velocity
flow or, vice versa, a rapidly changing low-velocity flow.

In eqn. A.7 one has reached a curious ordering of all terms: The units are concen-
trated in the prefactors, while all terms involving quantities with a superscript-∗ are
dimensionless. Dividing the entire formula by the prefactor of the second, nonlinear
term then gives rise to:

L
TV︸︷︷︸

Strouhal

∂∗tυ
∗i + (υ∗j∂

∗j )υ∗i = − P
ρV2︸︷︷︸
Euler

∂∗ip∗ − G
V2︸︷︷︸

Froude−2

∂∗iΦ∗ +
µ

VL︸︷︷︸
Reynolds−1

∂∗j∂
∗jυ∗i (A.9)

Flows with identical scaling numbers can be mapped onto each other, and the primary
application is indeed technical: When designing airplanes, it might be difficult to
construct a full-size airplane model and to test it in a wind tunnel at actual velocities.
Instead, one can try out a much smaller model at lower air speeds; if the scaling
numbers are identical between the two situations, the flow patterns are scaled versions
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a.3. constants of nature and planck’s system of units

of each other. In summary, scales might be present in linear laws and there might be There is a fantastic way of
memorising the Reynolds number,
which is associated with turbu-
lence: VL/µ means, that stirring
a coffee fast with a big spoon is
making the flow turbulent, but it
would not work in honey!

scale-free behaviour in nonlinear laws.

A.3 Constants of Nature and Planck’s system of units

There is a clear distinction between classical physics and modern physics: In classical
physics, the purpose of constants is to sort out the units and to relate quantities
in a phenomenological way: From this point of view there really is not much of a
difference between the spring constant k in Hooke’s law

F = −kr (A.10)

and the gravitational constant G in Newton’s law of gravity

F = −G
mM
r2 (A.11)

Modern physics on the other hand distinguishes between different regimes where
Nature behaves classical or shows a markedly new behaviour, for instance at high
velocities close to c, motion at low action close to ℏ, at low energies comparable to the
thermal energy kBT and finally at distances close to GM/c2 at massive objects. In these
cases, classical physics gets replaced by special relativity, by quantum mechanics, by
statistical physics and finally by general relativity, respectively.

As first noticed by Planck, the four constants c, ℏ, G and kB can be used to define a
natural system of units which is universally valid and does not depend on any human
concept for length, time, mass or temperature. For instance, a fundamental mass
could be constructed by setting

mP = cαℏβGγ = lengthα+3β+2γtime−α−2β−γmass−β+γ (A.12)

which is solved by α = −β = γ = 1/2, defining the Planck-mass mP,

mP =

√
cℏ
G
≃ 10−8kg ≃ 1016GeV/c2 (A.13)

Similarly, one can define a length-scale lP, a time scale tP and a temperature scale TP,

lP =

√
Gℏ
c2 ≃ 10−35m, tP =

lP
c
≃ 10−43s, TP =

1
kB

√
c3ℏ
G
≃ 1030K (A.14)

This beautiful idea is somewhat tainted by the realisation that there are in fact two
constants in gravity, G and the cosmological constant Λ. This second constant makes
the construction of a fundamental system of units ambiguous, and what’s even more
puzzling, starting from c, G and Λ defines a system which very well characterises the
Universe today, with a length scale 1/

√
Λ ≃ 3Gpc/h and an age of 1/(

√
Λc) ≃ 1017s,

while even derived quantities like the density scale come out correctly.

A.4 Classical Lagrange-functions

Classical mechanics describes motion axiomatically with a Lagrange-function L(qi , q̇i)
as a function of the (generalised) coordinates qi and the velocities q̇i , defined as the
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a. motion

rate of change of the coordinates as the time-parameter evolves. An integration over t
then defines the action S

S =

tf∫
ti

dt L(qi , q̇i) (A.15)

as a functional over the trajectory qi(t). Hamilton’s principle

δS = 0 (A.16)

then asserts that the physical motion is the one that extremises the action functional,
and incidentally we realise that the linearity of the variation δS induces that the
action is affinely invariant. S → aS + b would not change anything in Hamilton’s
principle, as δ(aS + b) = aδS = 0 shows the irrelevance of a and b.

Carrying out the variation is done by writing

δS =

tf∫
ti

dt
(
∂L
∂qi

δqi +
∂L
∂q̇i

δq̇i
)

=

tf∫
ti

dt
(
∂L
∂qi
− d

dt
∂L
∂q̇i

)
δqi = 0 (A.17)

after setting δq̇i = d/dt δqi , followed by an integration by parts. The boundary
term vanishes if the variation on the boundary vanishes, δqi(ti) = δqi(tf ) = 0, or
at least if their difference is constant. From the last expression we can isolate the
Euler-Lagrange-equation,

d
dt

∂L
∂q̇i

=
∂L
∂qi

(A.18)

If one now chooses the Lagrange function to be

L =
m
2
γab q̇

aq̇b − Φ(qi) (A.19)

with the Euclidean metric γab and a potential Φ, the Euler-Lagrange-function be-
comes equivalent to Newton’s equation of motion: The gradient of the Lagrange-
function with respect to the coordinate yields

∂L
∂qi

= −∂Φ
∂qi

(A.20)

and the derivative of the kinetic term becomesPlease always rename the in-
dices in the kinetic term of the
Lagrange-function before substi-
tuting it into the Euler-Lagrange
equation!

∂L
∂q̇i

=
m
2
γab

( ∂q̇a

∂q̇i︸︷︷︸
δai

q̇b + q̇a
∂q̇b

∂q̇i︸︷︷︸
δbi

)
= mẋi (A.21)

Finally, we arrive at Newton’s equation of motion mq̈i = −∂iΦ by differentiation with
respect to t. One might not always have such a convenient separation into a term
involving only q̇i and only qi , for instance, the harmonic oscillator L = q̇2/2 − ω2q2/2
could be rewritten as L = (q̇ +ωq)(q̇ −ωq)/2. In these cases, the time-derivative might

4



a.5. classical universality and mechanical similarity

act on a function ∂L/∂q̇ which is still a function of q, so one needs to write

d
dt

∂L
∂q̇i

= q̈j
∂2L

∂q̇i∂q̇j
+ q̇j

∂2L
∂qj∂q̇i

=
∂L
∂qi

(A.22)

and a solution for q̈j depends on the invertibility of the matrix ∂2L/∂q̇i∂q̇j :

q̈j =
(

∂2L
∂q̇i∂q̇j

)−1 (
∂L
∂qi
− q̇j ∂2L

∂qj∂q̇i

)
(A.23)

and of course for 1-dimensional motion, it would be enough for ∂2L/∂q̇2 to be
nonzero. Typically, ∂2L/∂q̇2 is just the mass or inertia of the system, which is strictly
positive such that the q̈-term can be isolated.

While the Lagrange-formalism seems straightforward as an axiomatic foundation
of classical mechanics, there seem to be many issues: There is no fundamental justifi-
cation for L or S, as they are both not measurably quantities. S is only determined up
to an affine transform, and so must be L. At least for motion in a vector space, there
is no advantage of using Lagrangian mechanics over the Newton equation of motion,
and one might wonder what the relation between Hamilton’s principle for the motion
of objects and Fermat’s principle for the propagation of light might be.

A.5 Classical universality and mechanical similarity

The Lagrange-function L is invariant under affine transformations,

L → aL + b (A.24)

with two constants a and b, which is no more than a novelty: Clearly, both constants
drop out of the Euler-Lagrange equation

d
dt

∂L
∂q̇
− ∂L

∂q
= 0 (A.25)

b, because it gets lots in the differentiation and a because both differentiations are
linear, so it appears as an irrelevant overall prefactor. But there is a way in which
this affine invariance of the Lagrange-function can be used in a sensible way: If one
rescales the coordinates q → αq and the time parameter t → βt, the kinetic energy
T scales T→ (α/β)2T and the potential energy Φ → αnΦ for a scale-free power-law
potential Φ ∝ qn. Because the scaling of T and Φ are inherently different, one needs Please keep in mind that in clas-

sical mechanics the time is just a
parameter to describe motion!

to assume a relation between them, such that the Lagrange-function L = T − Φ just
changes by an (irrelevant) overall factor:

α2

β2 ∝ α
n or, equivalently, β2 ∝ α2−n (A.26)

This scaling can be read off from Newton’s equation of motion as well (surely it is
consistent with the Lagrange-function L = T − Φ):

q̈ = −∂Φ
∂q
→ α

β2 q̈ = −α
n

α

∂Φ
∂q

implying β2 ∝ α2−n (A.27)
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a. motion

for the specific form Φ ∝ qn. Therefore, the length and time scales need to be in
that particular relation given by the similarity condition β2 = α2−n, which we can
specifically try out for the most common scale-free potentials:

1. Φ ∝ q2, n = 2: harmonic oscillator

In the case of the harmonic oscillator, similarity implies t2 = const, which
indicates that the time scale of e.g. a pendulum is independent of amplitude.

2. Φ ∝ q, n = 1: inclined plane with a constant slope

Here, time and length scale are related by t2 ∝ q, typical for uniformly acceler-
ated motion.

3. Φ ≃ const, n = 0: flat potential

A flat potential is characterised by t2 ∝ q2, or equivalently, inertial motion at
constant velocity, as no acceleration takes place

4. Φ ∝ 1/q, n = −1: Coulomb-potential

In a Coulomb-potential, Kepler’s third law is valid, as t2 ∝ q3.

These four examples illustrate the principle of mechanical similarity where we can say
something profound about motion without performing the variation or solving the
actual equation of motion. For instance, we found out that all planetary orbits are
scaled version of each other as every orbit needs to fulfil Kepler’s law. To formulate
this in a very extreme way, for determining the distances of the planets to the Sun
one just needs a calendar.

A cute example of mechanical similarity is the motion of astronauts on the surface
of the Moon, at a fraction of Earth’s gravity: There, everything seems to be happening
in slow motion, because accelerations are much lower. Speeding up a movie of
astronauts would make everything appear normal again. You might as well have
the association that the motion of the astronauts looks as if they were under water:
That’s sensible, too, because buoyancy reduces the effective gravitational acceleration,
leading to the same effect of longer time constants.

A.6 Total derivatives in the Lagrange-function

The Lagrange-function is only determined up to a total derivative dM(qi , t)/dt of a
function M(qi , t) which may depend on the coordinates qi and on the time parameter
t, but not on the velocities q̇i . In fact, transforming the Lagrange-function

L(qi , q̇i)→ L(qi , q̇i) +
d
dt

M(qi , t) (A.28)

implies a transformation of the action

S =
∫

dt L(qi , q̇i)→ S +
∫

dt
d
dt

M(qi , t) (A.29)

but Hamilton’s principle δS = 0 invalidates the new term: Writing the variation with
a Euler-Lagrange-operator acting on M
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a.7. virial theorem

δS = δ

∫
dt L +

d
dt

M = δ

∫
dt L +

∫
dt

[
d
dt

∂
∂q̇
− ∂
∂q

]
dM
dt

(A.30)

lets us treat each term separately. For the second term, there is

∂
∂q

dM
dt

=
∂
∂q

(
q̇
∂M
∂q

+
∂M
∂t

)
=

∂q̇

∂q
∂M
∂q

+ q̇
∂2M
∂q2 +

∂2M
∂q∂t

(A.31)

because M depends on q and t, but not on q̇. For the first term, we get

∂
∂q̇

dM
dt

=
∂
∂q̇

(
q̇
∂M
∂q

+
∂M
∂t

)
=

∂q̇

∂q̇
∂M
∂q

=
∂M
∂q

(A.32)

because ∂q̇/∂q̇ = 1. A successive time derivative yields then

d
dt

∂
∂q̇

dM
dt

= q̇
∂2M
∂q2 +

∂2M
∂q∂t

(A.33)

so that all additional terms cancel, because

∂q̇

∂q
=

∂
∂q

∂q

∂t
=

∂
∂t

∂q

∂q
=

∂
∂t

1 = 0 (A.34)

where we’ve use the interchangeability of the second partial derivatives.
Alternatively, one can argue that adding the total derivative changes the action

according to

S→ S +

tf∫
ti

dt
dM
dt

= S + M(q(tf ), tf ) −M(q(ti), ti) (A.35)

The variation δq vanishes at the endpoints ti and tf by construction, this however
does not constrain the value of δq̇(t) at the endpoints. Because M(q, t) is only a
function of q and not of q̇ we can be sure that δM vanishes for both δq(ti) and δq(tf ),
cancelling the boundary term.

A.7 Virial theorem

Lagrangian systems are energy-conserving if L does not depend direclty on time t.
This can be seen explicitly in Newton’s equation of motion

mq̈ = − ∂
∂q
Φ (A.36)

if multiplied with q̇:

mq̇q̈ = m
d
dt

q̇2

2
= −q̇ ∂

∂q
Φ = − d

dt
Φ → d

dt

(m
2
q̇2 + Φ

)
= 0 (A.37)

with the energy E = mq̇2/2 + Φ, because Φ depends on t only through the trajectory
q(t), and obviously not explicitly. While the total energy is conserved and while the
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a. motion

equation of motion constantly changes kinetic into potential energy and back, one
might ask the rather sensible question if the system likes to spend more time in a
state of high kinetic energy or in a state of high potential energy.

The answer to this question is the virial theorem: Multiplying the equation of
motion with q instead of q̇ and averaging over a time interval ∆t gives

0 =
1
∆t

∆t∫
0

dt
(
mqq̈ + q

∂Φ
∂q

)
=

1
∆t

mqq̇|∆t0 −
1
∆t

∆t∫
0

dt
(
mq̇2 − q∂Φ

∂q

)
(A.38)

after an integration by parts of the first term. The term mqq̇ gets evaluated at 0 and
∆t and can be estimated to be less than the maximum coordinate qmax times the
maximum velocity q̇max over the time interval from 0 to ∆t, if the motion is bounded:

1
∆t

mqq̇|∆t0 ≤
1
∆t

mqmaxq̇max → 0 as ∆t →∞ (A.39)

and vanishes then if the average is taken over arbitrarily large time intervals. The
term

1
∆t

∆t∫
0

dt mq̇2 = 2⟨T⟩ (A.40)

becomes twice the average kinetic energy, and for proceeding with the potential term,
we need to make an assumption about its functional shape: If it is a homogeneous
function of order k, Φ ∝ qk , we get

1
∆t

∆t∫
0

dt q
∂Φ
∂q

=
1
∆t

∆t∫
0

dt kΦ = k⟨Φ⟩ (A.41)

because q∂qΦ = q∂qq
k = kqqk−1 = kqk = kΦ. Therefore, the average energies are

related to each other by the virial law

2⟨T⟩ = k⟨Φ⟩ (A.42)

A prime example for this is the harmonic oscillator, where both T and Φ are homo-
geneous functions of order k = 2 in q̇ and q, respectively, resulting in equal average
kinetic and potential energies.

It is perhaps a bit more transparent to derive the virial law from the Euler-
Lagrange-equation as the equivalent equation of motion directly. Multiplying with
the coordinate q and averaging gives

0 =
1
∆t

∆t∫
0

dt q
(

d
dt

∂L
∂q̇
− ∂L

∂q

)
=

1
∆t

q
∂L
∂q̇
|∆t0 −

1
∆t

∆t∫
0

dt
(
q̇
∂L
∂q̇

+ q
∂L
∂q

)
(A.43)

which we solve by an integration by parts in the first term. The derivative ∂L/∂q̇ is
the canonical momentum p and we can invoke the same argument about bounded
systems,
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a.8. galilei-invariance of classical systems

1
∆t

mqp|∆t0 ≤
1
∆t

mqmaxpmax → 0 as ∆t → 0 (A.44)

now in phase space, so that the two remaining averages determine the virial law:
Typically, the Lagrange-function is a homogeneous function of order 2 in q̇,

1
∆t

∆t∫
0

dt q̇
∂L
∂q̇

=
1
∆t

∆t∫
0

dt q̇
∂T
∂q̇

= 2⟨T⟩ (A.45)

and in the case of power laws a homogeneous function of order k in q with an
additional minus-sign.

1
∆t

∆t∫
0

dt q
∂L
∂q

= − 1
∆t

∆t∫
0

dt q
∂Φ
∂q

= −k⟨Φ⟩ (A.46)

and the virial law is established:

2⟨T⟩ = k⟨Φ⟩ (A.47)

An illustrative example might be to choose a rather high value of k: Then, the
potential is essentially a box with a flat bottom and high walls, in which the particle
zooms from left to right and back in a state of high kinetic energy essentially all
the time, and spends little time climbing up the walls and changing its direction
of motion. For high k, ⟨T⟩ is much higher than ⟨Φ⟩. The second example is the
impossibility of a gravitationally bound ball of photons: There, the kinetic energy is a
homogeneous function of order k = 1 as energy depends linearly on momentum, and
for the gravitational potential Φ ∝ 1/q we have k = −1 as the degree, so the virial law
becomes: ⟨T⟩ = −⟨Φ⟩, and the total energy E = ⟨T⟩ + ⟨Φ⟩ = 0, but it would need to be
negative for a bound system. Lastly, a peculiar case is a harmonic oscillator with k = 2:
Then, the average kinetic and potential energies are exactly equal, ⟨ẋ2⟩ = ω2⟨x2⟩.

A.8 Galilei-invariance of classical systems

Classical mechanics uses Galilean relativity, meaning that the equation of motions are
identical in every Galilei-frame, which in turn is defined as the class of frames moving
at constant relative velocities where inertial forces are absent. Mathematically they
are defined as the coordinate transformations q→ q + υt with a constant velocity υ,
such that q̇→ q̇ + υ and q̈→ q̈, leaving the Newtonian equation of motion unchained.

On the level of the Lagrange-function there is a change,

L =
m
2
q̇2 → m

2
(q̇ + υ)2 =

m
2

(
q̇2 + 2q̇υ + υ2

)
=

m
2
q̇2 +

d
dt

(
mqυ +

m
2
υ2t

)
(A.48)

where the additional terms can be absorbed into a the time derivative of a function
M(q, t) which depends on the coordinate q and t (please keep in mind that υ is
constant!), but not on q̇ directly, so the action S =

∫
dt L is effectively unchanged.

While this looks very convincing there is something fundamental that is being
overlooked in Galilean, non-relativistic mechanics. In the process of varying the
action, one transitions from an invariant, scalar Lagrange-function to a covariant
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a. motion

vectorial or tensorial equation of motion with consistent transformation properties.
For instance, the Lagrange-function

L =
1
2
γij ẋ

i ẋj − Φ(xi) (A.49)

is rotationally invariant, clearly because of the scalar product γij ẋi ẋj involving the
Euclidean metric γij , but also because of the scalar potential Φ, which doesn’t have
any internal degrees of freedom that would be affected by a rotation. After variation,
the equation of motion

mẍi = −∂iΦ (A.50)

puts a linear form ẍi into relation with the gradient ∂iΦ, again written as a linear
form, so that the entire formula transforms consistently. Clearly, one could use
the inverse Euclidean metric γij to write it in vector form, mẍi = −∂iΦ, with ẍi =
γij ẍj and ∂iΦ = γij∂jΦ. This property of the variational principles is known as the
invariance-covariance principle: You always obtain a covariant equation of motion
(or field equation) from an invariant Lagrange-function (or density).

The curiosity is now that actually boosts and rotations form a common group, the
proper Lorentz-group, so classical mechanics based on Galilean relativity instead
of Lorentzian relativity needs to realise the invariance-covariance principle differ-
ently: Time is universal and identical in all frames, and excluded from coordinate
transforms. This enables the invariance of the accelerations q̈ in all frames instead of
dealing with a construction a covariant equation of motion.

A.9 Alternatives to the Lagrange-function

The Lagrange-function L = T(q̇i) − Φ(qi) is defined axiomatically in classical mechan-
ics in order to make it consistent with the Newtonian equation of motion. You might
want to ask if one could have other terms in the Lagrange-function that would be com-
patible with a linear, second order equation of motion. As the order of the powers of
qi and q̇i decreases by one through the differentiation in the Euler-Lagrange-equation,
there should be at most squares in the Lagrange-function. Higher-order derivatives
like q̈i are excluded by the Ostrogradsky-instability (we will come to that!). Therefore,
one could imagine a Lagrange-function

L = γij q̇
i q̇j − γijqi q̈j − Φ + λiq

i + µi q̇
i + αijq

iqj + βijq
i q̇j + ϵ + . . . (A.51)

and possibly many more terms. But actually, one is quite restricted: −γijqi q̈j is just
γij q̇

i q̇j after an integration by parts, λiqi , αijqiqj and ϵ are particular potentials, and
βijq

i q̇j as well as µi q̇i would vanish: After all, they are just total time derivatives of
the functions βijqiqj and µiqi which just depend on time and position.

It is very interesting to see that any reformulation of the Lagrange-function that
can be achieved by integration by parts gives rise to exactly the same equation of
motion: That is the case because L only ever appears in the action integral S =

∫
dt L

with a fixed boundary. But for dealing with a term like γijqi q̈j of second order we need
a generalisation of the Euler-Lagrange-equation: Performing a variation to second
order yields:

10



a.10. beltrami-identity and the conservation of energy

δS =
∫

dt
(
∂L
∂q
δq +

∂L
∂q̇
δq̇ +

∂L
∂q̈
δq̈

)
=

∫
dt

(
∂L
∂q
− d

dt
∂L
∂q̇

+
d2

dt2
∂L
∂q̈

)
δq = 0 (A.52)

with a single integration by parts for the second, and a double integration by parts
in the third term. Then, Hamilton’s principle defines the generalisation of the Euler-
Lagrange-equation to higher orders:

∂L
∂q
− d

dt
∂L
∂q̇

+
d2

dt2
∂L
∂q̈

= 0 (A.53)

A.10 Beltrami-identity and the conservation of energy

The conservation of energy in classical mechanics is realised very differently compared
to other conservation laws: In those, one can identify cyclic variables q defined by the
condition ∂L/∂q = 0, so that the Euler-Lagrange-equation makes sure that

d
dt

∂L
∂q̇

= 0 and consequently, the canoncial momentum p =
∂L
∂q̇

(A.54)

is conserved, dp/dt = 0. Time, however, is not a coordinate in classical mechanics,
so the definition of energy as the canoncial momentum ∂L/∂ṫ is impossible, it is
completely unclear what ṫ should actually be if not 1.

Instead, one needs the Beltrami-identity: By constructing

d
dt

(
L − q̇ ∂L

∂q̇

)
= q̇

∂L
∂q

+ q̈
∂L
∂q̇
− q̈ ∂L

∂q̇
− q̇ d

dt
∂L
∂q̇

= q̇

(
∂L
∂q
− d

dt
∂L
∂q̇

)
= 0 (A.55)

because the Euler-Lagrange-equation sets the brackets to zero. Hence, there is a
conserved quantity H = q̇p − L, referred to as the Hamilton-function H, which
depends on the canonical momentum p and the coordinate q. This definition already
suggests that H(p, q) is the Legendre-transform of L(q, q̇).

Let’s investigate Ostrogradsky’s idea that things become unstable if higher deriva-
tives of q are included and write L = L(q, q̇, q̈, ˙̇q̇), such that

d
dt

(
L − q̇ ∂L

∂q̇

)
= q̇

∂L
∂q

+ q̈
∂L
∂q̇

+˙̇q̇
∂L
∂q̈

+. . .− q̈ ∂L
∂q̇
− q̇ d

dt
∂L
∂q̇

= q̇

(
∂L
∂q
− d

dt
∂L
∂q̇

)
+˙̇q̇

∂L
∂q̈

+. . . =

(A.56)

and subsituting the general Euler-Lagrange-equation one obtains

d
dt

(
L − q̇ ∂L

∂q̇

)
= q̇

(
− d2

dt2
∂L
∂q̈

+
d3

dt3
∂L
∂˙̇q̇

+ . . .

)
+ ˙̇q̇

∂L
∂q̈

+ . . . , 0 (A.57)

which would never work out to be zero.
The Hamilton-function H takes on a nice, directly interpretable form for the

standard Lagrange-function L = m/2 q̇2 − Φ(q): The canonical momentum is p =
∂L/∂q̇ = mq̇ and therefore, q̇ = p/m, yielding

H(p, q) = pq̇ − L(q, q̇(p)) =
p2

m
−

p2

2m
+ Φ(q) =

p2

2m
+ Φ(q) (A.58)

11



a. motion

Then, dH/dt = 0 and H is conserved.

A.11 Convexity of the Lagrange-function

The variational principle relies heavily on the fact that the Lagrange-function L is a
convex function in q̇, and that the action S is a convex functional. Only then, there
is a uniquely defined extremum and δS = 0 defines the actual equation of motion.
Imagine if Hamilton’s principle had multiple solutions for δS = 0! One would clearly
end up in an impossible situation where multiple equations of motion would try to
determine the evolution of a system.

Furthermore, the Hamilton-function is determined as the Legendre-transform
of the Lagrange-function. For that to be feasible one needs the Lagrange function
to be convex in q̇: The canonical momentum p = ∂L/∂q̇ is needed for replacing q̇
with p, and therefore the relation p(q̇) needs to be invertible to give q̇(p). Invertibility
is given if p = ∂L/∂q̇ is monotonically increasing and this is true if L is a convex
function in q̇. Then, H becomes a convex function in p, too, and the inverse Legendre-
transform back to L is well-defined. Convexity (or concavity, any overall sign in L
is undetermined because of affine invariance L → aL + b with a = −1 and b = 0) is
surely given for a standard form L ∝ q̇2, but is there a more fundamental reason for
it? The answer to this profound question is relativity:

A.12 Lorentz- and Galilei-relativity

Lagrange-mechanics is really a bit of physics that was discovered 100 years too
early, as many aspect don’t make much sense without relativity: L = T − V is not
measurable and ad-hoc to result in Newton’s equation of motion, and the covariance
under Galilei-transforms and rotations is realised in very different ways. So, let’s
approach Lagrange-mechanics through relativity!

In the absence of potentials or curvature, spacetime should be homogeneous as no
point or instance in time should play a particular role, and this homogeneity should
be reflected in the transformation between different coordinate frames. An observer
looking at two coordinate choices could measure the rate at which the coordinates xµ

and x′µ containing the collection of spatial coordinates xi and time t are drifting by
as a function of her or his proper time τ, defining the velocity as the rate of change of
the coordinates

dxµ

dτ
= const. , and identically in S′ :

dx′µ

dτ
= const. (A.59)

which is constant for inertial motion and suitably chosen coordinates, and the
corresponding acceleration

d2xµ

dτ2 = 0, and identically in S′ :
d2x′µ

dτ2 = 0 (A.60)

then vanishes in both systems. The relation between the two velocities and accelera-
tions is given by

dx′µ

dτ
=

∂x′µ

∂xν
dxν

dτ
(A.61)

d2xµ

dτ2 =
∂x′µ

∂xν
d2xν

dτ2 +
∂2x′µ

∂xν∂xρ
dxν

dτ
dxρ

dτ
. (A.62)
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a.12. lorentz- and galilei-relativity

If the gradient of the Jacobian of the coordinate change vanishes,

∂2x′µ

∂xν∂xρ
= 0 (A.63)

vanishing accelerations in one frame imply vanishing accelerations in the other. Then,
the rate of change of the coordinate passage dxµ/dτ is constant, and the transitions
respects homogeneity. The solution for x′µ(xν) is consequently given by a linear, affine
relation,

x′µ = Aµ
ν x

ν + aµ. (A.64)

with two sets of integration constants Aµ
ν and aµ.

Let’s construct this transform from the most general transition between two
frames, where we align for simplicity the coordinate axes with the direction of
relative motion, taken to be the x-axis. There is an event with coordinates xµ in S
and x′µ in S′ , and the two frames move with a relative (constant) velocity υ. A linear,
affine transform would then be the only one to respect the homogeneity of spacetime
(nonlinear transforms would always single out certain spacetime points), so we make
the ansatz:

x′ = ax + bt, but x = υt must imply x′ = 0 (A.65)

x′ = 0 = aυt + bt = (aυ + b) t ⇒ b = −aυ, and: (A.66)

x′ = a(x − υt) (A.67)

Reversing the roles of S and S′ implies that

x = ax′ + bt′ but x′ = −υt must imply x = 0 (A.68)

x = 0 = −aυt′ + bt′ = (−aυ + b) t′ ⇒ b = +aυ, and: (A.69)

x = a(x′ + υt′) (A.70)

But this relation between x and x′ is not yet fixed without an additional assumption
that determines the value of a. Here, Nature would have in fact a choice! Either, Nature
could work with a universal time coordinate (or rather, a parameter, as it does not
participate in transforms unlike the other coordinates). A universal time parameter
would require that t = t′ , which is the defining property of Galilei-transforms. Then,

x = a(x′ + υt) = a(a(x − υt) + υt) = a2x + (1 − a) υt = x (A.71)

which can only be realised if a = 1. Nature chose instead, for very good reasons, the
speed of light to be equal in all frames, c = c′, which requires Lorentz- instead of
Galilei-transforms between frames. In this choice,

x′ = ct′ = a(ct − υt) (A.72)

x = ct = a(ct′ − υt′) (A.73)

and consequently
c2tt′ = a2(c − υ)(c + υ) · tt′ , (A.74)

13



a. motion

where the third equation was obtained by multiplying the first two. Dividing by tt′

and solving for a yields the Lorentz-factor γ,

a = γ =
1√

1 − β2
, with β =

υ

c
(A.75)

We should note that Lorentz-transformations, due to their linearity, do not ’mix’ the
spatial coordinates. The Lorentz-factor γ diverges at β = 1 and would indeed become
imaginary for values β > 1. Taylor-expanding γ for small velocities β gives the result
that

γ ∼ 1 +
∂2γ

∂β2

∣∣∣∣∣
β=0
·
β2

2
= 1 +

β2

2
, with

∂γ

∂β

∣∣∣∣∣
β=0

= 1 (A.76)

which is perfectly consistent with the fact that for low velocities β≪ 1 and γ ≃ 1,
Lorentz- and Galilei-transforms are indistinguishable. Writing ct and arranging the

temporal and spatial coordinates into a vector xµ =
(
ct
x

)
allows to use the standard

matrix-form of the Lorentz-transformation:

x′ = γ (x − υt) = γ (x − βct) (A.77)

ct′ = γ (ct − βx), (A.78)

so that one arrives at (
ct′

x′

)
=

(
γ −βγ
−βγ γ

) (
ct
x

)
(A.79)

encapsulating the Lorentz-transform in a matrix Λµν, with x′µ = Λ
µ
νxν. Therefore,

there are only two possible linear transformations, where Nature chooses to conserve
the speed c, and we will see how this is related to the causal structure of spacetime
and the hyperbolic evolution of field equations.

Just as rotations leave Euclidean scalar products r2 = γijx
ixj invariant, quadratic

forms s2 = ηµνx
µxν formed with the Minkowski-metric ηµν are untouched by Lorentz-

transforms, as one can see by direct computation:

s′2 = (ct′)2 − x′2 = γ2
[
(ct)2 − 2ctβx + β2x2 − x2 + 2xβct − β2(ct)2

]
=

γ2(1 − β2)︸      ︷︷      ︸
1

(
(ct)2 − x2

)
= s2 (A.80)

With this realisation, one can define an orthogonality relation:

s′2 = ηµνx
′µx′ν = ηµνΛ

µ
αΛ

ν
βx
αxβ = ηαβx

αxβ = s2 (A.81)

and therefore
ηµνΛ

µ
αΛ

ν
β = ηαβ (A.82)

as an orthogonality relation for Λµα. The physical interpretation of the invariant s
is the proper time τ displayed on a comoving clock, i.e. a clock inside the local rest
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a.13. rapidity

frame, where x = 0 constantly,

s2 = ηµνx
µxν = (ct)2 − x2 = c2τ2 (A.83)

Differentially, this implies

ds2 = ηµνdx
µdxν = c2dτ2 = c2dt2 − γijdxidxj (A.84)

and therefore

dτ =

√
1 − γij

1
c

dxi

dt
1
c

dxj

dt
dt =

√
1 − β2dt =

dt
γ

(A.85)

with β2 = γijυ
iυj /c2. As γ ≥ 1 always, dτ < dt and one observes a relativistic dilation

of proper time relative to the coordinate time. ±1/γ = ±
√

1 − β2 is in fact a semi-circle,
so it’s a perfectly convex (concave for the other sign choice) function, and would make
an excellent candidate for the Lagrange-function. Additionally, its Taylor-expansion

1
γ

= 1 −
β2

2
± . . . (A.86)

at low velocities β≪ 1 gives a term that is reminiscent of the classical kinetic energy!

A.13 Rapidity

Lorentz-boosts form a group as their combination always gives a boost, but clearly
the velocity is not additive, which can be verified by direct combination of two boosts:
The sum of the velocities β always needs to stay below 1. One might wonder then
whether there is an additive parameter for the Lorentz-transforms which replaces the
velocity β. From the range of values of the terms in the Lorentz-transform Λ

µ
α, where

0 ≤ βγ < ∞ (for positive β with a sign change for negative β!) and 1 ≤ γ < ∞ on could
think of a parameterisation coshψ = γ and sinhψ = βγ, such that

tanhψ = β → ψ = artanhβ (A.87)

with the rapidity ψ replacing the physical velocity β. Then, the Lorentz-transform
can be written as a hyperbolic rotation,

Λ
µ
α =

(
coshψ sinhψ
sinhψ coshψ

)
(A.88)

where the Lorentz-invariance of s2 = ηµνx
µxν is then re-expressed as the property

cosh2 ψ − sinh2 ψ = γ2 − (βγ)2 = γ2(1 − β2) = 1 of the hyperbolic functions. Two
successive boosts in this representation then shows that rapidity is additive as a
parameter, which we’ll elaborate in the chapter about Lie-groups. For the time being,
we use the addition theorem of the hyperbolic tangent to get

βφ+ψ = tanh(φ+ ψ) =
tanhφ+ tanhψ

1 + tanhφ tanhψ
=
βφ + βψ

1 + βφβψ
(A.89)
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a. motion

which falls back onto βφ + βψ for small β ≪ 1, where the hyperbolic tangent, at
the same time, is approximated well by its argument, β = tanhψ ≃ ψ. As tanhψ is
bounded by 1 even as ψ→∞, successive boosts do not exceed β = 1 or υ = c.

A.14 Proper time and the relativistic Lagrange-function

The rate of change of coordinates dxµ can be measured in units of proper time dτ,
leading to the definition of 4-velocity,

xµ =
(
ct
xi

)
implies that uµ =

dxµ

dτ
=

dt
dτ

dxµ

dt
= γ

(
c
υi

)
(A.90)

with γ = dt/dτ and υi = dxi /dt. If the proper time τ is used to parameterise the
trajectory xµ(τ) in this way, the tangent vector uµ = dxµ/dτ is normalised to c,

ηµνu
µuν = γ2(c2 − υ2) = c2γ2(1 − β2) = c2 (A.91)

which is true even for a particle at rest: There, only ut = c is nonzero, υi = 0 and
ηµνu

µuν = c2, effectively, the particle drifts along the ct-axis at velocity c. Motivated
by the idea that 1/γ could be a good candidate for the relativistic Lagrange-function,
we could imagine that the arc-length S =

∫
ds = cτ through spacetime of a trajectory

xµ(τ) could be extremised, as a very intuitive concept:

S = −mc

∫
ds = −mc2

∫
dτ = −mc2

∫
dt

√
1 − β2 = −mc2

∫
dt
γ
, (A.92)

therefore L = −mc2/γ, with the nonrelativistic limit −mc2(1 − β2), i.e. up to an affine
transform the actual kinetic energy mυ2/2.

A.15 Geometric view on motion

If the relativistic arc-length through spacetime as a candidate for the Lagrange-
function were true, force-free motion should proceed along a straight line, as a
reflection of the law of inertia: Technically, we replace the variation of the abstract
classical action by the much more concrete variation of an arc through spacetime and
monitor how the length S =

∫
ds would change under a variation,

δS = −mc2 δ

∫
dτ = −mc2

∫
ηµν

2dτ
[dxµδdxν + δdxµdxν] =

−mc2
∫
ηµν

dxµ

dτ
δdxν︸︷︷︸
=dδxµ

= mc2
∫

dτ ηµν
d2xµ

dτ2 δx
ν (A.93)

starting from

ds2 = c2dτ2 = ηµνdx
µdxν → cdτ =

√
ηµνdxµdxν (A.94)

using that the Minkowski-metric is symmetric, ηµν = ηνµ and finally that the differ-
ential can be expanded as
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a.15. geometric view on motion

d
dxµ

dτ
=

d
dτ

dxµ

dτ
dτ =

d2xµ

dτ2 dτ (A.95)

after reshuffling the differentiations by an integration by parts. Hamilton’s principle
δS = 0 therefore implies that

d2xµ

dτ2 = 0 → xµ(τ) = aµτ + bµ (A.96)

i.e. a straight line through spacetime, with two integration constants aµ and bµ. These
trajectories result from minimising the arc-length, which is a convex functional and
bounded by S = 0 on the light cone. Affine invariance of the arc-length just means
that you’re free to measure it as proper time with any unit and from any zero-point.

With the law of inertia explained, could the formalism be adopted to (gravi-
tational) potentials? There, we would indeed expect accelerations d2xµ/dτ2 as a
consequence of gradients in Φ. General relativity is really much beyond the scope of
the tooltips-lecture but let’s try this idea out with a weakly perturbed Minkowskian
spacetime. There, the line element is given by

ds2 = gµνdx
µdxν =

(
1 + 2

Φ

c2

)
c2dt2 −

(
1 − 2

Φ

c2

)
γijdx

idxj (A.97)

with the metric gµν instead of the Minkowski-metric ηµν, and a weak gravitational
potential Φ with |Φ| ≪ c2 (Already at this point you can see that without a speed
of light we could not say whether the potential is weak or strong!) on top of a
Minkowski-vector space (I’m a bit adamant here, because just from gµν , ηµν you
can not infer the existence of gravitational potentials if there is full freedom in
choosing the coordinates.) The first thing we should check if there is an influence
of the gravitational potential on the passage of time: After all, proper time should
differ from coordinate time which is first of all caused by special relativistic time
dilation due to motion. For a stationary object dxi = 0 because there is no change in
coordinate, and we get

dτ =

√
1 + 2

Φ

c2 dt ≃
(
1 +

Φ

c2

)
dt =

(
1 − GM

c2r

)
dt (A.98)

by substitution of a Newtonian potential Φ = −GM/r, where 2GM/c2 = rS defines the
Schwarzschild-radius: It seems to be the case that G/c2 ≃ 10−28m/kg assigns a length-
scale to a mass, and for an object like the Sun with M = 1030kg the Schwarzschild-
radius comes out with a few hundred meters. As dτ ≤ dt, we observe a gravitational
time dilation of proper time relative to coordinate time, and Φ seems to have an
influence on the relativistic arc-length just as velocity would. Repeating the above

derivation with ds = cdτ =
√
gµνdxµdxν shows

S = −mc2
∫

dτ = −mc

∫
dt

√
gµν

dxµ

dt
dxν

dt
= −mc

∫
dt

√(
1 + 2

Φ

c2

)
c2 −

(
1 − 2

Φ

c2

)
υ2

(A.99)

Ignoring Φυ as a higher-order term then yields after approximating
√

1 + x = 1 + x/2
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a. motion

S = −mc2
∫

dt

√
1 + 2

Φ

c2 −
υ2

c2 ≃
∫

dt
(
mυ2

2
−mΦ −mc2

)
(A.100)

i.e. the classical Lagrange-function L = T − Φ with the rest mass as an additional
term, which is irrelevant due to affine invariance of L. Weirdly enough, motion in
classical mechanics proceeds, in the aim to minimise S, in a way that time dilation is
extremised, by being far down in gravitational potentials or by being fast.

A.16 Relativistic energy and momentum

We have seen in the last chapter that the Lagrange-function is much more a statement
of causal motion in spacetime and has little to do with energies: Those appear after
Legendre-transform, which is always well defined because the Lagrange function
is a convex functional in ẋ - this is, incidentally, the same reason why the variation
yields a unique result and finds a unique extremum. It is important to realise that
the conservation of the various canonical momenta are ensured by cyclic coordinates,
but that energy conservation is a consequence of the Beltrami-identity.

The Legendre-transform of the relativistic Lagrange-function should provide a
relativistic dispersion relation, i.e. a relation between energy and momentum. The
canonical momentum p is derived from the Lagrange-function L = −1/γ = −

√
c2 − ẋ2,

p =
∂L
∂ẋ

=
ẋ

√
c2 − ẋ2

(A.101)

where this relation can be inverted from p(ẋ) to ẋ(p), as a consequence of the convexity
of L, and which is needed for computing the Legendre-transform

H(p, x) = pẋ(p) − L(x, ẋ(p)) (A.102)

With the inversion

p2 =
υ2

c2 − υ2 → p2(c2 − υ2) = υ2 → p2c2 = υ2(1 + p2) → υ =
cp√

1 + p2

(A.103)

with υ = ẋ and consequently

H(p, x) = υ
υ

√
c2 − υ2︸     ︷︷     ︸

p

+
√
c2 − υ2︸    ︷︷    ︸

υ
p

= υp +
υ

p
= υ

(
p +

1
p

)
=

cp√
1 + p2

1 + p2

p
= c

√
1 + p2

(A.104)

Including the rest mass m would yield the relativistic dispersion relation

H =
√

(mc2)2 + (cp)2 (A.105)

which is approximated by H = mc2 + p2/(2m) for p ≪ mc and by H = cp for p ≫ mc.
The Hamilton-function H in turn is again convex and allows an inverse Legendre-
transform to recover L.
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a.17. causality and light cones

A.17 Causality and light cones

The Lorentz-invariant ds2 = ηµνdxµdxν makes it possible to differentiate between
time-like ds2 > 0, space-like ds2 < 0 and light-like ds2 = 0 separations in spacetime.
Weirdly enough, the causal ordering of events, i.e. a statement of dt > 0 or dt < 0
depends on the chosen frame, and it is always possible to change the sign of dt in
space-like separated events from the point of view of a fast enough moving Lorentz-
frame.

Only inside the light cone, i.e. for all time-like separated events one observes the
same causal order from all Lorentz-frames, which necessarily move at speeds β < 1.
Being located inside the light-cone is certainly true for all massive particles: Their
4-velocities uµ are normalised to ηµνuµuν = c2 > 0, and in fact the light cone is the
convex hull of all possible trajectories of massive particles. Approaching β = 1 has
the Lorentz-factor γ diverge, which is often rewritten as a relativistic mass increase,

pµ = muµ = γm

(
c
υi

)
from uµ =

dxµ

dτ
=

dt
dτ

dxµ

dt
= γ

(
c
υi

)
(A.106)

and therefore, relativistic mass increase is purely a consequence of the dilation of
proper time. Asking whether it would be possible to accelerate a (charged) particle
with electromagnetic forces will be answered negatively: Starting with the Lorentz-
equation

duµ

dτ
=

q

m
Fµνuν (A.107)

with the field-tensor Fµν that contains the electric and magnetic fields. Multiplying
the Lorentz-equation with uµ gives:

uµ
duµ

dτ
=

1
2

d
dτ

(uµu
µ) =

q

m
Fµνuµuν = 0 (A.108)

such that the normalisation of uµ is conserved to be c2 > 0, and uµ remains time-like
and inside the light cone despite being accelerated: The reason is purely geometrical,
as the contraction of the antisymmetric tensor Fµν with the symmetric tensor uµuν is
necessarily zero, making it impossible for uµuµ to change.

At this point, we should start to be careful not to link the Lorentz-geometry to any
particular coordinate choice. When considering light cone coordinates, du = cdt + dx
and dv = cdt − dx the line element is given by

ds2 = ηµν dxµdxν = c2dt2 − dx2 = (cdt + dx)(cdt − dx) = du · dv, (A.109)

and the corresponding Lorentzian metric is represented by the matrix

ηµν =
1
2

(
0 1
1 0

)
(A.110)

in these coordinates. Surely, the geometry is identical and has not been changed by
the new definition of coordinates, and the spectrum of eigenvalues of the new metric
is exactly +1 and −1.
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