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A motion

A.1 Scales in physical laws: Poisson vs. Yukawa

A good example of a scale-free physical law is the 1/r-potential in electrostatics or
in Newton-gravity in 3d dimensions: It follows as a vacuum solution of the Poisson-
equation

∆Φ = −4πρ (A.1)

in the Gauß-system of units. Assuming spherical symmetry for the field away from a
point charge one can verify that Φ ∝ 1/r is in fact a solution to

∆Φ =
1
r2

∂
∂r

(
r2∂Φ

∂r

)
= 0 (A.2)

The solution Φ ∝ 1/r is perfectly scale free as a power law; increasing the charge
can be absorbed in an increased distance. This can be seen directly by the scale
transformation r → αr, under which ∂r → α−1∂r and consequently ∆→ α−2∆. Then,
Φ → α−1Φ because ρ→ α−3ρ, and two powers of α cancel, making Φ consistent with
the scaling of r.

This scale-invariance expressed by the power law is broken in the Yukawa-
equation [

∆ − λ2
]
Φ = −4πρ (A.3)

with a parameter λ: It has units of inverse length and allows to distinguish between
the regimes λr ≪ 1 and λr ≫ 1, because despite the fact that the field equation is
still linear, scale-invariance is violated. As a solution one finds Φ ∝ exp(−λr)/r in 3
dimensions, which behaves Φ ∝ 1/r for small distances, where exp(−λr) ≃ 1− λr ± . . .,
but at large distances the solution drops faster to zero than 1/r. Therefore, one has
constructed a scale-dependent modification of the Poisson-equation. From a physical
point of view, Yukawa aimed at a short-range force for explaining the binding of
nucleons, and almost at exactly the same time, Debye considered electric fields in
electrolytes, where the shielding of ions led to a fast decrease of electric fields around
charges.

Please note that much of the arguments are only applicable in 3 dimensions or
more. In two dimensions the Poisson-equation reads

∆Φ =
1
r
∂
∂r

(
r
∂Φ
∂r

)
=

1
r
∂Φ
∂r

+
∂2Φ

∂r2 = 0 (A.4)

which is solved by Φ ∝ ln r: While this is mathematically perfect, there are a couple
of issues concerning the physical application. The potential does not vanish for
r →∞ and there is no scale-free behaviour of the solution despite the fact that the
Poisson-equation is scale free. Adding a Yukawa-type term[

∆ − λ2
]
Φ =

1
r
∂Φ
∂r

+
∂2Φ

∂r2 − λ
2Φ = 0 (A.5)

gives rise to a differential equation that is known as Emden-Fowler-type and has a
(very complicated) solution in terms of Bessel-functions J0 and Y0, where λ appears

1



a. motion

as the wavenlength of the oscillation in the Bessel-functions: Surely it plays the role
of a scale, but not as clearly as in 3 dimensions.

A.2 Buckingham’s Π-theorem and the Navier-Stokes-equation

The example about the Poisson- and Yukawa-equation showed how scales can be
introduced in a linear equation, and we should investigate if there can be scale-free
behaviour in a nonlinear equation. This is in fact the case, as the example of the
dimensionless Navier-Stokes-equation in fluid mechanics shows:

∂tυ
i + (υj∂

j )υi = −1
ρ
∂ip − ∂iΦ + µ∂j∂

jυi (A.6)

The Navier-Stokes equation describes the acceleration of a fluid with velocity υi

under the action of forces, for instance gradients in pressure p, in the gravitational
potential Φ and viscous forces with the shear viscosity µ, all under the condition of
incompressible fluids with ∂iυ

i = 0. Multiplying with ρ to make things a bit more
transparent gives an equation where every term has units of mass/length2/time2.

If we introduce typical scales, we could reach a form of the Navier-Stokes equation
where it would become scale free: It would become an dimensionless equation,
and flow patterns of different physical dimension, if they fall back onto the same
dimensionless equation, would be scaled versions of each other: Introducing a length
scale L for x → x∗ = x/L, a time scale T for t → t∗ = t/T, a velocity scale V for
υ → υ∗ = υ/V, a pressure scale P for p → p∗ = p/P and finally a scale for the
gravitational acceleration G for g → g∗ = g/G yields

ρV
T

∂∗tυ
∗i +

ρV2

L
(υ∗j∂

∗j )υ∗i = −P
L
∂∗ip∗ −

ρG
L

∂∗iΦ∗ +
µρV
L2 ∂∗j∂

∗jυ∗i (A.7)

with the dimensionless derivatives

∂
∂x

=
∂x∗

∂x
∂
∂x∗

=
1
L
∂∗x and

∂
∂t

=
∂t∗

∂t
∂
∂t∗

=
1
T
∂∗t (A.8)

It should be noted that L and T are typical scales on which the flow changes, and
that the scale V is independent of L/T: You can have a slowly-varying high velocity
flow or, vice versa, a rapidly changing low-velocity flow.

In eqn. A.7 one has reached a curious ordering of all terms: The units are concen-
trated in the prefactors, while all terms involving quantities with a superscript-∗ are
dimensionless. Dividing the entire formula by the prefactor of the second, nonlinear
term then gives rise to:

L
TV︸︷︷︸

Strouhal

∂∗tυ
∗i + (υ∗j∂

∗j )υ∗i = − P
ρV2︸︷︷︸
Euler

∂∗ip∗ − G
V2︸︷︷︸

Froude−2

∂∗iΦ∗ +
µ

VL︸︷︷︸
Reynolds−1

∂∗j∂
∗jυ∗i (A.9)

Flows with identical scaling numbers can be mapped onto each other, and the primary
application is indeed technical: When designing airplanes, it might be difficult to
construct a full-size airplane model and to test it in a wind tunnel at actual velocities.
Instead, one can try out a much smaller model at lower air speeds; if the scaling
numbers are identical between the two situations, the flow patterns are scaled versions

2



a.3. constants of nature and planck’s system of units

of each other. In summary, scales might be present in linear laws and there might be There is a fantastic way of
memorising the Reynolds number,
which is associated with turbu-
lence: VL/µ means, that stirring
a coffee fast with a big spoon is
making the flow turbulent, but it
would not work in honey!

scale-free behaviour in nonlinear laws.

A.3 Constants of Nature and Planck’s system of units

There is a clear distinction between classical physics and modern physics: In classical
physics, the purpose of constants is to sort out the units and to relate quantities
in a phenomenological way: From this point of view there really is not much of a
difference between the spring constant k in Hooke’s law

F = −kr (A.10)

and the gravitational constant G in Newton’s law of gravity

F = −G
mM
r2 (A.11)

Modern physics on the other hand distinguishes between different regimes where
Nature behaves classical or shows a markedly new behaviour, for instance at high
velocities close to c, motion at low action close to ℏ, at low energies comparable to the
thermal energy kBT and finally at distances close to GM/c2 at massive objects. In these
cases, classical physics gets replaced by special relativity, by quantum mechanics, by
statistical physics and finally by general relativity, respectively.

As first noticed by Planck, the four constants c, ℏ, G and kB can be used to define a
natural system of units which is universally valid and does not depend on any human
concept for length, time, mass or temperature. For instance, a fundamental mass
could be constructed by setting

mP = cαℏβGγ = lengthα+3β+2γtime−α−2β−γmass−β+γ (A.12)

which is solved by α = −β = γ = 1/2, defining the Planck-mass mP,

mP =

√
cℏ
G
≃ 10−8kg ≃ 1016GeV/c2 (A.13)

Similarly, one can define a length-scale lP, a time scale tP and a temperature scale TP,

lP =

√
Gℏ
c2 ≃ 10−35m, tP =

lP
c
≃ 10−43s, TP =

1
kB

√
c3ℏ
G
≃ 1030K (A.14)

This beautiful idea is somewhat tainted by the realisation that there are in fact two
constants in gravity, G and the cosmological constant Λ. This second constant makes
the construction of a fundamental system of units ambiguous, and what’s even more
puzzling, starting from c, G and Λ defines a system which very well characterises the
Universe today, with a length scale 1/

√
Λ ≃ 3Gpc/h and an age of 1/(

√
Λc) ≃ 1017s,

while even derived quantities like the density scale come out correctly.

A.4 Classical Lagrange-functions

Classical mechanics describes motion axiomatically with a Lagrange-function L(qi , q̇i)
as a function of the (generalised) coordinates qi and the velocities q̇i , defined as the

3



a. motion

rate of change of the coordinates as the time-parameter evolves. An integration over t
then defines the action S

S =

tf∫
ti

dt L(qi , q̇i) (A.15)

as a functional over the trajectory qi(t). Hamilton’s principle

δS = 0 (A.16)

then asserts that the physical motion is the one that extremises the action functional,
and incidentally we realise that the linearity of the variation δS induces that the
action is affinely invariant. S → aS + b would not change anything in Hamilton’s
principle, as δ(aS + b) = aδS = 0 shows the irrelevance of a and b.

Carrying out the variation is done by writing

δS =

tf∫
ti

dt
(
∂L
∂qi

δqi +
∂L
∂q̇i

δq̇i
)

=

tf∫
ti

dt
(
∂L
∂qi
− d

dt
∂L
∂q̇i

)
δqi = 0 (A.17)

after setting δq̇i = d/dt δqi , followed by an integration by parts. The boundary
term vanishes if the variation on the boundary vanishes, δqi(ti) = δqi(tf ) = 0, or
at least if their difference is constant. From the last expression we can isolate the
Euler-Lagrange-equation,

d
dt

∂L
∂q̇i

=
∂L
∂qi

(A.18)

If one now chooses the Lagrange function to be

L =
m
2
γab q̇

aq̇b − Φ(qi) (A.19)

with the Euclidean metric γab and a potential Φ, the Euler-Lagrange-function be-
comes equivalent to Newton’s equation of motion: The gradient of the Lagrange-
function with respect to the coordinate yields

∂L
∂qi

= −∂Φ
∂qi

(A.20)

and the derivative of the kinetic term becomesPlease always rename the in-
dices in the kinetic term of the
Lagrange-function before substi-
tuting it into the Euler-Lagrange
equation!

∂L
∂q̇i

=
m
2
γab

( ∂q̇a

∂q̇i︸︷︷︸
δai

q̇b + q̇a
∂q̇b

∂q̇i︸︷︷︸
δbi

)
= mẋi (A.21)

Finally, we arrive at Newton’s equation of motion mq̈i = −∂iΦ by differentiation with
respect to t. One might not always have such a convenient separation into a term
involving only q̇i and only qi , for instance, the harmonic oscillator L = q̇2/2 − ω2q2/2
could be rewritten as L = (q̇ +ωq)(q̇ −ωq)/2. In these cases, the time-derivative might

4



a.5. classical universality and mechanical similarity

act on a function ∂L/∂q̇ which is still a function of q, so one needs to write

d
dt

∂L
∂q̇i

= q̈j
∂2L

∂q̇i∂q̇j
+ q̇j

∂2L
∂qj∂q̇i

=
∂L
∂qi

(A.22)

and a solution for q̈j depends on the invertibility of the matrix ∂2L/∂q̇i∂q̇j :

q̈j =
(

∂2L
∂q̇i∂q̇j

)−1 (
∂L
∂qi
− q̇j ∂2L

∂qj∂q̇i

)
(A.23)

and of course for 1-dimensional motion, it would be enough for ∂2L/∂q̇2 to be
nonzero. Typically, ∂2L/∂q̇2 is just the mass or inertia of the system, which is strictly
positive such that the q̈-term can be isolated.

While the Lagrange-formalism seems straightforward as an axiomatic foundation
of classical mechanics, there seem to be many issues: There is no fundamental justifi-
cation for L or S, as they are both not measurably quantities. S is only determined up
to an affine transform, and so must be L. At least for motion in a vector space, there
is no advantage of using Lagrangian mechanics over the Newton equation of motion,
and one might wonder what the relation between Hamilton’s principle for the motion
of objects and Fermat’s principle for the propagation of light might be.

A.5 Classical universality and mechanical similarity

The Lagrange-function L is invariant under affine transformations,

L → aL + b (A.24)

with two constants a and b, which is no more than a novelty: Clearly, both constants
drop out of the Euler-Lagrange equation

d
dt

∂L
∂q̇
− ∂L

∂q
= 0 (A.25)

b, because it gets lots in the differentiation and a because both differentiations are
linear, so it appears as an irrelevant overall prefactor. But there is a way in which
this affine invariance of the Lagrange-function can be used in a sensible way: If one
rescales the coordinates q → αq and the time parameter t → βt, the kinetic energy
T scales T→ (α/β)2T and the potential energy Φ → αnΦ for a scale-free power-law
potential Φ ∝ qn. Because the scaling of T and Φ are inherently different, one needs Please keep in mind that in clas-

sical mechanics the time is just a
parameter to describe motion!

to assume a relation between them, such that the Lagrange-function L = T − Φ just
changes by an (irrelevant) overall factor:

α2

β2 ∝ α
n or, equivalently, β2 ∝ α2−n (A.26)

This scaling can be read off from Newton’s equation of motion as well (surely it is
consistent with the Lagrange-function L = T − Φ):

q̈ = −∂Φ
∂q
→ α

β2 q̈ = −α
n

α

∂Φ
∂q

implying β2 ∝ α2−n (A.27)

5



a. motion

for the specific form Φ ∝ qn. Therefore, the length and time scales need to be in
that particular relation given by the similarity condition β2 = α2−n, which we can
specifically try out for the most common scale-free potentials:

1. Φ ∝ q2, n = 2: harmonic oscillator

In the case of the harmonic oscillator, similarity implies t2 = const, which
indicates that the time scale of e.g. a pendulum is independent of amplitude.

2. Φ ∝ q, n = 1: inclined plane with a constant slope

Here, time and length scale are related by t2 ∝ q, typical for uniformly acceler-
ated motion.

3. Φ ≃ const, n = 0: flat potential

A flat potential is characterised by t2 ∝ q2, or equivalently, inertial motion at
constant velocity, as no acceleration takes place

4. Φ ∝ 1/q, n = −1: Coulomb-potential

In a Coulomb-potential, Kepler’s third law is valid, as t2 ∝ q3.

These four examples illustrate the principle of mechanical similarity where we can say
something profound about motion without performing the variation or solving the
actual equation of motion. For instance, we found out that all planetary orbits are
scaled version of each other as every orbit needs to fulfil Kepler’s law. To formulate
this in a very extreme way, for determining the distances of the planets to the Sun
one just needs a calendar.

A cute example of mechanical similarity is the motion of astronauts on the surface
of the Moon, at a fraction of Earth’s gravity: There, everything seems to be happening
in slow motion, because accelerations are much lower. Speeding up a movie of
astronauts would make everything appear normal again. You might as well have
the association that the motion of the astronauts looks as if they were under water:
That’s sensible, too, because buoyancy reduces the effective gravitational acceleration,
leading to the same effect of longer time constants.

A.6 Total derivatives in the Lagrange-function

The Lagrange-function is only determined up to a total derivative dM(qi , t)/dt of a
function M(qi , t) which may depend on the coordinates qi and on the time parameter
t, but not on the velocities q̇i . In fact, transforming the Lagrange-function

L(qi , q̇i)→ L(qi , q̇i) +
d
dt

M(qi , t) (A.28)

implies a transformation of the action

S =
∫

dt L(qi , q̇i)→ S +
∫

dt
d
dt

M(qi , t) (A.29)

but Hamilton’s principle δS = 0 invalidates the new term: Writing the variation with
a Euler-Lagrange-operator acting on M

6



a.7. virial theorem

δS = δ

∫
dt L +

d
dt

M = δ

∫
dt L +

∫
dt

[
d
dt

∂
∂q̇
− ∂
∂q

]
dM
dt

(A.30)

lets us treat each term separately. For the second term, there is

∂
∂q

dM
dt

=
∂
∂q

(
q̇
∂M
∂q

+
∂M
∂t

)
=

∂q̇

∂q
∂M
∂q

+ q̇
∂2M
∂q2 +

∂2M
∂q∂t

(A.31)

because M depends on q and t, but not on q̇. For the first term, we get

∂
∂q̇

dM
dt

=
∂
∂q̇

(
q̇
∂M
∂q

+
∂M
∂t

)
=

∂q̇

∂q̇
∂M
∂q

=
∂M
∂q

(A.32)

because ∂q̇/∂q̇ = 1. A successive time derivative yields then

d
dt

∂
∂q̇

dM
dt

= q̇
∂2M
∂q2 +

∂2M
∂q∂t

(A.33)

so that all additional terms cancel, because

∂q̇

∂q
=

∂
∂q

∂q

∂t
=

∂
∂t

∂q

∂q
=

∂
∂t

1 = 0 (A.34)

where we’ve use the interchangeability of the second partial derivatives.
Alternatively, one can argue that adding the total derivative changes the action

according to

S→ S +

tf∫
ti

dt
dM
dt

= S + M(q(tf ), tf ) −M(q(ti), ti) (A.35)

The variation δq vanishes at the endpoints ti and tf by construction, this however
does not constrain the value of δq̇(t) at the endpoints. Because M(q, t) is only a
function of q and not of q̇ we can be sure that δM vanishes for both δq(ti) and δq(tf ),
cancelling the boundary term.

A.7 Virial theorem

Lagrangian systems are energy-conserving if L does not depend direclty on time t.
This can be seen explicitly in Newton’s equation of motion

mq̈ = − ∂
∂q
Φ (A.36)

if multiplied with q̇:

mq̇q̈ = m
d
dt

q̇2

2
= −q̇ ∂

∂q
Φ = − d

dt
Φ → d

dt

(m
2
q̇2 + Φ

)
= 0 (A.37)

with the energy E = mq̇2/2 + Φ, because Φ depends on t only through the trajectory
q(t), and obviously not explicitly. While the total energy is conserved and while the

7



a. motion

equation of motion constantly changes kinetic into potential energy and back, one
might ask the rather sensible question if the system likes to spend more time in a
state of high kinetic energy or in a state of high potential energy.

The answer to this question is the virial theorem: Multiplying the equation of
motion with q instead of q̇ and averaging over a time interval ∆t gives

0 =
1
∆t

∆t∫
0

dt
(
mqq̈ + q

∂Φ
∂q

)
=

1
∆t

mqq̇|∆t0 −
1
∆t

∆t∫
0

dt
(
mq̇2 − q∂Φ

∂q

)
(A.38)

after an integration by parts of the first term. The term mqq̇ gets evaluated at 0 and
∆t and can be estimated to be less than the maximum coordinate qmax times the
maximum velocity q̇max over the time interval from 0 to ∆t, if the motion is bounded:

1
∆t

mqq̇|∆t0 ≤
1
∆t

mqmaxq̇max → 0 as ∆t →∞ (A.39)

and vanishes then if the average is taken over arbitrarily large time intervals. The
term

1
∆t

∆t∫
0

dt mq̇2 = 2⟨T⟩ (A.40)

becomes twice the average kinetic energy, and for proceeding with the potential term,
we need to make an assumption about its functional shape: If it is a homogeneous
function of order k, Φ ∝ qk , we get

1
∆t

∆t∫
0

dt q
∂Φ
∂q

=
1
∆t

∆t∫
0

dt kΦ = k⟨Φ⟩ (A.41)

because q∂qΦ = q∂qq
k = kqqk−1 = kqk = kΦ. Therefore, the average energies are

related to each other by the virial law

2⟨T⟩ = k⟨Φ⟩ (A.42)

A prime example for this is the harmonic oscillator, where both T and Φ are homo-
geneous functions of order k = 2 in q̇ and q, respectively, resulting in equal average
kinetic and potential energies.

It is perhaps a bit more transparent to derive the virial law from the Euler-
Lagrange-equation as the equivalent equation of motion directly. Multiplying with
the coordinate q and averaging gives

0 =
1
∆t

∆t∫
0

dt q
(

d
dt

∂L
∂q̇
− ∂L

∂q

)
=

1
∆t

q
∂L
∂q̇
|∆t0 −

1
∆t

∆t∫
0

dt
(
q̇
∂L
∂q̇

+ q
∂L
∂q

)
(A.43)

which we solve by an integration by parts in the first term. The derivative ∂L/∂q̇ is
the canonical momentum p and we can invoke the same argument about bounded
systems,
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a.8. galilei-invariance of classical systems

1
∆t

mqp|∆t0 ≤
1
∆t

mqmaxpmax → 0 as ∆t → 0 (A.44)

now in phase space, so that the two remaining averages determine the virial law:
Typically, the Lagrange-function is a homogeneous function of order 2 in q̇,

1
∆t

∆t∫
0

dt q̇
∂L
∂q̇

=
1
∆t

∆t∫
0

dt q̇
∂T
∂q̇

= 2⟨T⟩ (A.45)

and in the case of power laws a homogeneous function of order k in q with an
additional minus-sign.

1
∆t

∆t∫
0

dt q
∂L
∂q

= − 1
∆t

∆t∫
0

dt q
∂Φ
∂q

= −k⟨Φ⟩ (A.46)

and the virial law is established:

2⟨T⟩ = k⟨Φ⟩ (A.47)

An illustrative example might be to choose a rather high value of k: Then, the
potential is essentially a box with a flat bottom and high walls, in which the particle
zooms from left to right and back in a state of high kinetic energy essentially all
the time, and spends little time climbing up the walls and changing its direction
of motion. For high k, ⟨T⟩ is much higher than ⟨Φ⟩. The second example is the
impossibility of a gravitationally bound ball of photons: There, the kinetic energy is a
homogeneous function of order k = 1 as energy depends linearly on momentum, and
for the gravitational potential Φ ∝ 1/q we have k = −1 as the degree, so the virial law
becomes: ⟨T⟩ = −⟨Φ⟩, and the total energy E = ⟨T⟩ + ⟨Φ⟩ = 0, but it would need to be
negative for a bound system. Lastly, a peculiar case is a harmonic oscillator with k = 2:
Then, the average kinetic and potential energies are exactly equal, ⟨ẋ2⟩ = ω2⟨x2⟩.

A.8 Galilei-invariance of classical systems

Classical mechanics uses Galilean relativity, meaning that the equation of motions are
identical in every Galilei-frame, which in turn is defined as the class of frames moving
at constant relative velocities where inertial forces are absent. Mathematically they
are defined as the coordinate transformations q→ q + υt with a constant velocity υ,
such that q̇→ q̇ + υ and q̈→ q̈, leaving the Newtonian equation of motion unchained.

On the level of the Lagrange-function there is a change,

L =
m
2
q̇2 → m

2
(q̇ + υ)2 =

m
2

(
q̇2 + 2q̇υ + υ2

)
=

m
2
q̇2 +

d
dt

(
mqυ +

m
2
υ2t

)
(A.48)

where the additional terms can be absorbed into a the time derivative of a function
M(q, t) which depends on the coordinate q and t (please keep in mind that υ is
constant!), but not on q̇ directly, so the action S =

∫
dt L is effectively unchanged.

While this looks very convincing there is something fundamental that is being
overlooked in Galilean, non-relativistic mechanics. In the process of varying the
action, one transitions from an invariant, scalar Lagrange-function to a covariant
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a. motion

vectorial or tensorial equation of motion with consistent transformation properties.
For instance, the Lagrange-function

L =
1
2
γij ẋ

i ẋj − Φ(xi) (A.49)

is rotationally invariant, clearly because of the scalar product γij ẋi ẋj involving the
Euclidean metric γij , but also because of the scalar potential Φ, which doesn’t have
any internal degrees of freedom that would be affected by a rotation. After variation,
the equation of motion

mẍi = −∂iΦ (A.50)

puts a linear form ẍi into relation with the gradient ∂iΦ, again written as a linear
form, so that the entire formula transforms consistently. Clearly, one could use
the inverse Euclidean metric γij to write it in vector form, mẍi = −∂iΦ, with ẍi =
γij ẍj and ∂iΦ = γij∂jΦ. This property of the variational principles is known as the
invariance-covariance principle: You always obtain a covariant equation of motion
(or field equation) from an invariant Lagrange-function (or density).

The curiosity is now that actually boosts and rotations form a common group, the
proper Lorentz-group, so classical mechanics based on Galilean relativity instead
of Lorentzian relativity needs to realise the invariance-covariance principle differ-
ently: Time is universal and identical in all frames, and excluded from coordinate
transforms. This enables the invariance of the accelerations q̈ in all frames instead of
dealing with a construction a covariant equation of motion.

A.9 Alternatives to the Lagrange-function

The Lagrange-function L = T(q̇i) − Φ(qi) is defined axiomatically in classical mechan-
ics in order to make it consistent with the Newtonian equation of motion. You might
want to ask if one could have other terms in the Lagrange-function that would be com-
patible with a linear, second order equation of motion. As the order of the powers of
qi and q̇i decreases by one through the differentiation in the Euler-Lagrange-equation,
there should be at most squares in the Lagrange-function. Higher-order derivatives
like q̈i are excluded by the Ostrogradsky-instability (we will come to that!). Therefore,
one could imagine a Lagrange-function

L = γij q̇
i q̇j − γijqi q̈j − Φ + λiq

i + µi q̇
i + αijq

iqj + βijq
i q̇j + ϵ + . . . (A.51)

and possibly many more terms. But actually, one is quite restricted: −γijqi q̈j is just
γij q̇

i q̇j after an integration by parts, λiqi , αijqiqj and ϵ are particular potentials, and
βijq

i q̇j as well as µi q̇i would vanish: After all, they are just total time derivatives of
the functions βijqiqj and µiqi which just depend on time and position.

It is very interesting to see that any reformulation of the Lagrange-function that
can be achieved by integration by parts gives rise to exactly the same equation of
motion: That is the case because L only ever appears in the action integral S =

∫
dt L

with a fixed boundary. But for dealing with a term like γijqi q̈j of second order we need
a generalisation of the Euler-Lagrange-equation: Performing a variation to second
order yields:

10



a.10. beltrami-identity and the conservation of energy

δS =
∫

dt
(
∂L
∂q
δq +

∂L
∂q̇
δq̇ +

∂L
∂q̈
δq̈

)
=

∫
dt

(
∂L
∂q
− d

dt
∂L
∂q̇

+
d2

dt2
∂L
∂q̈

)
δq = 0 (A.52)

with a single integration by parts for the second, and a double integration by parts
in the third term. Then, Hamilton’s principle defines the generalisation of the Euler-
Lagrange-equation to higher orders:

∂L
∂q
− d

dt
∂L
∂q̇

+
d2

dt2
∂L
∂q̈

= 0 (A.53)

A.10 Beltrami-identity and the conservation of energy

The conservation of energy in classical mechanics is realised very differently compared
to other conservation laws: In those, one can identify cyclic variables q defined by the
condition ∂L/∂q = 0, so that the Euler-Lagrange-equation makes sure that

d
dt

∂L
∂q̇

= 0 and consequently, the canoncial momentum p =
∂L
∂q̇

(A.54)

is conserved, dp/dt = 0. Time, however, is not a coordinate in classical mechanics,
so the definition of energy as the canoncial momentum ∂L/∂ṫ is impossible, it is
completely unclear what ṫ should actually be if not 1.

Instead, one needs the Beltrami-identity: By constructing

d
dt

(
L − q̇ ∂L

∂q̇

)
= q̇

∂L
∂q

+ q̈
∂L
∂q̇
− q̈ ∂L

∂q̇
− q̇ d

dt
∂L
∂q̇

= q̇

(
∂L
∂q
− d

dt
∂L
∂q̇

)
= 0 (A.55)

because the Euler-Lagrange-equation sets the brackets to zero. Hence, there is a
conserved quantity H = q̇p − L, referred to as the Hamilton-function H, which
depends on the canonical momentum p and the coordinate q. This definition already
suggests that H(p, q) is the Legendre-transform of L(q, q̇).

Let’s investigate Ostrogradsky’s idea that things become unstable if higher deriva-
tives of q are included and write L = L(q, q̇, q̈, ˙̇q̇), such that

d
dt

(
L − q̇ ∂L

∂q̇

)
= q̇

∂L
∂q

+ q̈
∂L
∂q̇

+˙̇q̇
∂L
∂q̈

+. . .− q̈ ∂L
∂q̇
− q̇ d

dt
∂L
∂q̇

= q̇

(
∂L
∂q
− d

dt
∂L
∂q̇

)
+˙̇q̇

∂L
∂q̈

+. . . =

(A.56)

and subsituting the general Euler-Lagrange-equation one obtains

d
dt

(
L − q̇ ∂L

∂q̇

)
= q̇

(
− d2

dt2
∂L
∂q̈

+
d3

dt3
∂L
∂˙̇q̇

+ . . .

)
+ ˙̇q̇

∂L
∂q̈

+ . . . , 0 (A.57)

which would never work out to be zero.
The Hamilton-function H takes on a nice, directly interpretable form for the

standard Lagrange-function L = m/2 q̇2 − Φ(q): The canonical momentum is p =
∂L/∂q̇ = mq̇ and therefore, q̇ = p/m, yielding

H(p, q) = pq̇ − L(q, q̇(p)) =
p2

m
−

p2

2m
+ Φ(q) =

p2

2m
+ Φ(q) (A.58)
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Then, dH/dt = 0 and H is conserved.

A.11 Convexity of the Lagrange-function

The variational principle relies heavily on the fact that the Lagrange-function L is a
convex function in q̇, and that the action S is a convex functional. Only then, there
is a uniquely defined extremum and δS = 0 defines the actual equation of motion.
Imagine if Hamilton’s principle had multiple solutions for δS = 0! One would clearly
end up in an impossible situation where multiple equations of motion would try to
determine the evolution of a system.

Furthermore, the Hamilton-function is determined as the Legendre-transform
of the Lagrange-function. For that to be feasible one needs the Lagrange function
to be convex in q̇: The canonical momentum p = ∂L/∂q̇ is needed for replacing q̇
with p, and therefore the relation p(q̇) needs to be invertible to give q̇(p). Invertibility
is given if p = ∂L/∂q̇ is monotonically increasing and this is true if L is a convex
function in q̇. Then, H becomes a convex function in p, too, and the inverse Legendre-
transform back to L is well-defined. Convexity (or concavity, any overall sign in L
is undetermined because of affine invariance L → aL + b with a = −1 and b = 0) is
surely given for a standard form L ∝ q̇2, but is there a more fundamental reason for
it? The answer to this profound question is relativity:

A.12 Lorentz- and Galilei-relativity

Lagrange-mechanics is really a bit of physics that was discovered 100 years too
early, as many aspect don’t make much sense without relativity: L = T − V is not
measurable and ad-hoc to result in Newton’s equation of motion, and the covariance
under Galilei-transforms and rotations is realised in very different ways. So, let’s
approach Lagrange-mechanics through relativity!

In the absence of potentials or curvature, spacetime should be homogeneous as no
point or instance in time should play a particular role, and this homogeneity should
be reflected in the transformation between different coordinate frames. An observer
looking at two coordinate choices could measure the rate at which the coordinates xµ

and x′µ containing the collection of spatial coordinates xi and time t are drifting by
as a function of her or his proper time τ, defining the velocity as the rate of change of
the coordinates

dxµ

dτ
= const. , and identically in S′ :

dx′µ

dτ
= const. (A.59)

which is constant for inertial motion and suitably chosen coordinates, and the
corresponding acceleration

d2xµ

dτ2 = 0, and identically in S′ :
d2x′µ

dτ2 = 0 (A.60)

then vanishes in both systems. The relation between the two velocities and accelera-
tions is given by

dx′µ

dτ
=

∂x′µ

∂xν
dxν

dτ
(A.61)

d2xµ

dτ2 =
∂x′µ

∂xν
d2xν

dτ2 +
∂2x′µ

∂xν∂xρ
dxν

dτ
dxρ

dτ
. (A.62)
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a.12. lorentz- and galilei-relativity

If the gradient of the Jacobian of the coordinate change vanishes,

∂2x′µ

∂xν∂xρ
= 0 (A.63)

vanishing accelerations in one frame imply vanishing accelerations in the other. Then,
the rate of change of the coordinate passage dxµ/dτ is constant, and the transitions
respects homogeneity. The solution for x′µ(xν) is consequently given by a linear, affine
relation,

x′µ = Aµ
ν x

ν + aµ. (A.64)

with two sets of integration constants Aµ
ν and aµ.

Let’s construct this transform from the most general transition between two
frames, where we align for simplicity the coordinate axes with the direction of
relative motion, taken to be the x-axis. There is an event with coordinates xµ in S
and x′µ in S′ , and the two frames move with a relative (constant) velocity υ. A linear,
affine transform would then be the only one to respect the homogeneity of spacetime
(nonlinear transforms would always single out certain spacetime points), so we make
the ansatz:

x′ = ax + bt, but x = υt must imply x′ = 0 (A.65)

x′ = 0 = aυt + bt = (aυ + b) t ⇒ b = −aυ, and: (A.66)

x′ = a(x − υt) (A.67)

Reversing the roles of S and S′ implies that

x = ax′ + bt′ but x′ = −υt must imply x = 0 (A.68)

x = 0 = −aυt′ + bt′ = (−aυ + b) t′ ⇒ b = +aυ, and: (A.69)

x = a(x′ + υt′) (A.70)

But this relation between x and x′ is not yet fixed without an additional assumption
that determines the value of a. Here, Nature would have in fact a choice! Either, Nature
could work with a universal time coordinate (or rather, a parameter, as it does not
participate in transforms unlike the other coordinates). A universal time parameter
would require that t = t′ , which is the defining property of Galilei-transforms. Then,

x = a(x′ + υt) = a(a(x − υt) + υt) = a2x + (1 − a) υt = x (A.71)

which can only be realised if a = 1. Nature chose instead, for very good reasons, the
speed of light to be equal in all frames, c = c′, which requires Lorentz- instead of
Galilei-transforms between frames. In this choice,

x′ = ct′ = a(ct − υt) (A.72)

x = ct = a(ct′ − υt′) (A.73)

and consequently
c2tt′ = a2(c − υ)(c + υ) · tt′ , (A.74)
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where the third equation was obtained by multiplying the first two. Dividing by tt′

and solving for a yields the Lorentz-factor γ,

a = γ =
1√

1 − β2
, with β =

υ

c
(A.75)

We should note that Lorentz-transformations, due to their linearity, do not ’mix’ the
spatial coordinates. The Lorentz-factor γ diverges at β = 1 and would indeed become
imaginary for values β > 1. Taylor-expanding γ for small velocities β gives the result
that

γ ∼ 1 +
∂2γ

∂β2

∣∣∣∣∣
β=0
·
β2

2
= 1 +

β2

2
, with

∂γ

∂β

∣∣∣∣∣
β=0

= 1 (A.76)

which is perfectly consistent with the fact that for low velocities β≪ 1 and γ ≃ 1,
Lorentz- and Galilei-transforms are indistinguishable. Writing ct and arranging the

temporal and spatial coordinates into a vector xµ =
(
ct
x

)
allows to use the standard

matrix-form of the Lorentz-transformation:

x′ = γ (x − υt) = γ (x − βct) (A.77)

ct′ = γ (ct − βx), (A.78)

so that one arrives at (
ct′

x′

)
=

(
γ −βγ
−βγ γ

) (
ct
x

)
(A.79)

encapsulating the Lorentz-transform in a matrix Λµν, with x′µ = Λ
µ
νxν. Therefore,

there are only two possible linear transformations, where Nature chooses to conserve
the speed c, and we will see how this is related to the causal structure of spacetime
and the hyperbolic evolution of field equations.

Just as rotations leave Euclidean scalar products r2 = γijx
ixj invariant, quadratic

forms s2 = ηµνx
µxν formed with the Minkowski-metric ηµν are untouched by Lorentz-

transforms, as one can see by direct computation:

s′2 = (ct′)2 − x′2 = γ2
[
(ct)2 − 2ctβx + β2x2 − x2 + 2xβct − β2(ct)2

]
=

γ2(1 − β2)︸      ︷︷      ︸
1

(
(ct)2 − x2

)
= s2 (A.80)

With this realisation, one can define an orthogonality relation:

s′2 = ηµνx
′µx′ν = ηµνΛ

µ
αΛ

ν
βx
αxβ = ηαβx

αxβ = s2 (A.81)

and therefore
ηµνΛ

µ
αΛ

ν
β = ηαβ (A.82)

as an orthogonality relation for Λµα. The physical interpretation of the invariant s
is the proper time τ displayed on a comoving clock, i.e. a clock inside the local rest
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frame, where x = 0 constantly,

s2 = ηµνx
µxν = (ct)2 − x2 = c2τ2 (A.83)

Differentially, this implies

ds2 = ηµνdx
µdxν = c2dτ2 = c2dt2 − γijdxidxj (A.84)

and therefore

dτ =

√
1 − γij

1
c

dxi

dt
1
c

dxj

dt
dt =

√
1 − β2dt =

dt
γ

(A.85)

with β2 = γijυ
iυj /c2. As γ ≥ 1 always, dτ < dt and one observes a relativistic dilation

of proper time relative to the coordinate time. ±1/γ = ±
√

1 − β2 is in fact a semi-circle,
so it’s a perfectly convex (concave for the other sign choice) function, and would make
an excellent candidate for the Lagrange-function. Additionally, its Taylor-expansion

1
γ

= 1 −
β2

2
± . . . (A.86)

at low velocities β≪ 1 gives a term that is reminiscent of the classical kinetic energy!

A.13 Rapidity

Lorentz-boosts form a group as their combination always gives a boost, but clearly
the velocity is not additive, which can be verified by direct combination of two boosts:
The sum of the velocities β always needs to stay below 1. One might wonder then
whether there is an additive parameter for the Lorentz-transforms which replaces the
velocity β. From the range of values of the terms in the Lorentz-transform Λ

µ
α, where

0 ≤ βγ < ∞ (for positive β with a sign change for negative β!) and 1 ≤ γ < ∞ on could
think of a parameterisation coshψ = γ and sinhψ = βγ, such that

tanhψ = β → ψ = artanhβ (A.87)

with the rapidity ψ replacing the physical velocity β. Then, the Lorentz-transform
can be written as a hyperbolic rotation,

Λ
µ
α =

(
coshψ sinhψ
sinhψ coshψ

)
(A.88)

where the Lorentz-invariance of s2 = ηµνx
µxν is then re-expressed as the property

cosh2 ψ − sinh2 ψ = γ2 − (βγ)2 = γ2(1 − β2) = 1 of the hyperbolic functions. Two
successive boosts in this representation then shows that rapidity is additive as a
parameter, which we’ll elaborate in the chapter about Lie-groups. For the time being,
we use the addition theorem of the hyperbolic tangent to get

βφ+ψ = tanh(φ+ ψ) =
tanhφ+ tanhψ

1 + tanhφ tanhψ
=
βφ + βψ

1 + βφβψ
(A.89)
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a. motion

which falls back onto βφ + βψ for small β ≪ 1, where the hyperbolic tangent, at
the same time, is approximated well by its argument, β = tanhψ ≃ ψ. As tanhψ is
bounded by 1 even as ψ→∞, successive boosts do not exceed β = 1 or υ = c.

A.14 Proper time and the relativistic Lagrange-function

The rate of change of coordinates dxµ can be measured in units of proper time dτ,
leading to the definition of 4-velocity,

xµ =
(
ct
xi

)
implies that uµ =

dxµ

dτ
=

dt
dτ

dxµ

dt
= γ

(
c
υi

)
(A.90)

with γ = dt/dτ and υi = dxi /dt. If the proper time τ is used to parameterise the
trajectory xµ(τ) in this way, the tangent vector uµ = dxµ/dτ is normalised to c,

ηµνu
µuν = γ2(c2 − υ2) = c2γ2(1 − β2) = c2 (A.91)

which is true even for a particle at rest: There, only ut = c is nonzero, υi = 0 and
ηµνu

µuν = c2, effectively, the particle drifts along the ct-axis at velocity c. Motivated
by the idea that 1/γ could be a good candidate for the relativistic Lagrange-function,
we could imagine that the arc-length S =

∫
ds = cτ through spacetime of a trajectory

xµ(τ) could be extremised, as a very intuitive concept:

S = −mc

∫
ds = −mc2

∫
dτ = −mc2

∫
dt

√
1 − β2 = −mc2

∫
dt
γ
, (A.92)

therefore L = −mc2/γ, with the nonrelativistic limit −mc2(1 − β2), i.e. up to an affine
transform the actual kinetic energy mυ2/2.

A.15 Geometric view on motion

If the relativistic arc-length through spacetime as a candidate for the Lagrange-
function were true, force-free motion should proceed along a straight line, as a
reflection of the law of inertia: Technically, we replace the variation of the abstract
classical action by the much more concrete variation of an arc through spacetime and
monitor how the length S =

∫
ds would change under a variation,

δS = −mc2 δ

∫
dτ = −mc2

∫
ηµν

2dτ
[dxµδdxν + δdxµdxν] =

−mc2
∫
ηµν

dxµ

dτ
δdxν︸︷︷︸
=dδxµ

= mc2
∫

dτ ηµν
d2xµ

dτ2 δx
ν (A.93)

starting from

ds2 = c2dτ2 = ηµνdx
µdxν → cdτ =

√
ηµνdxµdxν (A.94)

using that the Minkowski-metric is symmetric, ηµν = ηνµ and finally that the differ-
ential can be expanded as
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d
dxµ

dτ
=

d
dτ

dxµ

dτ
dτ =

d2xµ

dτ2 dτ (A.95)

after reshuffling the differentiations by an integration by parts. Hamilton’s principle
δS = 0 therefore implies that

d2xµ

dτ2 = 0 → xµ(τ) = aµτ + bµ (A.96)

i.e. a straight line through spacetime, with two integration constants aµ and bµ. These
trajectories result from minimising the arc-length, which is a convex functional and
bounded by S = 0 on the light cone. Affine invariance of the arc-length just means
that you’re free to measure it as proper time with any unit and from any zero-point.

With the law of inertia explained, could the formalism be adopted to (gravi-
tational) potentials? There, we would indeed expect accelerations d2xµ/dτ2 as a
consequence of gradients in Φ. General relativity is really much beyond the scope of
the tooltips-lecture but let’s try this idea out with a weakly perturbed Minkowskian
spacetime. There, the line element is given by

ds2 = gµνdx
µdxν =

(
1 + 2

Φ

c2

)
c2dt2 −

(
1 − 2

Φ

c2

)
γijdx

idxj (A.97)

with the metric gµν instead of the Minkowski-metric ηµν, and a weak gravitational
potential Φ with |Φ| ≪ c2 (Already at this point you can see that without a speed
of light we could not say whether the potential is weak or strong!) on top of a
Minkowski-vector space (I’m a bit adamant here, because just from gµν , ηµν you
can not infer the existence of gravitational potentials if there is full freedom in
choosing the coordinates.) The first thing we should check if there is an influence
of the gravitational potential on the passage of time: After all, proper time should
differ from coordinate time which is first of all caused by special relativistic time
dilation due to motion. For a stationary object dxi = 0 because there is no change in
coordinate, and we get

dτ =

√
1 + 2

Φ

c2 dt ≃
(
1 +

Φ

c2

)
dt =

(
1 − GM

c2r

)
dt (A.98)

by substitution of a Newtonian potential Φ = −GM/r, where 2GM/c2 = rS defines the
Schwarzschild-radius: It seems to be the case that G/c2 ≃ 10−28m/kg assigns a length-
scale to a mass, and for an object like the Sun with M = 1030kg the Schwarzschild-
radius comes out with a few hundred meters. As dτ ≤ dt, we observe a gravitational
time dilation of proper time relative to coordinate time, and Φ seems to have an
influence on the relativistic arc-length just as velocity would. Repeating the above

derivation with ds = cdτ =
√
gµνdxµdxν shows

S = −mc2
∫

dτ = −mc

∫
dt

√
gµν

dxµ

dt
dxν

dt
= −mc

∫
dt

√(
1 + 2

Φ

c2

)
c2 −

(
1 − 2

Φ

c2

)
υ2

(A.99)

Ignoring Φυ as a higher-order term then yields after approximating
√

1 + x = 1 + x/2
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S = −mc2
∫

dt

√
1 + 2

Φ

c2 −
υ2

c2 ≃
∫

dt
(
mυ2

2
−mΦ −mc2

)
(A.100)

i.e. the classical Lagrange-function L = T − Φ with the rest mass as an additional
term, which is irrelevant due to affine invariance of L. Weirdly enough, motion in
classical mechanics proceeds, in the aim to minimise S, in a way that time dilation is
extremised, by being far down in gravitational potentials or by being fast.

A.16 Relativistic energy and momentum

We have seen in the last chapter that the Lagrange-function is much more a statement
of causal motion in spacetime and has little to do with energies: Those appear after
Legendre-transform, which is always well defined because the Lagrange function
is a convex functional in ẋ - this is, incidentally, the same reason why the variation
yields a unique result and finds a unique extremum. It is important to realise that
the conservation of the various canonical momenta are ensured by cyclic coordinates,
but that energy conservation is a consequence of the Beltrami-identity.

The Legendre-transform of the relativistic Lagrange-function should provide a
relativistic dispersion relation, i.e. a relation between energy and momentum. The
canonical momentum p is derived from the Lagrange-function L = −1/γ = −

√
c2 − ẋ2,

p =
∂L
∂ẋ

=
ẋ

√
c2 − ẋ2

(A.101)

where this relation can be inverted from p(ẋ) to ẋ(p), as a consequence of the convexity
of L, and which is needed for computing the Legendre-transform

H(p, x) = pẋ(p) − L(x, ẋ(p)) (A.102)

With the inversion

p2 =
υ2

c2 − υ2 → p2(c2 − υ2) = υ2 → p2c2 = υ2(1 + p2) → υ =
cp√

1 + p2

(A.103)

with υ = ẋ and consequently

H(p, x) = υ
υ

√
c2 − υ2︸     ︷︷     ︸

p

+
√
c2 − υ2︸    ︷︷    ︸

υ
p

= υp +
υ

p
= υ

(
p +

1
p

)
=

cp√
1 + p2

1 + p2

p
= c

√
1 + p2

(A.104)

Including the rest mass m would yield the relativistic dispersion relation

H =
√

(mc2)2 + (cp)2 (A.105)

which is approximated by H = mc2 + p2/(2m) for p ≪ mc and by H = cp for p ≫ mc.
The Hamilton-function H in turn is again convex and allows an inverse Legendre-
transform to recover L.
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A.17 Causality and light cones

The Lorentz-invariant ds2 = ηµνdxµdxν makes it possible to differentiate between
time-like ds2 > 0, space-like ds2 < 0 and light-like ds2 = 0 separations in spacetime.
Weirdly enough, the causal ordering of events, i.e. a statement of dt > 0 or dt < 0
depends on the chosen frame, and it is always possible to change the sign of dt in
space-like separated events from the point of view of a fast enough moving Lorentz-
frame.

Only inside the light cone, i.e. for all time-like separated events one observes the
same causal order from all Lorentz-frames, which necessarily move at speeds β < 1.
Being located inside the light-cone is certainly true for all massive particles: Their
4-velocities uµ are normalised to ηµνuµuν = c2 > 0, and in fact the light cone is the
convex hull of all possible trajectories of massive particles. Approaching β = 1 has
the Lorentz-factor γ diverge, which is often rewritten as a relativistic mass increase,

pµ = muµ = γm

(
c
υi

)
from uµ =

dxµ

dτ
=

dt
dτ

dxµ

dt
= γ

(
c
υi

)
(A.106)

and therefore, relativistic mass increase is purely a consequence of the dilation of
proper time. Asking whether it would be possible to accelerate a (charged) particle
with electromagnetic forces will be answered negatively: Starting with the Lorentz-
equation

duµ

dτ
=

q

m
Fµνuν (A.107)

with the field-tensor Fµν that contains the electric and magnetic fields. Multiplying
the Lorentz-equation with uµ gives:

uµ
duµ

dτ
=

1
2

d
dτ

(uµu
µ) =

q

m
Fµνuµuν = 0 (A.108)

such that the normalisation of uµ is conserved to be c2 > 0, and uµ remains time-like
and inside the light cone despite being accelerated: The reason is purely geometrical,
as the contraction of the antisymmetric tensor Fµν with the symmetric tensor uµuν is
necessarily zero, making it impossible for uµuµ to change.

At this point, we should start to be careful not to link the Lorentz-geometry to any
particular coordinate choice. When considering light cone coordinates, du = cdt + dx
and dv = cdt − dx the line element is given by

ds2 = ηµν dxµdxν = c2dt2 − dx2 = (cdt + dx)(cdt − dx) = du · dv, (A.109)

and the corresponding Lorentzian metric is represented by the matrix

ηµν =
1
2

(
0 1
1 0

)
(A.110)

in these coordinates. Surely, the geometry is identical and has not been changed by
the new definition of coordinates, and the spectrum of eigenvalues of the new metric
is exactly +1 and −1.
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B waves

B.1 Taxonomy of waves

Waves, i.e. periodic phenomena in x and t are found everywhere in physics and can be
differentiated to be in two categories: classical mechanical waves usually rely on the
elastic properties of a medium which, due to its internal structure, resists deformation
from its equilibrium. The magnitude of the restoring force that the medium provides
drives the wave and allows it to travel.

In mechanical waves where the medium could be a fluid described by some type of
Navier-Stokes equation, any term on the right hand side could be a suitable restoring
force, for instance

∂tυ
i + (υj∂

j )υi = −ρ∂ip︸︷︷︸
sound

− ∂iΦ︸︷︷︸
gravity

+ µ∂j∂
jυi︸   ︷︷   ︸

elastic

+ 2ϵijkΩjυk︸      ︷︷      ︸
Rossby

+ . . . (B.111)

In sound waves, pressure gradients can accelerate the fluid and if the equation
of state provides ∂p/∂ρ > 0, pressure gradients introduce velocities that rarefy the
medium, so that it returns to its equilibrium state. Gravity waves are for instance
large waves on the surface of water (also called Airy-waves) where the weight of
the ”mountain” of water is the restoring force. In elastic waves the restoring force is
derived from the internal structure of the medium, and even the Coriolis-acceleration
can act as a restoring force: This is the case in atmospheric Rossby-waves. Typically,
the magnitude of the restoring force is contrasted with the inertia of the medium, and
the ratio between the two determine the propagation velocity, which then entirely
depends on the material properties of the fluid.

In contrast, relativistic waves are excitations of a field, whose dynamics is de-
scribed with a field equation, and typically these field equation have a particular
mathematical structure allowing for oscillations: Field equations in fundamental
physics are hyperbolic partial differential equations which is a natural consequence
of the spacetime structure. Personally I find it very interesting, that the same wave
equations are found in very different contexts, and that propagation speeds can be
determined by relativity on one side and by the internal structure of a medium on
the other. When thinking about ideas on the lumiferous aether over a hundred years
ago and the measurements of the speed of light that were already available with high
precision at that time, it must have been truly daunting to explain the high value of c
from the low inertia and the high restoring force of the aether, if light was imagined
to be an elastic wave.

B.2 Elastic waves and wave equations

Perhaps the most intuitive example of an elastic mechanical wave is that of a string
with mass per length ρ under tension σ: Already now one would intuitively think that
the ratio between ρ and σ should determine the velocity of elastic waves. In a string
instrument, the ratio between velocity and fixed string length gives the frequency ω
of a sound, and one observes an increase of frequency with higher string tension and
one typically uses thicker strings for lower frequency notes.

The kinetic energy dT for each differential bit of string is given by the velocity
∂y/∂t = ẏ by which the amplitude y changes along the string with coordinate x,
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dT =
ρ

2
ẏ2dx → T =

∫
dT =

ρ

2

∫
dx ẏ2 (B.112)

For the corresponding potential energy dW we need to compute by how much
the amplitudes y(x) change the overall length of the string: dl2 = dx2 + dy2 from
Pythagoras’ theorem gives dl =

√
1 + y′2dx with y′ = dy/dx, and consequently

dW = σ(dl − dx) = σ

(√
1 + y′2 − 1

)
dx ≃ σ

2
y′2dx → W =

∫
dW =

σ

2

∫
dx y′2

(B.113)

Assembling both into a classical Lagrange-function yields

L(ẏ, y′) =
∫

dx
(
ρ

2
ẏ2 − σ

2
y′2

)
(B.114)

from which we get the action S straight away:

S =
∫

dt
∫

dx
(
ρ

2
ẏ2 − σ

2
y′2

)
(B.115)

The Lagrange-function L depends on ẏ as well as on y′ , which Hamilton’s principle
needs to respect. The correct variation of S would then be

δS =
∫

dt
∫

dx
(
∂L
∂y

δy +
∂L
∂ẏ

δẏ +
∂L
∂y′

δy′
)

(B.116)

while the coordinate y is cyclic and the first term does not play a role, the variations
in the second and third term can be rewritten as δẏ = ∂(δy)/∂t and δy′ = ∂(δy)/∂x to
enable integration by parts, with respect to dt in the second and with respect to dx in
the third term:

δS =
∫

dt
∫

dx
(
∂L
∂y
− ∂
∂t

∂L
∂ẏ
− ∂
∂x

∂L
∂y′

)
δy = 0 (B.117)

where we can isolate the Euler-Lagrange-function

∂
∂t

∂L
∂ẏ

+
∂
∂x

∂L
∂y′

=
∂L
∂y

(B.118)

Substitution of eqn. B.114 into eqn. B.118 then gives:

ρÿ − σy′′ = 0 or
(

∂2

∂(ct)2 −
∂2

∂x2

)
y = 0 with c2 =

σ

ρ
(B.119)

where the speed of propagation of the elastic wave is in fact determined by the ratio
of the tension as the restoring force and the inertia of the string. The wave equation
can be solved by separating the temporal and spatial dependence with the ansatz
y(x, t) = φ(x)ψ(t), such that

1
ψ(t)

∂2

∂(ct)2ψ(t) =
1
φ(x)

∂2

∂x2φ(x) = −k2 (B.120)
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after a separation of variables, and because every term depends only on t or on x,
they need to be independently equal to a constant, which we choose to be negative (for
enforcing oscillating solutions). Individually, every term is then solved by a harmonic
oscillation, and substitution then shows that

y(x, t) ∝ exp (±i (kx − ωt)) (B.121)

with the dispersion relation ω = ±ck and the speed of the elastic wave c =
√
σ/ρ. The

sign between kx and ωt follows from requiring whether a plane of constant phase
travels into positive or negative x-direction. Both directions are clearly allowed, as
∂2
ct − ∂2

x = (∂ct − ∂x)(∂ct + ∂x) from the binomial formula.
It is important to realise that an elastic wave is able to transport energy even

without any transport of the medium on which it travels.

B.3 Partial differential equations: hyperbolic vs. elliptic

Wave-equations are typically partial differential equations involving second deriva-
tives, for instance for a scalar field

□φ = ηµν∂
µ∂νφ =

(
∂2
ct − ∆

)
φ = 0 (B.122)

At this point it is well worth to go through the classification of second-order partial
differential equations: Comparing □φ = 0 as a wave equation with ∆φ = 0 as a static
field equation shows that the signs of the derivative operators is (−,+,+,+) in the
first case and (+,+,+) without a change in the second case. This seems to be highly
significant, as one obtains oscillatory solutions in the first, and (decreasing, at least in
3 dimensions or more) power-law solutions in the second case.

Before we go through the classification of partial differential equation, we need to
introduce some slang, borrowed from the theory of conic sections. Please consider a
quadratic form of two coordinates x and y,(

x
y

)t (
a b/2
b/2 c

)
︸          ︷︷          ︸

∆

(
x
y

)
= ax2 + bxy + cy2 = const. (B.123)

Depending on the structure of eigenvalues of the matrix ∆, the quadratic form
describes very different curves: If b = 0 (for simplicity) and a = c = 1 > 0 one obtains
x2 + y2 = const, which can be rewritten in a parametric form by setting x = cos t
and y = sin t such that the quadratic form describes a circle as a consequence of
cos2 t + sin2 t = 1, and if a , c an ellipse. If a = 1 and c = −1, the quadratic form
becomes x2 − y2 = const, i.e hyperbolae with the hyperbolic functions as parametric
forms, using cosh2 t − sinh2 t = 1. More generally, the picture arises that det∆ > 0 for
the elliptical conic section and conversely, det∆ < 0 for the hyperbolic conic section.

Applying this idea to the classification of partial differential equations, we start
with a homogeneous second-order PDE in two variables,

a(x, y)
∂2

∂x2φ(x, y) + b(x, y)
∂2

∂x∂y
φ(x, y) + c(x, y)

∂2

∂y2φ(x, y) = A(x, y)φ(x, y) (B.124)

and assemble the matrix ∆
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∆ =
(

a(x, y) 1
2b(x, y)

1
2b(x, y) c(x, y)

)
(B.125)

The determinant of ∆ then determines, whether the PDE is elliptical det∆ > 0,
parabolic det∆ = 0 or hyperbolic det∆ < 0.

Sticking to 2 dimensions and pairs of variables for simplicity, a PDE like the
Poisson-equation

∆φ =
∂2

∂x2φ(x, y) +
∂2

∂y2φ(x, y) = 0 (B.126)

would be elliptical, as the determinant of ∆ would come out positive: a = c = 1 and
b = 0. Elliptical differential equations have only unique solutions after boundary
conditions are specified, either of the Dirichlet or Neumann-type. Typical solutions
are decreasing (at least in 3 dimensions or higher) with increasing coordinates and
parity invariant, as (x, y)→ (−x,−y) does not change anything. On the other hand, a
wave-equation exhibits a sign change,

□φ(t, x) =
∂2

∂(ct)2φ(t, x) − ∂2

∂x2φ(t, x) = 0 (B.127)

with a = 1, c = −1 and b = 0 in these coordinates and would be hyperbolic as
det∆ < 0. In this case, it is enough to specify initial conditions and the PDE evolves
them in a well-defined and unique way into the future. There is clearly the notion of
a light-cone and it is actually the case that the metric structure of spacetime with the
Minkowski-metric is uniquely suited for hyperbolic PDEs: It is even the fact, that the
Lorentzian spacetime as a metric spacetime that allows for hyperbolic evolution is
unique! Switching to light-cone coordinates ∂ct + ∂x = ∂u and ∂ct − ∂x = ∂v brings
the wave equation into the form

□φ(u, v) =
∂2

∂u∂v
φ(u, v) = 0 (B.128)

this time with a = c = 0 and b = 1, but the determinant det∆ < 0 nonetheless:
The wave equation is hyperbolic in light cone coordinates just as well. In the wave
equation there is parity invariance and time-reversal invariance. Perhaps it’s a very
good exercise to go through all iconic PDEs in theoretical physics and classify them
as elliptical, parabolic or hyperbolic partial differential equations.

B.4 Relativistic waves and hyperbolicity

The dynamics of relativistic fields is described by hyperbolic PDE with their clear
notion of a light cone and their time evolution from any field-configuration specified
as initial conditions. As an example, we can substitute Fµν = ∂µAν − ∂νAµ into the
Maxwell-equation,

∂µFµν =
4π
c

ȷν → ∂µ∂
µAν − ∂ν ∂µAµ︸︷︷︸

=0

= □Aν =
4π
c
ȷν (B.129)
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which becomes clearly a hyperbolic wave equation. But the Lorenz-gauge ∂µAµ = 0
is not required for hyperbolicity, in fact, even without any gauge fixing it would
be hyperbolic. As a linear PDE this is most conveniently solved by constructing a
Green-function including retardation as the potential for a point charge.

There is a similar wave equation for the field tensor itself: Starting at the Bianchi-
identity,

∂λFµν + ∂µFνλ + ∂νFλµ = 0 (B.130)

which can immediately be verified by substituting Fµν = ∂µAν − ∂νAµ, one can have
∂λ act on it,

∂λ∂
λ︸︷︷︸

□

Fµν − ∂µ ∂λFλν︸︷︷︸
4π
c ȷν

+∂ν ∂λFλµ︸︷︷︸
4π
c ȷµ

= 0 (B.131)

and arrive at a wave equation with a nicely antisymmetrised source term,

□Fµν =
4π
c

(∂µȷν − ∂νȷµ) (B.132)

The vacuum solutions are □Aµ = 0 as well as □Fµν = 0 are archetypically hyper-
bolic and solved by plane waves exp(±iηµνkµxν), provided that the wave vector kµ is
light-like, ηµνkµkν = 0, which has important consequences: Writing kµ = (ω/c, ki)t

shows that
ω = ±k (B.133)

from the null-condition ηµνk
µkν = (ω/c)2 − k2 = 0, such that there can not be any

dispersion:

υphase =
dω
dk

= c =
ω

k
= υgroup (B.134)

as group and phase velocity are identical, and consistent with υphase × υgroup =
ω/k × dω/dk = dω2/dk2 = c2 for a massless particle: ω2 = c2k2, and (ω/c)2 − k2 = 0.
At the same time, it is universally true that relativistic waves are always transverse:
The field equation requires ∂µFµν = 0 in vacuum, so that kµFµν = 0 and kiEi = 0 is
always given, and the electric fields are perpendicular to the direction of propagation.
Transversality of the magnetic fields is most easily seen with the dual field tensor
F̃µν = ϵµναβFαβ/2, for which ∂µFµν = 0 is true: Then, kµF̃µν = 0 from which one obtains
kiBi = 0.

The analogous statement on the vector potential Aµ, however, depends on the
gauge: Lorenz-gauge ∂µAµ = 0 implies kµAµ = 0 for a plane wave, so that kiAi =
ωAt/c , 0, but Coulomb-gauge rather makes sure that ∂iAi = ikiAi = 0, such that the
potential Ai is perpendicular to ki : That’s why it’s sometimes called transverse gauge.

B.5 Causal structure of spacetime

In the last section we have seen that there is a tight connection between hyperbolicity
of the wave equation □φ = 0 and the lightlike-ness of the wave-vector ηµνkµkν = 0,
which is not too surprising because □ = ηµν∂

µ∂ν, so the representation of □ in
Fourier-space is ηµνkµkν anyways. The wave equation as a hyperbolic PDE provides a
time evolution of initial conditions (and the solution becomes unique if those initial
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phenomenon dimensionality
Huygens’ principle n odd, n = 1 or n = 3 best
relativistic gravity n + 1 ≥ 4
stable planetary systems n ≤ 3
Bose-Einstein-condensation n ≥ 3
random walks getting lost (Polya’s theorem) n ≥ 3
as many electric as magnetic fields n = 3
Poisson-solutions vanish at infinity n ≥ 3
knots exist n ≥ 3

Table 1: dimensionality required by certain physical phenomna

conditions are specified) in a very peculiar way: For the evolution of φ at a specific
spacetime point xµ only the field amplitudes on the past light cone are necessary,
clearly as the field excitations can only travel along the light cone. This is perfect,
because the light cone structure is Lorentz-invariant, so the field amplitudes that are
responsible as initial conditions for φ at xµ are always the same, despite the fact that
xµ will get new coordinates.

This idea is truly funny in Galilean relativity: Here, c is just a velocity and trans-
forms along under Galilei-transforms. Therefore, the two branches of the light cone
get velocities c+υ and c−υ formally. Would this be a problem? Well, in the limit c→ 0
(i.e. as the formal limit of Galilei-relativity from Lorentz-relativity or for everyday,
small velocities compared to c) the light cone opens up and the field amplitudes
on an entire spatial hyperplane set the initial conditions for φ. This is consistent
with all derivatives ∂ctφ becoming small as c→∞, so that □→ ∆ in this limit: The
field equation has lost its dynamics and has become elliptical, such that boundary
conditions (possibly on boundaries at xi → ±∞) need to be specified for uniqueness.

And before you get funny ideas for this: Among all metric spacetimes only the
Lorentzian one allows hyperbolic evolution of field equations, but one can construct
hyperbolic equations without a metric structure for spacetime! The classic example
for this would be covariant electrodynamics in the most general linear model for
matter, and we’ll come to that in section C.

B.6 Dimensionality of spacetime

Spacetime has n + 1 = 4 dimensions, 1 temporal and n = 3 spatial, and it is the case
that Nature really needs a minimum number of (spatial) dimensions to make certain
phenomena possible, a few are summarised in table 1.

The Poisson-equation has the peculiar property that potentials Φ only vanish
towards infinity in 3 or more dimensions: Looking for vacuum solutions in the
spherically symmetric case

∆Φ =
1

rn−1
∂
∂r

(
rn−1∂Φ

∂r

)
= 0 (B.135)

is solved when the term in the brackets becomes constant, i.e. when

∂Φ
∂r

= r−(n−1) → Φ ∝ r−n+2 if n ≥ 3, or Φ ∝ ln r if n = 2 (B.136)

so that one really needs certainly 3 spatial dimensions or more for the potentials to
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b.6. dimensionality of spacetime

decrease towards infinity, and one gets logarithmic solutions Φ ∝ ln r in 2 dimensions.
General relativity as a theory of gravity can only exist in n + 1 = 4 dimensions or
more, if gravity as spacetime curvature should be allowed to propagate away from
the sources, but this is really beyond the scope of the lecture.

From the scaling of Φ in n dimensions one can derive that planetary systems are
not stable if the dimensionality is too high, and the argument would be like that: For
the specific energy ϵ = E/m of a particle in the potential Φ one would write

ϵ =
E
m

=
1
2

(
ṙ2 + r2ϕ̇2

)
+ Φ(r) (B.137)

in polar coordinates, with Φ(r) = −GM/rn−2 generated by the central object of
mass M. The motion of planets is restricted to be in a plane, because of angular
momentum conservation in a spherically symmetric potential, with the specific
angular momentum λ

λ =
L
m

= r2ϕ̇ → ϕ̇ =
λ

r2 (B.138)

which will appear as a repulsive centrifugal potential when replacing ϕ̇.

ϵ =
1
2

(
ṙ2 +

λ2

r2

)
− GM
rn−2 (B.139)

and counteracts the attractive gravitational potentials. For a stable orbit it is now
necessary that the repulsive part of the potential is dominating at small r, for which
n can not be too large. In fact, in a true Coulomb-potential with n = 3 one gets a long-
range attractive 1/r potential superimposed on a short range repulsive 1/r2-potential,
with a nice minimum that harbours the most stable circular orbits. If n is too high,
the roles interchange: There would be a short range attractive gravitational poten-
tial superimposed on a long range repulsive potential, with effectively a maximum
between the two regimes with unstable orbits. Solving the equation of motion yields

ṙ2 = 2
(
ϵ +

GM
rn−2

)
− λ

2

r2 → t =

t∫
0

dt =

rmax∫
rmin

dr
1√

2
(
ϵ + GM

rn−2 − λ2

2r2

) (B.140)

by separation of variables: There is an oscillatory motion in the effective potential
(if there is a minimum allowing stable orbits), while the planet gets carried around
the Sun by the conservation of angular momentum. Bertrand’s theorem now states
that among all potentials, only two allow for closed orbits: Those are the Keplerian
ellipses in 1/r-potentials and the Lissajous-figures in the harmonic r2-potential.

As the last point let’s investigate the issue that only in n = 3 dimensions there
is an equal number of electric and magnetic field components: This becomes most
apparent in the field tensor Fµν = ∂µAν − ∂νAµ, which is antisymmetric under index
exchange, Fνµ = −Fµν. The electric field components are contained in the first row
or first column, Ei = Fti = −Fit , and there are n possible choices, as Ftt = 0. As
off-diagonal elements representing the magnetic fields one counts n(n − 1)/2, and
n(n − 1)/2 = n is solved by n = 3 (and n = 0, but this is senseless).
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B.7 Huygens-principle

There is a remarkable peculiarity in the propagation of spherical waves that depends
on dimensionality. Writing down a conventional hyperbolic wave equation in n
dimensions

ηµν∂
µ∂νψ =

(
∂2
ct − γij∂i∂j

)
ψ =

∂2
ct −

n∑
i=1

∂2
i

ψ = 0 (B.141)

with an isotropic spatial part, as γij∂i∂j with the Euclidean (inverse) metric γij is
perfectly invariant under rotations. A spherical wave ψ(t, r) with r2 = γijx

ixj = xix
i

excited at the origin should propagate outwards, and we will try to answer the
question whether the wave front is a well-defined shell with radius r increasing
linearly in time, r = ct. Surprisingly, this is only in 3 dimensions the case. Let’s build
quickly the derivatives

∂i r =
xi
r
→

∑
i

(∂i r)
2 =

∑
i

(xi
r

)2
=

1
r2

∑
i

x2
i = 1 (B.142)

and

∂2
i r =

r2 − x2
i

r3 →
∑
i

∂2
i r =

∑
i

r2 − x2
i

r3 =
1
r

∑
i

1 − 1
r3

∑
i

x2
i =

n − 1
r

(B.143)

from r =
√
xjxj for later use. When introducing spherical coordinates one would like

to replace the ∂i-differentiations with respect to Cartesian coordinates by ∂r using
the chain rule,

∂iψ = ∂i r · ∂rψ (B.144)

where I put the · to ”stop” the differentiation at this point. For the second derivative
one gets

∂2
i ψ = ∂2

i r · ∂rψ + ∂i r · ∂i∂rψ (B.145)

where the second term can be reshaped

∂i∂rψ = ∂r∂iψ = ∂r (∂i r)∂rψ = ∂i∂r r · ∂rψ + ∂i r∂
2
rψ = ∂i r∂

2
rψ (B.146)

with ∂r r = 1 such that the derivative vanishes. Subsitution back into the wave
equation gives

∂2
i ψ = ∂2

i r∂rψ + (∂i r)
2∂2

rψ (B.147)

which, summing over i and using eqns. B.142 and B.143, leads us to∑
i

∂2
i ψ = ∆ψ =

n − 1
r

∂rψ + ∂2
rψ (B.148)

such that the wave equation for a spherical wave becomes
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b.7. huygens-principle

∂2
ctψ = ∂2

rψ +
n − 1
r

∂rψ (B.149)

with the additional term (n − 1)/r ∂rψ due to spherical symmetry. Of course you can
start at

∆ψ =
1

rn−1∂r

(
rn−1∂rψ

)
=

n − 1
r

∂rψ + ∂2
rψ (B.150)

as well to arrive at the same result.
For solving the spherical wave equation, one chooses a separation ansatz ψ = r−kφ

for factoring out a power-law decrease of the amplitudes. One would expect that
the squares of the amplitudes determines the energy flux of the spherical wave, that
needs to be conserved over ever increasing surfaces of spherical shells scaling ∝ rn−1

in area with radius r, implying k = (n − 1)/2.
The corresponding derivatives then are

∂rψ = −kr−(k+1)φ+ r−k∂rφ (B.151)

and
∂2
rψ = k(k + 1)r−(k+2)φ− 2kr−(k+1)∂rφ+ r−k∂2

rφ (B.152)

which can be used to reformulate the wave equation in terms of φ rather than ψ:

∂2
ctφ− ∂2

rφ−
(n − 1)(n − 3)

4r
∂rφ = 0 (B.153)

which is a truly remarkable result: Of course, there is no concept of spherical
symmetry in 1 dimension, so automatically the wave equation for the amplitude
φ (which incorporates energy conservation in its suggested scaling with distance,
in this case it is constant) is fulfilled. In all other spacetimes with the exception of
n = 3 one sees additional terms in the wave equation, which actually slow down the
wave relative to c and fill up the light cone with partial waves, such that (i) neither a
spherical wave front would be defined and (ii) there is no clear relation r = ct: This,
however is exactly the case in n = 3 dimensions! In summary, n + 1 = 4 dimensions is
the only case where wave propagation of spherical waves is described by a plane wave
equation with a relation r = ct for the radius. If one would decompose an arbitrary
wave front into elementary spherical waves according to Huygens’ principle, they
only propagate with a well-defined wave front defined by r = ct in 3d to interfere
again at a later time.
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C fields

C.1 Lagrange-description of field dynamics

Relativistic field equations in Nature, for instant for the Maxwell-field Aµ or for
the metric gµν are commonly hyperbolic, second-order partial differential equations,
and due to their hyperbolicity there is wave-like propagation of excitations along
a light-cone, which is defined by the underlying geometric structure of spacetime.
The first notion of a field was Newton’s idea of an action at a distance: Somehow
gravity from and on Earth needed to extent to the Moon and other celestial bodies.
This is really a revolutionary thought as it was the first time in physics where the
constituents of a system are not in direct physical contact. The question whether the
fields are real or just a convenient way of computing forces between charges that
couple to the field, is a bit philosophical but after all, all physical concepts that apply
to the ”material world” apply to fields in exactly the same way, including the point
that the associated energy and momentum content of a field is able to source gravity.

C.2 Lagrange-description of scalar field dynamics

Deriving the field equation of a scalar field φ is almost like dissipationless continuum
mechanics. Let’s ignore dynamical evolution for a second and derive the most general
linear theory with a second-order partial differential field equation, which would be
necessarily elliptical if there’s no proper time evolution. As expected one would write
down a kinetic and potential term in a suitable Lagrange-density,

L(φ, ∂iφ) = γij∂
iφ∂jφ− 8πρφ (C.154)

and establish Hamilton’s principle δS for varying the action S

δS = δ

∫
d3x L(φ, ∂iφ) =

∫
d3x

(
∂L
∂φ

δφ+
∂L
∂∂iφ

δ∂iφ

)
=

∫
d3x

(
∂L
∂φ
− ∂i ∂L

∂∂iφ

)
δφ

(C.155)

after writing δ∂iφ = ∂iδφ and a successive integration by parts. Substitution of the
Lagrange-density eqn. C.154 into the Euler-Lagrange-equation

∂L
∂φ
− ∂i ∂L

∂∂iφ
= 0 (C.156)

which can be isolated from eqn. C.155 yields the Poisson-equation

∂i∂iφ = ∆φ = −4πρ (C.157)

by realising that

∂

∂∂iφ
(γab∂

aφ∂bφ) = γab

(
∂∂aφ

∂∂iφ
∂bφ+ ∂aφ

∂∂bφ

∂∂iφ

)
= γab

(
δai ∂

bφ+ ∂aφδbi

)
= 2∂iφ

(C.158)

while the rest of the terms in the Euler-Lagrange-equation is pretty easy.
Repeating the arguments for finding the most general Lagrange-function for a

point particle leads to the Lagrange-density
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L(φ, ∂iφ) =
1
2
γij∂

iφ∂jφ− 4πρφ+ λφ+
m2

2
φ2 (C.159)

with the associated field equation(
∆ −m2

)
φ = −4πρ + λ (C.160)

for the most general scalar field equation that is linear and compatible with Ostro-
gradsky’s theorem. If φ is the Newtonian gravitational potential Φ and interpreting
the generalised Poisson-equation in terms of a gravitational theory we now know that
m must be truly small, and that λ is small but certainly nonzero. While all this looks
straightforward from an arithmetic point of view, the conceptual interpretation is
not so easy: Hamilton’s principle δS = δ

∫
d3x L = 0 looks for a field configuration

φwhich minimises the action, and for a vacuum solution the kinetic term ∂L/∂∂iφ

would be required to be perpendicular to δ∂iφ, which is perhaps a bit reminiscent of
d’Alembert’s principle.

Often you’ll see m interpreted as the mass of the field φ, or at least as its inertia,
even though at this point it’s not more than a scale-invariance breaking inverse length
scale. If the field φ is allowed to have its own dynamics in accordance with special
relativity one would make the replacements γij → ηµν and ∂i → ∂µ to arrive at

S =
∫

d4x L(φ, ∂µφ) with L(φ, ∂µφ) =
1
2
ηµν∂

µφ∂νφ− m2

2
φ2 (C.161)

where we omitted the coupling to ρ on purpose because its transformation property
is yet unclear, and let’s focus on scales small compared to 1/

√
λ. Variation then gives(

□ + m2
)
φ = 0 → ηµνk

µkν = m2 > 0 in Fourier space (C.162)

such that the wave vector kµ is timelike and points to a location inside the light cone:
Excitations of φ travel at speeds less than the speed of light which justifies to think
of m as a mass. Please watch out for the minus signs here, as □ exp(±iηαβkαxβ) =
−ηµνkµkν exp(±iηαβkαxβ) from i2 = −1. We need the opposite sign in eqn. C.161
relative to eqn. A.3 as in the ”mostly minus” sign convention ηij are negative and ηtt
is positive.

C.3 Maxwell-electrodynamics and the gauge-principle

We should step up the game after this example of scalar field dynamics and turn
to the Maxwell-field Aµ: Firstly, it has internal degrees of freedom and transforms
like a Lorentz-vector, Aµ → Λ

µ
αAα, secondly, it has the charge density ȷµ as a source,

likewise a Lorentz vector, ȷµ → Λ
µ
αȷα. Thirdly, the charge density is conserved

in the sense that ∂µȷ
µ = ∂ct(cρ) + ∂i ȷ

i = 0, and the field equation itself is linear,
∂µFµν = 4π/c ȷµ with the field tensor Fµν = ∂µAν − ∂νAµ containing the electric and
magnetic fields. Clearly, this equation can not contain the entire information about
six field components Ei and Bi to be derived from the field tensor which is coupled to
just 4 components of charge ȷµ. That’s the reason why one needs the Bianchi-identity
in addition, ∂µF̃µν = 0, most conveniently written with the dual field tensor F̃µν,

F̃µν = +
1
2
ϵµναβFαβ and F̃µν = −1

2
ϵµναβFαβ (C.163)
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with the 4-dimensional Levi-Civita symbol ϵµναβ: One needs an object that is anti-
symmetric at least in every index pair to give a non-vanishing result. Fµν is auto-dual,

˜̃Fµν = +
1
2
ϵµναβF̃αβ = −1

4
ϵµναβϵαβρσFρσ = Fµν. (C.164)

That is a lot to digest, in particular the property of the field tensor being antisym-
metric, Fνµ = −Fµν, as well as the existence of the dual field tensor Fµν and its role
in the dynamics of the electromagnetic field: First of all, the Maxwell-equations are
hyperbolic partial differential equations in Aµ, with propagations traveling along the
light cone, as the wave vectors are lightlike, kµkµ = 0. The source ȷµ can be dynami-
cally changing but under conservation, and the transformation properties of ȷµ and
Aµ are identical.

Deriving the Maxwell-field equation from a variational principle asks the question
how the invariance-covariance principle could be incorporated. As a square of first
derivatives of Aµ as a kinetic term which is invariant under Lorentz-transformations
one could use FµνFµν, such that one can ensure a linear field equation after variation
from this particular quadratic invariant. F̃µνF̃µν = FµνFµν ∝ EiEi − BiBi , so there is
nothing new from using the Frobenius-norm of F̃ instead of F. The other possible
quadratic invariant F̃µνFµν = FµνF̃µν ∝ EiBi would likewise give a linear field equation,
but there is an issue because EiBi is a scalar product between and axial and a polar
vector, and is as such pseudoscalar, i.e. it changes sign under parity inversion and
is therefore not a proper scalar. Already at this point one may conjecture that the
Lagrange-function is bounded by 0 and that this value corresponds to vacuum solu-
tions: The magnetic and electric field energies of an electromagnetic wave are always
exactly equal, such that EiEi − BiBi = 0, and they are necessarily perpendicular to
each other, EiBi = 0. On the side coupling the fields to charges, Aµȷ

µ would be perfect
in a linear field equation. Collecting these ideas suggests that the Maxwell-action is
given by

S =
∫

d4x
(1

4
FµνFµν +

4π
c

Aµȷ
µ
)

(C.165)

What about terms like AµAµ? It would in fact be compatible with a linear field
equation with a term proportional to Aµ, but it would violate gauge-symmetry as
a new symmetry principle. Maxwell’s field equation ∂µFµν = 4π/c ȷν is unchanged
under the gauge transform Aµ → Aµ + ∂µχwith a scalar field χ, as

Fµν → ∂µ (Aν + ∂νχ) − ∂ν (Aµ + ∂µχ) = Fµν (C.166)

with the interchangeability ∂µ∂νχ = ∂ν∂µχ. And of course, with the invariance of Fµν

under gauge transforms one does not possibly observe any change in the observable
fields Ei and Bi . The freedom to transform Aµ can be used to make the computation
of fields easier and to decouple field equations. For instance,

∂µFµν = ∂µ∂
µAν − ∂ν∂µAµ = □Aν − ∂ν∂µAµ =

4π
c
ȷν (C.167)

would need to be solved for computing Aµ from ȷµ, such that the fields Fµν are
obtained from Aµ by successive derivation. There are known Green-functions for
solving □Aµ = 4π/c ȷµ, even index-by-index, but the divergence ∂µAµ couples these
four equations together. Under gauge transforms one obtains the transformation

33



c. fields

∂µAµ → ∂µAµ + ∂µ∂
µχ = 0→ □χ = −∂µAµ (C.168)

implying that one can always find a transform that sets ∂µAµ to zero, it is even
uniquely defined by the relation □χ = −∂µAµ, as the χ needed follows from solving
the wave equation with −∂µAµ as a source. ∂µAµ = 0 is called Lorenz-gauge.

It is very interesting how gauge-transforms operate on the action or the Lagrange-
density:

S→
∫

d4x
(1

4
FµνFµν +

4π
c

(Aµ + ∂µχ)ȷµ
)

= S +
4π
c

∫
d4x (∂µχ)ȷµ (C.169)

as Fµν is gauge invariant anyway. The coupling of Aµ to ȷµ can be reformulated using
the Leibnitz-theorem,∫

d4x ȷµ∂µχ =
∫

d4x ∂µ(ȷµχ) −
∫

d4x (∂µȷ
µ)χ (C.170)

where the first term can be reformulated with the Gauß-theorem,∫
V

d4x ∂µ(ȷµχ) =
∫
∂V

dQµ ȷ
µχ = 0 (C.171)

which can be made to vanish if χ = 0 on ∂V by choice. The second term is automati-
cally zero for conserved sources, where ∂µȷ

µ = 0. So effectively, the Lagrange-function
is unchanged by the gauge transform if the electric charge density as the source of
the Maxwell-field is conserved, which ultimately is the foundation of the knot-rule in
electric circuits: That the sum of inflowing and outflowing electric currents at one
knot in a circuit cancel exactly if there is not builtup of charge is the consequence of
the continuity equation ∂µȷ

µ = 0, which appears consistent with the gauge-freedom
of Aµ.

C.4 Electromagnetic duality and axions

Maxwell-electrodynamics in vacuum obeys a peculiar symmetry called electromag-
netic duality: In the absence of sources, the field equation ∂µFµν = 0 and the Bianchi-
identity ∂µF̃µν = 0 become equal, so the duality transform Fµν ↔ F̃µν doesn’t give
rise to any difference in the field dynamics. In terms of fields, the duality transform
reads Ei → Bi and Bi → −Ei , which makes perfect sense as ∂µFµν = 0 contains the
two statements ∂iBi = 0 and ϵijk∂jEk = −∂ctBi , whereas ∂µF̃µν = 0 makes sure that
∂iEi = 0 and ϵijk∂jBk = +∂ctEi : Effectively, the two pairs of Maxwell-equations inter-
change their meaning under the duality transform. Or, to formulate this in a stronger
way: Only the presence of charges ȷµ defines a difference between Fµν and F̃µν.

In a fantasy world with electric charges ȷµ and magnetic charges ıµ one could set
up a perfectly reasonable Maxwell-like theory just by postulating

∂µFµν =
4π
c
ȷν as well as ∂µF̃µν =

4π
c
ıν (C.172)

provided that both charges are conserved, ∂µȷµ = 0 and independently ∂µı
µ = 0. Both

field equations are, due to the antisymmetry of the field tensor, made compatible with
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c.5. poynting-law and conservation of energy and momentum

conservation of the respective charge, ∂µ∂νF̃µν = 4π/c ∂νıν = 0, as a contraction of the
antisymmetric F̃µν with the symmetric ∂µ∂ν, and likewise ∂µ∂νFµν = 4π/c ∂νȷν = 0,
for exactly the same reason.

While everything is perfectly well-defined on the basis of the field equations,
there is a problem when trying to write down a Lagrange-density: The potential Aµ

would not exist. In fact, Aµ relies on the dual field equation being zero, which can be
most easily seen in terms of the components: ∂iBi = 0 implies that the magnetic field
can be written as Bi = ϵijk∂jAk derived from a vector potential Ak , and at the same
time ϵijk∂jEk = −∂ctBi = −∂ctϵ

ijk∂jAk , such that ϵijk∂j (Ek + ∂ctAk) = 0. That in turn
implies, that the term in brackets can be written as a gradient, Ek + ∂ctAk = −∂kΦ

with a scalar potential Φ. In summary, the components Ak and Φ of the potential Aµ

rely in their existence on the absence of magnetic charges, ıµ = 0.
But one needs Aµ for a Lagrange-description of electrodynamics, otherwise the

coupling to the sources could not be formulated in the Aµȷ
µ-term: Electrodynamics

with ȷµ , 0 , ıµ could be defined on the level of the field equations but not with a
Lagrange-density.

Let’s investigate the second possible quadratic invariant F̃µνFµν which is expressed
in field components ∝ EiBi and therefore pseudoscalar: parity inversion xi → −xi or
inversion of ct → −ct would result in a change in sign and excludes the term from
the Lagrange-density as it is not properly scalar. This can be remedied by including a
pseudoscalar field θ along with its own dynamics

S =
∫

d4x
(1

4
FµνFµν − 4π

c
Aµȷ

µ + θFµνF̃µν +
1
2
ηµν∂

µθ∂νθ− V(θ)
)

(C.173)

where θFµνF̃µν and ηµν∂
µθ∂νθ are perfectly scalar. The interaction potential V(θ)

could include a term ∝ m2θ2 which itself is scalar again. Then, the Lagrange-density
describes a massive pseudoscalar field θ, which in this context is called axion, and
variation of eqn. C.173 gives rise to a coupled set of partial differential equations for
Fµν and θ.

C.5 Poynting-law and conservation of energy and momentum

Fields are not only affecting test charges by accelerating them, but they are physically
real in their own right: They have their own dynamics, they can transport energy and
momentum, and would be ultimately sources of gravity. The energy and momentum
content is derived from the independence of the Lagrange-density of position xµ,
i.e. the working principle of the fields is supposed to be the same at every location
and at every instant in time. One notices how effectively momentum and energy
conservation have the same origin now, unlike classical mechanics.

The starting point is to define a shift of the Lagrange-function to a new position
in spacetime by a separation aα, which can be done by defining the operator aα∂

α

and apply it to the Lagrange density,

δL = aα∂
αL with the variation being δL =

∂L
∂φ

δφ+
∂L

∂∂µφ
δ∂µφ (C.174)

which changes as the fields and their deriatives take one new values as one moves by
aα across spacetime. Working for simplicity with a scalar field φ one gets variations
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φ→ φ+ aα∂
αφ︸ ︷︷ ︸

δφ

and ∂µφ→ ∂µφ+ aα∂
α∂µφ︸    ︷︷    ︸

δ∂µφ

(C.175)

To deal with the term δ∂µφwe apply the Leibnitz-rule as follows:

∂µ

(
∂L

∂∂µφ
δφ

)
= ∂µ

∂L
∂∂µφ

δφ+
∂L

∂∂µφ
∂µδφ︸       ︷︷       ︸

δL− ∂L
∂φ δφ

(C.176)

such that we can write

δL =
(
∂L
∂φ
− ∂µ

∂L
∂∂µφ

)
δφ+ ∂µ

(
∂L

∂∂µφ
δφ

)
(C.177)

where the first bracket is necessarily zero, as a consequence of the Euler-Lagrange-
equations for the field φ. Then,

δL = ∂µ

(
∂L

∂∂µφ
δφ

)
(C.178)

where we can now substitute the displacements by aα:

aα

(
∂αL − ∂µ

(
∂L

∂∂µφ
∂αφ

))
= 0 (C.179)

and by rewriting ∂α = ηµα∂µ one can isolate the energy momentum tensor,

aα∂µ

(
ηµαL − ∂L

∂∂µφ
∂αφ

)
︸                   ︷︷                   ︸

−Tµα

= 0 (C.180)

with a corresponding conservation law ∂µTµα = 0 as aα is arbitrary: Perhaps it’s
interesting to note that ∂L/∂∂µφwould be the canonical field momentum, so we are
actually carrying out a Legendre-transform of L to arrive at the energy-momentum
tensor.

The same arguments apply to the Maxwell-field Aµ but with a small exception
as there is gauge-symmetry to be respected in addition. We should not differentiate
with respect to the straightforward derivatives ∂µAν but rather with respect to the
anti-symmetrised variant, ∂µAν − ∂νAµ = Fµν, which is gauge-invariant. Therefore,
the variation of the field Aµ under a shift aα would be

δAµ = aα(∂αAµ − ∂µAα) = aαFαµ (C.181)

Therefore, the variation of L becomes

δL = aα∂µ

(
∂L

∂∂µAσ

Fασ

)
(C.182)
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Rewriting δL = aα∂
αL and ∂α = ηαµ∂µ then gives

aα∂µ

(
ηαµL − ∂L

∂∂µAσ

Fασ

)
= 0 (C.183)

with the corresponding energy momentum tensor Tαµ and its covariant conservation
law ∂µTαµ = 0. For the Maxwell-Lagrange-density we have

∂L
∂∂µAσ

= − 1
4π

Fµσ (C.184)

so that
Tµν =

1
4π

(
ηαβFµαFβν +

1
4
ηµνFαβFαβ

)
(C.185)

which is naturally symmetric and traceless:

4πηµνTµν = ηµνηαβFµαFβν +
1
4
ηµνη

µνFαβFαβ = FαβFβα + FαβFαβ = 0 (C.186)

by switching the index order in one of the terms.

C.6 Covariant electrodynamics in matter

The Maxwell-equations in matter, written down in an index notation but after choos-
ing an explicit frame, read:

∂iD
i = 4πρ, ∂iB

i = 0, ϵijk∂jEk = −∂ctB
i , and ϵijk∂jHk = +∂ctD

i +
4π
c
ȷi

(C.187)

and a peculiar difference between the fields Di and Bi (noted as vectors) and the
excitations Ei and Hi (written as linear forms) emerges. Of course it’s a choice which
of the two pairs is written as vectors and which as linear forms, so

∂iDi = 4πρ, ∂iBi = 0, ϵijk∂
jEk = −∂ctBi , and ϵijk∂

jHk = +∂ctDi +
4π
c
ȷi

(C.188)

is equally valid. Normally, one would need to define tensors to relate the vectors
with the linear forms, Bi = µijHj with the permeability tensor µij and Di = ϵijEj

with the dielectric tensor ϵij . Apart from symmetry (which ensures that there is an
orthogonal principal axis frame with three real-valued eigenvalues) the two tensors
are free and would describe the general linear relationship in a possibly anisotropic
medium between the fields and excitations. If the medium is isotropic, µij = µδij

and ϵij = ϵδij , so that the usual relation Bi = µδijHj = µHi and Di = ϵδijEj = ϵEi is
recovered.

Taking this one step further, one would notice that the two homogeneous Maxwell-
equations

∂iB
i = 0, ϵijk∂jEk = −∂ctB

i , (C.189)

depend on Bi and Ei , while the two inhomogeneous Maxwell-equations depend on
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the other pair,

∂iDi = 4πρ, ϵijk∂jHk = +∂ctD
i +

4π
c
ȷi . (C.190)

Because of this separation, one should package Ei and Bi into a tensor F̃µν to repro-
duce the homogeneous equations from ∂µF̃µν = 0. Analogously, Di and Hi should then
be part of a tensor Gµν to generate the inhomogeneous equations from ∂µGµν = 4π/c ȷν.
Clearly, there is now a second breaking of the duality taking place, because Gµν , F̃µν!
That, however is not straightforward: One has Bi as a vector and Ei as a linear form
for F̃µν, and likewise Di as a vector and Hi as a linear form for Gµν is given, so one
needs to invoke the dielectric and permeability tensors to convert the linear forms Ei

and Hi to vectors first.

C.7 Finsler-geometry and Lorentz-forces

A massive test particle tries to minimise proper time as the relativistic generalisation
of the action S

S = −mc

∫
ds = −mc2

∫
dτ (C.191)

which is solved in the absence of forces by a straight line, d2xµ/dτ = 0, or equivalently,
xµ(τ) = aµτ+ bµ with two integration constants aµ and bµ. If there is a nonzero specific
charge q/m the particle is accelerated by Lorentz-forces

d2xµ

dτ2 =
q

m
Fµν

dxν
dτ

(C.192)

Let’s re-derive this equation of motion from a variational principle, because it gives
rise to a new geometric structure, called a Finsler-geometry. To cut things short, let’s
postulate

S = −mc2
∫

dτ + q

∫
dxµ Aµ (C.193)

with a potential Aµ . While the first term is defined by the metric structure ofCan you show that the term∫
dxµ Aµ is gauge-invariant? spacetime, ds2 = c2dτ2 = ηµνdxµdxν, the second term involves the scalar product

between Aµ and dxµ. If Aµ is given directly in terms of a linear form, one actually
does not need a metric structure to compute dxµAµ = ηµνdxµAν. So effectively, there
are two geometric structures at work, the metric structure ηµν and the structure
defined by the scalar product of vectors with the linear form Aµ: This is called a
Finsler-geometry. The interpretation of the Aµdxµ-term is not easy, but perhaps one
could imagine Aµ as some kind of headwind or tailwind that changes the proper time
of the particle depending on in which direction it moves relative to the direction and
magnitude of the vector field Aµ.

As the values of Aµ that the particle sees depends on the trajectory, the variation
of the action gives

δ

∫
Aµdxµ =

∫
δAµdxµ +

∫
Aµδdx

µ =
∫
δAµdxµ −

∫
dAµδx

µ (C.194)

with the usual procedure to write δdxµ = dδxµ and a successive integration by parts.
Then, we trace back the variation and the differential of Aµ to a coordinate shift,
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δAµ =
∂Aµ

∂xα
δxα and dAµ =

∂Aµ

∂xα
dxα (C.195)

such that the variation becomes

δ

∫
Aµdxµ =

∫
∂Aµ

∂xα
δxαdxµ −

∂Aµ

∂xα
dxαδxµ =

∫ (
∂Aµ

∂xα
− ∂Aα

∂xµ

)
δxαdxµ (C.196)

after renaming the indices µ↔ α in the second term (all indices are fully saturated
and the terms are both scalar, so it does not matter how the indices are called).
Introducing the velocity dxα/dτ and identifying the field tensor brings the integral
into the final shape

δ

∫
Aµdxµ =

∫
dτ Fαµ

dxα

dτ
δxµ (C.197)

which, combined with the variation of −mc2
∫

dτ already worked out in eqn. A.93,
gives the Lorentz-equation of motion C.192:

m
d2xµ

dτ2 = qFµα
dxα
dτ

. (C.198)

C.8 Light-cone structure beyond metric spacetimes

Let’s write out the kinetic term of the Lagrange-density of electrodynamics explicitly

S =
∫

d4x ηαµηβνFαβFµν =
∫

d4x
ηαµηβν − ηανηβµ

2
FαβFµν =

∫
d4x GαβµνFαβFµν

(C.199)

using antisymmetry Fνµ = −Fµν and renaming indices. The quantity Gαβµν is anti-
symmetric in the first and second index pair and defines a measure of area instead of
a measure of length, as a metric ηµν would. In 3 dimensions one determines the area
of the parallelogram spanned by two vectors ai and bi from the norm of ci = ϵijka

jbk ,
so effectively through

area = δilcicl = δilϵijkϵlmna
jbkambn =

[
δjmδkn − δjnδkm

]
ajbkambn = a2b2 − (aib

i)2

(C.200)

where the square brackets have the same index structure as Gαβµν, so it is justified
to speak of Gαβµν as a measure of area. In fact, aibj = ab cos α for a standard scalar
product, so

area = a2b2(1 − cos2 α) = a2b2 sin2 α (C.201)

as expected. Perhaps one could imagine that the Maxwell action S measures the area
between the vectors ∂µ and Aν over the spacetime volume.
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D.1 Lie-groups and their generation

Symmetry plays an incredibly important role in physics, and we would define sym-
metry as the invariance of a quantity under a transform. Transformations typically
form a group as successive transformations can be combined into a single transform,
because there is a unit transformation element with no effect and an inverse transform
undoing the action of a previous transform. Many transformation groups in physics
contain infinitely many elements, such as rotations that are parameterised by an
angle α or Lorentz-transform with the rapidity ψ. In contrast to an index n for a finite
group (or a countably infinite group), these groups are continuously parameterised
and a rotation Ri

j(α) or Lorentz-transform Λ
µ
ν(ψ) exists for every possible value of

the real-valued parameters α and ψ: These continuously parameterised groups are
referred to as Lie-groups.

D.2 Generating algebras

One can ask the (very sensible) question if all elements in a continuously parame-
terised Lie-group can be formed from an infinitesimally small transformation. Let’s
have a look at rotations in 2 dimensions, where the transformation matrix is given by

R =
(

cos α sin α
− sin α cos α

)
→

(
1 α

−α 1

)
= σ(0) + ασ(2) in the limit of small α

(D.202)

If one would like to assemble a rotation out of many individual small rotations,
ideally n rotations of magnitude α/n with n→∞, one should obtain R:

R = lim
n→∞

(
σ(0) +

α

n
σ(2)

)n
= exp

(
ασ(2)

)
(D.203)

such that one can speculate if Ri
j is as well given by a power series,

R =
∑
n

(σ(2)α)n

n!
= σ(0)

∑
n

(−1)nα2n

(2n)!
+ σ(2)

∑
n

(−1)nα2n+1

(2n + 1)!
=

σ(0) cos α + σ(2) sin α =
(

cos α − sin α
sin α cos α

)
(D.204)

by splitting up the summation over even and odd indices, because even powers of
σ(2) are proportional to the unit matrix σ(0) while odd powers stay proportional to
σ(2). Similarly, Lorentz-transforms Λ are generated by σ(3),

Λ =
∑
n

(σ(3)ψ)n

n!
= σ(0)

∑
n

ψ2n

(2n)!
+ σ(3)

∑
n

ψ2n+1

(2n + 1)!
=

σ(0) coshψ + σ(3) sinhψ =
(

coshψ sinhψ
sinhψ coshψ

)
(D.205)

with the rapidity ψ as a parameter.
In summary, there is a generation of a continuously paramterised Lie-group
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A(t) = exp(Tt) with the parameter t and the generator T, which in our two examples
of the rotation and the Lorentz-transformation was traceless. Infinitesimal transforms
are given by

A(δt) = id + δt T (D.206)

with the generator T, which can be assembled to a finite transform

A(t) = lim
n→∞

(
id +

t
n

T
)n

= exp (Tt) (D.207)

from n successive transforms of magnitude t/n. Then, there should be an exponential
series,

A(t) = exp (Tt) =
∑
n

(Tt)n

n!
(D.208)

Now we should investigate the group structure of A(t): Successive application of
transformations A(t′)A(t) is captured by a single element of the same group,

A(t′)A(t) = exp (t′T) exp (tT) = exp ((t′ + t)T) = A(t′ + t) (D.209)

such that the parameter is additive. That realisation immediately gives rise to the
definition of an inverse,

A(−t)A(t) = A(−t + t) = A(0) = id such that A−1(t) = A(−t) (D.210)

Formally, eqn. D.209 requires the Cauchy-product: In fact,

A(t′)A(t) = exp (t′T) exp (tT) =
∑
n

(Tt′)n

n!

∑
m

(Tt)m

m!
=

∑
n

n∑
m

(Tt′)m

m!
(Tt)n−m

(n −m)!
(D.211)

where we can proceed by introducing the binomial coefficient

A(t′)A(t) =
∑
n

Tn

n!

n∑
m

(
n
m

)
t′mtn−m =

∑
n

(T(t′ + t))n

n!
= exp (T(t′ + t)) = A(t′ + t)

(D.212)

and use the generalised binomial formula, if there is only a single generator involved.
If one deals with multiple generators T, T′ one needs to employ the Baker-Hausdorff-
Campbell-relation,

exp(T) exp(T′) = exp(T + T′) exp
(
−1

2
[T, T′]

)
(D.213)

where it is apparent that the commutation relations [T, T′] = TT′ − T′T determine
how the generated group elements get combined. An example that defies (at least
my) imagination is the following: Surely the combination of rotations results in
a rotation, if the axes are not identical then the result depends on the order as
rotations in 3 dimensions are not a commutative group. The combination of Lorentz-
transformations into different directions involves a rotation too: In fact, boosting
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along x followed by a boost along y, and inverting this by first boosting back along x
followed by a boost back in y gives you a system with zero relative velocity compared
to where you started, but there is an effective rotation.

D.3 Construction of invariants

In many cases invariants of Lie-groups can be traced back to the tracelessness of their
generators. In fact, my third most favourite formula in theoretical physics implies

ln detA = tr ln A (D.214)

and as the group elements A typically depend on the generator T through

A = exp(Tt) =
∑
n

(Tt)n

n!
(D.215)

one gets
ln detA = tr ln A = tr ln exp(tT) = ttrT = 0 (D.216)

so that detA = 1. For a rotation matrix this would be cos2 α + sin2 α = 1 and for a
Lorentz-transform cosh2 ψ − sinh2 ψ = 1, but actually one can compute the determi-
nant already from the trace of the generator alone without using properties of the
trigonometric or hyperbolic functions!

In the nomenclature of groups you often see a preceding letter S, as in SO(n)
for the special orthogonal group in n dimensions, which refers to the property that
the determinant of the group elements is equal to 1. From the argument above you
understand that this must mean, that the generators are all traceless. If there is
a relation like the power series D.215, it would automatically be a solution to a
differential equation of the form

d
dt

A =
d
dt

∑
n

(Tt)n

n!
=

∑
n

(Tt)n

n!
T = AT (D.217)

with an index shift due to the differentiation dtn/dt/n! = tn−1/(n − 1)!. In summary,
there are three approaches to the generation of a Lie-group in the exponential form:
The infinitesimal transform taken to the nth power, summing of the exponential
series and thirdly, the differential equation for the exponential.

D.4 Symplectic structures and canonical time evolution

In classical mechanics one encounters a funny property of the symplectic matrix
which arises when solving Hamilton’s equation of motion for a harmonic oscillator.
You’ll see that the symplectic matrix is just the Pauli-matrix σ(2), so similarities
between generating the time evolution of the harmonic oscillator and generating
rotations are to be expected! After all, both involve sin and cos, and surely one can
transform the coordinates into a rotating coordinate frame in phase space.

The Hamilton-function is H(p, q) = p2/2 + q2/2 in a practical choice of units, and
therefore

ṗ = −∂H
∂q

and q̇ = +
∂H
∂p

(D.218)
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which can be combined into a single equation, in particular for the harmonic oscillator
where ∂H/∂p = p and ∂H/∂q = q,

d
dt

(
q
p

)
=

(
0 +1
−1 0

) (
q
p

)
(D.219)

where with our knowledge of generators we would immediately write(
q(t)
p(t)

)
= exp

((
0 +1
−1 0

)
t

) (
q(0)
p(0)

)
(D.220)

with a time-evolution operator acting on the initial conditions q(0) and p(0) to give
momentum and position of the evolved system. The exponential operator can be
evaluated, which amounts to computing powers of the Pauli-matrix σ(2),

exp
(
σ(2)t

)
=

∑
n

(σ(2)t)n

n!
(D.221)

Because (σ(2))0 = σ(0), (σ(2))2 = −σ(0), (σ(2))3 = −σ(2) and (σ(2))4 = σ(0), continuing
cyclically, one only ever obtains terms proportional to σ(0) or σ(2), with alternating
signs:

∑
n

(σ(2)t)n

n!
= σ(0)

∑
n

(−1)nt2n

(2n)!
+ σ(2)

∑
n

(−1)nt2n+1

(2n + 1)!
=

σ(0) cos t + σ(2) sin t =
(

cos t sin t
− sin t cos t

)
(D.222)

and therefore, the time evolution of the harmonic oscillator is in fact given by sinu-
soidal oscillations: This is perhaps a bit remarkable; one does not need any intuition
about the solution of the Lagrange equation of motion q̈ = −q, or use a complex
exponential q ∝ exp(it) to transform the differential into an algebraic equation: It can
be solved directly with a time-evolution operator that is constructed, not guessed.

D.5 Unitary time-evolution in quantum mechanics

If you look closely at the Schrödinger-equation

iℏ∂tψ = Hψ (D.223)

it is perhaps not too dissimilar to eqn. D.219: In fact it would suggest that

ψ ∝ exp
(
− iHt

ℏ

)
(D.224)

with a time-evolution operator exp(−iHt/ℏ) (the minus-sign appear because 1/i = −i),
as if the Hamilton-operator H is generating the time evolution. The definition of
an inverse time evolution operator makes heavy use of the fact that H is hermitean,
H+ = H and that iH is anti-hermitean, (iH)+ = −iH. That’s because
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U(t) = exp
(
− iHt

ℏ

)
(D.225)

is unitary:

U+(t) = exp
(
− iHt

ℏ

)+
=

∑
n

(−iHt/ℏ)n

n!

+

=
∑
n

(iHt/ℏ)n

n!
= exp

( iHt
ℏ

)
= U(−t)

(D.226)

Because from additivity we would get U(t)U(−t) = id and U−1(t) = U(−t) we would
conclude that U−1(t) = U(−t) = U+(t), and U(t) is unitary: Its inverse is given by the
adjoint. As U(t) evolves a wave function by t into the future, the adjoint U+(t) = U(−t)
evolves it back into the past by t. In this entire process the normalisation of the wave
function is conserved.

There is a shortcut to this result. Complex conjugation of the Schroedinger equa-
tion gives

iℏ∂tψ = Hψ → −iℏ∂tψ
∗ = (Hψ)∗ = H+ψ∗ = Hψ∗ (D.227)

together with the hermiticity H+ = H of the Hamilton-operator H. But the overall
sign on the left hand side could be captured by running time backwards,

−iℏ∂tψ
∗ = iℏ∂−tψ∗ (D.228)

such that the time-inverted Schrödinger equation becomes

iℏ∂−tψ∗ = Hψ∗ (D.229)

Thinking of this as the defining equation of a Lie-time evolution operator gives

U(−t) = exp
( iHt

ℏ

)
(D.230)

for evolving the system backwards in time.
It is amazing to see, how easily the point of time reversal is taken care of in

classical, Newtonian mechanics: Neither L(qi , q̇) does change, nor the Euler-Lagrange-
equation or the resulting equation of motion q̈i = −∂iΦ. Hamilton-mechanics is
funny: Both ṗ and q̇ change sign, such that motion proceeds in the opposite direction
of the gradients ∂H/∂p and ∂H/∂q, such that one can easily imagine how the motion
proceeds backwards in phase space.
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E.1 Schrödinger-equation as a Helmholtz-differential equation

The iconic Schrödinger-equation

iℏ∂tψ = Hψ (E.231)

determines the time-evolution of the wave function ψ with the Hamilton-operator H
of the system. If you’d categorise the Schrödinger equation, it is elliptical rather than
hyperbolical, so we need to provide boundary conditions to make the solution for ψ
unique. Please remember the example about particles in an infinitively deep square
potential well where ψ = 0 at the edges: This is effectively a Dirichlet boundary
condition, likewise, the wave functions for the Coulomb-potential in the hydrogen-
problem vanish for r →∞, in fulfilment of Dirichlet boundaries.

Separating out the time-dependent part by a separation of variables ψ(x, t) =
exp(iEt/ℏ)φ(x) recovers the time-independent Schrödinger equation,

Hφ(x) = Eφ(x) (E.232)

where the phase of the wave function undergoes oscillations with exp(iEt/ℏ). Working
in a position representation the Schrödinger equation becomes(

−ℏ
2∆

2m
+ Φ(x)

)
φ = Eφ →

(
∆ +

2m
ℏ2 [E − Φ]

)
φ = 0 (E.233)

which is the archetypical form of a Helmholtz-differential equation
(
∆ + k2

)
φ = 0

for constant Φ. Weirdly enough, one would arrive at exactly this differential equation
starting from a properly hyperbolic wave equation, even though the Schrödinger
equation is elliptical, but with the added benefit that because the range of values has
been extended to complex numbers, k2 can be negative and one can switch between
oscillatory behaviour for positive energies to exponentially decaying solutions for
negative energies.

Non-relativistic quantum mechanics is based on Galilei-invariant classical me-
chanics, where time is a universal parameter to describe evolution, and as such it
is not an observable. Thinking of expectation values ⟨t⟩ is pretty much devoid of
meaning, and that’s the reason why the energy-time uncertainty is just a different ex-
pression of the momentum-position uncertainty. From E = p2/(2m) we can conclude
that ∆E = dE/dp ∆p = p/m ∆p and x = p/m t implies ∆x = dx/dt ∆t = p/m ∆t such
that

∆E∆t = ∆p∆x ≥ ℏ
2

(E.234)

without the need of defining an uncertainty ∆t from (non-existent!) expectation
values ⟨t2⟩ and ⟨t⟩.

E.2 Born’s postulate and the conservation of probability

Born’s postulate gives a probabilistic interpretation to the wave function: ρ(x) =
ψ∗(x)ψ(x) is the probability to find the particle at position x in a localisation. With
this interpretation, the total probability should be conserved in time evolution
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d
dt

∫
d3x ψ∗ψ = 0 (E.235)

if the particles are stable and do not decay. From the time derivative ∂tρ of of the
probability density one can in fact derive a continuity relation:

∂tρ = ∂t(ψ
∗ψ) = (∂tψ

∗)ψ + ψ∗∂tψ = − i
ℏ

(Hψ∗)ψ +
i
ℏ
ψ∗(Hψ) (E.236)

by substituting the Schrödinger-equation and its conjugate (keeping in mind that
H is hermitean, H+ = H). For a standard form of the Hamilton-operator in position
representation

H =
p2

2m
+ Φ = −ℏ

2∆

2m
+ Φ (E.237)

one can immediately see that the Φ-term is not relevant, such that with ∆ = ∂i∂
i one

gets

∂tρ =
ℏ

2mi
[(∆ψ∗)ψ − ψ∗∆ψ] =

ℏ
2mi

∂i

[
(∂iψ∗)ψ − ψ∗∂iψ

]
= ∂i ȷ

i (E.238)

with the probability current density ȷi

ȷi =
ℏ

2mi

[
(∂iψ∗)ψ − ψ∗∂iψ

]
(E.239)

Please be careful here: Schrödinger-quantum mechanics is built on Galilean relativity
and it’s not possible to combine the time derivative of ρ with the divergence of ȷi in to
an expression like ∂µȷ

µ = 0.
One could violate the probability conserving continuity equation by adding an

anti-hermitean term to the Hamilton-operator, for instance H→ H − iΓ , with (iΓ )+ =
−iΓ , iΓ with a real-valued Γ . Then, focusing on this term alone, we would get

∂tρ = (∂tψ
∗)ψ + ψ∗∂tψ = −

(
Γ

ℏ
ψ∗

)
ψ − ψ∗

(
Γ

ℏ
ψ

)
= −2

Γ

ℏ
ψ∗ψ = −2

Γ

ℏ
ρ (E.240)

which, depending on the sign of Γ , leads to exponential increase or decrease: The
Γ -term would be suitable to describe creation or decay of particles.

E.3 Ehrenfest’s theorem

The transition from quantum mechanics to classical mechanics is conceptually very
complicated but needs in some way take care of the fact that in the limit ℏ → 0
classical mechanics should be recovered. The transition is gradual as ℏ provides a scale
for the action S, as will be explained in Sect. E.5. But there is a more direct relation
between quantum mechanics and classical mechanics in the form of Ehrenfest’s
theorem: For any hermitean operator A, A+ = A, one can derive the time evolution of
its expectation value ⟨A⟩,

d
dt
⟨A⟩ =

d
dt

∫
d3x ψ∗Aψ =

∫
d3x ∂tψ

∗Aψ + ψ∗A∂tψ (E.241)

48



e.3. ehrenfest’s theorem

if A is stationary. The time derivatives ∂tψ and ∂tψ
∗ can be replaced by the Schrödinger-

equation and its complex conjugate, keeping in mind that the Hamilton-operator H
is itself hermitean, H+ = H,

d
dt
⟨A⟩ =

∫
d3x

Hψ∗

−iℏ
Aψ + ψ∗A

Hψ
iℏ

=
i
ℏ

∫
d3x ψ∗ [H, A]ψ =

i
ℏ
⟨[H, A]⟩ (E.242)

which is very reminiscent of the Poisson-equation of motion. Let’s go through a
couple of particular cases: The simplest choice would be the identity operator A = id,
which commutes with everything, [H, id] = 0, so the statement we’d derive would be

d
dt
⟨id⟩ =

d
dt

∫
d3x ψ∗ψ =

d
dt

∫
d3x ρ = 0 (E.243)

such that the normalisation of the wave function is conserved in time evolution
and the probability density ρ = ψ∗ψ integrates up to one at every instant in time.
Similarly easy is the choice A = H, and as H commutes with itself, [H, H] = 0 and the
expectation value of energy is conserved,

d
dt
⟨H⟩ = 0 (E.244)

which is the quantum mechanical version of the Poisson-bracket dH/dt = {H,H}
applied to the Hamilton-function H. A slightly more interesting case is A = x with
the position operator x: Then,

d
dt
⟨x⟩ =

i
ℏ
⟨[H, x]⟩ (E.245)

and evaluating the commutator proceeds like this. The potential Φ in H commutes
with x because it is just a function of position, so [p2, x] is left over: Working in the
position-representation

[p2, x]ψ = p2xψ − xp2ψ = (iℏ)2
[
∂2
x(xψ) − x∂2

xψ
]

= (iℏ)2
[
∂x(ψ + x∂xψ) − x∂2

xψ
]

(E.246)

which simplifies to

[p2, x]ψ = (iℏ)2
[
∂xψ + ∂xψ + x∂2

xψ − x∂2
xψ

]
= 2(iℏ)2∂xψ = 2iℏpψ (E.247)

such that
d
dt
⟨x⟩ =

⟨p⟩
m

(E.248)

taking care of the −1/(2m)-prefactor in the Hamilton-operator. The result implies
that the expectation value of position changes in time with the expecation value of
momentum,

d
dt
⟨x⟩ =

⟨p⟩
m

→ m⟨x⟩ =
∫

dt ⟨p⟩ (E.249)

as one would expect in classical mechanics. Similarly, the evolution of ⟨p⟩ can be
evaluated: This time, p commutes with the kinetic energy, [p, p2] = 0 but does not
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commute with the potential energy, [p,Φ] , 0 because Φ is a function of x. Using
again the position representation of p shows

[p,Φ]ψ = pΦψ − Φpψ = iℏ [∂x(Φψ) − Φ∂xψ] = iℏ [∂xΦ ψ + Φ∂xψ − Φ∂xψ] = iℏ∂xΦ ψ

(E.250)

such that
d
dt
⟨p⟩ = −⟨∂xΦ⟩ → ⟨p⟩ = −

∫
dt ⟨∂xΦ⟩ (E.251)

as a Newton-equation of motion for the expectation values. Perhaps it’s a nice
catch how Ehrenfest’s theorem can be derived using unitary time evolution with an
operator U instead of substituting the Schrödinger equation (of course, the two would
be absolutely equivalent). Then, ψ(t) = Uψ0 and ψ∗(t) = U+ψ∗0 with initial conditions
ψ0:

d
dt
⟨A⟩ =

d
dt

∫
d3x ψ∗Aψ =

d
dt

∫
d3x ψ∗0U+AUψ0 (E.252)

and consequently, the time derivatives only operate on U and U+:

d
dt
⟨A⟩ =

∫
d3x

(
ψ∗0(∂tU

+)AUψ0 + ψ∗0U+A(∂tU)ψ0

)
(E.253)

As U = exp(−iHt/ℏ) and U+ = exp(+iHt/ℏ) the differentiation just gives ±iH/ℏ as a
factor, and because H and U commute, one arrives at

d
dt
⟨A⟩ =

i
ℏ

∫
d3x ψ∗0U+[H, A]Uψ0 =

i
ℏ

∫
d3x ψ∗[H, A]ψ =

i
ℏ
⟨[H, A]⟩ (E.254)

Here, we’ve used that

∂tU
+ = ∂t exp

( iHt
ℏ

)
= ∂t

∑
n

1
n!

( iHt
ℏ

)n
=

iH
ℏ

∑
n

1
n!

( iHt
ℏ

)n
=

iH
ℏ

U+ (E.255)

and similarly for U.
Loosely speaking, the centres of wave packets follow the classical equation of

motions: This is the central statement of the Ehrenfest-theorem. Any quantification
by how much the wave packets are focused on these locations in x and p requires the
computation of the uncertainties ∆x2 = ⟨x2⟩ − ⟨x⟩2 as well as ∆p2 = ⟨p2⟩ − ⟨p⟩2

E.4 Dispersion of wave packets and propagation with Green-functions

Restarting with unitary time evolution of a wave function and introducing the bra-
ket-notation∣∣∣ψ(tf )

〉
= U(tf , ti)

∣∣∣ψ(ti)
〉

with U(tf , ti) = exp
(
−

iH(tf − ti)
ℏ

)
(E.256)

with a unitary time evolution operator U(tf , ti), which is true in generality as it solves
the time-dependent Schrödinger equation, asks the question whether we can find a
position representation in which the Hamilton-operator H is usually written down,
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essentially by setting p2 = −ℏ2∆/(2m). This is in fact possible by projection

ψ(xf , tf ) =
〈
xf |ψ(tf )

〉
=

〈
xf |U(tf , ti)|ψ(ti)

〉
(E.257)

Squeezing in an orthonormal basis set to write the state |ψ(ti)⟩ in position represen-
tation as well

ψ(xf , tf ) =
∫

d3xi
〈
xf |U(tf , ti)|xi

〉 〈
xi |ψ(ti)

〉
(E.258)

shows that the final state is related to the initial one in a convolution relation

ψ(xf , tf ) =
∫

d3xi K(xi , ti → xf , tf ) ψ(xi , ti) (E.259)

with the Green-function (or propagator) K(xi , ti → xf , tf ) evolving the wave function
by collecting up all amplitudes of the initial state and assembling the final state.

For getting a specific shape of K(xi , ti → xf , tf ), we would specialise the case
to the propagation of a free particle with H = p2/(2m) and working in momentum
representation, as the eigenfunctions of p and p2 are particularly simple:

K(xi , ti → xf , tf ) =
∫

d3pf

∫
d3pi

〈
xf |pf

〉 〈
pf | exp

(
−iH(tf − ti)/ℏ

)
|pi

〉 〈
pi |xi

〉
(E.260)

as
〈
xf |pf

〉
and

〈
pi |xi

〉
are only plane waves exp(+ipf xf ) and exp(−ipixi), one can sub-

stitute them and integrate the expression, essentially performing a Fourier-transform,

K(xi , ti → xf , tf ) =

√
mℏ

2πi(tf − ti)
exp

− im
2ℏ

(xf − xi)2

tf − ti

 (E.261)

which can be loosely interpreted as a diffusion kernel with the typical behaviour that
the width of an initially δD-shaped wave function increases ∝

√
t.

E.5 Path integrals

Path integrals are a great view on the relation between the quantum mechanical
propagation of probability and the classical variational principles, and they establish
ℏ as a scale for the action S. But please keep R. MacKenzie’s words in mind who said:
”As far as I am aware, path integrals give us no dramatic new results in quantum mechanics
of a single particle. Indeed, most, if not all calculations in quantum mechanics which can
be done by path integrals can be done with considerable greater ease with the standard
formulations”.

Ignoring MacKenzie’s advice for this section, let’s introduce an intermediate time
ti in the propagation of a free particle and see how the propagators need to be linked
together, i.e. whether they form a group: Time as the parameter in the unitary time
evolution operator is additive, therefore

U(tf − ti) = U(tf − t1 + t1 − ti) = U(tf − t1)U(t1 − ti) (E.262)
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and therefore the Green-function K(xi , ti → xf , tf ) becomes

〈
xf |U(tf , ti)|xi

〉
=

〈
xf |U(tf − t1)U(t1 − ti)|xi

〉
=∫

d3x1

〈
xf |U(tf − t1)|x1

〉
⟨x1|U(t1 − ti)|xi⟩ (E.263)

which implies that

K(xi , ti → xf , tf ) =
∫

d3x1 K(xi , ti → x1, t1)K(x1, t1 → xf , tf ) (E.264)

with effectively a marginalisation over all possible stop-over points x1. This result
can be generalised to more stop-over points such that the time interval tf − ti is
subdivided into n steps, δ = (tf − ti)/n:〈

xf |U(tf , ti)|xi
〉

=
〈
xf |(exp(−iHδ/ℏ)n|xi

〉
=

〈
xf |(exp(−iHδ/ℏ) . . . exp(−iHδ/ℏ)|xi

〉
(E.265)

using exp(iH(tf − ti)) = exp(iHnδ) = exp(iHδ)n. This can be decomposed by introduc-
ing complete basis sets into all n − 1 gaps between the individual factors of exp(iHδ):

K(xi , ti → xf , tf ) =
n−1∏
j

∫
d3xj K(xj , tj → xj+1, tj + δ) (E.266)

with x0 = xi and xn = xf , likewise t0 = ti and tn = tf = ti + nδ. Of course you’re
already suspecting that we should take the limit δ → 0 or n → ∞, while keeping
tf − ti = nδ fixed, and link this to the idea of generating the time evolution U with H.

E.5.1 Phase space path integral

Our view on quantum-mechanical propagation is now very abstract: There are Green-
functions that depend on the Hamilton-operator, which collect up the amplitudes of
ψ at ti and assemble them at tf . Introducing intermediate steps requires to combine
the Greens-functions in a convolution relation. The unitary time evolution operator,
which is equivalent to the Green-function in position representation, can be replaced
by its generator H in the limit of very small time intervals δ:

K(xj , tj → xj+1, tj + δ) =
〈
xj | exp(−iHδ/ℏ)|xj+1

〉
≃

〈
xj |1 − iHδ/ℏ|xj+1

〉
(E.267)

Let’s inspect the two resulting terms separately: Firstly, the term

〈
xj |xj+1

〉
=

∫ d3pj
(2π)3 exp

(
ipj (xj − xj+1)

)
=

∫ d3pj
(2π)3 exp

(
ipj ẋjδ

)
(E.268)

is effectively the δD-function, which we rewrite as a dp-integral. A clever step is to
extend the term by δ/δ and identify (xi − xj+1)/δ as ẋj . Secondly, we obtain

〈
xj |H|xj+1

〉
=

∫ d3pj
(2π)3 H exp

(
ipj (xj − xj+1)

)
(E.269)
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by substitution of the Hamilton-operator in position representation. Reconstructing
the Taylor-series then gives

K(xj , tj → xj+1, tj + δ) =
∫ d3pj

(2π)3 exp
( iδ
ℏ

(pj ẋj − H)
)

(E.270)

and collecting all intermediate steps results in

K(xi , ti → xf , tf ) =
∏
j

∫
d3xj

∫ d3pj
(2π)3 exp

 i
ℏ
δ

n−1∑
j

pj ẋj − H

 (E.271)

where in the exponential a very interesting term appears: pj ẋj − H is the reverse
Legendre-transform of H which would result in the Lagrange-function L, and the
summation over n − 1 time steps of size δ over L would correspond to the action S,
which is being de-dimensionalised by the Planck-constant ℏ. In the continuum limit
one arrives at the phase space path integral,

K(xi , ti → xf , tf ) =
∫
Dx

∫
Dp exp

(
i
ℏ

∫
dt L

)
=

∫
Dx

∫
Dp exp

( i
ℏ

S
)

(E.272)

Please be careful that we did in fact carry out the derivation in a simplified case for
H = p2/(2m) without any potential Φ, but we generalised the expression ẋp − H to be
the Lagrange-function (or rather, operator in this case) L.

E.5.2 Configuration-space path integral

At least half of the integrals in the phase space path integral can be solved for a
standard form

H =
p2

2m
+ Φ (E.273)

for the Hamilton operator H. Realising that for this form of the Hamilton-operator
the phase space path integral separates in a factor involving only momenta and a
factor involving only coordinates and returning to the discrete representation for a
second we can write

K =
∏
j

∫
d3xj exp

 i
ℏ
δ

n−1∑
j

Φ(xj )

 ×
∫ d3pj

(2π)3 exp

 i
ℏ
δ

n−1∑
j

pj ẋj −
p2
j

2m

 (E.274)

The second factor only involves Gaussian-integrals which can be solved by comple-
tion of the square in the exponent, whereas this strategy would only work for the
first term for a very specific physical system: the harmonic oscillator. Carrying out all
d3p-integrations yields:

K =
∏
j

∫
d3xj

( mℏ
2πiδ

)n/2
exp

 i
ℏ
δ

n−1∑
j

m
2
ẋ2
j − Φ(xj )

 (E.275)

where one again recognises the Lagrange-function L in the exponent: The squares
of ẋ needed for kinetic energy mẋ2 was provided by the Gaussian integrals over
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momentum space at the step of completing the square. Therefore, the final result
reads:

K(xi , ti → xf , tf ) =
∫
Dx exp

(
i
ℏ

∫
dt L

)
=

∫
Dx exp

( i
ℏ

S
)

(E.276)

The interpretation of the path-integral for the propagation Green-function is
highly interesting, as it joins quantum mechanics with classical mechanics. First of all,
all possible paths between xi and xf can be taken without any energy consideration:
Didn’t strike you as odd that there was no boundary condition on the classical varia-
tional principles if a particle can ”afford” a certain path energetically? In quantum
mechanics this is not so dramatic as there is tunneling and a penetration of the wave
function into energetically disallowed regions. Making the transition from quantum
mechanics to classical mechanics in the limit ℏ→ 0 should collapse the path integral
and the ”tube” where the wave function propagates, onto an infinitely thin line as the
classical trajectory. Introducing a variation

x′(t)→ x(t) + η(t) (E.277)

gives a corresponding variation of the action

δS = S[x′] − S[x] =
∫

dt
(
δS
δx
η+

δ2S
δx2

η2

2
+ . . .

)
(E.278)

This difference in the action gives rise to a variation of the Green-function

δK = exp
(

i
ℏ

∫
dt

δS
δx
η+

δ2S
δx2

η2

2
+ . . .

)
(E.279)

The classical path is defined as an extremum of the action, so δS = 0 and δS/δx = 0,
as required by Hamilton’s principle, so the decisive term is ∝ η2: Any large deviation
from the classical path, no matter if positive or negative, introduces strong oscillations
into K if

δ2S
δx2

η2

2
≫ ℏ (E.280)

and in the path-integration Dx these oscillating terms cancel each other out. In this
sense, the Planck-constant ℏ is a scale for the action S, differentiating between classical
motion and quantum mechanical propagation. With a little overinterpretation one
could even imagine that the particle wave duality is the mechanism by which the
action is extremised: A particle sends out the probability waves and could propagate
along all possible paths, but the classical one is singled out as it is assigned the highest
probability by constructive interference. Deviations around the classical path are
of order ℏ in S, and whether this matters or not depends on the magnitude of S/ℏ.
Therefore, we have identified three key properties in the transition from quantum
to classical mechanics: ℏ as a the action S becomes less and less important, the
uncertainty ∆p∆x ≥ ℏ/2 becomes irrelevant and the averages needed for Ehrenfest’s
theorem become perfectly defined without any dispersion.
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E.6 Uncertainty

All observables are represented by hermitean operators, whose spectrum of eigen-
values (which are necessarily real-valued) are possible outcomes of a measurement.
Sometimes the situation arises that two observables are not measurable at arbitrary
precision at the same time, and the criterion whether a simultaneous measurement is
possible is the value of the commutator [A, B] = AB − BA of the two operators A and
B. Defining the expectation values and variances

⟨A⟩ =
∫

d3x |ψ|2A and ⟨A2⟩ =
∫

d3x |ψ|2A2 (E.281)

leads to the uncertainty ∆A =
√
⟨A2⟩ − ⟨A⟩2, where we’ll use the simplification

∆A =
√
⟨A2⟩ because setting ⟨A⟩ = 0 is always possible by redefining the operator.

The Cauchy-Schwarz-inequality implies that(∫
d3x |ψ|2AB+

)2

≤
∫

d3x |ψ|2A2 ×
∫

d3x |ψ|2B2 (E.282)

or short, ⟨AB⟩2 ≤ ⟨A2⟩⟨B2⟩. We can use the Cauchy-Schwarz-inequality as a lower
bound:

∆A∆B =
√
⟨A2⟩ ×

√
⟨B2⟩ ≥

∣∣∣∣∣ 1
2i

(⟨AB⟩ − ⟨AB⟩∗)
∣∣∣∣∣ =

1
2
|⟨AB⟩ − ⟨BA⟩| =

1
2
|⟨[A, B]⟩|

(E.283)

where we’ve used that the modulus of a complex number is always larger than its
imaginary part, that the scalar product is hermitean,

⟨AB⟩∗ = ⟨B+A+⟩ = ⟨BA⟩ (E.284)

and that the operators themselves are hermitean. Fundamental commutators between
coordinates and their canonical momenta are for instance [p, x] = iℏ:

[p, x]ψ = (px − xp)ψ = iℏ [∂x(xψ) − x∂xψ] = iℏ [ψ + x∂xψ − x∂xψ] = iℏψ. (E.285)

E.7 Relativistic quantum mechanics

The rationale behind the Schrödinger-equation is a classical dispersion relation,
E = pip

i /(2m) with the canonical displacements E → iℏ∂t and pi → iℏ∂i . But we
know already that the classical dispersion relation is only valid for small cp ≪ mc2

compared to the rest mass m.
One possibility to generalise the Schrödinger-equation is to use the fully relativis-

tic dispersion relation
E2 = (cp)2 + (mc2)2 (E.286)

and perform canonical replacement on this equation: This procedure leads to the
Klein-Gordon-equation,

∂2
ctψ − ∂i∂

iψ +
(mc
ℏ

)2
ψ = 0 (E.287)
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or shorthand (
□ + λ−2

)
ψ = 0 with λ =

ℏ
mc

(E.288)

with a fully Lorentz-covariant □ = ηµν∂
µ∂ν. The constant term is rather interesting,

as it defines the de Broglie-wavelength, λ = ℏ/(mc) pertaining to the momentum mc.
And for static situations, where ∂ctψ = 0 and consequently □→ ∆, we recover the
Yukawa-field equation A.3 (

∆ − λ−2
)
ψ = 0 (E.289)

and now the de Broglie-scale λ = ℏ/(mc) gets the interpretation of a screening length,
which effectively truncates the Coulomb-potential at λr ≃ 1. We now understand
perfectly Yukawa’s reasoning: By introducing a mass-term into the field equation
one can deviate from Φ ∝ 1/r and make the potential finite-ranged. The range is
controlled by the mass of the particle that is described by the Klein-Gordon-equation,
so choosing about 100 MeV as a mass gives a restriction to nuclear dimensions, exactly
what has been found in the π-mesons.

Effectively, we could even take this idea one step further and define directly a
canonical substitution to the relativistic momentum pµ:

pµ =
(

E/c
pi

)
→ iℏ

(
∂ct

−∂i

)
= iℏ∂µ (E.290)

and obtain pµpµ = −ℏ2□ = (mc)2 directly. There is a second path which leads to the
Dirac-equation and the inclusion of spin-degrees of freedom of the wave functions
(so-called spinors), but this is beyond the scope of this lecture.

E.8 Coupling to fields

Coupling of wave functions ψ to fields Fµν is rather subtle as it proceeds over the
potential Aµ with all kinds of conceptual difficulties involving the Aharonov-Bohm-
experiment. Establishing a relation between the momentum pµ and the potential Aµ

is done by minimal coupling,

pµ → pµ −
q

c
Aµ (E.291)

If one tries this with the Klein-Gordon equation E.287:

pµpµψ =
(
iℏ∂µ −

q

c
Aµ

) (
iℏ∂µ −

q

c
Aµ

)
ψ = (mc)2ψ (E.292)

which becomes under the assumption of Lorenz-gauge ∂µAµ = 0

□ψ +
( q

cℏ

)2
AµAµψ =

(mc
ℏ

)2
ψ (E.293)

which is in this form difficult to interpret, in particular the AµAµ-term looks weird.
Let’s therefore try this again in a fixed frame, where Aµ = (Φ, Ai)t :

pµpµψ =
(
iℏ∂ct −

q

c
Φ

)2
ψ −

(
iℏ∂i −

q

c
Ai

) (
iℏ∂i −

q

c
Ai

)
ψ = (mc)2ψ (E.294)
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With a very similar calculation, assuming stationary electric potentials ∂ctΦ = 0 and
Coulomb-gauge ∂iAi = 0 for simplicity,

□ψ −
( q

ℏc

)2 (
Φ2 + AiA

i
)
ψ =

(mc
ℏ

)2
ψ (E.295)

where clearly the AµAµ- and AiAi-terms are not gauge invariant. There seems to
be an issue, which gets resolved by considering the action of gauging on the wave
function ψ itself:

The gauge principle states that one can change the potentials Aµ → Aµ + ∂µχ
with a gauge function χ, without changing the physical fields Fµν. The purpose of
gauging is to simplify and decouple the field equations, for instance by enforcing
∂µAµ = 0. Up to this point, we’ve shown as well, that the Lagrange-function of
electrodynamics is gauge invariant if charges are conserved, so we’ve got reason to
assume that gauge invariance is the symmetry principle behind charge conservation.
Charge conservation is a property of the matter, though, it needs to function in a
way that the charge density can only change locally if there are currents converging
on that point and accumulate charge. In summary, we would want to have a gauge
invariant wave equation for the matter fields, and understand why gauge-invariance
implies charge conservation.

What change could one apply to a wave function without changing any of the
physical observables? The answer is clearly a phase transformation,

ψ→ ψ exp(+iα(x)) ψ∗ → ψ∗ exp(−iα(x)) (E.296)

with a real-valued field α(x), and it is obvious that for instance the probability
density ρ = ψ∗ψ is invariant under these phase transformations. Derivatives of the
wave function pick up an additional term,

∂µψ→ ∂µ(ψ exp(iα)) = (∂µψ) exp(iα) + iψ exp(iα)∂µα (E.297)

so terms like ψ∗∂µψ or ∂µψ∗∂µψ are not gauge invariant. Let’s try out a new derivative
Dµ with this property:

Dµψ→ exp(iα)Dµψ (E.298)

where for instance Dµψ
∗ Dµψ would be perfectly invariant.

These gauge-covariant derivatives do not commute

[Dµ, Dν]ψ =
[
∂µ − i

q

c
Aµ, ∂ν − i

q

c
Aν

]
ψ =(

∂µ − i
q

c
Aµ

) (
∂ν − i

q

c
Aν

)
ψ −

(
∂ν − i

q

c
Aν

) (
∂µ − i

q

c
Aµ

)
ψ (E.299)

where a tedious but straightforward calculation shows that

[Dµ, Dν]ψ =
[
∂µ − i

q

c
Aµ, ∂ν − i

q

c
Aν

]
ψ = −i

q

c

(
∂µAν − ∂νAµ

)
ψ = −i

q

c
Fµνψ (E.300)

with the gauge-invariant field tensor Fµν appearing. This idea, that the second (gauge)-
covariant differentiations do not interchange, is central to general relativity and define
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the Riemann-curvature Rαβµν:

[∇µ,∇ν]υα = −Rαβµνυ
β (E.301)

through the non-interchangeability of the second covariant derivatives acting on the
vector υα.
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F.1 Dynamics of gravity

Surely this script is not supposed to be an introduction to general relativity with its
heavy usage of differential geometry as its mathematical language. For that reason,
everything in this chapter is restricted to weak gravity, with perturbations of an
otherwise flat Minkowskian spacetime, where the physical picture of fields on top of
a Minkowski spacetime is perfectly valid. Weak and strong gravity are quantitative
concepts: The curvature of spacetime is defined through second derivatives of a
quantity called metric, and as composed of second derivatives the curvature R defines
a length scale ∆x,

∆x =
1
√

R
(F.302)

For distances larger than ∆x, curvature effects are important and gravity is strong,
but for distances smaller than ∆x, gravity is only a small correction on the Minkowski-
metric.

Secondly, the gravitational potential Φ as it appears in the Poisson-equation
(already including here the classical cosmological constant λ)

∆Φ = 4πGρ + λ (F.303)

has no dynamics on its own, it changes instantaneously at every point in space
if ρ is not stationary. But we’ve seen that hyperbolic field equations usually show
propagation along the light cones and the existence of wave-like solutions, so we
would expect this to apply to gravity, too. Table 2 gives an overview over different
regimes of gravity in physical systems.

An attempt to make the Poisson-equation relativistic could be the replacement
∂i → ∂µ, along with γij → ηµν. And in addition, the kinetic energy in the random
motion of particles in a substance, i.e. the pressure p, should contribute along the
matter density to the gravitational field, arriving at

□
Φ

c2 = −4πG
c4 (ρc2 + 3p) + Λ (F.304)

with Λ = λ/c2. This relation is interesting as well because it makes a statement about
the dimensionless potential Φ/c2, so c2 provides a scale for Φ. Looking ahead at the
Schwarzschild-radius rS one could imagine this argumentation. Φ/c2 = 1 marks a
particular strength of the potential, which could be given by a mass M observed at
distance rS, GM/c2 = rS, which is correct up to a factor of 2. At the same time you see
that the factor G/c2 has units of length/mass, so it enables us to assign a length scale
to a mass.

There were actual observational findings that suggested a new theory of gravity,
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albeit with a lot of experimental uncertainty. While Newton-gravity predicts the
orbits of Planets to be closed ellipses with a fixed ratio between the orbital period and
the large semi-axis in form of Kepler’s third law, Mercury was found not to obey this.
In particular, Mercury’s orbit showed a precession of the point of closest proximity
to the Sun, which implied a slight deviation Φ ∝ r−(1+ϵ), ϵ > 0, from the Newtonian
potential.

The standard Poisson-equation ∆Φ = 4πGρ as the field equation of classical
gravity, can be motivated with these arguments: The gravitational acceleration g i

is the field strength of the the gravitational field and appears in an appropriate
Gauß-law,

∂ig
i = −4πGρ (F.305)

such that the Poisson-equation is recovered when setting g i = −∂iΦ. Applying the
Gauß-integral law and assuming spherical symmetry gives∫

V

d3r ∂ig
i =

∫
∂V

dSi g
i = g 4πr2 = −4πG

∫
V

d3r ρ = −4πGM (F.306)

with the mass M. This implies

g = −GM
r2 and consequently, Φ = −GM

r
(F.307)

Effectively, the scaling g ∝ 1/r2 and Φ ∝ 1/r is a consequence of the surfaces of
spheres in 3-dimensional Euclidean space, where the Gauß-law ensures that the flux∫

dSig
i is conserved across every surface ∂V = S ∝ r2. Mechanical similarity applied

to the 1/r-potential delivers Kepler’s third law t2 ∝ r3, so that the reason for Kepler’s
law is ultimately geometric, and the origin of Mercury’s precession is unclear. Please
keep in mind that a Yukawa-type screening modifies Φ at large and not at small
distances, so it could not serve as an explanation.

F.2 Inertial accelerations and equivalence

It is a central tenet in relativity that forces are velocity dependent to conserve the
normalisation of velocities, which in turn is needed by causal motion. The prime
example are Lorentz-forces,

duµ

dτ
=

q

m
Fµνuν =

q

m
Fµtut +

q

m
Fµiui (F.308)

which can not accelerate a particle with specific charge q/m from timelike velocities
uµu

µ = c2 > 0 to spacelike velocities uµu
µ < 0. The split in the summation over ν

shows a contribution that doesn’t depend on velocity due to the electric fields Fµt and
a contribution proprotional to the velocities υ due to the magnetic fields Fµi .

Making a giant conceptual leap to gravity we realise that there is no such thing
as specific charge: The inertial of a particle and its coupling to a gravitational field
are both equal to its mass, so gravity affects all particles in exactly the same way:
From this point of view it might be better to speak about gravitational acceleration
instead of gravitational force. Gravitational accelerations share this property with
inertial accelerations such as the Coriolis- or centrifugal accelerations: This prompted
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Einstein to postulate the equivalence principle with a general indistinguishability
between gravitational and inertial accelerations.

Looking at inertia it becomes clear very quickly that these accelerations are
velocity dependent, and could this be an expression that gravity is relativistic? That is
in fact the case, as equation of motion in general relativity for a freely falling particle
is the geodesic equation

duα

dτ
= −Γ αµν uµuν = −Γ αtt utut − 2Γ αit u

tui − Γ αij u
iuj (F.309)

with uµ = dxµ/dτ = γ(c, ui)t as always. Γ αµν is the Christoffel-symbol. In a weakly
perturbed Minkowski-spacetime one has Γ αtt = ∂αΦ/c2, which would give rise to a
Newtonian equation of motion in the slow-motion limit, d2xi /dt2 + ∂iΦ = 0, if the
field is static and if γ ≃ 1 such that t = τ. 2Γ αit u

tui = 2Γ αit cu
i would correspond

to the Coriolis-acceleration with its proportionality to 2υ, and lastly Γ αij u
iuj would

give rise to the centrifugal acceleration ∝ υ2.

F.3 Classical Raychaudhury-equation and geodesic deviation

The idea of a test particle is very transparent: It couples through its charge to the
corresponding field (without changing the field itself!) and moves according to
its equation of motion, indicating the strength and orientation of the field. It is
worthwhile noticing that in this way the relativity principle concerning the motion
of the test particle is applied to the dynamics and transformation properties of the
field, in order to have the two consistent with each other: The transformation of the
velocity unter Lorentz-transforms is given by uµ → Λ

µ
αuα, and of the field tensor

Fµν → Λ
µ
αΛ

ν
βFαβ.

Exactly the same applies to the motion of particles through the gravitational field,
with one peculiarity: If the particle is in a state of free-fall, one has the impression
of perfect weightlessness when travelling along with the particle, and Einstein’s
equivalence principle then stipulates that the metric is locally Minkowskian and
that the first derivative of the metric vanishes. So you might wonder where gravity
actually is contained! Gravity determines the relative acceleration between freely
falling test particles separated by a distance δµ:

d2δµ

dτ2 = −Rµαβνu
αuβδν (F.310)

with the Riemann-curvature Rµαβν: If spacetime is flat with no curvature, Rµαβν = 0
and consequently

d2δµ

dτ2 = 0 → δµ = aµτ + bµ (F.311)

with two integration constants aµ and bµ, indicating that there is a linear change in
the particle’s relative distance δµ. If the curvature, however, is non-vanishing, test
particles get accelerated relative to each other (despite the fact that nobody travelling
along with the particles would feel this acceleration).

Let’s understand this in Newton-gravity: Two particles follow trajectories accord-
ing to Newton’s equation of motion, ẍi +∂iΦ(x) = 0 and ÿ i +∂iΦ(y) = 0. Their relative
distance δi = y i − xi follows then the equation of motion
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δ̈i = ÿ i − ẍi = −∂iΦ(y) + ∂iΦ(x) = −∂i∂jΦ δ
j (F.312)

with the Taylor-expansion Φ(y) ≃ Φ(x) + ∂jΦ (y − x)j . Therefore, the tidal field ∂i∂jΦ

is responsible for the relative acceleration. This is effectively the Newtonian version
of the geodesic deviation equation F.310.

It is very illustrative to imagine the following experiment: Let’s have a couple of
test particles situated at the corners of a cube fall through space(time) and monitor
the change in volume or the change in shape of that cube, because intuitively, the
volume change should be related to the enclosed mass. For the relative motion of two
corners we would write y i = xi + υi∆t, so that we can observe a shear

∂y i

∂xj
= δij +

∂υi

∂xj
∆t (F.313)

if there are velocity gradients. Thinking back of the chapter about Lie-symmetries,
we might think that these are just the first two terms of a Taylor-expansion of

∂y i

∂xj
= exp

(
∂υi

∂xj
∆t

)
(F.314)

Volumes transform under this coordinate change according to

d3y = det
(
∂y i

∂xj

)
d3x (F.315)

with the functional determinant, so that we get

ln det
(
∂y i

∂xj

)
= tr ln

(
∂y i

∂xj

)
≃ tr

(
∂υi

∂xj
∆t

)
= ∂iυ

i∆t (F.316)

such that the rate of change of the volume is proportional to the divergence of the
velocity field, which is immediately apparent and intuitive. We have used the relation
ln detA = tr ln A and the approximation ln(1 + ϵ) ≃ ϵ for small ϵ. For a very small
time interval, the velocity is

υi = −∂iΦ ∆t (F.317)

and consequently
∂υi

∂xj
= −∂i∂jΦ ∆t (F.318)

The tidal field tensor can be decomposed into a trace and a traceless part,

∂i∂jΦ =
(
∂i∂jΦ − ∆Φ

3
δij

)
+
∆Φ

3
δij (F.319)

where the velocity divergence would only pick up ∆Φ, which in turn is given by
4πGρ through the Poisson-equation:
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ln det
(
∂y i

∂xj

)
= 4πGρ ∆t2 (F.320)

That means, that the cloud of freely falling test particles changes its volume dynam-
ically in proportion to ∆Φ or, equivalently, 4πGρ. If the cloud falls through empty
space, the volume would change linearly with ∆t as the corners of the cloud would
follow inertial motion, and the traceless part of the tidal shear field can only have an
influence on the shape of the cloud but not its volume.

F.4 Gravitational lensing

We should spend a couple of minutes on the issue of gravitational light deflection to
clear up misconceptions about how light could be at all influenced by gravity or cur-
vature. There is a perfectly valid set of Maxwell’s equations on a curved background
which allow for wave-like solutions, but here we should see how null-lines defined
by ds2 = 0 as photon trajectories notice gravity.

A good starting point is a weakly perturbed Minkowski line element,

ds2 =
(
1 + 2

Φ

c2

)
c2dt2 −

(
1 − 2

Φ

c2

)
γijdx

idxj (F.321)

valid with a Cartesian coordinate choice and if |Φ| ≪ c2. γij is the Euclidean metric.
A conventional, non-relativistic particle experiences the line element as the pas-

sage of proper time, ds2 = c2dτ2, and if the particle is non-relativistic, it moves
essentially only in the dt-direction and doesn’t change its spatial coordinates by a
large amount, dxi = 0. Then there will be a gravitational dilation of proper time
relative to coordinate time

ds2 = c2dτ2 =
(
1 + 2

Φ

c2

)
c2dt2 → τ =

√
1 + 2

Φ

c2 dt ≃
(
1 +

Φ

c2

)
dt (F.322)

caused by the gravitational potential Φ, which is negative as Φ = −GM/r, such that
dτ < dt, with the approximation

√
1 + ϵ ≃ 1 + ϵ/2.

A photon, however, traces out a trajectory characterised by ds2 = 0 and proper
time is not sensibly defined. The effective speed of propagation of the photon is the
rate at which the coordinates dx pass by in units of coordinate time dt, leading to

c′ =
dx
dt

= ±

√√
1 + 2 Φ

c2

1 − 2 Φ
c2

c ≃ ±
(
1 + 2

Φ

c2

)
c (F.323)

with the approximation 1/(1 − ϵ) ≃ 1 + ϵ for small ϵ. That is a surprising result, as
the effect of a gravitational field on a relativistic particle is twice as strong as on a
non-relativistic particle. If again Φ = −GM/r, the effective speed of propagation c′

becomes zero at 2GM/c2 = rS, which is known as the Schwarzschild radius. You see,
it’s not a matter of energy or of time of flight when a photon can not escape from a
black hole; in these coordinates it’s the case that the effective speed of propagation
reaches zero at rS, so the photon does not make any headway (in either direction!).

It’s a good idea to follow this thought a bit further: For a radially moving photon
in the potential Φ = −GM/r, we have
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dr
dt

= ±
(
1 − 2GM

c2r

)
c → dr

1 − rS/r
= ±cdt (F.324)

which is solved by rS ln(r − rS) + r = ±ct up to an integration constant, let’s call it p
for the + branch and q for the − branch. This integration constant can be made the
new radial coordinate,

p = rS ln(r − rS) + r + ct and q = rS ln(r − rS) + r − ct (F.325)

or differentially with α = (1 − rS/r)−1:

dp = cdt + αdr and dq = cdt − αdr (F.326)

with these new coordinates, the line element becomes

ds2 ≃ α−1c2dt2 − αdr2 = α−1(dp − αdr)(dq + αdr) − αdr2 =

α−1
(
dpdq + α(dp − dq)dr − αdr2

)
− αdr2 (F.327)

which becomes by using dp − dq = 2αdr simply

ds2 =
(
1 − rS

r

)
dpdq (F.328)

The line element is effectively given now in terms of light cone coordinates, with
a so-called conformal factor in front: This conformal factor doesn’t change light
propagation as ds2 = 0 and the factor is never zero, so dpdq = 0 already characterises
the trajectory of a photon: We have absorbed the action of the gravitational field in a
redefinition of the coordinates.

F.5 Gravitational field equation

From what we’ve learned the gravitational field equation should be a second-order
hyperbolic field equation which is at least covariant under Lorentz-transforms. A first
guess could be that gravity is some kind of electrodynamics for masses, so we could
write

□Aµ = −4πG
c

ȷµ (F.329)

with At being the gravitational potential Φ and ȷt the matter density ρ, the idea being
that momentum density along with rest mass sources the gravitational field. Already
now it might be a bit weird that ȷt is not the rest mass energy density.

Surely, in the case of static field one would fall back onto the Poisson-equation,
but for instance the incorporation of the cosmological constant λ would be unclear,
as the equation is vectorial and not scalar as our intuitive rewriting of the Poisson
equation

□
Φ

c2 = −4πG
c4 (c2ρ + 3p) +

λ

c2 (F.330)

But there is a more fundamental problem: The rest mass energy density c2ρ

transforms differently than the electric charge density. If you imagine a cloud of
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electrical charges viewed from a moving system, one perceives that cloud Lorentz-
contracted by a factor of γ such that the charge density is higher by that factor, in
agreement with the transformation property of a vector ȷµ → Λ

µ
αȷα. A cloud of matter

viewed from another Lorentz-system has the same effect of Lorentz-contraction of the
volume along the direction of motion, but also a relativistic mass increase by another
factor of γ (indirectly, as a consequence of time dilation: one assigns a higher amount
of inertia to the system). To get two powers of γ in the transformation, c2ρ must be
the tt-component of a tensor, in this case the energy momentum tensor Tµν. The
transformation property would be Tµν → Λ

µ
αΛ

ν
βTαβ, and with the proportionality of

Λ
µ
α ∝ γ this actually works out. In summary, the gravitational field equation would

need to be at least tensorial, in the form

□hµν = −4πG
c2 Tµν (F.331)

A second large conceptual difference is the nonlinearity in energy-momentum
conservation, expressed by the innocently looking conservation law ∂µTµν = 0, with
typical nonlinear terms arising in the equations of relativistic fluid mechanics. This
in turn implies that eqn. F.331 can only be valid in a linearised limit.

The solution to these problems is much more complex and requires differential
geometry: Gravity is thought to be equivalent to spacetime geometry, where curvature
is sourced by the energy-momentum content. If that relationship is to be (i) a second-
order, hyperbolic relation, which (ii) respects energy-momentum conservation, if (iii)
spacetime is 4-dimensional and if the (iv) metric of spacetime is linked to the energy-
momentum tensor in a (v) local way, then general relativity is uniquely defined, as
stated by Lovelock’s theorem.
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G temperature

G.1 Thermal energy

Thermodynamics is a very abstract physical theory which defines state variables and
establishes relationships between them. Most importantly, it provides a definition
of temperature for systems in a state of thermal equilibrium. But thermodynamics
does not make any assumption about the internal structure of systems and how they
would give rise to relations between their state variables: that particular relation is
provided by statistical mechanics, i.e. the mechanical theory of systems with many
degrees of freedom. One can think of thermodynamics as an effective theory of these
systems (typically, the number of degrees of freedom is of the order of Avogadro’s
number or higher) in thermal equilibrium, where on average each mode carries the
same share of the total thermal energy: this is meant by equipartition.

It is only sensible to speak about thermal energy in thermal equilibrium: While
microscopically there is a continuous reshuffling of energy between all degrees of
freedom of a system, macroscopically there is no discernible dynamics at all. The
amount Q of thermal energy that an object of mass m stores at temperature T is given
by

Q = c(T)mT (G.332)

with the specific energy c(T), possibly a function of T. It summarises how much
thermal energy can be stored in a system, effectively by counting the degrees of
freedom the substance provides if the total mass is m.

G.2 Axioms of thermodynamics

Thermodynamics is a sensibly defined theory even if one does not have the slightest
clue about the internal structure of matter. But we can turn this around to our advan-
tage: There are sensible thermodynamical properties and definitions of temperature
for almost every physical system, even if we do not know a prior how it works in-
ternally. For instance, it is quite reasonable to consider the electrodynamic field in
thermal equilibrium or to imagine thermodynamical properties of black holes, i.e. of
gravity.

Thermodynamics is defined axiomatically, and it’s really a good place to appreciate
the abstractness of it:

0. Heat flows from hot to cold until a thermal equilibrium is established, charac-
terised by a common temperature T.

1. The energy content U of a system can be changed by dU, either by performing
mechanical work δW on it or by changing its thermal energy by δQ: Effectively,
the law of energy conservation encompasses thermal energy, too: dU = δW + δQ

2. A system can not perform mechanical work out of thermal equilibrium; you
need a non-equilibrium to generate work out of a heat flow, and that is done
imperfectly.

3. Entropy approaches zero at absolute zero in temperature.

With reference to the first law I’d like to clarify that changing the internal energy
content can be done in very different ways:

dU = TdS − pdV + µdN + ΦdQ + B · dM + . . . (G.333)
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where one sees typically the combination of an extensive (i.e. proportional to the
size of the system or the amount of substance) state variable with an intensive
(independent of the size of the system) one: work can be performed by a change dV in
volume against pressure p, or by changing the charge dQ against an external electric
potential Φ, by changing the magnetisation dM against an external magnetic field B,
by changing the number of particles in the system dN against the chemical potential
µ and lastly, by changing the entropy dS against temperature T.

The separation between intensive and extensive state variables is sometimes
washed out, and please be very careful in these cases of ”non-extensive thermody-
namics”: If the potential Φ is in fact sourced by Q itself, it would become extensive.

G.3 Measuring temperature

Temperature is perhaps the most abstract concept in theoretical physics, despite the
fact that everyone has the feeling of intuitiveness about temperature: This is because
the fundamental definition of temperature T is

∂S
∂E

=
1

kBT
(G.334)

so one needs to have an intuition about entropy S first and how it depends on E,
before thinking about temperature T. When measuring temperature, one can go
about in very different ways: Firstly, one can use some empirical relationship between
an easily observable quantity, for instance the length of a column of mercury as
it is determined by the thermal expansion coefficient or the volume of a gas as an
expression of Gay-Lussac’s law to estimate T. Specifically, for an ideal gas we have a
constant V/T at constant pressure p, so

V1

T1
=

V2

T2
→ T2 =

V2

V1
T1 (G.335)

with a reference V1, T1 and a measurement of V2, where for instance, the refer-
ence could be defined through the molar volume of 22.41396954 litres at standard
conditions p = 101.325 kPa and T = 273.15 Kelvin.

But conceptually, one would like to measure temperature mechanically: By con-
version of thermal energy to mechanical energy, the world of thermodynamics is
linked to the world of mechanics, and mechanical energies can be measured unam-
biguously and in accordance with the laws of Galilean or Lorentzian relativity, for
instance by accelerating an object of known mass. Surely, this can not be achieved in
thermal equilibrium, as clarified by the second law of thermodynamics, but if there
is a disequilibrium one can employ a Carnot-engine to convert thermal energy δQ to
mechanical energy δW

δW = η δQ (G.336)

at a known and unique efficiency η, which is only a function of temperatures

η = 1 − T2

T1
< 1 (G.337)

with the temperature T1 of the hot reservoir and T2 fo the cold reservoir: With
a Carnot-engine one can determine at least temperature differences relative to a
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reference temperature that needs to be fixed. For this one chooses the triple point of
water at T = 273.1600 Kelvin at p = 611.657 Pa. At the triple point, the phases of ice,
water and vapour exist simultaneously which is easy to observe.

G.4 Carnot-engines

Carnot-engines are thermal engines: They can convert thermal energy back to me-
chanical energy (or pump thermal energy from the cold to the hot reservoir against
the natural tendency of heat to flow from hot to cold). The conversion from thermal
to mechanical energy is not ideal but happens at an ideal efficiency η = 1 − T2/T1,
which is identical for all Carnot-engines irrespective of how they are built: All that
matters is perfect reversibility in their working principle: If the temperatures are
changed, the efficiency changes without any delay. And Carnot-engines work in a
cyclic fashion: There is no energy stored internally after one sequence is completed.

A traditional construction is the steam-engine-type, where one proceeds in four
phases through (i) isothermal expansion at T1, sucking in the heat Q1, followed
by (ii) adiabatic expansion to bring the temperature from T1 down to T2 with no
heat exchange, (iii) isothermal compression at T2, squeezing out the heat Q2, and
completed by (iv) adiabatic compression to get the temperature from T2 up to T1
again. The amounts of work gained in step (ii) is equal to the work to be invested in
step (iv), so all that matters are the energies in step (i) and (iii):

Q1 =
∫

dS T = T1∆S > 0 and Q2 =
∫

dS T = T2∆S < 0 (G.338)

After one complete cycle of the engine there is no change dU in internal energy as it
works cyclically, so one can conclude

dU = δW + δQ = 0 → W = −Q = −(Q1 + Q2) = (T1 − T2)∆S (G.339)

so we can find for the Carnot-efficiency η the iconic result

η =
W
Q1

= 1 − T2

T1
(G.340)

But actually this is only one way of constructing a Carnot-engine. A completely
different engine would be a propeller on an axis submerged in a gas at temperature T1
on which there is a ratched and pawl-mechanism that only allows the engine to turn
into one direction, lifting a weight in the process and performing mechanical work. In
forward motion, one needs an energy ϵ to disengage the ratched such that an amount
W of work can be gained, and this happens at a rate exp(−(ϵ + W)/(kBT1)). Motion in
the opposite direction frees work W, but nevertheless needs an activation energy ϵ
of the ratched. W is lost, or more exactly, transferred to the gas and dissipated there,
while a random thermal fluctuation provides ϵ to the ratched, at a rate exp(−ϵ/(kBT2)).
In a reversible engine, the two rates are equal,

exp
(
− ϵ + W

kBT1

)
= exp

(
− ϵ

kBT2

)
(G.341)

from which we can define the efficiency η as
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η =
W
ϵ

= 1 − T2

T1
(G.342)

as before! It is perhaps a funny image to combine the steam engine with the ratchet
and pawl-machine, one operating as a thermal engine and the other one as a heat
pump: They would exactly cancel each other out. And in fulfilment of the second
law of thermodynamics: In thermal equilibrium, T1 = T2, the efficiency drops to zero
η = 0 and no mechanical work can be performed.

G.5 Thermal wavelength and quantum statistics

We can take this idea of determining temperature with a mechanical measurement
one step further, specifically by bringing in quantum mechanics and focusing on
kinetic systems, i.e. systems where the thermal energy is present in the form of kinetic
energy in the motion of the particles: The de Broglie-wavelength λ of a particle at
momentum p is given by the relation

p =
h
λ

(G.343)

with Planck’s constant h. On the other hand, the particle’s typical energy would be

E = kBT (G.344)

as a consequence of equipartition. The two ideas are linked through the dispersion
relation

E =
√

(cp)2 + (mc2)2 =

cp, for large momenta cp ≫ mc2

p2

2m for small momenta cp ≪ mc2
(G.345)

Then, we can define the thermal wavelength for relativistic particles,

E = kBT = cp =
ch
λ

→ λ =
ch
kBT

(G.346)

and analogously for non-relativistic particles,

E = kBT =
p2

2m
=

1
2m

(
h
λ

)2

→ λ =
h

√
2mkBT

(G.347)

In both cases, the thermal wavelength becomes shorter with increasing temperature,
as a reflection of the particle’s higher momenta. Measuring λ spectroscopically by
means of a diffraction grid is a perfectly valid determination of temperature: From
the fact that the light of the Sun is visible and yellow in colour we can conclude that
the surface temperature of the Sun must be around 6000 Kelvin.

Thermal wavelength as a scale matters physically as it is intricately linked to the
particle’s being indistinguishable: If the separation of two particles is small compared
to the thermal wavelength, their wave functions, which have a typical extension of
the order λ overlap heavily and a localisation of the particles is not able to determine
which particle is which!
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Additionally, thermal wavelength λ and the associated volume λ3 of a wave
packet provide a scale for the volume of the system, as can be seen for instance in the
canonical partition Z(T, V, N) for an ideal, non-relativistic gas:

Z(T, V, N) =
1

N!

∫ ∏
i

d3pid3qi
h3 exp

− 1
kBT

∑
i

p2
i

2m

 (G.348)

which, due to the non-interaction of particles, separates:

Z(T, V, N) = Z(T, V, 1)N (G.349)

Evaluating the partition sum shows that
∫

d3q is just the volume V of the system and
substituting the thermal wavelength λ gives

Z(T, V, N) =
1

N!

( V
λ3

)N
(G.350)

Funnily, exactly the same expression is valid for a relativistic ideal gas! Writing

Z(T, V, N) =
1

N!

∫ ∏
i

d3pid3qi
h3 exp

− 1
kBT

∑
i

cpi

 (G.351)

by substitution of the definition of λ for the relativistic case. Clearly, λ3 is a scale for
V and we would expect some kind of quantum-mechanical interference effect when
the wave functions are extended and become comparable to the size of the system,
V ≃ Nλ3. And the example of these two classical gases show that h plays a role even
in apparently non-quantum mechanical systems.

G.6 Boltzmann-factor and the fundamental postulate

To imagine a system in thermal equilibrium is not straightforward: On the macro-
scopic level, nothing at all is happening as the system does not evolve mechanically,
and there are no heat fluxes in or out either. But on the microscopic level, there is a
lot going on! All degrees of freedom follow their dynamics defined in Hamiltonian
mechanics and are continuously reshuffling energy, but maintaining equipartition on
average, with a typical energy of kBT present in every degree of freedom. In addition,
there is the fundamental postulate to be fulfilled, that finding the system in any of
the microstates is equally probable, and that observing a degree of freedom acquiring
an amount of energy ϵ by a thermal fluctuation is given by the Boltzmann-probability
exp(−ϵ/(kBT)).

There are various ways which suggest the Boltzmann-factor convincingly, but it is
clearly one way to enforce transitivity: The probability p(ϵ, T) to find a fluctuation of
ϵ at temperature T should be a function of energy difference, i.e.

p(ϵ2, T)
p(ϵ1, T)

= g(ϵ2 − ϵ1, T) (G.352)

where we can introduce an intermediate step,
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g(ϵ3 − ϵ1, T) =
p(ϵ3, T)
p(ϵ1, T)

=
p(ϵ3, T)
p(ϵ2, T)

p(ϵ2, T)
p(ϵ1, T)

= g(ϵ3 − ϵ2, T)g(ϵ2 − ϵ1, T) (G.353)

This suggests a functional equation for the unknown function g(ϵ, T) which is
uniquely solved by g(ϵ, T) = exp(−β(T)ϵ). The dependence of β on temperature T is
heuristically given by

β =
1

kBT
(G.354)

with the Boltzmann-constant kB. Heuristically, this is very sensible, as higher temper-
atures make large thermal fluctuations more likely, and the minus-sign is a reflection
of stability if the system is energetically bounded from below and if the temperature
is positive. This would be the opposite in systems with negative absolute temperature:
Please refer to Sect. G.9 for this.

Let’s see whether thermal fluctuations are real and how they would enter in a
discrete picture of matter versus a continuum picture. A molecule in the atmosphere
experiences continuous collisions with the other molecules maintaining thermal
equilibrium, and by interactions with more than one particle the energy ϵ fluctuates.
The particle can invest this energy to rise up in the gravitational field of the Earth to
the height h determined by the potential energy, ϵ = mgh. This process would take
place at the Boltzmann-probability

p = exp
(
− E
kBt

)
= exp

(
−
mgh

kBt

)
(G.355)

such that the fraction of molecules that can reach the height h, i.e. the density ρ
becomes proportional to exp(−h): This is just the barometric formula.

In a continuum picture the same result has to be explained by this: The atmosphere
as a continuum is described by density ρ, velocity υi and pressure p by the Euler-
equation of ideal fluid mechanics,

∂tυ
i + (υj∂j )υ

i = −
∂ip

ρ
− ∂iΦ (G.356)

from which we derive the hydrostatic equation

∂ip

ρ
= −∂iΦ (G.357)

if the velocities vanish, υi = 0 and if there are no accelerations ∂tυ
i = 0. To continue,

we need to assume a relationship between pressure and density, for instance that
p ∝ ρ at fixed temperature as predicted by the law by Boyle and Mariotte for ideal
gases. Then,

∂iρ

ρ
= ∂i ln ρ ∝ −∂iΦ → ρ ∝ exp(−Φ) (G.358)

with the scaling ρ ∝ exp(−h) for a homogeneous gravitational potential, again leading
to the barometric formula. You see that these two pictures have almost nothing in
common yet lead to the same result, and that the equation of state p ∝ ρ at fixed T
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brushes over a lot of physics but establishes the equivalence between the two pictures.
It is clear that on the level of molecules a fluctuation of kBT ≃ 10−21 Joules matters a
lot (kB = 1.380649 × 10−23J/K and room temperature is about 300 Kelvin), but that it
is completely irrelevant for macroscopic objects.

G.7 Ultra-relativistic Bose gases and the Planck-spectrum

The Planck-spectrum of a thermal gas of photons was one of the decisive systems
which established quantum mechanics along with the hydrogen atom: As abstract as
it may seem, the electromagnetic field can be in a state of thermal equilibrium! As
Maxwell-electrodynamics is perfectly linear, the field can not reach equilibrium by
itself, it can only do so through the interaction with matter. This is important because
otherwise the superposition principle would apply to the modes of the field, and
it would not be possible to transfer energy from one mode to another. In Planck’s
original works he conjures up the picture of a container with perfectly mirrored walls
to contain the electromagnetic field and a grain of coal as a means of interaction and
thermal equilibration. The grain of coal is able to absorb energy from the field and
re-emit it in another mode, called photon, and there is really no resistance of the
system to change the photon number, expressed by the chemical potential µ = 0. The
situation would be different if we’re dealing with particles with a finite rest mass.
Then, one would need to invest at least mc2 to change the particle number and the
chemical potential would be consequently nonzero.

As the particle number is not fixed but controlled by the chemical potential µ
with the specific value µ = 0, corresponding to the fugacity z = exp(β) = 1, along
with a fixed volume V and a temperature T, we have to work with a macrocanonical
partition Z(T, V, µ),

lnZ(T, V, µ) = − 4πV
(hc)3

∞∫
0

ϵ2dϵ ln [1 − exp(βϵ)] =
4πV
(hc)3

β

3

∞∫
0

dϵ
ϵ3

exp(βϵ) − 1
(G.359)

where we use the linear dispersion ϵ = cp valid for photons and β = 1/(kBT). Integrals
like the one in eqn. G.359 involving a monomial ϵn and the Bose-factor are typical
for calculations with bosons: Substituting x = βϵ and dx = βdϵ gives

lnZ(T, V, µ) =
4πV

3(hc)3
1
β3

∞∫
0

dx
x3

exp(x) − 1
=

4π5V
90(hc)3 (kBT)3 (G.360)

using
∞∫

0

dx
xn−1

exp(x) − 1
= ζ(n)Γ (n) = ζ(n)(n − 1)! (G.361)

with Riemann’s ζ-function and the Γ -function as a generalisation of the factorial.
Here, we need the specific value ζ(4)3! = π4/90. With these results, one finds for the
macrocanonical potential J(T, V, µ) the expression

J(T, V, µ) = −kBT lnZ(T, V, µ) =
8π5V

90(hc)3 (kBT)4 (G.362)
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where we include an additional pre-factor of 2 to take care of the two possible spin
states of photons. From this result derives many properties of the Planck-spectrum
automatically: Entropy S and photon number N are both proportional to T3, pressure
is proportional to T4 as well as total energy, as an expression of the Stefan-Boltzmann-
law.

One of the decisive properties is the appearance of the Bose factor

1
exp(βϵ) − 1

→ exp(−βϵ) (G.363)

which falls back on the familiar Boltzmann-factor for βϵ ≫ 1. Primarily the con-
sequences are slight numerical differences to a classical computation involving the
Boltzmann-factor only, as carried out by Wien originally, who found puzzling pre-
factors that he could not make much sense of. If we isolate the spectral energy density
S(ω) from eqn.G.360 and rewrite it in terms of frequency ω, x = ω̄/(kBT) we get

S(ω) =
ℏ

4π2c2
ω3

exp (βℏω) − 1
(G.364)

which transitions for high frequencies ℏω≫ kBT into the classical Wien-limit as the
Bose-factor can be replaced by the Boltzmann-factor

S(ω) =
ℏ

4π2c2ω
3 exp(−βℏω) (G.365)

while for small frequencies ℏω≪ kBT one recovers the Rayleigh-Jeans limit,

S(ω) =
ω2

4π2c2 kBT (G.366)

which of course does not yield a finite result when integrating over all frequencies:
That’s the ultraviolet catastrophy. The key result in this context is that at high energies,
the system behaves classically and at low energies quantum mechanically with an
overabundance of photons at low energies. The two regimes are separated roughly by
the peak of the Planck-spectrum as the Wien displacement law shows:

dS(ω)
dω

= 0 → ℏωmax ≃ 2.8kBT (G.367)

This overabundance of photons at low energies leads to a super-Poissonian counting
statistic experimentally verified by the Hanbury-Brown and Twiss experiment.

G.8 Entropy

The concept of entropy is mysterious and perhaps as complex to understand as
temperature, so let’s go through different aspects of entropy:

• Weirdly, the most straightforward view on entropy is a system of ultra-relativistic
bosons. As we’ve shown in Sect. G.7, entropy S ∝ T3 as well as particle number
N ∝ T3, so that both S and N increase in proportion with increasing temper-
ature T, as the system generates new photons. Therefore, entropy is just the
number of photons in the system and is perfectly extensive, and clearly one
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does not have independent control over S and N: As a macrocanonical system,
the ultra-relativistic photon gas has T, V and µ as independent state variables,
with the particular property µ = 0 as a reflection of the masslessness of photons.

• In a classical ideal gas the particle number is fixed (and the state variable in
the canonical ensemble are T, V and N): Entropy is rather a reflection of the
volume of the energetically allowed phase space.

• The Carnot-engine offers a completely different view on entropy: The Carnot-
engine absorbs Q1 from one reservoir at T1 and dumps Q2 = T2/T1 Q1 onto
the reservoir at T2, because Qi /Ti = Si , which is equal: Entropy controls the
conversion from thermal to mechanical energy. W/Q1 = η = 1 − T2/T1 is then
the efficiency.

• The first law of thermodynamics states that dU = TdS − pdV ± . . .: Entropy is
an extensive quantity. If one changes it, one performs work against temperature,
similarly to changes in volume perform work against pressure. Vice versa,
∂S/∂E = 1/T is the formal definition of temperature as a derived quantity.

A nice example of entropy in a discrete system a polymer chain: Please assume
that a polymer string is made from N monomers, which can be built into the chain
in the long configuration with length a and the short configuration with length
b < a. From the outside, one controls temperature T (through a heat bath), string
tension σ (effectively as an analogue to pressure p) while N is fixed; With T, σ and
N the suitable state function is the enthalpy G(T, σ, N), and as N is fixed, we’ll use
a canonical description, with a replacement of l (or V) by σ (or p): The canonical
partition is given by

ZG(T, σ, N) =
∑
i

(
N
i

)
exp

(
−σl(i)
kBT

)
(G.368)

summing over all possible states weighted by the Boltzmann-factor, with the chain
length l(i)

l(i) = ai + (n − i)b (G.369)

The canonical partition can be summed out to yield

ZG(T, σ, N) =
(
exp

(
− σa
kBT

)
+ exp

(
− σb
kBT

))N

(G.370)

which factorises, which is typical for non-interacting states, ZG(T, σ, N) = ZG(T, σ, 1)N .
The enthalpy G is given by

G(T, σ, N) = −kBT ln Z(T, σ, N) = −TS + σl + µN (G.371)

along with the differential dG

dG = −SdT + ldσ + µdN (G.372)

such that we get
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S = −∂G
∂T

= NkB ln ZG(T, σ, 1) +
N

Z(T, σ, 1)

(
a exp

(
− σa
kBt

)
+ b exp

(
− σb
kBT

))
σ

T
(G.373)

as well as

l =
∂G
∂σ

= N ×
a exp

(
− σa
kBT

)
+ b exp

(
− σb
kBT

)
exp

(
− σa
kBT

)
+ exp

(
− σb
kBT

) (G.374)

The equation of state l(T, σ, N) has a curious property, as the length of the chain
decreases with increasing temperature: Higher temperatures enable the system to
transition from elements in the long configuration to the energetically disfavoured
short configuration by providing thermal fluctuations more easily. This unusual
behaviour is an example of an entropic force, as the shortening of the chain comes
with an increase in entropy. In addition, the proportionality of S with the number N
of chain elements underlines the extensivity of S.

G.9 Negative absolute temperatures

To make things even weirder, it’s perfectly valid to construct systems of negative
absolute temperature! Imagine a system that is energetically bounded from above,
with fewer and fewer possibilities to realise states of increasing energy. Then, the
derivative ∂S/∂E that defines temperature, would be negative, and consequently, T
would be smaller than zero as well, according to

∂S
∂E

=
1

kBT
(G.375)

Of course, this could never be realised in a gas-dynamical system! There, the energy
is bounded from below, and S increases as a function of E, as there is a larger phase
space at higher energies, and T is necessarily positive.

It gets even weirder when powering a Carnot-engine with two reservoirs, one at
positive and one at negative T: Then, the Carnot-efficiency η becomes larger than one!
In some sense, thermal energy is in this case the more useful form of energy compared
to mechanical energy and while the first law of thermodynamics formulating energy
conservation for mechanical and thermal energy combined is of course valid, it
becomes more attractive to store energy in these systems combining a reservoir with
T > 0 with one where T′ < 0. By powering the Carnot-engine with mechanical energy
one makes T more positive and T′ more negative, and using the Carnot-engine as
a thermal engine one decreases T and make T′ less negative, and gets mechanical
energy back at the efficiency:

η = 1 − T′

T
> 1 (G.376)

so in some sense, thermal energy is the more useful energy form compared to
mechanical energy.

The efficiency ηwould be strictly lower than one for thermal engines operating
between only positive absolute temperatures or only negative absolute tempera-
tures. Examples of systems with negative absolute temperature are for instance
spin-systems, where the state of highest energy (all spins aligned) corresponds to a
state of low entropy because of the high degree of order, and in approaching the state
of highest energy would find fewer and fewer realisations compatible with the energy,
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such that ∂S/∂E becomes negative: Imagine a grid of spins, where the state of highest
alignment (all spins pointing into the same direction) would be the state of highest
energy. Then, having one spin point into the other direction could be realised in n
different ways, having two spins point into the other direction already by n(n − 1)
possibilities, so the number of possible realisations increases with decreasing energy,
or decreases with increasing energy: That would imply a negative temperature.

G.10 Reversibility

It seems that statistics of systems with many degrees of freedom brings in something
new: While all fundamental laws of Nature are perfectly time reversible (due to the
second derivatives in the field equations or the equations of motion), we see that there
are irreversible processes like mixing of liquids accompanied by entropy increase.

But this difference is quantitative and not fundamental: Imagine a ball pit filled
with balls; 1000 balls of each of 10 different colours, and a group of children mixing
the balls continuously. The state where the ball pit is unmixed is only a single one
out of 101000 different realisations! (Unmixed means that each ball is situated in
one corner of the ball pit assigned to its colour.) If the children playing in the ball
pit stir the balls continuously and if there is a new realisation every second, on can
expect a spontaneous unmixing in 101000 seconds. As the Universe is ”only” 1017

seconds old, one would need to wait 10983 times the age of the Universe for this to
occur. And a system of 104 particles is really nothing compared to Avogadro’s number
NA = 6.02214076 × 1023/mol!

G.11 Information entropies

The fundamental postulate of statistical mechanics, namely that in thermal equilib-
rium all states of a given energy are equally probable to be assumed by the system and
that states of different energy are weighted relative to each other with the Boltzmann-
factor exp(−β(ϵ2 − ϵ1)) opened the way to a fundamental microscopic theory behind
thermodynamics. We can ask the question whether the fundamental postulate can be
motivated. You might have already guessed that this is the case: Thermal equilibrium
could be characterised by making the least assumption about the system in the sense
that the random process that distributes the system among its possible states is as
random and non-committal as possible.

For a given discrete random distribution pi one can define the Shannon-entropy S

S = −
∑
i

pi ln pi (G.377)

as a measure of randomness. Shannon’s entropy S has these properties:

• S ≥ 0, because the overall minus-sign takes care of the fact that pi ≤ 1, and the
entropy is bounded from below.

• S = 0 if one of the pi = 1. Because
∑
i
pi = 1, the other pi need to be zero, and

there is no randomness involved.

• For equally probable outcomes, pi = 1/n and consequently S = ln n, such that
the entropy increases with the number of possible outcomes.
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• S is additive for statistically independent events, pij = pipj implies

S = −
∑
ij

pij ln pij = −
∑
i

∑
j

pipj ln(pipj ) =

−
∑
j

pj
∑
i

pi ln pi −
∑
i

pi
∑
j

pj ln pj = Si + Sj (G.378)

• Shannon’s entropy is maximal for equally probable outcomes. Think of S as
a functional dependent on the set of probabilities pi , so that variation of S
would determine pi , under the condition that

∑
i
pi = 1 is met, which can be

incorporated with a Lagrange multiplier λ:

S = −
∑
i

pi ln pi − λ

∑
i

pi − 1

 (G.379)

such that the variation δS with respect to pi becomes

δS = −
∑
i

δpi ln pi + pi
1
pi
δpi − λ

∑
i

δpi = −
∑
i

(ln pi + 1 + λ) δpi = 0 (G.380)

such that pi is constant with the value exp(−(1 + λ)), where λ can be fixed with
the boundary condition

∑
i
pi = 1.

In particular the last point suggests already now a uniform distribution in maximisa-
tion of the information entropy S.

The generalisation of Shannon’s entropy to a continuum of outcomes is very
interesting but contains a few dangerous spots: For a probability density p(x)dx one
can define

S = −
∫

dx p(x) ln p(x) (G.381)

which shares with the definition eqn. G.377 for the discrete case the value S = 0 for
the certain outcome, is additive for independent events and is proportional to the
logarithm of the interval length b − a for a uniform distribution, which incidentally
maximises S, too. But it is not bounded from below by zero, which can be seen in the
example of the uniform distribution: S = ln(b − a) can assume arbitrarily negative
values if the interval size b − a is small enough.

Perhaps even more importantly, S changes under transforms of the random vari-
able: p(x)dx = p(y)dy as a transformation law is suggested by integration by substitu-
tion, ∫

dx p(x) =
∫

dy
dx
dy

p(x(y)) (G.382)

so that p(x)dx is invariant, but ln p(x) is not as it becomes ln p(y) + ln dx/dy. This,
however, does not play a role in relative information entropies like the Kullback-
Leibler-divergence

∆S = −
∫

dx p(x) ln
p(x)
q(x)

(G.383)
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which quantify the relative amount of randomness between the distributions p(x)
and q(x): The transformation Jacobian drops out in the ratio p(x)/q(x).
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Theoretical physics is commonly taught in separate lectures, 
illustrating the physics behind the great constants of Nature: 
Electrodynamics and the speed of light, quantum mechanics and 
Planck’s constant, thermodynamics and Boltzmann’s constant, 
and finally relativity with Newton’s constant as well as the cosmo-
logical constant. In these lecture notes, the concepts of theoretical 
physics are illustrated with their commonalities, and phenomena 
are traced back to their origin in fundamental concepts.
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