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A statistical physics

The purpose of this script is an introduction into the fundamental concepts of ther-
modynamics and how they are determined from a microscopic model of matter. This
includes especially the concept of the state variables temperature, pressure and chem-
ical potential, and how changes of entropy, volume and particle number introduce
changes in the internal energy; as well as how well thermal energy can be used in
mechanical devices. Restricting ourselves to thermal equilibria where a notion of tem-
perature exists, it is possible to set up partition sums over the microscopic states that
a system might be in and to link these partition sums to thermodynamic potentials:
Ideally, this bridges the gap between thermodynamics as a continuum theory with no
particular assumption about the microscopic properties of a system, and the partition
sum as a reflection of exactly these microscopic properties. Thermodynamics and sta-
tistical physics as the fundamental theory behind it are incredibly general and require
temperature as a concept, joined with occupation statistics of the respective states
of a system and a counting scheme for these states, whether they form a continuum
or are discrete. We will end this lecture by looking at the phenomena of statistical
systems like magnetism or Bose-Einstein-condensation and the dynamics of statistical
systems with the Langevin-equation and the Fokker-Planck-equation. Perhaps the
best way to view the relation between thermodynamics and statistical physics is that
of an effective field theory: Thermodynamics describes systems without any recourse
to their actual microscopic structure, which makes concepts like entropy so difficult
to understand.

Statistical physics is a branch of physics that uses methods of probability theory
and statistics, and particularly the mathematical tools for dealing with large popula-
tions and approximations, in solving physical problems. It can describe a wide variety
of physical systems with an inherently stochastic nature on the microscopic level.
Its applications include many problems in the fields of physics, biology, chemistry,
neuroscience, and even some social sciences, such as sociology and linguistics. Its
main purpose is to clarify the properties of matter in aggregate, in terms of physical
laws governing atomic motion. statistical physics is so incred-

ibly general that you find appli-
cations in all branches of physics
including gravity

Without any idea about atoms and molecules in the time before Ludwig Boltzmann
one would have imagined the atmosphere to be a continuum described by field
quantities like density, pressure and velocity, obeying the Euler-equation

∂tυ + (υ · ∇)υ = −
∇p
ρ
− ∇Φ (A.1)

relating the accelerations of the fluid elements to gradients in pressure p and gravita-
tional potential Φ, for an ideal fluid. Assuming that the atmosphere is static, υ = 0,
and stationary, ∂tυ = 0, results in the hydrostatic equation

∇p
ρ

= −∇Φ (A.2)

For continuing, one needs a (possibly phenomenological) relation between pressure
and density, i.e. an equation of state. If there is a proportionality p ∼ ρ one gets

∇p
ρ
∼
∇ρ
ρ

= ∇ ln ρ = −∇Φ → ρ ∼ exp(−Φ). (A.3)
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a. statistical physics

Assuming that the gravitational potential is homogeneous,

g = −∇Φ = const → Φ = gh → ρ ∼ exp(−h) (A.4)

i.e. the barometric formula with an exponential decrease of density with height h.
The reasoning in statistical physics is very different: Matter is not a continuum

but made of discrete particles, which experience thermal fluctuations in their energy,
due to a continuous reshuffling of energy between all mutually interacting degrees of
freedom. In thermal equilibrium, however, it is possible to write down the probability
of a thermal fluctuation of a certain size, i.e. the probability that the energy ϵ is
borrowed from the system by a single particle or degree of freedom: According to
Ludwig Boltzmann, this probability is given by

p(ϵ) ∼ exp
(
− ϵ

kBT

)
(A.5)

such that large fluctuations in energy are rare, but become less rare when the
temperature T is increased. After a particle has borrowed the energy ϵ, it can climb
in the gravitational field of the Earth to a height ϵ ∝ gh, and the fraction p(ϵ) of all
particles must be the density at height h

ρ ∼ exp(−h) (A.6)

While the result is certainly consistent with the one from continuum mechanics, it
seems to involve a lot of intuition. In particular, eqn. A.5 makes a deep statement
about the probability of a thermal fluctuation to occur: Clearly only applicable in
thermal equilibrium and for systems with a defined temperature but without any
specification of the internal structure of the system there is a universal probability
distribution of a rather simple shape. The only parameter in eqn. A.5 is the Boltzmann-
constant kB with the numerical value

kB ≃ 1.3806503 × 10−23 J
K

(A.7)

which is an incredibly tiny number: Macroscopic objects do not move spontaneously,
in contract to microscopic objects such as atoms or molecules, which are in a state
of constant motion. At room temperature T ≃ 300K there is typically a fluctuating
thermal energy of ϵ = kBT = 4.2 × 10−21J, which is irrelevant compared to e.g. typical
kinetic or potential energies of a macroscopic object.

2
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B thermodynamics

Thermodynamics is the branch of physics that deals with heat, temperature and
their relation to energy and work. The relation between these quantities is defined
by the four laws of thermodynamics, irrespective of the composition or specific
properties of system in question, neither its constituents nor its composition: As
such, thermodynamics is incredibly general and finds applications almost everywhere
where thermal equilibria are possible and temperatures are defined. Statistical physics
is the microscopic theory behind thermodynamics: Here, the actual microscopic
properties of a system matter, and under the assumption of thermal equilibrium
statistical physics provides a relation between thermodynamic quantities through
partition sums. It was the grand accomplishment of Ludwig Boltzmann to realise
that thermal energy is energy distributed in the microscopic degrees of freedom of a
system if it is fundamentally discrete. With a continuum model of matter one does
not have a chance to have this thought, rather, one is forced to think of thermal energy
as a ”fluid” that can be absorbed by any substance, increasing its temperature.

Systems in thermodynamics are characterised by state variables, which fall into
two groups: Extensive state variables are proportional to the amount of matter or
the physical size of the system, and include volume V, entropy S, particle number N,
electric charge ρ or magnetisation M. Each of these state variables has an intensive
state variables as a partner that does not depend on the size of the system, for
instance the pressure p, the temperature T, the chemical potential µ, the external
electric potential Φ and the external magnetic field B. Extensive and intensive state
variables are combined into the Euler-relation, stating that the internal energy U is

U = TS − pV + µN + Φρ + B ·M + . . . (B.8)

Changes dU of the internal energy can be introduced by changing the extensive state
variables and performing abstract work against the intensive state variables,

dU = TdS − pdV + µdN + Φdρ + B · dM + . . . (B.9)

Commonly, we will restrict ourselves to just three of the terms, U = TS−pV +µN and
dU = TdS − pdV + µdN. There are cases where the separation between intensive and
extensive state variables is not as clear, for instance in systems with self-interactions,
i.e. when the potential is sourced by the electric charge density itself, making it
depend on the physical size of the system, too.

B.1 Ideal classical gases

The behaviour of an ideal gas in terms of the three relevant state variables volume V,
pressure p, and temperature T realised as being very dilute, is determined through
three relationships: Firstly, the Boyle-Mariotte law, specifying that pV =const at fixed
T, secondly, the Gay-Lussac law, requiring that V/T =const at fixed p, and thirdly, the
Amontons law, making sure that p/T =const at fixed V. These three statements can
be combined into the ideal gas law

pV = NkBT (B.10)

by realising that the combination pV/T =const= NkB is extensive (well, p and T are
certainly not extensive but V is) and depends on the amount of substance N.

3
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b. thermodynamics

B.1.1 Van der Waals-gases

The ideal gas law applies only to idealised systems, which are approximated by dilute
gases, so the particle density N/V has to be a relevant quantity. In fact, real gases are
well described the van der Waals-equation,(

p + a
(N

V

)2 )
·
(
V − Nb

)
= NkBT (B.11)

with two empirical constants a and b. The second factor is due to the fact that not the
entire volume V of a system is accessible by the particles, as they are extended and
occupy a tiny but nonzero volume themselves, and the mutual attractive interaction
between the particles leads to an effectively higher pressure. Both effects result
naturally out of the Lennart-Jones-potential between atoms or molecules with a long-
range attractive interaction mediated by electric forces and a short range repulsive
force generated by the exclusion principle.

It should be emphasised that the validity of the ideal gas equation or the van
der Waals-equation does not rely at all on the existence of atoms or molecules as
fundamental constituents, but would be perfectly applicable to a continuum. Then,
the particle number N would get replaced by the gas constant R, and the amount of
substance is characterised by the number n of moles, kBN = Rn. For a single mole,
n = 1, suggesting the relation kBNA = R with Avogadro’s number NA.

B.1.2 Phenomenological temperature measurements

The ideal gas law can be used to determine temperatures, for instance with Gay-
Lussac’s law: T ∝ V at fixed p, such that a measurement of the volume V is indicative
of the temperature T. Surely this measurement is phenomenological as it depends on
a particular substance, and furthermore, it is a bit unclear how a measurement of T
in one system would change under e.g. Lorentz- or Galilei-transformations. For that
purpose, one would like to carry out measurements of temperature mechanically and
convert thermal energy into measurable mechanical energy, with a clear transforma-
tion behaviour under frame changes: This is achieved by Carnot-engines, as we will
see in a second.

It is curious that an ideal gas reaches V = 0 at a given pressure at a finite temper-
ature of −273 degrees Celsius, which is set to be the zero-point of the Kelvin scale.
Although that temperature can never be reached in practice, it can be determined by
means of extrapolation from finite T.

B.2 Zeroth law of thermodynamics

Two systems that are brought into thermal contact exchange thermal energy until
they have reached thermal equilibrium characterised by a common temperature. In
thermal equilibrium the flux thermal energy subsides. Typically the time scale of
reaching thermal equilibrium (if it is defined at all, there are mind-blowing counter
examples) would be determined by the content of thermal energy and the magnitude
of heat flux.
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b.2. zeroth law of thermodynamics

Typically, the change δQ in thermal energy Q associated with a change dT in
temperature T is related by

δQ = CdT (B.12)

with the heat capacity C. In contrast to the change dT of the state variable, the
change is thermal energy depends on how exactly the change in state is achieved:
Therefore, it is not an exact differential. The relation δQ = cdT served historically
as the definition of the calorie by the amount of thermal energy to be added to a
quantity of water to raise the temperature by a certain amount.

Thermal energy is proportional to the amount of substance in a system (again,
there are counterexamples) and is therefore an extensive quantity unlike temperature.
Therefore, it makes sense to define the specific heat cX

C = mcX (B.13)

The index X is meant to illustrate that it matters how the change in state is achieved.
For instance, an ideal gas can change the amount of thermal energy that it contains if
the temperature is increased, but that increase can be conducted while keeping the
pressure p fixed or by keeping the volume V fixed, leading to different results for cX.

B.2.1 Exact and closed differentials

It is commonly the case in changes in state of a thermodynamical system that it
matters how that change in state has been achieved. For instance, an equation state
p(T, V) would exhibit a differential change dp

dp =
∂p

∂T

∣∣∣∣∣
V

dT +
∂p

∂V

∣∣∣∣∣
T

dV (B.14)

so that a pressure change can be done increasing the temperature while keeping the

volume fixed: In this case, the system would react according to ∂p
∂T

∣∣∣∣
V

. Alternatively,

the volume can be changed while keeping the temperature fixed, such that ∂p
∂V

∣∣∣∣
T

becomes relevant. Or even more general, one can combine the two changes dT and
dV.

When trying to answer the question when exactly a change in state is independent
of the way how it has been achieved, the criterion of integrability comes in: If a change
in state is path-independent, it only can reflect the initial and final state,

F =

B∫
A

dF = F(B) − F(A) (B.15)

so changing the system from A to B and back to A along a different path should yield
zero, ∮

dF = 0 (B.16)

5



b. thermodynamics

For a function F with the differential

dF =
∂F
∂x

dx +
∂F
∂y

dy = A(x, y)dx + B(x, y)dy (B.17)

one can use the Stokes-theorem in an advantageous way and find∮
dF =

∮
A(x, y)dx + B(x, y)dy =

∫
dxdy

(
∂B
∂x
− ∂A

∂y

)
(B.18)

That integral vanishes if
∂B
∂x

=
∂A
∂y

(B.19)

which is made sure by
∂B
∂x

=
∂2F
∂x∂y

=
∂2F
∂y∂x

=
∂A
∂y

(B.20)

with the interchangeability of the second partial derivatives according to the Schwarz-
theorem. Therefore, the path-independence is made sure by the condition ∂B/∂x =
∂A/∂y.

In the general case one could imagine a inexact differential

δF = C(x, y)dx + D(x, y)dy (B.21)

without C = ∂F/∂x nor D = ∂F/∂y, so that ∂C/∂y , ∂D/∂x, and no valid integrability
condition applies. In these cases, integrals over δF would become path-dependent
and loop integrals will not vanish in general.

B.3 First law of thermodynamics

The foundational idea of the first law of thermodynamics is that thermal energy (or
heat) is a form of energy: It can be converted to and from other forms of energy, while
a global energy conservation law for the sum of all energy forms is fulfilled. For
instance, the change dU in internal energy of a system would consist of the changes
δW of the mechanical (or electromagnetic) energy content as well as of the change
δQ of the thermal energy content:

dU = δW + δQ (B.22)

In contrast to the changes δW and δQ, which depend on the exact way in which
the change in state is done, the internal energy is conserved: If one takes a system
to a certain state and back to the original state along a second path, there can not
be any net change in internal energy. Therefore, dU is an exact differential and the
path-independence of the changes in state are summarised by∮

dU = 0 (B.23)

6
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b.3. first law of thermodynamics

The conservation of total energy contained in a system as the sum of heat and
mechanical energy can be expressed pictorially by the statement, that it is impossible
to construct a perpetuum mobile of the first kind: That would be a machine that
delivers mechanical work without any changes to its internal state. For the first law of
thermodynamics it is irrelevant if the changes in state are performed over a sequence
of equilibrium states (called reversible changes) or in an arbitrary way such that not
at every instance thermodynamical equilibrium is maintained (called irreversible
changes, although we will not deal with those in this course):

dU = δWrev + δQrev = δWirr + δQirr (B.24)

B.3.1 Isochoric changes of state

Let’s consider an ideal gas as an example, with state variables T and V, on which
the internal energy U(T, V) of the system is thought to depend. Changes dU in the
internal energy are given by

dU =
∂U
∂T

∣∣∣∣∣
V

dT +
∂U
∂V

∣∣∣∣∣
T

dV (B.25)

For isochoric changes in state, the volume V is fixed and consequently dV = 0. There
can not be any work being performed against the pressure, so δW = 0 and the change
in internal energy is necessarily dU = δQ, such that:

δQ =
∂U
∂T

∣∣∣∣∣
V

dT → ∂U
∂T

∣∣∣∣∣
V

= cV (B.26)

leading to the definition of heat capacity at fixed volume V.

B.3.2 Adiabatic changes of state

The situation is very different if one changes the internal energy content of a substance
dU = δQ + δW by increasing the temperature through the addition of thermal energy
and simultaneously by performing mechanical work −pdV against the pressure:

δQ = dU + pdV =
∂U
∂T

∣∣∣∣∣
V

dT +
∂U
∂V

∣∣∣∣∣
T

dV + pdV → δQ = cVdT +
(
∂U
∂V

∣∣∣∣∣
T

+ p

)
dV

(B.27)

in the general case. If, however, the change in state is adiabatic δQ = 0 and no thermal
energy ist exchanged for instance through a perfect insulation of the system,

cVdT +
(
∂U
∂V

∣∣∣∣∣
T

+ p

)
dV = 0 → ∂T

∂V

∣∣∣∣∣
ad

= −
∂U
∂V

∣∣∣
T

+ p

cV
(B.28)

suggesting that the rate at which the temperature changes with changes in the volume
is indeed different for the two cases.
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b. thermodynamics

B.3.3 Isobaric changes of state

Changing the volume at constant pressure is an isobaric change of state. Then, the
volume V(T, p) is dependent on temperature T and pressure p, implying

dV =
∂V
∂p

∣∣∣∣∣
T

dp +
∂V
∂T

∣∣∣∣∣
p

dT (B.29)

where the first term would vanish due to the isobaric condition, dp = 0. Defining the
specific heat at constant p is then

cp =
(
δQ
dT

)
= cV +

(
∂U
∂V

∣∣∣∣∣
T

+ p

)
∂V
∂T

∣∣∣∣∣
p

(B.30)

and is related to the change in temperature with volume by(
∂U
∂V

∣∣∣∣∣
T

+ p

)
= (cp − cV)

∂T
∂V

∣∣∣∣∣
p

(B.31)

Picking up loose threads in the previous calculation then shows that

∂T
∂V

∣∣∣∣∣
ad

= −
cp − cV

cV

∂T
∂V

∣∣∣∣∣
p

(B.32)

for the adiabatic versus the isobaric change of temperature with volume.

B.3.4 Adiabatic index of a gas

The adiabatic index is the ratio of the heat capacity at constant pressure cp to heat
capacity at constant volume cV: These two heat capacities are not identical because
they correspond to different ways in which energy is added to the system.

cp
cV

= κ (B.33)

For an ideal gas one can compute the rate of change of temperature with volume at
constant pressure to be

p

NkB
=

T
V

→ ∂ ln T
∂ ln V

∣∣∣∣∣
p

= 1 and
∂T
∂V

∣∣∣∣∣
p

=
T
V

(B.34)

such that substitution gives

∂T
∂V

∣∣∣∣∣
ad

= −(κ − 1)
T
V

(B.35)

resulting in

d ln T = −(κ − 1)d ln V integrated to T ∼ V−(κ−1) or pVκ = const. (B.36)
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b.3. first law of thermodynamics

An adiabatic process occurs without transfer of heat or mass of substances between
a thermodynamic system and its surroundings. In an adiabatic process, energy is
transferred to the surroundings only as mechanical work, for instance through −pdV,
B · dM or Φdρ.

B.3.5 Entropy

The amount of exchanged thermal energy δQ is not an exact differential as it depends
on the particular way in which the change in state has been performed. But it is
possible to construct a quantity which is in fact an exact differential: Sticking to
our example with δQ = dU + pdV as well as dU = cVdT and an ideal gas with the
equation of state pV = NkBT suggests that

δQ
T

= cV
dT
T

+ NkB
dV
V

(B.37)

is an exact differential called dS,

dS ≡ δQ
T

→ S(T, V) =

T∫
T0

cV
dT
T

+ nkB

V∫
V0

dV
V

(B.38)

provided that the first term only depends on T and the second term only on V.
While this is clear for the second term, it is made sure for the first term by Boyle’s
experiment showing that the specific heat cV does only depend on T: For U(T, V) the
differential reads

dU =
∂U
∂T

∣∣∣∣∣
V

dT +
∂U
∂V

∣∣∣∣∣
T

dV (B.39)

cV is defined as the change of internal energy with temperature and corresponds
to the first term. Boyle observed that in having an isolated gas expand into a larger
volume the temperature does not change: Insolation implies that the change dU of
internal energy must be zero, and the empirical observation of dT = 0 then suggests
that the internal energy can not depend on volume (although we can not know that
yet, makes a lot of sense because internal energy in a gas is the kinetic energy of the
particles, and that would obviously not depend on volume):

dU =
∂U
∂V

∣∣∣∣∣
T

dV = 0 (B.40)

Therefore, internal energy is a function of temperature alone, and so is cV.
S is called the entropy and the differential dS is exact,∮

dS = 0 (B.41)

so that a cyclic change of state always results in a zero change in entropy, and the
change in entropy does not depend on the way a change in state is done, in contrast
to δQ or δW. Please keep in mind that we do not deal with irreversible changes in
state, as they proceed along non-equilibrium states and temperature would not be
defined at every instance.

9

https://en.wikipedia.org/wiki/Entropy


b. thermodynamics

B.4 Second law of thermodynamics

After the realisation that mechanical energy can be converted into thermal energy
and vice versa, and that there is a corresponding energy conservation law for the
total internal energy U, it should be clarified to what extend thermal energy can be
transformed back into mechanical energy; after all, it is clear that mechanical energy
can be completely converted into thermal energy, for instance by friction.

The second law states that a engine, which works in cycles and returns to its initial
state after performing each cycle (so that no energy is stored somehow in the engine)
is not allowed to perform mechanically usable work by just cooling down an energy
reservoir: It is impossible to gain mechanical work out of thermal equilibrium. One
can, however, construct engines that convert thermal energy into mechanical energy,
but they require energy reservoirs at two different temperatures and a temperature
non-equilibrium. Ideally, those Carnot-engines are able to convert thermal energy
into mechanical work, at a given conversion efficiency (that only depends on the
temperatures) which is strictly smaller than unity (as long as we’re dealing with
positive absolute temperatures, we’ll revisit this amazingly interesting point later).

B.4.1 Conversion from thermal to mechanical energy

The Carnot-engine is the prime example of an idealised thermodynamical engine,
which can use mechanical energy to pump thermal energy from a cold reservoir to a
hot reservoir against the natural tendency of thermal energy to flow from hot to cold,
or it can be used to gain mechanical energy from the flux of thermal energy from a
hot reservoir to a cold reservoir. A Carnot-engine is working in a cyclic fashion, so it
does not retain any energy for itself and returns exactly back to its initial state.

One possible realisation of a Carnot-engine is a series of isothermal and adiabatic
changes of state of an ideal gas at two different temperatures: The engine absorbs a
quantity Q1 at temperature T1 from the hot reservoir, and passes a lower quantity
Q2 of thermal energy onto the cold reservoir at temperature T2, possibly delivering
work W. I’d like to emphasise that is any number of possible Carnot-engines, with
the common property that they absorb thermal energy in a reversible way: Because
dS is an exact differential,∮

dS =
∮
δQ
T

= 0 → Q1

T1
=

Q2

T2
(B.42)

Energy conservation implies that Q1 = W + Q2 and therefore for the efficiency η of
the Carnot-engine

η =
W
Q1

(
1 − T2

T1

)
(B.43)

For the case of thermal equilibrium, T2 = T1, η = 0 and W = 0, so no mechanical
work can be performed. All Carnot engines necessarily run at the same efficiency: If
you construct a system where the first engine gains work by having heat flow from T1
to T2 and use that work for powering a second engine to reverse the heat flow, both
the heat flows and the flow of mechanical work should be perfectly balanced and
no net changes can be observed: Otherwise, the more efficient engine would deliver
mechanical work while no changes in temperature are observed, in contradiction
with the second law of thermodynamics.
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b.4. second law of thermodynamics

A highly unusual Carnot-engine is the ratchet and pawl-engine: A propeller is set
into motion by impacting air molecules, but a ratchet-mechanism only allows it to
turn into a single direction. Then one could use the thermal energy contained in the
unordered motion of the air molecules to turn the propeller and possibly lift a weight,
thus performing mechanical energy. If that was possible, one would have converted
thermal energy into mechanical energy in a perfect way, so there must be a catch. So,
for turning the contraption one needs to disengage the ratched by investing δ as an
energy in addition to the energy ϵ for lifting the weight, supplied at temperature T1
of the air. But the ratchet might just disengage randomly, when the energy δmight be
randomly supplied by an impacting air molecule, possibly at a different temperature
T2. The probabilities for both cases to happen are given by Boltzmann-probabilities:

exp
(
− ϵ + δ
kBT1

)
= exp

(
− δ

kBT2

)
→ ϵ

δ
= η = 1 − T2

T1
(B.44)

so that the engine runs at the Carnot-efficiency, and at η = 0 in thermal equilib-
rium T1 = T2. In this context reversibility implies that the universally applicable
Boltzmann-probabilities are characterised by temperature only: If that changes, they
probabilities adjust at once, and there is no lag of the machine to a change in T. I find
it very funny to imagine that both the idealised steam engine and the ratchet and
pawl-machine operate at the same efficiency: Plugging them together such that the
ratchet uses the work provided by the steam engine heats up the air at the propeller
relative to the ratchet in exactly the proportion that is used by the steam engine to
perform work from the non-equilibrium between propeller and ratchet.

B.4.2 Generalised Carnot-engines

Carnot-engines do not have to be constructed in a specific way: Neither do they
need a specific substance like the ideal gas, nor is the term by which mechanical
energy is gained pdV, and the ratchet and pawl-machine is a cute example for
that; reversibility as a condition is enough. All Carnot-engines operate at the same
fundamental efficiency, which can only be a function of the two temperatures

Q2 = Q1f (T1, T2) (B.45)

with efficiency:
η = 1 − f (T1, T2) (B.46)

Carnot-engines are mechanical
devices to measure temperatures,
they convert thermal to mechani-
cal energy at a fixed efficiency that
only depends on the temperatures.

To get some insight into the functional form of f one can build a chain of two
Carnot engines, the first one links a reservoir at T1 with a second reservoir at T2; it
takes in an amount Q1 of thermal energy, generates mechanical work W and dumps
Q2 into the second reservoir: W = Q1(1 − f (T1, T2)) with the wasted thermal energy
Q2 = Q1f (T1, T2). Then, a second Carnot-engine absorbs exactly Q2 at T2, generates
W′ in work and passes Q3 onto T3: W′ = Q2(1 − f (T2, T3)) with the wasted thermal
energy Q3 = Q2f (T2, T3).
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b. thermodynamics

The sum of mechanical work W + W′ = Q1(1 − f (T1, T2)f (T2, T3)),

W + W′ = Q1(1 − f (T2, T3)) (B.47)

needs to be equal to that of an imaginary Carnot-engine linking the first and the
third reservoir directly, i.e. one needs to have transitivity in the efficiencies:

f (T1, T2) · f (T2, T3) = f (T1, T3) (B.48)

Taking the logarithm of the transitivity relation

ln f (T1, T2) + ln f (T2, T3) = ln f (T1, T3) (B.49)

and computing the derivative ∂/∂T1 yields

∂
∂T1

ln f (T1, T2) =
∂

∂T1
ln f (T1, T3) (B.50)

with f (T2, T3) dropping out as it does not depend on T1. Such a differential equation
suggest a separation ansatz ln f (T1, T2) = A(T1) + B(T2) because both sides of the
equation need to be proportional to the same function in T1 and the differentiation
can not mix in a dependence on the other variable. Reverting the logarithm this
would then imply f (T1, T2) = A(T1) · B(T2) and transitivity is naturally fulfilled if
A(T2) = 1/B(T2). Substituting back gives

f (T1, T2) =
B(T2)
B(T1)

(B.51)

and for the efficiency

η = 1 − B(T2)
B(T1)

(B.52)

Therefore, we would call B(T) the thermodynamic temperature as measured by
the Carnot-engine: It is a bit circumstantial at this point that it corresponds to the
temperature T measured with Boyle’s law in an ideal gas. Carnot-engines measure
temperature differences or ratios only, so one needs to have a reference point relative
to which actual temperatures are determined: T = 0 would be an obvious attractive
choice from a practical point of view, but there, the Carnot-efficiency η would be
undefined! The common definition is taken to be the triple point of water. At a
temperature of T = 273.15 K and at a pressure of p = 611.657 Pa the solid, liquid and
gaseous state of water exist simultaneously which is easy to observe.

B.4.3 Entropy and energy conversion

The amounts of thermal energy Qi exchanged with the heat baths at temperature Ti
follow the relation

Q1

T1
+

Q2

T2
= 0 (B.53)
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b.4. second law of thermodynamics

for any Carnot engine operating between two reservoirs. In the continuum limit this
implies ∑

i

δQi

Ti
= 0 (B.54)

for a chain of Carnot engines, while the usable mechanical work is given by

W =
∑
i

δQi (B.55)

but we need to invest mechanical work W′ to put the amount of δQi back into the
reservoir i at temperature Ti :

W′ =
∑
i

δQi
Ti − Tn

Ti
=

∑
i

δQi − Tn
∑
i

δQi

Ti
(B.56)

so that the net gain is:

W −W′ = Tn
∑
i

δQi

Ti
(B.57)

with W = W′ for a loop. Therefore,∑
i

δQi

Ti
→

∮
dQ
T

=
∮

dS = 0 (B.58)

showing the consistency between the Carnot-efficiency and the exactness of the
entropy differential dS. Substituting dS = δQ/T into the first law of thermodynamics
yields

dU = δQ + δW = TdS − pdV (B.59)

where we could replace the inexact differential δQ with the exact dS, introducing T
as the function that makes it integrable or exact. The corresponding Euler-relation
then assumes the form U = TS − pV + µN + . . ..

B.4.4 Irreversible processes and entropy increase in closed systems

Typically, the net change in entropy in a reversible change in state is zero, dS = 0. But
when for instance to systems with different temperature are brought into thermal
contact, the first law of thermodynamics requires that there is a flow of thermal
energy from the hot to the cold body, equilibrating their temperatures. That process
happens spontaneously as a consequence of disequilibrium, and the entropy will
increase.

From the first law of thermodynamics and from the definition of entropy as an
exact differential one gets

dU = TdS → dS =
dU
T

(B.60)
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b. thermodynamics

Defining the specific heat dU = cdT allows us to write the entropy differential as

dS = c
dT
T

= cd ln T with the solution S = c ln T + S0 (B.61)

where S0 is an integration constant. Comparing the entropy before thermal contact

Si = c(ln T1 + ln T2) (B.62)

with that after thermal contact:

Sf = 2c ln
(T1 + T2

2

)
(B.63)

shows that the difference in entropy is in fact positive,

∆S = Sf − Si = c ·
[
2 ln

(T1 + T2

2

)
− (ln T1 + ln T2)

]
≥ 0 (B.64)

because of Jensen’s inequality.

B.4.5 Concave functions and Legendre transforms

One has the freedom to replace state functions by performing Legendre transforms.
The integration of the entropy into the Euler-relation would only be sensible a replace-
ment of S by T and vice versa can be done in a defined way, and for that entropy needs
to be a convex or concave function of T: Then, the Legendre-transform is defined yield-
ing a concave or convex function in return, so that the inverse Legendre-transform is
defined just as well.

In general, convex functions obey the inequality

g(θx + (1 − θ)y) ≥ θg(x) · (1 − θ)g(y) (B.65)

for every value of θ. For the particular choice of θ = 1/2 and the logarithm g(x) = ln x
one gets:

ln
(x + y

2

)
≥ 1

2
(ln x + ln y) (B.66)

By comparison with eqn.B.64 one immediately recognises that the entropy is a convex
function of T.

Furthermore, by writing dU = TdS as the first term in the differential Euler-
relation and noticing that typically the internal energy is proportional to temperature
and the amount of matter a system is composed of, dU = CdT with the heat capacity
C, one realises that entropy should (normally, again, there might be counterexamples)
be extensive, and can be paired with temperature T as an intensive quantity.

B.5 Third law of thermodynamics

There is a rather obscure third law of thermodynamics, which determines the zero-
point of entropy: As we are only concerned with changes in the thermodynamic
variables and potentials only differences matter, and there is a priori no reference
relative to which entropy is measured, unlike temperature T or any form of energy.
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b.5. third law of thermodynamics

Therefore, one postulates that the entropy takes on a constant value, possibly to be
set to zero, as the temperature approaches absolute zero.
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C probability theory

C.1 Kolmogorov axioms for probability

Probabilities serve as a quantification of the chances of success in a game, when an
element of randomness is involved. A random experiment consists in a random selec-
tion from a finite and non-empty set of events Ω consisting of individual outcomes.
The power set P (Ω) is the set of all possible subsets (including the empty set) of
Ω. The probability measure is now assigning a probability to each of the possible
selections P (Ω) from the set Ω, and this probability is required to be a real number
between 0 and 1. If Ω has n elements, the power

set P (Ω) contains 2n elements.The probability measure is a probability if it fulfils Kolmogorov’s axioms:

1. p(Ω) = 1

2. p(A) ≥ 0 for all A ⊂ Ω

3. p(A∪ B) = p(A) + p(B) if A∩ B = ∅, otherwise p(A∪ B) = p(A) + p(B) − p(A∩ B)

The first axiom says that the probability of some event in Ω is certainly to come
up, and the second axiom makes sure that the probabilities are always positive.
Probabilities of mutually exclusive events add, as stated by the third axiom. From
these axioms one can draw a number of important conclusions:

1. p(A) + P(C(A)) = p(Ω) = 1, because Ω = A∪ C(A)

2. p(A) ≤ p(B) for A ⊂ B

3. p(A∪ B) + p(A∩ B) = p(A) + p(B)

4. p(A\B) = p(A) − p(A∪ B)

5. p(∅) = 0, from the previous statement with ∅ = A\A

Generalisations to infinite sets is possible by replacing the set of Kolmogorov-
axioms with a Borel-σ algebra.

C.2 Laplace probability

We can narrow down the set A to contain a single element, ω ∈ Ω in the set of possible
outcomes Ω. Then, the probability for a single element is given by

p(A) = p

(⋃
i

Ai

)
=

∑
i

p(Ai) =
∑
i

p(ωi) for A ⊂ Ω (C.67)

where Ai ∩ Aj = ∅ for i , j, such that straightforward additivity is given. ω→ p(ω)
is the probability function which assigns a probability to each ω.

If the elements ωi are equally likely to be selected, like identical lottery tickets,
the probability of selecting an individual one must be the inverse of how many tickets
are available, i.e. the cardinality #(Ω) of the set Ω

p(ω) =
1

#Ω
and therefore p(A) =

#A
#Ω

(C.68)

for any set A grouping a couple of elements ωi into a set. This is exactly Laplace’s
idea about a probability being the number of favourable cases divided by the number
of possible cases.
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c. probability theory

C.3 Conditional probabilities and Bayes’ law

Conditional probabilities refer to a random experiment that is carried out in two
steps: Firstly, a subset A ⊂ Ω is selected in the first step, so that the events in the
complement ω ∈ C(A) have been assigned a probability = 0 in the successive second
step of the random experiment: Then, from these preselected objects a new random
selection is made, ω ∈ B under the condition ω ∈ A. The conditional probability of
selecting objects from B under the condition that they have been members of the
selection of A is given by

P(B|A) =
#(A∩ B)

#(A)
with the Laplacian probability P(A) =

#(A)
#(Ω)

(C.69)

Extending the expression by the cardinality #(Ω) of Ω gives

P(B|A) =
#(A∩ B)

#(Ω)
· #(Ω)

#(A)
=

P(A∩ B)
P(A)

(C.70)

Then, Bayes’ law appears naturally from the realisation that P(A∩ B) is symmetric

P(A∩ B) = P(B∩ A) (C.71)

so that one obtains:

P(B|A) · P(A) = P(A∩ B) = P(B∩ A) = P(A|B) · P(B) (C.72)

implying in particular that P(A|B) , P(B|A). A classic example to remember this
result is the following idea: If A corresponds to a person being female (in a biological
or medical sense) and B corresponds to a person being pregnant, P(B|A) ≃ 10−2

(which can be easily estimated from the number of children per woman, and the
duration of a pregnancy in relation to the life expectancy). On the contrary, P(A|B)
is essentially unity. So the gist of Bayes’ law is that switching condition and random
outcome of a conditional random process needs to be corrected by the ratio of the
so-called prior probabilities p(A) and p(B),

P(B|A) = P(A|B)
p(B)
p(A)

(C.73)

C.4 Random variables

Up to this point, the outcome of a random experiment was a selection of events from
the set Ω, all contained in the power set P (Ω). The idea of a random variable x now
is to assign a value x(ω) to each of the possible individual outcomes, and to think of
the probability p(x) in terms of the value rather than the randomly selected elements.
A straightforward example would be the value assigned to lottery tickets: The ticket
that are drawn in a lottery would form the elements in Ω and the random variable x
would be the money that is paid to the winner.

p(x) = P(ω ∈ Ω|x(ω) = x) (C.74)
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c.5. characteristic function and moment generating function

In this case, the probabilities p(x) as a function of x are called a distribution. Clearly,
the same value of the random variable x could correspond to different elements in
Ω, so the probability p(x) collects up the contribution from each element ω which is
assigned the value x.

The expectation value ⟨x⟩ or the first moment of the random variable x following
the distribution p(x) is given by

⟨x⟩ =
∑
ω∈Ω

P(ω) · x(ω) =
∑
i

xip(xi) =
∫

dx p(x) · x (C.75)

glossing over a fundamental difference between finite and infinite sets Ω. Similarly,
the variance ⟨x2⟩ or the second moment is defined

⟨x2⟩ =
∑
ω∈Ω

P(ω) · x2(ω) =
∑
i

x2
i p(xi) =

∫
dx p(x) · x2 (C.76)

which immediately generalises to moments ⟨xn⟩ of arbitrary order,

⟨xn⟩ =
∑
ω∈Ω

P(ω) · xn(ω) =
∑
i

xni p(xi) =
∫

dx p(x) · xn (C.77)

where it is interesting to note that the moments can be defined by summing over the
set of possible events ω or by integrating over the possible range of values for x, as
the probabilities P(ω) and p(x) are not identical.

The normalisation required by the Kolmogorov-axioms suggests a transformation
law for continuous probabilities,

1 =
∫

dx px(x) =
∫

dy
∣∣∣∣∣dxdy

∣∣∣∣∣ · px(x(y)) =
∫

dy py(y) such that p(x)dx = p(y)dy

(C.78)

from the Jacobian appearing in the variable change when integrating by substitution.
Summing random numbers z = x + y from two distributions px(x) and py(y) leads

to a distribution of the sum z which is given by convolution of the two original
distributions,

pz(z) =
∫

dxpx(x)
∫

dypy(y)δD(z−(x+y)) =
∫

dxpx(x)py(z−x) =
∫

dypx(z−y)py(y)

(C.79)

where the δD-distribution selects from all possible values x and y the ones that
make the sum x + y equal to a predefined z. Similarly, the distribution of differences,
products and ratios of random numbers can be computed. Of course everybody
knows that convolutions are most practically computed in Fourier-space, so would
the Fourier-transform of a distribution be a sensible mathematical object?

C.5 Characteristic function and moment generating function

The characteristic function ϕ(t) of a distribution p(x) is defined as the Fourier-
transform,

ϕ(t) =
∫

dx p(x) exp(−itx) = ⟨exp(−itx)⟩ (C.80)
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c. probability theory

Substituting the series expansion of the exponential then yields

ϕ(t) =
∫

dxp(x)
∑
n

(−itx)n

n!
=

∑
n

(−it)n

n!
·
∫

dx p(x) · xn =
∑
n

(−it)n

n!
⟨xn⟩ (C.81)

That actually implies that the moments ⟨xn⟩ can be computed by a differentiation

⟨xn⟩ =
1

(−i)n
· dn

dtn
ϕ(t)

∣∣∣∣∣
t=0

(C.82)

instead by an integration process: The n-fold differentiation isolates the nth moment
⟨xn⟩ in the series, because the differentiation of the lower powers in t vanish and the
higher order powers of t are set to zero, leaving just ⟨xn⟩. Related to the characteristic
function is the moment generating function, defined as the Laplace- instead of the
Fourier-transform,

M(t) =
∫

dx p(x) exp(−tx) = ⟨exp(−tx)⟩ (C.83)

such that

⟨xn⟩ =
1

(−1)n
· dn

dtn
M(t)

∣∣∣∣∣
t=0

(C.84)

without having to worry about i. The above result about convolving distributions is
now particularly simple,

ϕz(t) = ϕx(t) · ϕy(t) (C.85)

for the sum z = x + y of two random variables. The Taylor-expansion of lnϕ(t) yields
the cumulants κn as coefficients,

lnϕ(t) =
∑
n

κn ·
tn

n!
(C.86)

which are different compared to the moments, ⟨xn⟩ , κn in general! First of all,
cumulants add when random numbers are added, because lnϕz(t) = lnϕx(t)+lnϕy(t),
and they serve as a quantification, how close a distribution is to a Gauß-distribution.

The Gauß-distribution has the specific functional form

p(x) =
1

√
2πσ2

exp
(
−

(x − µ)2

2σ2

)
(C.87)

and the characteristic function follows straight away to be of equal Gaußian shape,
ϕ(t) = exp(−1

2σ
2t2) with the corresponding logarithm lnϕ(t) ∼ −itµ − t2σ2. Conse-

quently, only the first three cumulants are nonzero κ0 = 1 as a reflection of normal-
isation, the mean κ1 = µ and the variance κ2 = σ2. One should be very cautious at
this point: Cumulants and moments are not identical, and in general one needs Faa’
di Bruno’s formula to convert between them. Hence, the cumulant series truncates
after κ2, so that any higher-order cumulant must contain information about the
non-Gaußian shape of a distribution.

20



c.6. information entropies

C.6 Information entropies

It is an abstract but very interesting question how much randomness is contained in
a random process with probabilities pi in the discrete and p(x)dx in the continuous
case. For that quantification one computes Shannon’s information entropy S

S = −
∑
i

pi ln pi = −
∫

dx p(x) ln p(x) (C.88)

which has the properties

1. S ≥ 0 for 0 < pi ≤ 1

2. S = 0 for pi = 1 (certain outcome)

3. pi = 1
#Ω for equally probable outcomes according to Laplace. Then,∑

i

pi =
1

#Ω

∑
i

1 =
#Ω
#Ω

= 1→ S = −
∑
i

1
#Ω

ln
1

#Ω
= ln #Ω (C.89)

Clearly, the first requirement is chosen to have S as a positive number, while the
second and third requirement make sure that the information entropy increases
(logarithmically) as there are more possible outcomes, starting from 0 if there is no
randomness at all.

Information entropy in this definition is additive for independent subsystems.
Having a factorising probability for the events i and j from two different sets pij =
pi · qj and therefore statistical independence,

S = −
∑
ij

pij ln pij = −
∑
ij

piqj
(
ln pi + ln qj

)
= −

∑
ij

p1qj ln pi + piqj ln qj (C.90)

such that separation of the terms yields

S = −
∑
i

∑
j

qj

 pi ln pi +
∑
j

∑
i

pi

 qj ln qj = −
∑
i

pi ln pi −
∑
j

qj ln qj = Sp + Sq

(C.91)

i.e. the entropies of independent random processes are additive.
It should be emphasised that information entropies defined for a continuous

distribution p(x)dx is not invariant under changes of the random variable, which
is not an issue at all for the discrete probabilties. In fact, p(x)dx = p(y)dy as the
transformation law gives

S = −
∫

dx p(x) ln p(x) = −⟨ln p(x)⟩ → S = −
∫

dy p(y) ln
(
p(y)

dy
dx

)
(C.92)

with an additional Jacobian dy/dx. In order to remedy this, relative entropies such
as the Kullback-Leibler divergence have been introduced

∆S = −
∫

dx p(x) ln
(
p(x)
q(x)

)
= −

〈
ln

(
p(x)
q(x)

)〉
(C.93)
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c. probability theory

which measures the relative amount of randomness between two distributions p(x)dx
and q(x)dx. In fact, the same transformation Jacobian dy/dx is introduced for both
p(x) and q(x), thus canceling out.

It is a very interesting thought to consider Shannon’s entropy as a functional for
the distribution pi or p(x)dx and ask for which distribution the information entropy
as a functional is maximised. For instance, the variation of S would be

δS = −
∑
i

(ln pi + 1)δpi = 0 (C.94)

which needs to be augmented by a boundary condition making sure that the resulting
probabilities add up to one, as required by Kolmogorov’s first axiom:∑

i

pi = 1→ δ
∑
i

pi =
∑
i

δpi = 0 (C.95)

such that
δS + λ

∑
i

δpi = 0 (C.96)

implying that
∑

(ln pi + 1 + λ)δpi = 0 and therefore

pi = exp(−(1 + λ)) (C.97)

i.e. a constant probability: Information entropy is maximal for the uniform distribu-
tion, which defines the microcanonical ensemble in statistical physics.

Maximising Shannon’s entropy with additional constraint

U =
∑
i

piEi = ⟨E⟩ (C.98)

with a fixed expectation value U, where we have already chosen suggestive vari-
able names, alongside the normalisation. Formulating both constraints as Lagrange
multipliers for the variation δS entropy

δS = −
∑
i

(ln pi + 1)δpi = 0 (C.99)

would require

1.
∑
i
pi = 1→ δ

∑
i
pi =

∑
i
δpi = 0

2.
∑
i
piEi = U→ δ

∑
i
piEi =

∑
i

Eiδpi = 0

leading to
δS + λ

∑
i

δpi + µ
∑
i

Eiδpi = 0 (C.100)

which can be computed to yield
∑

(ln pi + 1 + λ + µEi)δpi = 0 and solved for the
probabilties to give

22
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pi = exp(−(1 + λ + µEi)) (C.101)

The two Lagrange multipliers can be determined by resubstituting pi into the two
boundary conditions:∑

i

pi =
∑
i

exp(−(1+λ+µEi)) = 1 → exp(−(1+λ)) =
1∑

i
exp(−µEi)

=
1
Z

(C.102)

with the partition sum Z =
∑
i

exp(−µEi) as well as

∑
i

Ei exp(−µEi)∑
i

exp(−µEi)
= U =

1
Z

∑
i

Ei · exp(−µEi) (C.103)

with the probabitliy

pi =
1
Z

exp(−µE) (C.104)

which looks a bit reminiscent of the Boltzmann-probability,

pi ∼ exp
(
− Ei

kBT

)
(C.105)

if the identification µ = 1/(kBT) is valid. This is the basis of the so-called canonical
ensemble, where states at higher energy are less likely according to the Boltzmann
probability. In summary I’d like to point out that the realisation of entropy max-
imising probabilities replaces the fundamental postulates of statistical physics: It is
superfluous to define the equipartition of states or the Boltzmann-factor in an ax-
iomatic way when in fact the two distributions are the ones that maximise Shannon’s
entropy, subject to boundary conditions. Perhaps it is much more intuitive to imagine
that the equipartition of states is a condition with makes the least assumption about
the system.
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D microcanonical ensemble

Any system left unperturbed tends towards thermal equilibrium with a defined
temperature T, which, along with the other state variables that characterise the
system. The internal thermal energy is reflected by the temperature and the heat
capacity and is stored in the system in its microscopic degrees of freedom. In thermal
equilibrium a continuous reshuffling of energy between all degrees of freedom is
taking place, and these microscopical degrees of freedom follow energy-conserving
Hamiltonian equations of motion. Ludwig Boltzmann was the first to realise that in
thermal equilibrium all states compatible with the same energy are equally likely,
and that states of higher energy are less likely to be assumed, where the ratio of
probabilities is given by the Boltzmann factor: A justification of these two properties
of systems in thermodynamic equilibrium would be axiomatic in the sense of a
fundamental postulate, or, it would in fact follow from the notion that the probability
distributions have to maximise the Shannon-information entropy as a measure of
randomness. Effectively, we will assume that in thermal equilibrium the randomness
of how the states are occupied, is as random as possible, with a maximised Shannon-
entropy. It is important to realise that statistical mechanics as the microscopic theory
behind thermodynamics, is perfectly energy-conserving, despite the fact that it deals
ultimately with thermal energy which is often a byproduct of dissipative processes:
We can reconcile these two ideas:A mechanical system can be dissipative on large
scales with e.g. kinetic energy being lost due to friction, but that the true microscopic
degrees of freedom follow energy-conserving Hamiltonian dynamics. The second law
of thermodynamics is an expression of the fact that it is incredibly improbable (but
not) for all microscopic degrees of freedom to conspire and generate macroscopic
motion out of a freak thermal fluctuation. In some sense, thermodynamics becomes
then an effective theory for Hamiltonian systems with many (coupled) degrees of
freedom.

Hamiltonian systems with conserved energies are a consequence of Lagrange-
functions that do not explicitly depend on time. In classical mechanics, the Lagrange-
function L defines the action S

S =

tf∫
ti

dt L(q, q̇) (D.106)

which for the mechanics of a particle is actually the non-relativistic limit of the
arc-length of the trajectory through spacetime, measured in terms of proper time:

ds2 = c2dt2 − dx2 = c2dτ2 → dτ =

√
1 −

(
1
c

dx
dt

)2

dt → dτ =
1
γ

dt (D.107)

such that the arc length S =
∫

ds = c
∫

dτ = c
∫

dt 1/γ with the Lorentz-factor γ.
As 1/γ→= 1 − (υ/c)/2 for small velocities υ = dx/dt ≪ c, one recovers the classical
Lagrange-function, where overall pre-factors and signs do not matter in the Euler-
Lagrange equation.

Hamilton’s principle now stipulates that the physical trajectory taken by the
system corresponds to an extremum of the action, i.e. δS = 0
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d. microcanonical ensemble

δS =

tf∫
ti

dt
(
∂L
∂q
δq +

∂L
∂q̇

)
=

tf∫
ti

dt
(
∂L
∂q
− d

dt
∂L
∂q̇

)
δq (D.108)

with an integration by parts on δq̇ = dδq/dt and a successive integration by parts,
where the boundary terms do not contribute as the Lagrange-function is kept fixed at
the boundary: This rearrangement gives the Euler-Lagrange equation

d
dt

∂L
∂q̇

+
∂L
∂q

= 0 (D.109)

as a tool serving the purpose of isolating the action-extremising trajectory q(t) as a
differential equation.

The canonical momentum of the coordinate q is given by the relation

p =
∂L
∂q̇

(D.110)

and helps to identify conserved quantities: If a coordinate is cyclic, L does not depend
on it directly (and only on its derivative), so that ∂L/∂q = 0. Then, the Euler-Lagrange
equation has the canonical momentum conserved in time evolution,

d
dt

∂L
∂q̇

=
dp
dt

= 0 (D.111)

The conservation of energy in classical mechanics works in a different way, though,
because the time t plays the role of a parameter describing motion, not that of a
coordinate.

Typical Lagrange-functions in classical mechanics have the form

L =
m
2
ẋ2 − Φ(x) (D.112)

for a particle moving in a potential Φ, such that δS = 0 implies the Newtonian
equation of motion mq̈ = −dΦ/dx. But there might be other systems that are per-
fectly amenable to a Lagrangian description, for instance an LC-circuit in electrical
engineering:

L =
L
2

Q̇2 − 1
2C

Q2 → Q̈ +
1

LC
Q = 0 (D.113)

with the charge Q and the current Q̇: Recognising the Lagrange-function of a har-
monic oscillator immediately suggests the angular frequency ω = 1/

√
LC and the

corresponding equation of motion. Very often the kinetic and potential terms of the
Lagrange-function are separate but that is not a necessity. If ∂L/∂q̇ still depends on q
the differentiation d/dt in the Euler-Lagrange equation will read:

q̈
∂2L
∂q̇∂q̇

+ q̇
∂2L
∂q∂q̇

− ∂L
∂q

= 0 (D.114)

A cute example for this would be the harmonic oscillator L = q̇2/2 − ω2q2/2 in
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d.1. virial theorem

coordinates x± = q̇ ± ωq, such that L = x+x−/2. While in one dimension the only
requirement would now be that ∂2L/∂q̇/∂q̇ is non-zero, in more than one dimension
∂2L/∂q̇i /∂q̇j would need to be an invertible matrix for isolating q̈.

D.1 Virial theorem

Is kinetic or potential energy the preferred form of energy of a system? Clearly, a
physical system follow its dynamical equation and continuously reshuffles energy
from one energy form to another, but taking averages is time, the system might
preferentially be in a state where one energy form dominates over the others. To show
this might be the case, let’s start at the Euler-Lagrange-equation for any system,

d
dt

∂L
∂q̇
− ∂L

∂q
= 0 (D.115)

and it with the coordinate q. Then, using the Leibnitz-rule,

q
d
dt

∂L
∂q̇
− q∂L

∂q
=

d
dt

(
q
∂L
∂q̇

)
− q̇ ∂L

∂q̇
− q∂L

∂q
= 0 (D.116)

We can break into this relation by individual inspection of the three terms:

1. time everage of the Lagrange-function L over ∆t ≫many dynamical time scales

1
∆t

∆t∫
0

dt
d
dt

(
q
∂L
∂q̇

)
=

1
∆t

(
q
∂L
∂q̇

)∣∣∣∣∣∣∆t
0

=
1
∆t

(qp)|∆t0 ≤
1
∆t

(qmax · pmax) (D.117)

where the result of the integration is estimated to be less than the product of
the largest values for p and q that the integrand assumes between 0 and ∆t.
Clearly, this requires that the integrand and therefore the range of motion is
bounded in p and q. Taking the limit ∆t →∞, makes the term disappear, as ∆t
grows without bounds and qmax · pmax is finite.

2. Lkin is homogeneous of degree 2 in q̇ for non-relativistic mechanics:

Lkin = T =
m
2
q̇2 → q̇

∂Lkin

∂q̇
= 2Lkin = 2T (D.118)

3. L is homogeneous of degree k in q for power-law potentials Φ ∝ qk

Lpot = Φ = qk → q
∂Lpot

∂q
= kLpot = kΦ (D.119)

Therefore, we obtain the relation

2⟨T⟩ = k⟨Φ⟩ (D.120)

between the time-averages of the kinetic and potential energies, with the definition
of the average kinetic energy ⟨T⟩,
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d. microcanonical ensemble

lim
∆t→∞

1
∆t

∆t∫
0

dt T(t) = ⟨T⟩ (D.121)

with an analogous average for ⟨Φ⟩.
The harmonic oscillator has a potential Φ ∝ q2 with the potential being a harmonic

function of degree k = 2, and consequently, ⟨T⟩ = ⟨Φ⟩, and both forms of energy
are on average equal, which is a rather obvious result. After all, q ∝ exp(iωt) and
q̇ ∝ iω exp(iωt), such that the averages ω2⟨q2⟩ and ⟨q̇2⟩ are necessarily equal. For a
Coulomb-potential we have Φ ∝ 1/q, and therefore k = −1 and 2⟨T⟩ = −⟨Φ⟩, which
is fine, because Φ is negative. It is illustrative to increase k to high positive values:
Then, the kinetic energy becomes on average dominant over the potential energy,
⟨T⟩ = k/2 ⟨Φ⟩. For high positive k one obtains a flat potential with very steep walls,
where a particle zooms around in a state of high kinetic energy most of the time and
spends only little time being deflected at the walls where the potential energy is high.
A fun idea is the impossibility of a gravitationally bound ball of photons: There, the
kinetic energy for ultra-relativsitic particles is a homogeneous function of order k = 1
such that the virial theorem would become ⟨T⟩ = −⟨Φ⟩, implying that the total energy
is zero - but it would have to be negative for a bound system!

In summary, the virial theorem makes a statement about the average kinetic
and potential energies in the course of the time evolution and is perfectly valid
for a system with a single degree of freedom, as long as the motion is bounded in
position and momentum. Often it is the case, thought, that systems consist of many
particles and one might wonder if the average of kinetic and potential energy could be
determined instead at a fixed time over the many particles, whether these ensemble
averages are identical to the temporal averages, and whether the virial theorem
applies to ensemble averages as well. Ergodic systems have in fact this property,
although ergodicity is in particular systems difficult to demonstrate.

D.2 Energy conservation

Energy conservation is, from an arithmetic point of view, very similar: Instead of q
we multiply the Euler-Lagrange-equation with q̇:

d
dt

∂L
∂q̇
− ∂L

∂q
= 0 (D.122)

to arrive at

q̇
d
dt

∂L
∂q̇
− q̇ ∂L

∂q
= mq̇q̈ + q̇

dΦ
dq

=
m
2

d
dt

q̇2 +
d
dt
Φ(q) =

d
dt

(
m
2
q̇2 + Φ(q)

)
= 0 (D.123)

with the replacements ∂L/∂q̇ = m and ∂L/∂q = −Φ in the first step, followed by the
time derivative q̇dΦ/dq = dΦ/dt, suggested by the chain rule. The quantity H

H(q, q̇) =
m
2
q̇2 + Φ(q) (D.124)

is the Hamilton-function of the system, which comes out as conserved, dH/dt = 0.
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D.3 Legendre transforms and the Hamilton-function

To be quite exact, H(q, q̇) is not yet the energy, because it is assumed to depend on q̇
but not yet on the canonical momentum,

p =
∂L
∂q̇

(D.125)

The Legendre-transform of the Lagrange-function L

H(q, p) = pq̇ − L(q, q̇(p)) (D.126)

which replaces the variable q̇ by the variable p, can be shown to be conserved using
this argument:

dH
dt

= ṗq̇ + pq̈ − q̇ ∂L
∂q
− q̈ ∂L

∂q̇
=

∂L
∂q

q̇ − q̇ ∂L
∂q

= 0 (D.127)

which is known as the Beltrami-identity. In the first step, we used the derivative of
the canonical momentum,

ṗ =
d
dt

∂L
∂q̇

=
∂L
∂q

(D.128)

together with the Euler-Lagrange equation. With the definition of the canonical
momentum as the derivative p = ∂L/∂q̇ one needs an invertible expression to be able
to write down q̇(p) from p(q̇), which is made sure by the convexity of the functional
L. Then, the Legendre-transform H is likewise convex, ensuring the existence of the
inverse Legendre transform.

I am a bit picky to call only p2/(2m) kinetic energy and not mq̇2/2, for a very
specific reason, even though the Legendre transform of a parabola q̇2 is of course
a parabola p2: The classical Lagrange-function is the non-relativistic limit of the
arc-length of a spacetime-trajectory and acquires the interpretation of energy only
after Legendre-transformation.

D.4 Hamilton-equations of motion

Instead of the Euler-Lagrange equations, which naturally lead to second-order equa-
tions of motions, one can write down equivalent coupled first-order equations of
motions operating on the Hamilton-function H instead of the Lagrange-function L.

∂H
∂p

= q̇ + p
∂q̇

∂p
−
∂q̇

∂p
∂L
∂q̇

= q̇ and
∂H
∂q

= p
∂q̇

∂q
− ∂L

∂q
−
∂q̇

∂q
∂L
∂q̇

= − d
dt

∂L
∂q̇

= −ṗ

(D.129)

The form of Hamilton’s equation of motion allow an incredibly interesting notation, in
particular for the harmonic oscillator, whereH = p2/2+ω2q2/2: Then, ∂H/∂p = p = q̇
and ∂H/∂q = ω2q = −ṗ, such that

d
dt

(
p
q

)
=

(
0 −ω2

1 0

) (
p
q

)
(D.130)
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d. microcanonical ensemble

which is the archetypical form of a symplectic differential equation. The solution to
the system can be written in terms of a matrix exponential,(

p
q

)
= exp

((
0 −ω2

1 0

)
t

) (
p0
q0

)
(D.131)

applied to the initial conditions. Summing up the exponential series with this so-
called symplectic matrix yields the familiar sine and cosine functions.

The question on energy conservation is answered in view of Hamilton’s equation
of motion in a completely different way: Forming the derivative of H which only
depends on p and q (and not on t directly) yields

dH
dt

=
∂H
∂q

q̇ +
∂H
∂p

ṗ =
∂H
∂q

∂H
∂p
− ∂H

∂p
∂H
∂q

= 0 = {H,H} (D.132)

with the definition of Poisson-brackets,

∂A
∂q

∂B
∂p
− ∂B

∂q
∂A
∂p

= {A,B} (D.133)

for any two functions A and B dependent on the canonical momenta and coordinates.
Then, the time evolution of any of such functions is determined by the Poisson
equation of motion,

dA
dt

=
∂A
∂t

+ q̇
∂A
∂q

+ ṗ
∂A
∂p

=
∂A
∂t

+ {H,A} (D.134)

Alternatively, the Lagrange-function can be thought to depend directly on (q, p)
instead of (q, q̇). From the definition of the Legendre-transformation

L(p, q) = pq̇ − H(p, q) (D.135)

one obtains from the two independent Euler-Lagrange equations for the coordinates
p and q directly

d
dt

∂L
∂q̇
− ∂L

∂q
= 0 = ṗ +

∂H
∂q

(D.136)

as well as
d
dt

∂L
∂ṗ
− ∂L

∂p
= 0 = −q̇ +

∂H
∂p

(D.137)

i.e. again the two Hamilton equations of motion.

D.5 Canonical transforms

Within Hamiltonian mechanics there exists a class of coordinate transitions with
covariant transformation of the equations of motion: Effectively, the states of a me-
chanical system form a manifold that is parameterised by coordinates p and q, and
transitions to new coordinates Q = Q(p, q), P = P(p, q) lead to new coordinates for
which the same type of equation of motion is valid:
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d.5. canonical transforms

Q̇ =
∂H̄
∂P

, Ṗ = −∂H̄
∂Q̇

, with H̄ = H(p(P, Q), q(P, Q)) (D.138)

the equation of motion in (Q, P) needs to follow from the same variation of the
Lagrange-function L = QṖ − H̄ as the one in (q, p), so that

S =

tf∫
ti

dt H̄(P, Q) − QṖ =

tf∫
ti

dt H(p, q) − q̇p +

tf∫
ti

dt
dW̄
dt

(D.139)

where the two actions can at most be different by a total time derivative, as

tf∫
ti

dt
dW̄
dt

= W̄(tf ) − W̄(ti) (D.140)

does not contribute to the variation, which is fixed at ti and tf . But this new function
can be used constructively to generate a canonical transform: For instance, the specific
choice

W̄(q, P) = W(q, P) − QP (D.141)

for W̄ with variables q and P

dW
dt

= q̇
∂W̄
∂q︸︷︷︸
=p

+Ṗ
∂W
∂P︸︷︷︸
=Q

(D.142)

is equivalent, if H(p, q) = H̄(P, Q) and if p = ∂W
∂q and Q = ∂W

∂P . Then, in addition, the
functional determinant is

det
(
∂(p, q)
∂(P, Q)

)
= 1 (D.143)

A truly novel concept are infinitesimal canonical transformations: The identity
transform W = q · P does not change anything

p =
∂W
∂q

= P
∂q

∂q
= P and Q =

∂W
∂P

= q
∂P
∂P

= q (D.144)

such that we can define an infinitesimal transform W(ϵ) = qP + ϵw(q, P) controlled
by a small ϵ > 0

p =
∂W
∂q

= P + ϵ
∂w
∂q

→ ∆p = p − P = ϵ
∂w
∂q

(D.145)

as well as

Q =
∂W
∂P

= q + ϵ
∂w
∂P

→ ∆q = q − Q = −ϵ∂w
∂P

(D.146)
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In the spirit of a Lie-generator we take the limit ϵ→ 0

lim
ϵ→0

∆p

ϵ
=

∂W
∂q

and lim
ϵ→0

∆q

ϵ
=

∂W
∂p

(D.147)

Setting ϵ = ∆t and W = H(p, q)

lim
∆t→0

∆q

∆t
= q̇ = −∂H

∂p
and lim

∆t→0

∆p

∆t
= ṗ =

∂H
∂q

(D.148)

In summary, the time evolution of a Hamiltonian system is itself a canonical
transformation, and the Hamilton equations of motion are the Lie-generators of the
transform: Therefore, the entire dynamical evolution of the system can be mapped
onto evolution equations for the coordinates and the evolution becomes just a coordi-
nate transform. The phase space volume is invariant under canonical transformations,
and therefore the phase space volume needs to be conserved in time evolution too:
This is exactly the statement of Liouville’s theorem.
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E phase space dynamics

E.1 Phase space Γ

Statistical mechanics as the theory behind thermodynamics is concerned with sys-
tems with many degrees of freedom which follow Hamiltonian, energy-conserving
dynamical laws. For linking mechanical microscopic properties of these systems with
thermodynamic concepts like entropy and temperature we need to introduce some
conceptual ideas.

The phase space of a Hamiltonian system is made up from all coordinates {qi , pi}.
For a system like a collection of point particles interacting with potentials as the
microscopic idea behind a real gas, it would be 6n-dimensional for n particles. As
the Lagrange-function L(qi , q̇i) does not explicitly depend on time, the value of the
Hamilton-function H(qi , pi) interpreted as the energy of the system is conserved: It is
a straightforward visualisation that the system moves on a surface of fixed energy
through phase space Γ . If we combine the phase space coordinates into a vector
x = (qi , pi) the phase space motion proceeds at velocity υ

υ = ẋ = (q̇i , ṗi) =
(
∂H
∂pi

,−∂H
∂qi

)
(E.149)

At the same time, the gradient of the Hamilton-function is given by

∇H(qi , pi) =
(
∂H
∂qi

,
∂H
∂pi

)
(E.150)

such that we can conclude two things:

υ · ∇H = 0 as well as |υ| = |∇H| (E.151)

i.e. that the velocity and the gradient are equal in magnitude but perpendicular to
each other.

E.2 Phase space density ρ

Populating the phase space Γ with an ensemble of physically equivalent systems
(with identical Hamilton-functions) leads to a density ρ of encountering systems at a
certain phase space coordinate. There should be a continuity equation making sure
that in the course of time evolution systems are not spontaneously lost or added to
the ensemble,

∂ρ

∂t
+ div(ρυ) =

∂ρ

∂t
+ ∇ρ · υ + ρdivυ = 0 (E.152)

with the application of the Leibnitz-rule to div(ρυ) and the successive definition of
the advective derivative: As the density ρ(t, xi) is a function of both time and the full
phase space coordinates bundled in x one gets:

d
dt
ρ(t, xi) =

∂ρ

∂t
+ ẋi

∂ρ

∂xi
=

∂ρ

∂t
+ υi

∂ρ

∂xi
(E.153)

The divergence of the velocity υ vanishes, as one can quickly see
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divυ =
∑
i

∂q̇i
∂qi

+
∂ṗi
∂pi

=
∑
i

∂
∂qi

∂H
∂pi
− ∂
∂pi

∂H
∂qi

= 0 (E.154)

through substitution of the Hamilton equations of motion. With the advective
derivative,

dρ
dt
≡

∂ρ

∂t
+ υ · ∇ρ (E.155)

in the laboratory frame in which the coordinates are defined, and

∂ρ

∂t
= 0 (E.156)

for a comoving observer that is advected with the flow, as for that observer υ = 0.
But is there something that we can say about ∂ρ/∂t in the laboratory frame? This is a
surprising result, as

div (ρυ) =
∑
i

∂ρ

∂pi
ṗi +

∂ρ

∂qi
q̇i =

∑
i

∂ρ

∂pi

∂H
∂pi

+
∂ρ

∂qi

∂H
∂qi

= −[ρ,H] (E.157)

where the Hamilton equations of motion and then the Poisson-bracket was substi-
tuted. For the derivatives of ρ with respect to the phase space coordinates one can do
an intermediate step by differentiating with respect to H first and then continue the
differentiation with the chain rule.

div (ρυ) =
∂ρ

∂H

∑
i

∂H
∂qi

∂H
∂pi
− ∂H
∂qi

∂H
∂pi

=
∂ρ

∂H
[H,H] = 0 (E.158)

where the Poisson-bracket of the Hamilton-function with itself vanishes, setting the
divergence of ρυ to zero. That implies in turn that the partial derivative of ρ in the
laboratory frame

∂ρ

∂t
= 0 (E.159)

vanishes: The distribution of the systems in phase space is non-evolving, neither for
the comoving observer nor for an observer in the laboratory frame. Being advected
with the flow, observers would see a constant density around them, and observing the
flow at any point from the laboratory frame would always yield the same density, too.

E.3 Phase space volume: surface and volume

The volume of the phase space Γ as bounded by a surface of constant energy H ≤ E
would be

φ∗(E) =
∫
H≤E

∏
i

d3qid
3pi (E.160)

where we have introduced the asterisk for the time being as it needs to be corrected
by the Gibbs factor. Adding or removing energy from the system leads to a change
in volume, as the surface of constant energy will move to a different location and
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e.4. microcanonical ensemble

enclose a different amount of volume in Γ : The rate of change of the volume with
energy is simply the derivative of φ∗(E),

ω∗(E) =
d

dE
φ∗(E) =

d
dE

∫
H≤E

∏
i

d3qid
3pi (E.161)

E.4 Microcanonical ensemble

With these ideas it is possible to define the microcanonical ensemble: One populates
the phase space Γ with a large number of physically equivalent systems with the
same Hamilton-function H on the surface of constant energy E. In doing that, one
needs to make an assumption how this ensemble of systems will be distributed on
the hypersurface at constant E. For continuing, one can adopt now the fundamental
postulate of statistical physics and require axiomatically that this distribution ρ is
constant in thermodynamic equilibrium, or, perhaps a bit more insightful, we ask
what distribution ρ would maximise the information entropy as an expression about
the largest possible amount of randomness, which we would suspect to be present
in thermodynamic equilibrium. A constant distribution would in fact extremise
Shannon’s entropy (if there are no boundary conditions to be fulfilled), so we will
work with that! The previous section showed that for a conservative Hamiltonian
system this density ρ, once initialised, is stationary ∂ρ/∂t = 0 but that does not mean
that there is no dynamics going on. The every system in the ensemble is pursuing its
path in phase space Γ , but it is the case that the number of systems that evolve away
from a certain volume in phase space are replaced by new systems moving into that
volume, keeping the density constant.

Therefore, the distribution of systems on the surface of constant energy (or to
be more exact, in an infinitesimally thin shell between energies E and E + δE, for
mathematical convenience) is chosen to be constant, because that imposes the least
assumption on the phase space density.

ρ(E) =

1, if E ≤ H ≤ E + δE

0, elsewhere
(E.162)

such that the number n of systems becomes proportional to the volume between E
and E + dE,

n = ρω∗(E)dE = ω∗(E)dE (E.163)

using the phase space volume element defined above.

E.5 Equipartition theorem

Suppose one would like to determine the average ⟨A⟩ of a function A(pi , qi , t) that
can depend on the coordinates (qi , pi) and possibly on time t. The average should be
characterised by a predefined energy E (which the Hamiltonian system conserves).
There are fundamentally two ways of computing the average, first summing over the
ensemble,
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⟨A⟩ =

∫
E≤H≤E+δE

∏
i

d3qid3pi A(pi , qi , t)∫
E≤H≤E+δE

∏
i

d3qid3pi
=

d
dE

E∫
0

∏
i

d3qid3pi A(pi , qi , t)

d
dE

E∫
0

∏
i

d3qid3pi

(E.164)

where the averages are normalised by the volume. The idea in this equation is that
the ensemble of statistically equivalent systems is distributed evenly over the allowed
phase space volume at coordinates (qi , pi). Every system of the ensemble contributes
to this average with a specific value for A(pi , qi , t). The denominator in the ensemble
average is just ω∗(E).

Secondly, if the system is ergodic, the ensemble average is equal to the average of
a single system in its time evolution,

⟨A⟩ = lim
∆t→∞

1
∆t

∆t∫
0

dt (pi(t), qi(t), t); (E.165)

the idea being that a single system in its time evolution comes by every point of the
allowed phase space volume the exactly the same even measure.

For a specific choice of the phase space function A = p1∂H/∂p1 one can compute
the expectation value of the phase space average by an integration by parts,∫

d3p1 p1
∂H
∂p1

=
∫

d3p1
∂

∂p1
(p1H) −

∫
d3p1 H (E.166)

because obviously ∂p1/∂p1 = 1, and the first term will simply be the evaluation of
the integrand at the boundaries, where H = E.

Applying this simplification to the entire integrand,

E∫
0

∏
i

d3pid
3qi p1

∂H
∂p1

= E · (p1,max − p1,min)

E∫
0

∏
i≥2

d3pid
3qi −

E∫
0

∏
d3pid

3qiH

(E.167)

such that a differentiation with respect to the energy E would yield

d
dE

E∫
0

∏
i

d3pid
3qiH =

1
δE

E+δE∫
E

∏
i

d3pid
3qiH = E

1
δE

∏
i

d3pid
3qi = Eω∗(E)

(E.168)

d
dE

E∫
0

∏
i

d3pid
3qip1

∂H
∂p1

= φ∗(E) (E.169)

〈
pi

∂H
∂pi

〉
=

〈
qi
∂H
∂qi

〉
=
φ∗

ω∗
=

1
d lnφ∗

dE

(E.170)
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The equipartition theorem then follows from these considerations: If

d lnφ∗

dE
=

1
kBT

(E.171)

then the average kinetic energy for a non-relativistic system follows from〈
pi

∂H
∂pi

〉
= 2⟨T⟩ ∼ kBT (E.172)

As a consequence of the virial theorem,〈
qi
∂H
∂qi

〉
∼

〈
pi

∂H
∂pi

〉
∼ kBT (E.173)

as well: This is a far-reaching result, and shows that every degree of freedom carries
on average a typical amount of kBT of the total thermal energy of the system.

E.6 Entropy for Hamiltonian systems

Let’s introduce a parameter a in the Hamilton-function H

H = H(pi , qi , a) (E.174)

which can be controlled from the outside and changes the mechanics of the system:
For instance, it could be the length of a pendulum or the distance between the
capacitor plates in an LC-circuit or in fact the volume of a gas in a container. If
changes in a have an influence on the Hamilton-function, energy can be added to or
removed from the system:

dH
dt

= ȧ
∂H
∂a

→ dH =
∂H
∂a

da (E.175)

which leads to an energy gain

dE = lim
∆t→∞

t+∆t∫
t

dt
∂H
∂a

ȧ (E.176)

over the interval ∆t. For an entire ensemble of systems one would write for the
average gain in energy

dE =
〈
∂H
∂a

〉
da (E.177)

where the quantity ⟨∂H/∂a⟩ could be interpreted in an ensemble-average sense, or if
ergodicity is given, as a time average

〈
∂H
∂a

〉
= lim
∆t→∞

1
∆t

t+∆t∫
t

dt
∂H
∂a

(E.178)
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For the particular case of a being the volume V of a container filled with gas, the
change in energy would be 〈

∂H
∂V

〉
= −p (E.179)

and correspond to the pressure, such that one can write dE = −pdV with dE =
⟨∂H/∂V⟩dV, identical to dU = −pdV! Relations like this one start to bridge the
gap between ensembles of Hamiltonian systems with many degrees of freedom at
thermodynamic quantities. Surely, the next building block of the theory that we need
to understand is the relation between a term like dU = TdS with the underlying
Hamiltonian dynamics.

E.7 Adiabatic invariance of entropy

The phase space volume φ∗(H, a) and its differential change ω∗(H, a) are defined as

φ∗(H, a) =
∫
H≤E

∏
i

d3pid
3qi and ω∗(H, a) =

d
dE

φ∗(E, a) (E.180)

where both quantities depend through the Hamilton-function H on the control
parameter a, which in fact can change the energy and therefore the accessible phase
space volume of the system:

∂φ∗

∂a
da = φ∗(E, a + δa) − φ(E, a) (E.181)

This quantity exactly corresponds to the volume contained between

H(p, q, a) = E and H(p, q, a + δa) = E − ∂H
∂a

δa (E.182)

with the idea that ∂H/∂a points into the direction of smaller energies, but in the
formula we need the inverse gradient, pointing towards higher energies.

∂φ∗

∂a
δa =

∫
δsdO (E.183)

δS is parallel to ∇H

dH =
∂H
∂S

δS (E.184)

and consequently,

|∇H|δs = −∂H
∂a

δa →
∂φ∗

∂a
da =

∫
∂H
∂a

dO
|∇H|

δa (E.185)

In the average defined by the microcanonical ensemble one obtains for the average
change in energy〈

∂H
∂a

〉
=

1
ω∗(E)

∫
∂H
∂a

dO
|∇H|

→
∂φ∗

∂a
= −ω∗(E)

〈
∂H
∂a

〉
(E.186)
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e.7. adiabatic invariance of entropy

Therefore, for an arbitrary change in φ∗(E, a) by da one would obtain

dφ∗ = ω∗
[
dE −

〈
∂H
∂a

〉
da

]
(E.187)

Both changes (dE and da) affect the phase space volume and therefore the entropy

dE =
1
ω∗

dφ∗ +
〈
∂H
∂a

〉
da (E.188)

which is a formula reminiscent of the first law of thermodynamics,

dU = δQ + δW (E.189)

Should we continue by analogy? If this is the case, one would identify the thermal
energy with δQ = 1

ω∗dφ
∗, and consequently the entropy with S = kBφ

∗:

kB

φ∗
dφ∗

ω∗
=

kB

φ∗

[
dE −

〈
∂H
∂a

〉
da

]
(E.190)

Using logarithmic derivatives this can be rewritten as

kBd lnφ∗ = kB
ω∗

φ∗
= kB

1
φ∗

dφ∗

dE

[
dE −

〈
∂H
∂a

〉
da

]
= kB

d lnφ∗

dE

[
dE −

〈
∂H
∂a

〉
da

]
(E.191)

kBd lnφ∗ = kB
d lnφ∗

dE

[
dE −

〈
∂H
∂a

〉
da

]
(E.192)

Comparison with the second law of thermodynamics, dS = 1
T [dE − δW], would

imply that the change dS in entropy

dS = kB · d lnφ∗ (E.193)

is just given by the change in logarithmic phase space volume, with kB as a prefactor
fixing the units. Then, comparing with the definition of temperature as 1/(kBT) =
∂S/∂E, consistency implies that

1
kBT

=
∂ lnφ∗

∂E
(E.194)

The phase space volume of a system and how that volume changes with changing
energy determine entropy and temperature.

E.7.1 Example: adiabatic invariance in a string pendulum

Adiabatic invariance of the phase space volume φ∗ when changing a control parameter
is an incredibly abstract and interesting concept as it defines entropy and what exactly
corresponds to adiabatic changes of state in the underlying mechanics of a system.
We should consolidate this idea by considering a mechanical string pendulum of
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e. phase space dynamics

length l = a which serves as the control parameter. It performs oscillations in angle ϕ
with time t according to the differential equation ϕ̈ + ω2ϕ = 0 with ω2 = g/l, which
follow from variation of the Lagrange-function,

L =
m
2

(lϕ̇)2 + mgl cosϕ ≃ m
2

(lϕ̇)2 + mgl

(
1 −

ϕ2

2

)
(E.195)

The canonical momentum pϕ is just the angular momentum L,

pϕ =
∂L
∂ϕ̇

= ml2ϕ̇ = L (E.196)

so that the Legendre-transform replacing ϕ̇ with L yields the Hamilton-function

H(ϕ, L, l) =
L2

2ml2
+
mgl

2
ϕ2 −mgl = E (E.197)

where we keep the explicit dependence of H on the control parameter l. The phase
space volume φ∗ is given as the integral

φ∗ =
∫
H≤E

dϕdL (E.198)

which in the case of the harmonic oscillator is just and ellipse bounded by the surface
of constant energy, specifically by the semi axes in L

a2 = l22m(E + mgl) and b2 =
2E + mgl

mgl
(E.199)

in ϕ, such that the volume (which is really the area of a 2-dimensional ellipse,
therefore the factor 2π) becomes

φ∗(E, l) = 2π

√
l
g

(E + mgl) (E.200)

The corresponding rate of change of this volume

dφ∗(E, l) = 2π

√
l
g

[
dE +

(
E + 3mgl

2l

)
dl

]
(E.201)

implying that one can operate on dφ∗ both by adding energy dE or by changing the
control parameter dl.

Changing l very slowly in comparison to the typical time scale of the system
would require a force F, as the weight needs to be lifted against the centrifugal force
as well as the outside gravity,

F = −∂H
∂l

=
L2

ml3
−
mgϕ2

2
+ mg (E.202)
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e.8. entropy as phase space volume at fixed energy

The change to the system is required to be slow such that the ensemble is not
disrupted: One needs to maintain an even distribution of the members of the ensemble
over phase space, and a sudden change in the control parameter could potentially
mess up the distribution. On the side of time averages it is imperative that the virial
theorem is not affected, which relates the average kinetic and potential energies: Any
rapid change in the control parameter would affect the ratio between the two energy
forms. Specifically for a harmonic oscillator one gets ⟨T⟩ = ⟨φ⟩ and therefore

⟨L2⟩
2ml2

=
mgl

2
⟨ϕ2⟩ =

1
2

(E + mgl) (E.203)

and therefore for the average force

⟨F⟩ = −
〈
∂H
∂l

〉
= − 1

2l
(E + 3mgl) (E.204)

with ⟨L2⟩ and ⟨ϕ2⟩ re-expressed with the energy E. Changes dE in energy then take
place in performing work by changing the control parameter against this force,

dE = −⟨F⟩dl = −
E + 3mgl

2l
dl (E.205)

Comparison with eqn. E.201 then implies directly that the change in phase space
volume is in fact vanishing, dφ∗ = 0 and, using the results of the previous chapter,
that the corresponding energy is unchanged, dS = d ln(kBφ

∗) = 0. With this, we have
gained a mechanical intuition about adiabatic changes and the invariance of the phase
space volume.

E.8 Entropy as phase space volume at fixed energy

Up to this point, the idea of phase space volume was driven by the geometry of
the boundary surface defined by energy. For continuing one needs to get a bit more
specific, for instance with the example of an ideal gas, consisting of N point particles
with no mutual interaction following a classical dispersion relation

H =
∑
i

p2
i

2m
(E.206)

The corresponding phase space volume φ∗ bounded by H is given by

φ∗ =
∫
H≤E

∏
i

d3pid
3qi (E.207)

While the spatial part of the integration is easy,∫ ∏
i

d3qi =
∏
i

∫
d3qi =

∏
i

V = VN (E.208)

and yields just the total physical volume of the system, taken to the Nth power, the
integral over momentum space is bounded,
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∑
i

p2
i

2m
≤ E, or

∑
i

p2
i ≤ 2mE (E.209)

Effectively, this is the volume C(3N)r3N of a 3N-dimensional sphere of radius r =√
2mE.

φ∗ = C(3N) · (2mE)
3N
2 · VN =

(4π
3
· mE

N
e
) 3N

2
· VN (E.210)

Moving towards the entropy requires the logarithm of the phase space volume,

kB lnφ∗ =
3N
2

kB ln E + NkB ln V +
3N
2

kB ln(2m) (E.211)

with the last two terms being constant. If the relationship between entropy and phase
space volume would be given by S = kB lnφ∗, the definition of temperature would be
sensible,

∂S
∂E

=
3
2 NkB

E
=

1
T

(E.212)

as it corresponds to what we expect from equipartition, E = 3/2 NkBT, as well as the
change of entropy with volume,

∂S
∂V

=
NkB

V
=

p

T
(E.213)

as it corresponds to the ideal gas law, pV = NkBT. But what about the scaling of the
entropy S with particle number?

E.9 Gibbs-paradox

The Gibbs paradox is a thought experiment that shows that eqn. E.211 with terms
that are all proportional to the particle number N is incompatible with the idea that
entropy should be additive. Writing

S =
3
2

NkB ln T+NkB ln V−NkB ln N+Nσ0 =
3
2

NkB ln T+NkB ln
( V

N

)
+Nσ0 (E.214)

with an additional factor ∝ N ln N would remedy this: Imagine a system with
N = N1 + N2 particles in the total volume V = V1 + V2, which can be separated by
inserting a wall, such that two partial systems with N1 and N2 particles in volumes
V1 and V2 exist. In doing that, the density N/V is equal to N1/V1 and to N2/V2.

Before the barrier is removed, the entropies read

S1 =
3
2

N1kB ln T + N1kB ln
V1

N1
+ N1σ0 (E.215)

S2 =
3
2

N2kB ln T + N2kB ln
V2

N2
+ N2σ0 (E.216)

and after removing the barrier, the two entropies need to be combined in an additive
way: S1 + S2 = S. Separating or combining the volumes can be done without any
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to insert the separating wall.

Let’s inspect the terms one by one. The last term is clearly additive, N1σ0 + N2σ0 =
(N1 + N2)σ0, and so is the first term, 3

2 N1kB ln T + 3
2 N2kB ln T = 3

2 (N1 + N2)kB ln T.
The second term is slightly more complicated:

N1kB ln
V1

N1
+ N2kB ln

V2

N2
= kB ln

( V1

N1

)N1
(

V2

N2

)N2
 (E.217)

but the density V/N = V1/N1 = V2/N2 is unchanged:

. . . = kB ln
[( V

N

)N1 ( V
N

)N2
]

= kB ln
[( V

N

)N1+N2
]

(E.218)

The required additional term −NkB ln N can be generated by changing the definition
of entropy,

S = kB ln
φ∗

N!
≃ kB lnφ∗ − kBN ln N (E.219)

with the approximative Stirling-formula:

ln N! ≃ N ln N. (E.220)

The physical origin of the Gibbs-factor is the following: When removing the barrier,
each of the N1 particles in the volume V1 can change place with each of the N2
particles in the volume V2, for which there are N!/N1!/N2! possibilities. Just by
removing the barrier the phase space volume φ∗ would get enlarged by this factor.
This is unphysical, just exchanging the particles would not have any influence on the
physical properties of the system. If one distributes N particles onto N placeholders,
there would be a total of N! possibilities. So one should counteract the increase in
phase space volume by setting

S = kB ln
φ∗

N!
(E.221)

and by the rules of the logarithms, this becomes S/kB = lnφ∗ − ln N! = lnφ∗ − N ln N
using Stirling’s approximation. The inclusion of this so-called Gibbs-factor provides
exactly the right correction to the entropy.

The phase space volume φ∗ bounded by the energy was defined to be

φ∗ ≡
∫
H≤E

N∏
i

d3pid
3qi (E.222)

and has units of an action3N , but should really be dimensionless. Without any
particular deeper meaning in classical mechanics we can choose any scale h with
units of an action to make the phase space volume dimensionless, although it will
become apparent in quantum statistics that this is exactly the right thing to do.
Choosing specifically the Planck-constant h and including the 1/N!-factor already in
the definition of the phase space volume then yields
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φ =
1

h3N N!

∫
H≤E

N∏
i

d3pid
3qi (E.223)

Then, for the ideal gas one would obtain the result

φ =
1

h3N

(4π
3

mE
N

) 3N
2

( V
N

)N
exp

(5N
2

)
(E.224)

In summary, there are two places where quantum mechanics showed up: The proper
de-dimensionalisation of the phase space volume and the Gibbs-factor due to the
indistinguishability of the particles!

E.10 Thermal wavelength λth

We already made use of the Planck-constant h to make the phase space volume φ
dimensionless, up to this point it appears naturally in many quantities without any
particular reference to quantum mechanics, where the de Broglie-wavelength of a
wave packet with momentum p is given by h/λ. Therefore, the classical dispersion
relation suggests that we can assign a length scale λth to any temperature T,

E =
p2

2m
=

1
2m

(
h
λth

)2

= kBT → λth =
h

√
2mkBT

(E.225)

assuming equipartition of the thermal energy kBT. By convention, one usually
absorbs additional factors of π into the definition λth = h/

√
2πmkBT for the thermal

wavelength.
With λth one can write for the phase space volume of an ideal classical gas,

φ =

 V

λ3
th

e
5
2

N

(E.226)

such that the entropy S becomes

S = kB lnφ = kBN

ln
V

λ3
th

+
5
2

 (E.227)

It increases with particle number N because it is an extensive quantity, and compares
the total available volume V with the fundamental size λ3

th of the wave packets
representing the particles, alluding at the number of possibilities to distribute the
wave packets in the volume.

The ensemble average of the phase space function A(pi , qi) would be given by

⟨A⟩ =
∫

E≤H≤E+δE

1
N!h3N

∏
i

d3pid
3qi A(pi , qi)ρ(pi , qi) (E.228)

for an arbitrary density ρ(pi , qi), where the fundamental postulate stipulates that this
density is constant. If, specifically, it is set to ρ(pi , qi) = 1/ω(E) the average becomes
compatible with

44

https://en.wikipedia.org/wiki/Thermal_de_Broglie_wavelength
https://en.wikipedia.org/wiki/Thermal_de_Broglie_wavelength


e.10. thermal wavelength λth

⟨A⟩ =

∫
E≤H≤E+δE

1
N!h3N

∏
i

d3pid3qi A(pi , qi)∫
E≤H≤E+δE

1
N!h3N

∏
i

d3pid3qi
=

d
dE

E∫
0

1
N!h3N

∏
i

d3pid3qi A(pi , qi)

d
dE

E∫
0

1
N!h3N

∏
i

d3pid3qi

(E.229)

where the denominator is by definition the differential phase space density ω(E)

ω(E) =
d

dE

E∫
0

1
N!h3N

∏
i

d3pid
3qi (E.230)

There is no contradiction between eqn. E.228 and eqn. E.229 with ρ(pi , qi) = 1/(ω(E)δE).
At the same time, the entropy S is given by the logarithmic phase space volume

S = kB lnφ (E.231)

so would it be possible to write S as a phase space average as well? And if yes, of what
function? Let’s try out the logarithmic phase space density − ln ρ, with a prefactor of
kB to fix the units:

S =
∫

E≤H≤E+δE

1
N!h3N

∏
i

d3pid
3qi ρ(−kB ln ρ) =

∫
1

N!h3N

∏
i

d3pid
3qi

1
ωδE

(
−kB ln

1
ωδE

)
(E.232)

with the inverse differential volume ρ = 1
ω(E) and the corresponding logarithm

lnω(E) = − ln ρ the entropy becomes

S =
1
ωδE

kB ln(ωδE)
∫

E≤H≤E+δE

1
N!h3N

∏
i

d3pid
3qi (E.233)

where the integral is just ωδE, canceling with the prefactor. In general, entropy is the
ensemble average of the logarithmic phase space density

S = −kB⟨ln ρ⟩ (E.234)

obtained by resubstitution of ρ, which is exactly Boltzmann’s iconic finding. At the
same time, this formula is very reminiscent of Shannon’s entropy for any distribution,
and again there is a deep relationship between statistics and thermodynamics.

45





F canonical ensemble

The canonical ensemble is characterised by temperature T, volume V and particle
number N, instead of energy E, volume V and particle number N (or any other series
of extensive state variables), effectively, the temperature is controlled instead of the
energy. Physically one can reach that by putting the system into thermal contact with
a larger system acting as an energy reservoir: The zeroth law of thermo dynamics will
then make sure that a common equilibrium temperature is reached. If the second
system is very large compared to the first one, it will determine this temperature.

As there are two microcanonical systems in thermal contact with an exchange
of thermal energy, one would write down a common Hamilton function with an
interaction term h(pi , qi , Pj , Qj ) that allows the coupling of the two systems,

H = H(pi , qi) +H(Pj , Qj ) + h(pi , qi , Pj , Qj ) (F.235)

The first Hamilton-function describes a system with f degrees of freedom, the second
Hamilton-function a system with F degrees of freedom, and usually f ≪ F. If the
interaction term h(pi , qi , Pj , Qj ) is zero, the two systems are isolated. We will assume
that the interaction h(pi , qi , Pj , Qj ) is nonzero to allow coupling, but small compared
to the two energies H(pi , qi) and H(Pi , Qi), such that the thermodynamical properties
follow from these two energies alone.

F.1 Marginalisation procedure

For a given phase space coordinate (pi , qi) of the smaller system with an associated
energy H1, the larger system is left with all configurations that are compatible with
the energy E − H1 ≤ H2 ≤ E + δE − H1 which is an immediate consequence of
E ≤ H1 +H2 ≤ E + δE. The probability of finding the smaller system at (pi , qi) needs
to take into account all states (Pj , Qj ), which are compatible with the energies H1 and
H2. Therefore, this probability is given by

W(pi , qi)
∏
i

d3pid
3qi ∝

∏
i

d3pid
3qi

∫
E−H1≤H2≤E+δE−H1

∏
j

d3Pjd
3Qj (F.236)

with the identification

ω2(E) =
dφ2(E)

dE
=

∫
E−H1≤H2≤E+δE−H1

∏
j

d3Pjd
3Qj (F.237)

as the phase space volume of the second system. Mathematically, this is called a
marginalisation: We are interested in the distribution of the smaller system irrespective
of the particular distribution over (Qj , Pj ), so we are integrating out that part of the
distribution.

By integrating of the phase space (pi , qi) with E ≤ H ≤ E + δE we get

W(E1)δE1 ∝ ω1(E1)ω2(E − E1)δE1 (F.238)

which should have a maximum at a certain value Ẽ1 for the energy E1. In fact, in
thermodynamic equilibrium the energy should be distributed among the two parts
of the system in a way that the temperatures become equal. In order to get a feeling
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f. canonical ensemble

for this, let’s look at a Bernoulli-probability as a model, as in the case of ideal gases.
Then,

W(E1) = En1
1 (E − E1)n2 , n1, n2 ∼ 1023 (F.239)

with the logarithm
ln W(E1) = n1 ln E1 + n2 ln(E − E1) (F.240)

and a maximum at

d ln W(E1)
dE1

= 0 yields Ẽ1 = E
n1

n1 + n2
, Ẽ2 = E − Ẽ1 = E

n2

n1 + n2
(F.241)

We expand this probability around the maximum Ẽ1 and write E1 = Ẽ1 + ϵ

ln W(Ẽ1 + ϵ) = n1 ln Ẽ1 + n2 ln Ẽ2 + n1 ln
(
1 +

ϵ

Ẽ1

)
+ n2 ln

(
1 +

ϵ

Ẽ2

)
(F.242)

in a parabolic expansion. Then, the probability around Ẽ1 becomes

ln W(Ẽ1 + ϵ) = const − ϵ
2

2
n1 + n2

Ẽ1Ẽ2
(F.243)

as the linear term is = 0 at the maximum. Consequently, there will be a Gaussian
distribution

W(Ẽ1 + ϵ) = W(Ẽ1) exp
(
− ϵ

2

2
n1 + n2

Ẽ1Ẽ2

)
(F.244)

around Ẽ1, with the variance approaching zero for large n1 + n2, such that the
contribution to the phase space appears at a single, well-defined energy Ẽ1, leaving
E − Ẽ1 to the second system.

Let’s return to the probability W(E1), whose most probable value is defined by

∂
∂E1

(ω1(E1)ω2(E − E2)) = 0 (F.245)

Because the logarithm is monotonic we can conclude

∂
∂E1

lnω1(E1)
∣∣∣∣∣
E1=Ẽ1

=
∂

∂E1
lnω2(E2)

∣∣∣∣∣
E2=Ẽ2=E−Ẽ1

(F.246)

which would suggest the identification

S = kB lnω and
∂ lnω
∂E

=
1

kBT
(F.247)

in contradiction with previous results where

S = kB lnφ and
∂ lnφ
∂E

=
1

kBT
(F.248)
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f.2. canonical ensemble

i.e. the actual phase space volume was replaced by the differential phase space
volume. There is actually no issue because for a highly dimensional phase space most
of the volume is contained in an incredibly thin layer just below the surface such that
the two measures become approximately equal,

lim
N→∞

lnφ
N

= lim
N→∞

lnω
N

(F.249)

such that
φ ∼ ωδE (F.250)

Specifically for an ideal gas one would write

φ = CE
3N
2 as well as ω =

3N
2

CE
3N
2 −1 =

3N
2
φ

E
(F.251)

such that the temperature in both definition coincides,

∂
∂E

kB lnφ =
1
T

=
3
2 NkB

E
=

1
T

=

(
3
2 N − 1

)
kB

E
=

∂
∂E

kB lnω (F.252)

as the difference between N and N − 1 becomes irrelevant.
We are missing now the actual shape of the phase space distribution for a canonical

system, which is defined to be the distribution over the degrees of freedom of the
smaller system by a temperature defined through the larger system, acting as a
reservoir of thermal energy. The energy is shared among both systems, but effectively
in a way that H1(pi , qi)≪ E and from the argument in the previous example, such
that the energy of both parts is well defined and fixed to Ẽ1 and E − Ẽ1 ≃ E, in
particular if the thermostat is huge compared to the controlled system:

lnω2(E − H1) = ln ω2(E2)|E2=E −
∂

∂E2
lnω2(E2)|E2=EH(pi , qi) (F.253)

in the limit E1 = H1 ≪ E2 ≃ E. But at the same time, ∂
∂E lnω2 = 1

kBT , such that

W(pi , qi)
∏
i

d3pid
3qi ∝

∏
i

d3pid
3qiω2(E − H1)dE ∝

∏
i

d3pid
3qi exp

(
−
H(pi , qi)
kBT

)
(F.254)

and similarly

W(E1)dE1 ∝ ω1(E1) exp
(
− E1

kBT

)
dE1 (F.255)

with the Boltzmann-factor appearing, with the effect of down-weighting states of
high energy.

F.2 Canonical ensemble

For defining a new ensemble where temperature T is controlled instead of energy E
we need to be aware of the fact that energy is not fixed anymore, clearly the system
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f. canonical ensemble

can exchange energy with the thermostat through the interaction term of the common
Hamilton-function. Recapitulating the argument about the maximisation of Shannon-
entropy and the search for the ”most random” distribution that is normalised and
for which the expectation value of energy is fixed led to the Boltzmann-factor: For
a given energy all states are equally probable, and states of higher energy are less
probable according to exp(−E/(kBT)). Defining an ensemble average of a phase space
function A(pi , qi) this entire ensemble (not just the (H = E)-surface!), leads to

⟨A(pi , qi)⟩ =

∫ ∏
i

d3pid3qi A(pi , qi) exp
(
−H(pi ,qi )

kBT

)
∫ ∏

i
d3pid3qi exp

(
−H(pi ,qi )

kBT

) (F.256)

i.e. with the weighting function is now being ρ ∼ exp
(
−H(pi ,qi )

kBT

)
instead of a constant

ρ = 0, 1; where in addition the normalising factor N!h3N has been dropped. Then, the
expectation value of energy would be

⟨E⟩ =

∫ ∏
i

d3pid3qi H exp(−βH(pi , qi))∫ ∏
i

d3pid3qi exp(−βH(pi , qi))
(F.257)

and of pressure

⟨p⟩ =

∫ ∏
i

d3pid3qi (−∂H
∂V ) exp(−βH(pi , qi)∫ ∏

i
d3pid3qi exp(−βH(pi , qi))

(F.258)

with p = −∂H/∂V, and the inverse temperature β = 1
kBT .

F.3 Equipartition theorem

Remembering how difficult it was in the microcanonical ensemble to derive the
equipartition theorem, we should try to rederive it in the canonical ensemble. Exploit-
ing the virial law implies 〈

pi
∂H
∂pi

〉
= 2⟨Hkin⟩ = k⟨Hpot⟩ (F.259)

if the Hamilton-function has the archetypical form H ∼ p2 + qk with the potential
being a homogeneous function of order k. Then,

〈
pi

∂H
∂pi

〉
=

∫ ∏
i

d3pid3qipi
∂H
∂pi

exp(−βH(pi , qi)∫ ∏
i

d3pid3qi exp(−βH(pi , qi))
(F.260)

Rewriting the term in the numerator involving the Boltzmann-factor as

∂H
∂pi

exp
(
− H
kBT

)
= −kBT

∂
∂pi

exp
(
− H
kBT

)
(F.261)
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f.4. canonical partition function

with the chain rule gives

〈
pi

∂H
∂pi

〉
=

∫ ∏
i

d3pid3qi (−kBTpi)
∂
∂pi

exp(−βH(pi , qi))∫ ∏
i

d3pid3qi exp(−βH(pi , qi))
= +kBT (F.262)

with a sign change due to an integration by parts to obtain ∂pi /∂pi = 1. Therefore,
we can conclude that on average the kinetic energy and the potential energy for every
degree of freedom are similar and of order kBT, essentially in a one-line calculation!

F.4 Canonical partition function

The idea of the canonical partition function Z is again that the weighting function
in the numerator is the normalisation function in the denominator, such that for
instance the state variable E = H can be generated by differentiation with respect to
β = 1/(kBT). Just as in the discussion of characteristic functions one would proceed
by interchanging differentiation and integration, and have the differentiation act on
the partition function as a carried-out integral:

Z(T, V, N) =
∫

1
N!h3N

∏
i

d3pid
3qi exp

(
−
H(pi , qi)
kBT

)
(F.263)

now with the normalising factor N!h3N , yielding the expectation value for the energy
as a logarithmic derivative: The logarithm makes sure that exactly the right shape of
the canonical average is generated, with a normalisation from the differentiation of
the logarithm, and the state variable to be averaged over as the internal derivative
required by the chain rule:

⟨E⟩ = kBT2∂ ln Z
∂T

= kBT2 1
Z
∂Z
∂T

(F.264)

The expecation value for the pressure p follows in analogy through differentation
with respect to its extensive partner V

⟨p⟩ = kBT
∂ ln Z
∂V

= kBT
1
Z
∂Z
∂V

(F.265)

Given the form of these expressions we should start looking for a suitable thermody-
namic potential:

− F
kBT

= −βF (F.266)

called the Helmholtz-free energy F.

F.5 Helmholtz-free energy F

The Helmholtz-free energy F is obtained through Legendre-transform of the energy E
by replacing the dependence on volume V as an extensive quantity through pressure
p. Therefore, we write

F = E − TS with the differential dF = dE − TdS − SdT (F.267)
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f. canonical ensemble

together with the Euler relation

dE = TdS − pdV → dF = −SdT − pdV (F.268)

Therefore, including 1/(kBT) into the definition of F gives for the differential

d
(
− F
kBT

)
=

F
kBT2 dT− 1

kBT
dF =

F + TS
kBT2 dT +

p

kBT
dV =

E
kBT2︸︷︷︸
∂ ln Z
∂T

dT +
p

kBT︸︷︷︸
∂ ln Z
∂p

dV (F.269)

And therefore

d
(
− F
kBT

)
=

∂ ln Z
∂T

dT +
∂ ln Z
∂V

dV (F.270)

which strongly suggests the definition F(T, V) = −kBT ln Z for obtaining the Helmholtz-
free energy F from the logarithmic canonical partition function, in analogy to S =
kB lnφ in the microcanonical case. Alternatively, one can argue that

Z =
∫ ∏

i
d3pid3qi

N!h3N exp
(
−H(pi , qi)

kBT

)
=

∞∫
0

dE
∫ ∏

i
d3pid3qi

N!h3N︸            ︷︷            ︸
=ω(E)

exp
(
− H
kBT

)
(F.271)

or equivalently

Z =

∞∫
0

dE
d

dE

E∫
0

∏
i

d3pid3qi

N!h3N︸            ︷︷            ︸
=φ(E)︸                 ︷︷                 ︸

=ω(E)

exp
(
− H
kBT

)
(F.272)

such that the canonical partition function originates directly from a reweighting of
the microcanonical phase space density with the Boltzmann-factor: That is in fact
an incredibly intuitive result, as extremisation of Shannon-entropy yields naturally
a uniform distribution at fixed energy and an exponentially decreasing probability
with increasing energy, in accordance with the fundamental postulate of statistical
physics.

F.6 Gibbs-enthalpy

The Helmholtz free energy F(T, V, N) has the temperature being controlled as an
intensive state variable, while V and N are clearly extensive. Physically, this would
mean that there is a larger thermal reservoir acting as a thermostat for the system.
But often, the pressure p is fixed rather than the volume V, for instance in a chemical
reaction at atmospheric pressure if one does not use a closed container for the chemi-
cal substances. A suitable thermodynamic potential with T, p and N controlled is the
Gibbs enthalpy G(T, p, N). Here, apart from being a thermostat the second system is
in pressure equilibrium with the first system, such that E = E1 + E2 and V = V1 + V2.
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f.6. gibbs-enthalpy

In this case one can write

W(E1, V1)dE1dV1 ∼ ω(E1, V1)ω2(E − E1, V − V1)dE1dV1 (F.273)

extending the previous relation by volume. An expansion of the logarithm lnω2 in
terms of energy and volume yields

lnω2(E − E1, V − V1) = lnω2(E, V) − ∂ lnω2

∂E1︸  ︷︷  ︸
= 1

kBT

E1 −
∂ lnω2

∂V1︸  ︷︷  ︸
= p

kBT

V1 (F.274)

and because S = kB lnω,

∂S
∂E

=
1

kBT
∂ lnω
∂E

=
1

kBT

∂S
∂V

=
1
kB

∂ lnω
∂V

=
p

kBT

Looking a the Legendre-transform relation

dE = TdS − pdV → dS =
1
T

(dE + pdV) (F.275)

such that
lnω2(E − E1, V − V2) = lnω2(E, V) − 1

kBT
(E1 − pV1) (F.276)

and the Boltzmann-factor is extended to include pressure work. Using this extended
Boltzmann-factor to compute expectation values in the canonical ensemble gives for
instance for ⟨E + pV⟩,

⟨E + pV⟩ =

∫
dEdV (E + pV)ω(E, V) exp

(
− E+pV

kBT

)
∫

dEdV ω(E, V) exp
(
− E+pV

kBT

) =

kBT2 ∂
∂T

ln
∫

dEdV ω(E, V) exp
(
−

E + pV
kBT

)
(F.277)

and for ⟨V⟩,

⟨V⟩ =

∫
dEdV Vω(E, V) exp

(
− E+pV

kBT

)
∫

dEdV ω(E, V) exp
(
− E+pV

kBT

) = −kBT
∂
∂p

ln
∫

dEdV ω(E, V) exp
(
−

E + pV
kBT

)
(F.278)

where again the variables E + pV or V alone have been generated by suitable differ-
entiation of the partition function, and interchanging differentiation and integration
determines the expectation values as suitable derivatives of the logarithmic parti-
tions functions. These relations lead naturally to the definition of the Gibbs-enthalpy
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f. canonical ensemble

G(T, p, N)

G(T, p, N) = −kBT ln
∫

dEdVω(E, V) →

E + pV = kBT2 ∂
∂T

(
− G
kBT

)
and V =

∂G
∂p

(F.279)

Linking this up to the Legendre-transform of F for the replacement of V with p

G = E − TS + pV → dG = −SdT + Vdp + µdN (F.280)

makes it possible to write

d
(
− G
kBT

)
=

G
kBT2 dT − 1

kBT
dG =

E + pV
kBT2 dT − V

kBT
dp −

µ

kBT
dN (F.281)

Such that a differentiation in T will yield E + pV and a differentiation in p the
corresponding volume. Separating the combined Boltzmann-factor the allows to
compute the partition function for the enthalpy G as following from the canonical
partition function Z defining the Helmholtz free energy F

G(T, p, N) = −kBT ln
∫

dV Z(T, V, N) exp
(
−
pV
kBT

)
(F.282)

with an interesting picture emerging: Replacement of a state variable by Legendre-
transform corresponds to a reweighting of the partition function with a modified
Boltzmann-factor. Naturally we would ask now if a replacement of N with the
chemical potential µ would be possible: This leads to the macrocanonical partition
function. Please keep in mind that a thermodynamic potential can not depend on all
intensive state variables as a consequence of the Gibbs-Duhem relation, so we are
aiming at macrocanonical partitions and their corresponding potentials as functions
of T, V and µ.
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G macrocanonical ensemble

G.1 Macrocanonical ensemble

Similar to the case of the Gibbs-enthalpy and the extension of the canonical potential
by an additional Boltzmann-like factor exp(pV/(kBT)) one could construct a new
partition with an associated thermodynamical potential for the case where temper-
ature and volume are controlled, but the particle number is allowed to fluctuate
by exchange with a particle reservoir, in analogy to the thermostat regulating the
temperature. The ease at which new particles are added to the system is regulated
by the chemical potential µ, and the resulting ensemble is called macrocanonical or
grand canonical ensemble.

The combined phase space volume of the two systems is given by

ω∗δE =
∫

E≤H≤E+δE

∏
i

d3pid
3qi =

∫
0≤E1≤E

ω∗1(E1, N1)ω∗2(E − E1, N − N1)dE1δE (G.283)

If the systems are separated, one would put N1 particles in the first system but let
the energy fluctuate such that the temperature is controlled: That would define the
canonical partition.

If now the barrier between the systems is openend there can be an exchange of
particles. There is a number of

N!
N1!(N − N1)!

=
(

N
N1

)
(G.284)

possibilities to select N1 particles from N = N1 + N2 to be in the first system, implying

ω∗(E, N)δE =
∫ ∑

N1

(
N
N1

)
ω∗1(E1, N1)ω∗2(E − E1, N − N1)dE1δE (G.285)

The binomial factor separates magically into exactly the Gibbs-factors that are needed
for each term:

ω∗(E, N)δE
N!h3N =

∑
N1

∫
ω∗1(E1, N1)

N1!h3N1

ω∗2(E − E1, N − N1)

(N − N1)!h3(N−N1)
dE1δE (G.286)

and with the proper definition of Gibbs-corrected phase space volumes, including
the powers of h3N = h3N1 × h3N2 ,

ω(E, N)δE =
∑
N1

∫
ω1(E, N1)ω2(E − E1, N − N1)dE1δE (G.287)

The probability of finding the system in a state characterised by E1 and N1 is then
given by

W(E1, N1)dE1 ∼ ω1(E1, N1)ω2(E − E1, N − N1)dE1 (G.288)

from which we continue as before by expanding the logarithm of ω2 around the
maximum of W
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g. macrocanonical ensemble

lnω2(E − E1, N − N1) = lnω2(E, V) − ∂ω2

∂E︸︷︷︸
= 1

kBT =β

E1 −
∂ lnω2

∂N︸  ︷︷  ︸
= µ

kBT =z=

N1 (G.289)

from S = kB lnω such that ∂S
∂E = 1

kBT and ∂S
∂N = µ

kBT . With the definition of fugacity

z =
µ

kBT
(G.290)

as the chemical potential in units of the thermal energy in analogy to the inverse
temperature β = 1

kBT we find for the probability

W(E1, N1)dE1 ∼ ω(E1, V1, N1) exp
(
−

E1 − µN
kBT

)
dE1 (G.291)

such that the fugacity plays the role of an analogous Boltzmann-factor to introduce
the replacement of N by µ.

G.2 Macrocanonical potential J and macrocanonical partition Z

The associated thermodynamical potential to the macrocanonical partition Z is the
macrocanonical potential J, naturally as a function of the state variables T, V and µ,
the latter replacing N:

J(T, V, µ) = −kBT lnZ (G.292)

as the logarithm of the macrocanonical partition Z

Z =
∑

N

∫
E

dE ω(E, V, N) exp
(
−

E − µN
kBT

)
(G.293)

Derivatives of the macrocanonical potential J with respect to T, V and µ are then
linked to entropy S, pressure p and particle number N, respectively.

G.3 Chemical potential µ and fugacity z

A fun example for a canonical, discrete system is a microscopic model for a polymer,
i.e. an elastic string: We’ll set up a canonical partition and extend it to a macrocanon-
ical partition in order to get some intuition about the chemical potential and the
associated fugacity. Let’s assume that the string is a chain of N monomers which
can be in two configurations, the long configuration with length a and the short
configuration with length b. The string is kept under tension σ, such that there is
mechanical work σdl performed, if the the length l of the chain is changed, in analogy
to the work performed by pressure pdV. As in this system the state variables T, σ and
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g.3. chemical potential µ and fugacity z

with the associated canonical partition ZG(T, p, N):

ZG =
∑
i

(
N
i

)
exp

(
−σl(i)
kBT

)
=

∑
i

(
N
i

)
exp

(
− σ

kBT
[ia + (N − i)b]

)
=

[
exp

(
− aσ
kBT

)
+ exp

(
− bσ
kBT

)]N

(G.294)

with a factorising partition sum, ZGT, σ, N = ZG(T, σ, 1)N . Clearly, the length of the
polymer chain l(i) depends on the number i of long elements a and the number N − i
of short elements b. The combinatorial factor

(N
i

)
= N!/ i!/(N − i)! counts the number

of possibilities to distribution i long elements in a chain of N elements in total.

Then, he Gibbs-enthalpy then follows from the canonical partition as

G(T, σ) = −kBT ln ZG = σl − TS (G.295)

with the corresponding differential dG,

dG = −SdT + ldσ (G.296)

such that the length of the chain at fixed tension and temperature is given by

l =
∂G
∂σ

= N
a exp

(
− aσ
kBT

)
+ b exp

(
− bσ
kBT

)
exp

(
− aσ
kBT

)
+ exp

(
− bσ
kBT

) (G.297)

in thermodynamical equilibrium: Immediately, one would interpret equation G.297
as a weighted sum of N exp(−aσ/(kBT)) monomers in the a-configuration and of
N exp(−bσ/(kBT)) monomers in the b-configuration, to form the expectation value for
the total length l. In complete analogy, differentiation with respect to temperature
yields the entropy, S = −∂G

∂T .

Figs. 1 and 2 show the equation of state, i.e. the relation between tension σ, length
l and temperature T for this model, and compare the analytic solution derived from
ZG with the expectation values of samples drawn from the canonical ensemble my
means of a Monte-Carlo Markov-chain method, namely, the Metropolis-Hastings
algorithm. Perhaps a bit surprisingly, the polymer chain in fact contracts at fixed
tension with increasing temperature, as the Boltzmann-probability for replacing a
long monomer with a short one increases. And there is, at least for small tensions, a
linear relationship between length and force reminiscent of Hooke’s law. Only for
large tensions, when the chain is almost fully elongated, the curve is significantly
steeper, as there are fewer configurations consistent with increasing length.

We can extend the idea of a polymer chain to include a chemical potential µ: The
polymer chain could be in a solution of monomers, which can leave the solution and
be built into the polymer chain, controlled by the parameter µ. For the corresponding
macrocanonical partition we need the Gibbs-factor 1

j! , the canonical partition Z(T, σ, j)
now as a function of l and a weighting with fugacity:

Z(T, σ, µ) =
∑
j

1
j!


j∑
i

(
j
i

)
exp

(
−σl(i)
kBT

) exp
(
µj

kBT

)
(G.298)
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Figure 1: Relation between tension σ and length l of the rubber band, parameterised by
temperature kBT, as it would result from the partition sum ZG and with the most likely
value and its dispersion as determined numerically with a Metropolis-Hastings-algorithm
for sampling from the canonical ensemble (reference: bachelor-thesis M. Kretschmer)
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Figure 2: Relation between temperature kBT and length l of the rubber band, parameterised
by tension σ, as it would result from the partition sum ZG and with the most likely value
and its dispersion (reference: bachelor-thesis M. Kretschmer)

58
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such that the macrocanonical potential J(T, σ, µ) is given by

J(T, σ, µ) = −kBT lnZ(T, σ, µ) (G.299)

with corresponding derivatives

∂J
∂T

= −S,
∂J
∂l

= −σ, ∂J
∂µ

= −N (G.300)

The canonical partition sum factorises, Z(T, σ, N) = Z(T, σ,1)N into powers of the
canonical partition of a single chain link,

Z(T, σ, 1) = exp
(
− aσ
kBT

)
+ exp

(
− bσ
kBT

)
(G.301)

Collecting all results then yields for the macrocanonical partition

Z(T, σ, µ) =
∑
j

1
j!

Z(T, σ, 1)j exp
(
µ

kBT

)j
=

∑
j

1
j!

[
Z(T, σ, 1) exp

(
µ

kBT

)]j
= exp

(
exp

(
µ

kBT

)
Z(T, σ, 1)

)
(G.302)

where the double exponential is typical for the structure of the macrocanonical
partition sum Z. For this case, S, l and N can be computed by differentiating J =
−kBT lnZ. It is a funny side effect that by providing a high chemical potential µ and
pulling on the string with σ the system assembles the chain spontaneously! There is
an inconsistency though, which does not invalidate the macrocanonical ensemble:
To have a partition function that depends entirely on intensive variables is at odds
with the Gibbs-Duhem relation, which disallows all intensive state variables in the
potential for making statements about extensive state variables, as all information of
the system is lost.

We have seen how the macrocanonical partition is assembled from fugacity-
weighted canonical partitions, but can this process be inverted? It is possible to
recover the canonical partition Z from the macrocanonical partition Z. Their relation
is given by

Z(T, V, µ) =
∑

N

exp
(
µ

kBT

)N

Z(T, V, N) (G.303)

as a fugacity-weighted summation over the canonical partition, which in turn fac-
torises

Z(T, V, N) =
1

N!
Z(T, V, 1)N (G.304)

into powers over the canonical partition pertaining to a single particle, N = 1.
Introducing the fugacity explicitly,

Z(T, V, z) =
∑

N

Z(T, V, N)zN =
∑

N

1
N!

(z Z(T, V, N))N (G.305)
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with z = exp
(
µ

kBT

)
shows that Z is in fact a power series in z with the canonical

partition as prefactors. The variable for the fugacity is already aptly named: When
performing an analytic continuation of Z from real-valued z to complex-valued z,
the series becomes a Laurent series. Then, the canonical partition is obtained through
complex differentiation

Z(T, V, N) =
dN

dzN Z(T, V, z)

∣∣∣∣∣∣
z=0

(G.306)

where the N-fold differentiation can be rewritten as a complex integration around a
loop at z = 0

Z(T, V, N) =
1

2πi

∮
Z(T, V, z)

zN+1 (G.307)

which can be evaluated using the tools of complex analysis, i.e. the residue theorem.
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H quantum statistics

We have already encountered hints of quantum mechanics in the construction of
partitions functions of classical mechanical systems, for instance the factors of 1/h
that are used to make the phase space volume element dpdq dimensionless, or the
Gibbs-factor 1/N! which corrects for the fact that the particles are physical identical
but indistinguishable. But there are three more points: Any finite system has discrete
levels in energy along with a discrete set of states, the two coordinates p and q are not
simultaneously defined, as [p, q] = ih/(2π) , 0, and issues about mutual exclusion in
the case of fermions come in. And clearly, phase space functions will be replaced by
operators.

H.1 Averages in classical and quantum physics

In classical physics, ensemble averages would be defined as

⟨A⟩ =
∫

E≤H≤E+δE

1
N!h3N

∏
i

d3pid
3qiA(pi , qi) (H.308)

but in quantum statistics, the average would run over all states ψ

⟨A⟩ =
∑
i

ρi⟨ψ(i)|A|ψ(i)⟩ (H.309)

with the density of states ρi and the expectation value ⟨ψ(i)|A|ψ(i)⟩ of the operator A

⟨ψ(i)|A|ψ(i)⟩ =
∫ ∏

i

d3qiψ
(i)(qi)

∗A(pi , qi)ψ
(i)(qi) (H.310)

in position representation.

This, however, is not the most general average. If there is a nonzero overlap of
Aψ(i) with ψ(j) the matrix element ⟨ψ(i)|A|ψ(j)⟩ does not vanish and one should rather
write

⟨A⟩ =
∑
ij

ρij · ⟨ψ(i)|A|ψ(j)⟩ (H.311)

where ρij is called the density matrix, which gives the probability of ⟨ψ(i)|A|ψ(j)⟩, con-

tributing to the average ⟨A⟩. Under a change of basis ψ(i) =
∑
k
a

(i)
k · φk the expectation

value should not change,

⟨A⟩ =
∑
i

ρi ·
∑
k,k′

·a(i)∗
k · a(i)

k′ · ⟨φk |A|φk′ ⟩ =
∑
k,k′

∑
i

ρia
(i)∗
k · a(i)

k′

︸              ︷︷              ︸
≡ρk,k′

⟨φk |A|φk′ ⟩ (H.312)

with the density matrix ρk,k′ (or better, the representation of the density ρ in the
basis φk),
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h. quantum statistics

ρk,k′ = ⟨φk′ |ρ|φk⟩ → ⟨A⟩ =
∑
k,k′

⟨φk′ |ρ |φk⟩ · ⟨φk |︸     ︷︷     ︸
=id

A|φ′k⟩ =
∑
k′

⟨φk′ |ρA|φk′ ⟩ = tr(ρA)

(H.313)

In general, trace relations have many advantages: They are invariant under orthogonal
or unitary transform, they are cyclic, tr(ABC) = tr(BCA) = tr(CAB) in particular
tr(AB) = tr(BA).Please, be very careful: Taking

the trace of the canonical commu-
tation relation [p, q] = iℏ would
imply tr[p, g] = tr(pq − qp) =
tr(pq) − tr(qp) = 0 = tr(iℏ) , 0
right?

The entries in the density matrix fall into two categories, ρkk is the probability
that the system assumes the state |φk⟩ and ρkk′ is the probability for transitioning
between two states |φk⟩ and |φk′ ⟩. While ρ is an abstract object and the elements ρkk′
exist only after assuming a basis set |φk⟩, a change of basis manifests itself as

⟨φi |ρ|φj⟩ =
∑
k,k′

⟨φi |φk′ ⟩︸   ︷︷   ︸
δik′

ρkk′ ⟨φk |φj⟩︸  ︷︷  ︸
δkj

=
∑
k,k′

δik′ · ρkk′ · δkj = ρij (H.314)

A system is in a pure state if only a single state occurs,ρii = 1 for a single suitably
chosen state |ψ(i)⟩. Writing the corresponding density operator explicitly in matrix
form gives

ρpure =


0

... 0
· · · 1 · · ·i
0

...i 0

 (H.315)

in which case it is equal to the projection operator ρpure = |ψ(i)⟩⟨ψ(i)| = P|ψi⟩. As
projections of linear combinations are equal to linear combinations of projections,
they are necessarily linear and can therefore be written as operators. Projections are
idempotent, because projecting a wave function after is has been projected onto a
state does not change anything. In the language of quantum mechanics this reads

P2
|ψi⟩ =

(
|ψ(i)⟩⟨ψ(i)|

)2
= |ψ(i)⟩ ⟨ψ(i)|ψ(i)⟩︸     ︷︷     ︸

= 1, for normalised |ψi⟩

⟨ψ(i)| = |ψ(i)⟩⟨ψ(i)| = P|ψi⟩ (H.316)

for any projection operator P|ψi⟩ = |ψ(i)⟩⟨ψ(i)|, which must therefore hold for the
density matrix as well, if we are dealing with a pure state.

For mixed states with ρii , 1 it must be the case that∑
i

ρii = tr(ρ) = 1 (H.317)

otherwise, the ρii would not be probabilities, and Kolmogorov’s axioms require that
0 ≤ ρii ≤ 1.

If the density matrix is known in a single basis, the all expectation values can be
computed. The eigenvalue relation determines the possible observations,

A|φA⟩ = a|φA⟩ (H.318)

and the possible eigenstates of a system, provides the basis set to compute overlaps
of a state with the basis functions ⟨ψi |,
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∣∣∣⟨ψi |φA⟩
∣∣∣2 (H.319)

given in terms of particular scalar product, or equally well as projections of any state
|φA⟩ onto ⟨ψi |, either in the case of a pure state ρpure = |ψ(i)⟩⟨ψ(i)|,

tr
(
ρpureP|φA⟩

)
=

∑
A′
⟨φA′ |ρpureP|φA⟩|φA′ ⟩ =

∑
A′
⟨φA′ |ψ(i)⟩⟨ψ(i)|φA⟩⟨φA|φA′ ⟩ = |⟨φA|ψ(i)⟩|2

(H.320)

or of a mixed state P|φA⟩ = |φA⟩⟨φA|,

tr
(
ρP|φA⟩

)
=

∑
A′

∑
i

⟨φA′ |ψ(i)⟩ρii⟨ψ(i)|φA⟩⟨φA|φA′ ⟩ =

∑
i

⟨φA|ψ(i)⟩ρii⟨ψ(i)|φA⟩ =
∑
i

ρii |⟨φA|ψ(i)⟩|2 (H.321)

Then, when one is using an arbitrary basis |φk⟩ instead of the eigenbasis of the
operator A, one obtains for the basis-independent trace

tr(ρA) =
∑
k

∑
i

⟨φk |ψ(i)⟩ρii⟨ψ(i)|A|φk⟩ =
∑
i

∑
k,k′

⟨φk |ψ(i)⟩ρii⟨ψ(i)|φk′ ⟩⟨φk′ |A|φk⟩

(H.322)

with the final result

tr(ρA) =
∑
i

ρii

∑
k,k′

⟨φk |ψ(i)⟩⟨φk′ |ψ(i)⟩∗⟨φk′ |A|φk⟩ (H.323)

The time evolution of the density matrix is determined from

iℏ
∂
∂t
ρ = iℏ

∂
∂t

∑
i

|ψ(i)⟩ρi⟨ψ(i)| =
∑
i

H|ψ(i)⟩ρi⟨ψ(i)|− |ψ(i)⟩ρi⟨ψ(i)|H = Hρ−ρH = [H, ρ]

(H.324)

after substitution of the Schrödinger-equation iℏ∂t |ψ⟩ and its conjugate −iℏ∂t⟨ψ| =
⟨ψ|H, as the Hamilton-operator is hermitean, H+ = H. This relation is called the von
Neumann-equation and is a bit reminiscent of the Poisson equation of motion,

d
dt
ρ =

∂
∂t
ρ + {H, ρ} (H.325)

if ρ was a classical phase space function. With the von Neumann-equation, the time
evolution of any expectation value is given by

iℏ
∂
∂t
⟨A⟩ = iℏ

∂
∂t

tr(ρA) = tr
[
iℏ

∂
∂t

(ρA)
]

= tr ([H, ρ]A) = tr([H, ρ]A) (H.326)

if the operator does not depend explicitly on time.
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H.2 Quantum mechanical partitions

H.2.1 Construction of phase space densities

As the Boltzmann-factor and suitable quantum mechanical generalisations of it
provide a weighting of states with respect to their energy, the basis provided by the
energy eigenstates will be the most useful,

H|φk⟩ = Ek |φk⟩ (H.327)

with is orthogonal with real eigenvalues, as the Hamilton-operator is hermitean H+ =
H. The von Neumann-equation then makes sure that if the density matrix is stationary,
∂tρ = 0, the commutator [H, ρ] would vanish, implying that the eigensystem for the
Hamilton-operator and for the density matrix must be identical. In this particular
basis |φk⟩ the density matri is diagonal,

ρkk′ = ρk · δkk′ with ρk = ⟨φk |ρ|φk⟩ (H.328)

such that ρk is the probability for the system to occupy a state of energy Ek .

H.2.2 Canonical ensemble in quantum statistics

With the density matrix as a statistical weight for expectation values of operators
over ensembles of quantum mechanical systems we can define averages and choose
the weighting to reflect the ratio between the energy of the state and the thermal
energy, in the spirit of a Boltzmann-factor. It is, from a practical point of view, near
impossible to do calculations in the microcanonical ensemble in a discrete system
typical for quantum mechanics, as the definition of ρ being either 0 or 1 in an energy
shell of thickness dE around the energy E is a concept for energy as a continuous
quantity.

Instead, the choice of ρN for canonical ensembles is straightforward, for instance
through

ρ =
exp

(
− EN
kBT

)
∑
N

exp
(
− EN
kBT

) (H.329)

with energy eigenvalues EN . This idea is compatible with the previous definition of a
canonical partition function

Z(T, V, N) =
∑

N

exp
(
− EN

kBT

)
(H.330)

as the normalisation for the probabilities, as from the general case of a matrix in any
basis (where we can not yet replace H by E)

ρ =
exp

(
− H
kBT

)
tr exp

(
− H
kBT

) (H.331)

we would compute
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tr exp
(
− H
kBT

)
=

∑
N

⟨φN |e
− H
kBT |φN⟩ =

∑
N

⟨φN |e
− EN
kBT |φN⟩ =

∑
N

e
−EN
kBT ≡ Z(T, V, N)

(H.332)

H.2.3 Canonical averages of arbitrary observables

Expectation values of arbitrary observables associated with hermitean operators A
would result from

⟨A⟩ = tr(ρA) = tr

A ·
exp

(
− H
kBT

)
tr exp

(
− H
kBT

)  =
tr

[
A exp

(
− H
kBT

)]
tr

[
exp

(
− H
kBT

)] (H.333)

which again is compatible with the previous definitions: Specifically if A = H,

E = ⟨H⟩ =
tr

[
H exp

(
− H
kBT

)]
tr

[
exp

(
− H
kBT

)] = kBT2 ∂
∂T

ln tr exp
(
− H
kBT

)
(H.334)

or with the inverse temperature β = 1
kBT , which is often used for notational compact-

ness in quantum statistics, Please be very careful in expres-
sions like ln tr exp(H), they’re cer-
tainly not tr ln exp(H) = trH!

E = ⟨H⟩ =
tr [H exp (−βH)]

tr [exp (−βH)]
= − ∂

∂β
ln tr exp (−βH)︸         ︷︷         ︸

≡Z(T,V,N)

= − ∂
∂β

ln Z (H.335)

The the logarithm of the canonical ensemble should be linked to the Helmholtz
free energy F, i.e.

F = E − TS = −kBT ln tr exp
(
− H
kBT

)
= −1

β
ln tr exp(−βH) (H.336)

With this insight, we can derive an expression for the entropy and see if it is consistent
with the previous argument of the expectation value ⟨−kB ln ρ⟩, but now applied to
quantum statistics. Fundamentally from the Helmholtz free energy we obtain

TS = E − F = − ∂
∂β

ln tr exp(−βH)︸                   ︷︷                   ︸
=⟨H⟩

+
1
β

ln tr exp(−βH) (H.337)

Being intuitive about the anticipated result, entropy should be related to the averaged
logarithmic phase space density

⟨ln ρ⟩ = tr(ρ ln ρ) = tr
[

exp(−βH)
tr exp(−βH)

· ln
exp(−βH)

tr exp(−βH)

]
= (H.338)

continuing we can write decomposing the logarithm of the fraction,

. . . = tr
[

exp(−βH)
tr exp(−βH)

· (−βH)
]
− tr

[
exp(−βH)

tr exp(−βH)
· ln tr exp(−βH)

]
(H.339)
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While the first term is simply the expectation value of the energy in the canonical
ensemble, the second term can be rearranged to have the trace only act on exp(−βH),
as all other terms are already traced out and are therefore straightforward numbers,
Then, tr exp(−βH) cancels and one arrives at

⟨ln ρ⟩ = −β⟨H⟩ − ln tr exp(−βH) (H.340)

Comparing this result to the terms in eqn. H.337 lets us write

S = β⟨H⟩ + ln tr exp(−βH) = ⟨−kB ln ρ⟩ (H.341)

H.2.4 Macrocanonical ensembles in quantum statistics

Macrocanonical ensembles allow changes in particle number N controlled by the
chemical potential µ: To reach this, the Boltzmann-factor was extended by a second
term, the fugacity z, and this extended Boltzmann-term was the weighting function
to assemble the partition functions. By analogy, we write

ρN =
exp(−β(EN − µN))∑

N

∑
N

exp(−β(EN − µN))
=

exp(−βEN − zN)∑
N

∑
N

exp(−βEN − zN)
(H.342)

with z = µ/(kBT) = βµ. Written as an operator, the density matrix becomes

ρ =
exp(−β(H − µN))

tr exp(−β(H − µN))
=

exp(−βH − zN)
tr exp(−βH − zN)

(H.343)

such that one can define a quantum mechanical macrocanonical partition sum

Z(T, V, µ) = tr exp(−β(H − µN)) = tr exp(−βH + zN) (H.344)

Let’s check whether the definition of entropy S, this time as an average of the
logarithm of the macrocanonical density, gives a sensible result. Indeed,

S = −kB⟨ln ρ⟩ = −kBtr(ρ ln ρ) = −kBtr[ρ(−βH + zN − lnZ(T, V, µ))] (H.345)

while the logarithm itself without average is ln ρ = −βH + zN − ln tr exp(−βH + zN) =
−βH + zN − Z(T, V, µ) such that the entropy becomes

S = kBβ︸︷︷︸
= 1

T

tr(ρH)︸ ︷︷ ︸
=⟨H⟩=E

+ kBµβ︸︷︷︸
= µ

T

tr(ρN)︸ ︷︷ ︸
=⟨N⟩

− lnZ(T, V, µ) (H.346)

That implies that the corresponding expression for the macrocanonical potential in
consistent with the definition of entropy is the macrocanonical average, as we obtain
the macrocanonical potential:

J = −kBT lnZ = E − TS − µN (H.347)

66



h.3. symmetries of wave functions of many particles

H.3 Symmetries of wave functions of many particles

When adding the Gibbs-factor 1/N! to the definition of the phase space volume
elements the reasoning was that by composing the system out of N particles, it should
not matter which of the particles takes up which of the positions: That would be an
indication of the indistinguishability of the particles, and let’s dwell on this point a
little, because it is a novel concept unknown to classical physics. Clearly, the particles
are identical in the sense that they have identical properties like mass or charge
and undergo exactly the same interactions. But in classical mechanics we have the
idea of a trajectory through phase space for each particle, and these trajectories are
non-intersecting, as made sure by Liouville’s theorem, such that each particle can
be unambiguously tracked from the initial conditions up to the present time. If
there were intersecting trajectories, that unambiguity would be lifted and one could
mistake particles.

In quantum mechanics this issue is far more involved: A particle would be rep-
resented by a wave function, which would necessarily disperse and increase its
extension ∝ t in both momentum and position space. Then, even for particles that
are initially separated, the wave functions would start overlapping after some time
and a localisation would yield ambiguous results, as it is impossible to assign the
localised particles at the time of the measurement to the particles localised at the
initial conditions. That’s why one should differentiate between states and particles
that might occupy them, a very zen-like thought, which already appeared in the
discussion of the Gibbs-factor: There are N! possibilities to distribution N particle
among N placeholders.

From a conceptual point of view we should therefore always describe the entire
system consisting of N particles with a common wave function ψ(r1, ..., rN) and ask
how such a wave function would behave under the exchange of two particles. To that
purpose, one can define an exchange operator P(i ↔ j)

P(i ↔ j)ψ(r1, ...ri , ..., rj , ..., rN) = ψ(r1, ...rj , ..., ri , ..., rN) (H.348)

This operator P(i ↔ j) is clearly idempotent,

P(i ↔ j)2 = P(i ↔ j)P(i ↔ j) = id (H.349)

as a double exchange recovers the initial wave function. Therefore, the eigenvalues
of P(i ↔ j) must be ±1, as

P(i ↔ j)ψ = λψ so that P(i ↔ j)2ψ = λ2ψ = ψ (H.350)

implying λ2 = 1 and λ = ±1. Generalising the exchange of two particles to a permu-
tation of particles

Pψ(r1, r2, ..., rN) = ψ(rP1
, rP2

, ..., rPN
) (H.351)

lets us define two particular wave functions: A wave function ψ+ which is fully
symmetric under particle exchange,

ψ+(r1, ..., rN) ∝
∑

P

Pψ(r1, ..., rN) (H.352)
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where one forms a linear combination over all possible permutation with equal
weight of +1, as well as a fully antisymmetric wave function,

ψ−(r1, ..., rN) ∝
∑

P

(−1)P · Pψ(r1, ..., rN) (H.353)

with weights depending on the sign of the permutation:

(−1)P =

+1 even number of particle exchanges

−1 odd number of particle exchange
(H.354)

Nature is very capricious at this point: She only allows fully symmetric wave func-
tions ψ+ and fully antisymmetric wave functions ψ− as descriptions of N-particle
systems. And she links these two cases to the spin of the particles as internal degrees
of freedom of the wave function: Bosons such as photons have integer spin and re-
quire symmetric wave functions, whereas fermions such as neutrinos or electrons
have half-integer spins and are described by antisymmetric wave functions for them.
This is the gist of Pauli’s spin-statistics-theorem.

H.4 Non-interacting systems

Non-interacting quantum mechanical systems are peculiar, because wave functions
factorise into single particle wave functions ψk(ri) = |ki⟩

ψk1...kN
(r1, ..., rN) = |k1...kN⟩ = |k1⟩ · · · |kN⟩ =

n∏
i

ψki (ri) (H.355)

are perfectly compatible with a Hamiltonian operator written as a sum of the indi-
vidual Hamiltonian operators:

H =
N∑
i

H(pi , ri) with individual solutions H(pi , ri)ψk(ri) = Ekψk(ri) (H.356)

such that the total energy is given by E =
∑
k

Ek . The respective (anti)symmetrisation

of the N-particle wave function is given by

bosons: |k1...kN⟩+ =
1

√
N! · S

·
∑

P

P|k1...kN⟩

fermions: |k1...kN⟩− =
1
√

N!
·
∑

P

(−1)P · P|k1...kN⟩

with the normalisation factor 1/
√

N! for N particles, reflecting the N! possible permu-
tations. While for fermions the wave function vanishes |k1...kN⟩− = 0 if for any two
states |ki⟩ = |kj⟩ is given, this would not be the case for bosons, making the counting
of permutations in the normalisation a bit more difficult, we will brush over this at
this moment and absorb this in the factor S.

A very neat trick for antisymmetric wave functions so typical for fermions is the
Slater-determinant:
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|k1...kN⟩− =
1
√

N!
det


φk1

(r1) · · · φk1
(rN)

...
. . .

...
φkN

(r1) · · · φkN
(rN)

 (H.357)

Because the determinant is the only antisymmetric multilinear form with norm one,
it is even uniquely defined.

H.5 Macrocanonical ensembles in quantum statistics

As objects like the canonical or macrocanonical partition functions are defined as
traces, the actual choice of the representation of the wave function does not matter
at all: The trace is invariant under any change of basis. One might lose diagonality,
though, making everything technically more difficult. For instance, the canonical
partition is given in momentum representation as

Z(T, V, N) = tr exp(−βH) =
1

N!

∑
k1...kN

±⟨k1...kN | exp(−βH)|k1...kN⟩± (H.358)

or, completely equivalently, in terms of energy eigenstates as

H|k1...kN⟩± = E|k1...kN⟩± with E =
∑
k

ϵk (H.359)

This particular representation is practical, because the partition separates:

±⟨k1...kN | exp(−βH)|k1...kN⟩± = ⟨k1...kN |
∏
k

exp(−βϵk)|k1...kN⟩± (H.360)

such that we finally obtain for classical Maxwell-Boltzmann-statistics (ignoring
issues of distinguishability for a second):

Z(T, V, N) =
1

N!

N∏
i

∑
ki

⟨ki | exp(−βHi)|ki⟩ =

1
N!

∑
ki

⟨ki | exp(−βHi)|ki⟩


N

=
1

N!
Z(T, V, 1)N (H.361)

with a factorising state |k1...kN⟩ = |k1⟩...|kN⟩.
But what about the indistinguishability? What quantum mechanics provides is

a way of computing energy levels from the mechanics of the system and not the
actual energies ϵk of particles. Rather, we should pick up the zen-esque idea of asking
whether a certain mode |k⟩ of the system is actually excited. The modes |k⟩ provided
by quantum mechanics are placeholders in which one (or in the case of bosons more
than one) particles may actually reside. With this idea, the occupation number nk can
be

bosons: all values nk = 0, . . . , n

fermions: only nk = 0 or nk = 1 but nothing else
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such that in both cases the total number of particles is given by N =
∑
k
nk and

the total energy by E =
∑
k
ϵknk , which then as well result from the expectation

values of H and N. With a characterisation of the state in terms of the set {nk} of
occupation numbers we can use as a notation |n1...nk⟩± including the information
about the symmetry of the wave function encapsulating by ±. In summary, the
Hamilton-operator should yield the total energy, H̃|n1, n2, ...⟩ = E|n1, n2, ...⟩ with E =
∞∑
k
nkϵk , and the particle number operator should return the total number of particles,

Ñ|n1, n2, ...⟩ = N|n1, n2, ...⟩ with N =
∞∑
k
nk . In the shorthand notation, the particle

number operator applied to the N-particle state gives the individual occupation
numbers nk of the states k,

|k1, ..., kN⟩± −→ |n1, n2, ...⟩± (H.362)

which can be any number between 0 and N for bosons and just 0 and 1 for fermions.

The occupation number representation of an N-particle state obeys an orthonor-
mality relation

±⟨n1, n2, . . . |n′1, n
′
2, . . .⟩

± = δn1n
′
1
δn2n

′
2
. . . (H.363)

for any of the two fundamental types of particles. In this representation, the density
matrix ρ can be expressed as

±⟨n1, n2, ...|ρ|n1, n2, ...⟩± =
1

Z(T, V, N)
±⟨n1n2...| exp(−βH̃)︸     ︷︷     ︸

=exp
(
−β

∑
k
nkϵk

)
|n1n2...⟩± (H.364)

with the partition function Z(T, V, N)

Z(T, V, N) =
∑

{nk } with
∑
k
nk=N

exp

−β∑
k

nkϵk

 (H.365)

which is truly difficult to evaluate: The sum runs over all possible partitions of the
total particle number N into sets {nk} fulfilling

∑
k
nk = N, so I think that you’ll agree

that there is a lot of bookkeeping going on!

There is a way out: To use macrocanonical partitions instead. There, the particle
number is unconstrained, so one can obtain the density matrix in the macrocanonical
ensemble,

±⟨n1, n2, ...|ρ|n1, n2, ...⟩± =
1
Z
±⟨n1n2...| exp(−β(H̃ − µÑ))|n1n2...⟩± =

1
Z
±⟨n1n2...| exp

−β∑
k

nk(ϵk − µ)

 |n1n2...⟩± (H.366)

with the normalising macrocanonical partition function
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Z(T, V, µ) =
∑
{nk }

exp

−β∑
k

nk(ϵk − µ)

 (H.367)

where there is no restriction in the actual particle number: In fact, the unrestricted
sum collects all contributions in the right measure such that the familiar relation
between the macrocanonical and canonical partition functions is found:

Z(T, V, µ) =
∞∑

N=0

∑
{nk } with

∑
k
nk=N︸                 ︷︷                 ︸

=
∑
{nk }

exp

−β∑
k

nk(ϵk − µ)

 =

∞∑
N=0

∑
{nk }

′ exp

−β∑
k

nkϵk

 · exp

βµ∑
k

nk

︸             ︷︷             ︸
=exp(βµ)N=zN

(H.368)

with the definition of fugacity z = exp(βµ),

Z(T, V, µ) =
∑

N

zN
∑
{nk }

′ exp(−β
∑
k

nkϵk) =
∑

N

zN · Z(T, V, N) (H.369)

Effectively, we make the problem easier by making it more complicated! Effectively,
the full macrocanonical partition function as an unrestricted sum finally reads:

Z(T, V, µ) =
∑
{nk }

g({nk}) · exp

−β∑
k

nk(ϵk − µ)

 (H.370)

where the different partitions {nk} are weighed with g = 1 for bosons. Fermions are a
bit more complicted, for them g = 1 for nk = 0, 1, and g = 0 in all other cases.

Let’s carry out these summations to obtain a closed expression for Z(T, V, µ). For
bosons this would mean

Z(T, V, µ) =
∞∑

n1,n2,...

exp(−β(ϵ1 − µ))n1 · exp(−β(ϵ2 − µ))n2 . . . =
∞∏
k

∞∑
nk=0

exp(−β(ϵk − µ))nk

(H.371)

where one can continue with the geometric series,

n∑
j

qj =
1 − qn

1 − q
(H.372)

applied to the nk-summation, such that the partition becomes

Z(T, V, µ) =
∏
k

1
1 − exp(−β(ϵk − µ))

=
∏
k

1
1 − z · exp(−βϵk)

(H.373)
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with the fugacity z = exp(βµ). Analogously, fermions would yield

Z(T, V, µ) =
1∑

n1,n2,...

exp(−β(ϵ1 − µ))n1 · exp(−β(ϵ2 − µ))n2 . . . =
∞∏
k

1∑
nk=0

exp(−β(ϵk − µ))nk

(H.374)

and as the occupation numbers can really only be 0 or 1,

Z(T, V, µ) =
∏
k

[1 + exp(−β(ϵk − µ))] =
∏
k

[1 + z · exp(−βϵk)] (H.375)

with the final results just differing in their signs. The macrocanonical potential
J(T, V, µ) derived from the bosonic or fermionic macrocanonical partition function is
given by

J(T, V, µ) = −kBT lnZ(T, V, µ) = −pV (H.376)

with derivatives S = − ∂J
∂T , p = − ∂J

∂V and N = − ∂J
∂µ . Specifically, for the two particle

species the macrocanonical potential becomes

bosons: J(T, V, µ) = +kBT ·
∞∑
k=1

ln[1 − z · exp(−βϵk)]

fermions: J(T, V, µ) = −kBT ·
∞∑
k=1

ln[1 + z · exp(−βϵk)]

Finally, particle number of the two species are given as derivatives with respect to µ
of the logarithm of the macrocanonical partition function Z:

N(T, V, µ) = kBT
∂
∂µ

lnZ =



∞∑
k=1

1
z−1 exp(βϵk) − 1︸               ︷︷               ︸

=nk , because N=
∑
k
nk

for bosons

∞∑
k=1

1
z−1 exp(βϵk )+1 for fermions

(H.377)

as well as through a differentiation with respect to β

E(T, V, µ) = − ∂
∂β

lnZ =



∞∑
k=1

ϵk

z−1 exp(βϵk) − 1︸               ︷︷               ︸
=nkϵk , because E=

∑
k
nkϵk

for bosons

∞∑
k=1

ϵk
z−1 exp(βϵk )+1 for fermions

(H.378)

As examples for quantum macrocanonical ensembles we should discuss a couple
of applications: Firstly the Planck-spectrum as the first application of quantum
statistics, where we do not have to worry about the ground state occupation and
because chemical potential is particularly simple to deal with. Then, we should
discuss fermionic statistics and the exclusion principle for a degenerate fermonic gas,
as the ground state is easy to treat as it can be at most occupied by a single particle.
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Both statistical systems have profound implications for the statistics of the particle
number and its fluctuations. Thirdly, we should go through the case of non-relativistic
bosons which show condensation phenomena at low temperature.

H.5.1 Ultrarelativistic ideal Bose-gas

The statistical perspective of an electromagnetic field in thermal equilibrium is that
of an ultra-relativistic gas of photons at a given temperature. The dispersion relation
of photons is

ϵ = cp = ℏck (H.379)

with the modulus p2 = p2 of the momentum and the energy ϵ. The discrete summa-
tion over all momentum eigenstates becomes in the continuum limit an integration,
if the volume is large,

∑
k

→ 1
h3

∫
d3p

∫
d3x = 4πV

∫
k2dk =

4πV
h3c3

∞∫
0

ϵ2dϵ (H.380)

where the volume element is reduced to a radial integration to to spherical symmetry.
Photons are particles with spin 1 with two polarisation state sypical for a massless
vector particle, and the masslessness implies that the system can change the number
of particles easily (while conserving energy), because there is no rest mass. But
physically, the change of number of particles would mean to have interactions between
the photons (for instance, fusing two photons into a single one or vice versa), which
can not be achieved by linear Maxwell-electrodynamics. This is why Max Planck was
so adamant to always include a grain of coal into his considerations, where groups
photons can get absorbed and emitted at different particle number but same total
energy. The missing rest mass of the photons is reflected by µ = 0 as for example a
process of a photon splitting into multiple photons through interaction with matter
can proceed at arbitrary low energies without the need to come up with the rest mass,
possibly impeding the process.

As always in quantum statistics, we formulate the macrocanonical partition func-
tion

lnZ(T, V, µ) = − 4πV
(hc)3

∞∫
0

ϵ2dϵ ln[1 − exp(βϵ)] =
4πV
(hc)3

β

3

∞∫
0

dϵ
ϵ3

exp(βϵ) − 1
(H.381)

in the continuum limit and after an integration by parts (where the integrand
vanishes at both ϵ = 0 and at ϵ → ∞), which can be compared the value of the
macrocanonical potential (through J = −kBT lnZ = −pV)

lnZ(T, V, µ) =
pV
kBT

(H.382)

from which we conclude that the pressure is equal to a third of the energy density. In
equation eqn. H.381 the fugacity z = exp(βµ) is already set to one as a consequence of
µ = 0.

The type of integral as in eqn. H.381 is typical for calculations around bosonic
systems.
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ζ(s) · Γ (s) = ζ(s) · (s − 1)! =

∞∫
0

dx
xs−1

exp(x) − 1
(H.383)

which follows from this argument:

∞∫
0

dx
xs−1

exp(x) − 1
=

∞∫
0

dx xs−1 exp(−x)
1 − exp(−x)

=

∞∫
0

dx xs−1
∞∑

m=1

exp(−mx) =
∞∑

m=1

∞∫
0

dx xs−1 · exp(−mx) (H.384)

with a geometric series
q

1 − q
= q

∞∑
m=0

qm =
∞∑

m=1

qm (H.385)

on q = exp(−x) ≤ 1 for positive x. Substitution y = mx with dx = dy/m and x = y/m
yields

∞∫
0

dx
xs−1

exp(x) − 1
==

∞∑
m=1

1
ms︸  ︷︷  ︸

=ζ(s)

·
∞∫

0

dy ys−1 · exp(−y)

︸                   ︷︷                   ︸
=Γ (s)=(s−1)!

(H.386)

with the Riemann-ζ-function and the Γ -function as a generalisation to the factorial.
Then, the result for the logarithmic macrocanonical partition function is

lnZ(T, V, µ) =
4πV
(hc)3 ·

β

3

∞∫
0

dϵ
ϵ3

exp(βϵ) − 1
(H.387)

with the substitution x = βϵ with the differential dx = βdϵ yields a form which is
compatible with relation H.386 making evaluation of a closed form possible

lnZ(T, V, µ) =
4πV

3(hc)3
1
β3

∞∫
0

dx
x3

exp(x) − 1︸              ︷︷              ︸
=ζ(4)·3!

=
4π5V

90(hc)3 (kBT)3 (H.388)

where the actual value for ζ(4) is given by ζ(4) = π4

90 . Continuing with the macro-
canonical potential

J(T, V, µ) = −kBT lnZ = − 8π5V
90(hc)3 (kBT)4 (H.389)

one can derive the state variables by differentiation and substitute back into the
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entropy: S = − ∂J
∂T

=
32π5V
90(hc)3 (kBT)3kB

pressure: p = − ∂J
∂V

=
8π5

90(hc)3 (kBT)4

Euler-relation: E = TS − pV =
24π5V
90(hc)3 (kBT)4

free energy: F = E − TS = −pV = − 8π5V
90(hc)3 (kBT)4

Gibbs enthalpy: G = E + pV − TS = F + pV = 0 (= µN)

where we recognise the Stefan-Boltzmann-law E ∝ T4, the relation E = 3p for the
radiation pressure and the consistency of the Gibbs-enthalpy with the chemical
potential being zero. Of course, the formal derivation through the partition sum has
to be consistent with a direct, intuitive evaluation of the expectation values of energy
and particle number:

E =
∑
k

ϵk

exp(βϵk) − 1
→ E =

4πV
(hc)3

∞∫
0

dϵ
ϵ3

exp(βϵ) − 1
=

24πV
(hc)3 (kBT)4ζ(4)

N =
∑
k

1
exp(βϵk) − 1

→ N =
4πV
(hc)3

∞∫
0

dϵ
ϵ2

exp(βϵ) − 1
=

8πV
(hc)3 (kBT)3ζ(3)

confirming the result on E, and giving some insight into the entropy S, which comes
out as being proportional to the particle number as both scale with T3. In some sense,
the entropy carried by the electromagnetic field in thermal equilibrium is just the
number of photons. Of course, exactly the same results on particle number would
have been obtained if µ had been included in the definition of the macrocanonical
partition such that −∂J/∂µ could have been computed and evaluated at µ = 0 to yield
N. The scaling VT3 = const along with pT−4 = const imply pV4/3 = const, such that
the adiabatic index κ of the photon gas needs to be κ = 4/3.

H.5.2 Planck-spectrum

The differential flux per energy ϵ = ℏω or angular frequency ω observed from the
electromagnetic field in thermal equilibrium is given by the Planck-spectrum,

S(ω) =
ℏ

4π2c2 ·
ω3

exp
(
ℏω
kBT

)
− 1

(H.390)

from which we recover the Rayleigh-Jeans limit for ℏω≪ kBT

S(ω) =
1

4π2c2 · ω
2 · kBT (H.391)

showing that there is a parabolic increase of the spectrum, with a infinite amount
of total energy, if integrated over all frequencies ω: This is known as the ultraviolet

75

https://en.wikipedia.org/wiki/Black_body


h. quantum statistics

catastrophe. For high energies ℏω≫ kBT one obtains the Wien-limit

(ω) =
ℏ

4π2c2 · ω
3 · exp

(
− ℏω
kBT

)
(H.392)

which would result for a system of ultrarelativistic particles following classical
statistics instead of quantum staticstics, markedly being different at low frequencies.
Weirdly enough, all scaling properties of the Wien-spectrum come out in exactly the
same way as for the proper Planck-spectrum, only the numerical prefactors are off
by a tiny bit: The absence of the −1 in the distribution lead to simple factorials in
Bose-type integrals and miss the ζ-function.

Wien’s displacement law states that one is going to observe more highly energetic
radiation for higher temperatures; the maximum frequency is determined to be

dS
dω

= 0 → 3 − ℏω
kBT

·
exp

(
ℏω
kBT

)
exp

(
ℏω
kBT

)
− 1

= 0 (H.393)

which (only) has a numerical solution, ℏω ≃ 2.821kBT. Again, the Wien-prediction is
but a tiny bit off, as ℏω results in 3 instead of ≃ 2.081. The Wien-displacement lawThese numbers are all impossi-

ble to guess and must have puz-
zled Wilhelm Wien profoundly.

suggests that it is possible to assign a length scale to a temperature as we did before,
but this time for a relativistic particle,

ϵ = cp = cℏk =
ch
λth

= kBT → λth =
ch
kBT

, (H.394)

as the de Broglie-wavelength of an ultrarelativistic particle carrying the thermal
energy, and therefore it is justified to call it thermal wavelength λth, as it is de-
rived from equipartition, kBT = ℏω. That means, that one can measure temperature
spectroscopically!It is a curious property of the

Planck-spectrum that S(ω) for dif-
ferent temperatures never cross.
So any measurement of S(ω) at an
arbitrary frequency ω determines
T.

There is a very neat derivation of the Planck-specktrum full of physical intuition,
naturally by Einstein himself: The Bose-factor 1/(exp(ℏω/(kBT)) − 1) leads to an over-
abundance of photons at low energies relative to a Boltzmann-factor exp(−ℏω/(kBT))
(which of course vanishes at high energies as exp(ℏω/(kBT)) ≫ 1), and this over-
abundance introduces all the weird numbers into the scaling relations that Wien
couldn’t make sense of. So somehow Einstein needed to engineer a solution to make
low-energetic photons more abundant relative to the Wien-prediction, and his idea
was that of induced emission as the mechanism to generate Bose-distributions.

Imagine two quantum mechanical levels for Planck’s grain of coal (bringing the
photon gas into thermal equilibrium as discussed before) with occupation numbers
n1 and n2: The occupation numbers can change due to absorption in the lower level
n1 and inducing a transition into n2. That process must scale with the intensity S
of the radiation field. Then, there can be spontaneous emission, decreasing n2 and
increasing n1, which is independent of S, as the process takes place spontaneously.
Induced emission is a transition from n2 to n1 which actually depends on S, as
postulated by Einstein. The rate equations with suitable transition coefficents then
read

ṅ1 = −SBn1 + AiSn2 + Asn2

ṅ2 = +SBn2 − AiSn1 − Asn1
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with coefficients Ai , As and B: B determines the rate that the atoms in the lower
state are able to absorb a photon from the radiation field, and the two As determine
the rate at which atoms in the upper state are doing transitions, either spontaneous
or induced. They are characteristics of how easily an atom in that particular state
reacts to the radiation field (for instance, how strong dipole moments are). As there is
no spontaneous transition to a state of higher energy (that would be in violation of
energy conservation) it is unnecessary to introduce two Bs.

In equilibrium ṅ1 = ṅ2 = 0 must hold (which is called detailed balance condition),
as there is not any net change in the occupation numbers, leading to

n2(SAi + As) = SBn1 (H.395)

for instance from ṅ1 = 0. Applying Boltzmann-statistics to the occupation number
ratio,

n2

n1
= exp

(
− ℏω
kBT

)
(H.396)

yields an expression reminiscent of the Bose-factor,

S ∝ As

B exp
(
ℏω
kBT

)
− Ai

(H.397)

If we had neglected the term AiSn2 in the rate equation describing induced emission,
a conventional Wien-like spectrum would have come out:

S ∝ As

B
exp

(
− ℏω
kBT

)
(H.398)

To be very specific, what the derivation is doing is to assume standard Boltzmann-
statistics for the occupation number statistics of the atomic levels in the coal, and
transfer that with the radiative processes discussed (absorption, induced and sponta-
neous emission) to the photon gas. The inclusion of induced emission clearly generates
Bose-distributions instead of Boltzmann-distributions.

The constants can be fixed to be in accordance with the known Wien and Rayleigh-
Jeans radiation laws: At very high energies ℏω ≫ kBT one needs to recover S ∼
ω3 exp

(
− ℏω
kBT

)
. In this limit, Ai should be negligible, and the ratio As/B should become

proportional to ω3. The Rayleigh-Jeans limit ℏω≪ kBT is a bit more tricky. Taylor-
expanding S for small ℏω/(kBT) yields

S ∝ 1
B

As
+ B

As

ℏω
kBT −

Ai
As

(H.399)

such that there is a term B/As ℏω/(kBT), which generates the Rayleigh-Jeans scaling
∝ ω2 if B/As and Ai /As were equal. That implies that B = Ai and therefore

S ∝ ω3

exp
(
ℏω
kBT

)
− 1

(H.400)

and voilà, the Bose-factor appears. Fig. 3 gives an impression of the Planck-spectrum
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Figure 3: Planck-spectrum for ultrarelativistic bosons, in comparison to the Wien-
approximation using classical instead of quantum statistics, both for a range of tem-
peratures T. The maxima in frequency for different temperatures clearly follow a linear
Wien-displacement law.

for a range of temperatures T, along with the Wien-approximation, where the Bose-
factor is replaced by a plain Boltzmann-factor: Clearly, there is an overabundance
of photons at low energies in proper quantum statistics, underlining their bosonic
nature.

H.6 Fluctuations in quantum and classical statistics

The bottom line of the spectral distribution of photons and the Planck-spectrum is
an overabundance of photons at low energies compared to the classical prediction,
encapsulated by the difference between the Bose- and Boltzmann-factors. It is not only
the case that there are just more photons at low energies but also that these photons
are correlated: The observation of one photon makes it more likely to observe a second
one, as first discovered by Hanburry-Brown and Twiss. One might think that photons
from a thermal source are necessarily uncorrelated, but the mechanism of induced
emission or, equivalently, the symmetry requirement on the wave functions in the
macrocanonical expectation values and the resulting photon bunching introduce
correlations between the photons. Therefore, when observing photons from a thermal
source, the variance ⟨n2⟩ of photon counts has a variance which is super-Poissonian
and not just ⟨n⟩. Conversely, fermions from a thermal source are anti-correlated with
a sub-Poissonian counting statistic.

A laser is, despite induced emis-
sion, a perfect example of a Pois-
sonian light source: that’s because
the photon avalanches are effec-
tively a classical process and there
is no thermal equilibrium at all.

Therefore, we should analyse fluctuations and counting statistics of Bose-Einstein,
Fermi-Dirac and Maxwell-Boltzmann distributions: The macrocanonical potentials
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h.6. fluctuations in quantum and classical statistics

including a chemical potential µ are given by

JMB(T, V, µ) = −kBT
∑
k

exp(−β(ϵk − µ))

JBE(T, V, µ) = +kBT
∑
k

ln[1 − exp(−β(ϵk − µ))]

JFD(T, V, µ) = −kBT
∑
k

ln[1 + exp(−β(ϵk − µ))]

which all coincide at high energies −βϵk ≫ 1, because ln(1 ± x) = ±x for x = exp(−βϵ),
which then becomes small. All three cases can be summed into a single expression,

lnZ(T, V, µ) =
1
a

∑
k

ln[1 − a exp(−β(ϵk − µ))] (H.401)

where they only differ by the value of the parameter a,

a =


−1 Fermi-Dirac

0 Maxwell-Boltzmann

+1 Bose-Einstein

(H.402)

Maxwell-Boltzmann-statistics follows in the limit a → 1 as an application of the
de l’Hôpital-rule. The particle number follows from the macrocanonical potential
directly through differentiation,

N =
∂
∂µ

kBT lnZ(T, V, µ) = − ∂
∂µ

J (H.403)

or through the expectation value of the occupation number operator,

⟨N⟩ =
1
Z

∑
{nk }

exp(−β
∑
k

nk(ϵk − µ)) · ⟨n1, ...|N|n1, ...⟩︸             ︷︷             ︸
=
∑
k
⟨nk⟩=N

=

1
Z

1
β

∂
∂µ

∑
{nk }

exp(−β
∑
nk

nk(ϵk − µ)) =
1
Z

(kBT)
∂
∂µ
Z = kBT

∂
∂µ

lnZ (H.404)

This implies for the three distributions that

⟨nk⟩ =
1

exp(β(ϵk − µ)) − a
(H.405)
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because each occupation number can be isolated through differentiation by ϵk

⟨nk⟩ =
1
Z

∑
{nk }

exp(−β
∑
k

nk(ϵk − µ)) · nk =
1
Z
−1
β

∂
∂ϵk

∑
{nk }

exp(−β
∑
k

nk(ϵk − µ)) =

1
Z

(
−1
β

∂
∂ϵk
Z
)

= −1
β

∂
∂ϵk

lnZ(T, V, µ) (H.406)

The variance of the expectation value ⟨nk⟩

σ2
k = ⟨n2

k⟩ − ⟨nk⟩
2 =

1
Z

(
−1
β

∂
∂ϵk

)2

Z −
[

1
Z

(
−1
β

∂
∂ϵk

)]2

(H.407)

can likewise be computed through successive derivatives with respect to µ. Trying
out

∂2

∂ϵ2
k

lnZ =
∂
∂ϵk

(
1
Z

∂
∂ϵk
Z
)

=
1
Z

∂2

∂ϵ2
k

Z − 1
Z2

(
∂
∂ϵk
Z
)2

=
1
Z

∂2

∂ϵ2
k

Z −
(

1
Z

∂
∂ϵk
Z
)2

(H.408)

suggest for the variance

σ2
k =

(
−1
β

∂
∂ϵk

)2

lnZ = −1
β

∂
∂ϵk

[
−1
β

∂
∂ϵk

lnZ
]

= −1
β

∂
∂ϵk
⟨nk⟩ (H.409)

The specific calculation for the three distributions in question then gives for the
variance

σ2
k =

exp(β(ϵk − µ))
[exp(β(ϵ − µ)) − a]2 = exp(β(ϵk − µ)) · ⟨nk⟩2 (H.410)

as well as for the expectation value

⟨nk⟩ =
1

exp(β(ϵk − µ)) − a
→ exp(β(ϵk − µ)) =

1
⟨nk⟩

+ a (H.411)

such that the final result becomes

σ2
k = ⟨nk⟩2 ·

(
1
⟨nk⟩

− a
)

=


⟨nk⟩ Maxwell-Boltzmann

⟨nk⟩ + ⟨nk⟩2 Bose-Einstein

⟨nk⟩ − ⟨nk⟩2 Fermi-Dirac

(H.412)

such that there is an increased variance for bosonic systems as opposed to a re-
duced variance for fermionic systems in perfect agreement with the results from the
Hanburry-Brown and Twiss experiment. Classical particles reproduces a perfectly
Poissonian behaviour as variance and expectation value are identical, σ2

k = ⟨nk⟩. And
actually, there is no problem subtracting ⟨nk⟩2 from ⟨nk⟩ for the fermionic case, as nk
can only range between 0 and 1, the square is certainly smaller.

Fig. 4 shows the Bose-Einstein distribution for bosons, the Fermi-Dirac distri-
bution for fermions and the Boltzmann-distribution for classical particles. Clearly,
there is an overabundance of bosons relative to the classical prediction, and an under-
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Figure 4: Bose-Einstein and Fermi-Dirac distribution in comparison to the Boltzmann-
distribution, as a function of energy E, expressed in terms of thermal energy kBT.

abundance of fermions, most prominently for small energies, while the differences
disappear towards higher energies. In the scifi-novel His master’s

voice by S. Lem humankind re-
ceives an alien message modulated
on a NASER, i.e. on a coherent
neutrino beam: Would this be pos-
sible?

H.7 Third law of thermodynamics and entropy at absolute zero

The obscure third law of thermodynamics ensures that the entropy approaches a
constant value (which can be set to zero, as it only appears differentially in ther-
modynamics) for very low temperatures in the limit T → 0. Let’s see whether this
result is predicted by statistical mechanics for an ideal, classical gas. In the canonical
ensemble one gets

Z(T, V, N) =
VN

N!

(
2πmkBT

h2

) 3N
2

(H.413)

such that one derives the Helmholtz free energy F from the canonical partition
function,

F(T, V, N) = −kBT ln Z(T, V, N) = −NkBT

1 + ln

 V
N

(
2πmkBT

h2

) 3
2

 (H.414)

and the entropy S through differentiation,

S(T, V, N) = −∂F
∂T

= NkB

5
2

+ ln

 V
N

(
2πmkBT

h2

) 3
2

 (H.415)
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On the other hand, the entropy S should follow directly as an expectation value of
ln ρ:

S = −kB⟨ln ρ⟩ = −kBtr(ρ ln ρ)

= −kBtr
[

exp(−βH)
tr exp(−βH)

· ln
exp(−βH)

tr exp(−βH)

]
= −kB

1
tr exp(−βH)

tr[exp(−βH) · ln(exp(−βH)) − ln tr exp(−βH)]

= −kB
1∑

N
exp(−βEN)

∑
N

exp(−βEN)

ln exp(−βEN) − ln
∑
M

exp(−βEM)


= −kB

1∑
N

exp(−βEN)

∑
N

exp(−βEN)

−βEN − ln
∑
M

exp(−βEM)


specifically in an energy-eigenbasis for the traces, and introducing a second index for
the nested sums. Introducing a ground state Ē such that all energies are measured
relative to it, EN − Ē = ∆ then implies:

S = −kB
1∑

N
exp(−β∆)

∑
N

exp(−β∆)

−β∆ − ln
∑
m

exp(−β∆)

→ 0 (H.416)

with the limit of S→ 0 as T→ 0 or equivalently, β→∞.

lim
T→0

exp(−β∆) =

1 for ∆ = 0, E = E
0 for ∆ , 0, E > E

(H.417)

This is actually a very surprising result: Finite volumes V and vanishing energies
E = 0 for the ground state are not compatible with each other. In the light of quantum
mechanics this makes perfect sense, as a finite size of the system ∆x restricts the
momentum to be ∆p ≥ ℏ/2/∆x, which limits the kinetic energy ∆E ≥ ℏ2/(8m)/(∆x)2

as a consequence of the uncertainty relation.

H.8 Fermionic statistics and the exclusion principle

Fermions are particles with half-integer spin and according to Pauli’s spin-statistics-
theorem, they have to obey Fermi-Dirac-statistics. Examples of fermions in statistical
systems are electrons in a metal or neutrinos in the cosmic neutrino background. The
logarithmic macrocanonical parition is given by

q(T, V, µ) = lnZ(T, V, µ) =
∑
k

ln[1 + z exp(−βϵk)] (H.418)

with the fugacity z = exp(βµ) in general being nonzero: Adding new particles to a
system has to be done in accordance with the exclusion principle, so it might not be
possible to put particles in the ground state when it’s already occupied. In general, µ
(or z) increases with N, so the effective chemical potential can be determined with
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N(T, V, µ) =
∑
k

⟨nk⟩ =
∑
k

1
z−1 exp(βϵk) + 1

(H.419)

for non-interacting, ideal fermions. The sum over the discrete states transitions into
an integral in the continuum limit∑

k

−→ V ·
∫

d3p

h3 = V ·
∫

dϵ g(ϵ) (H.420)

with a corresponding density of states g(ϵ), using energy ϵ rather than momentum
p for the phase space integration. Then, the expressions for the macrocanonical
partition function and the particle number become

q(T, V, µ) =

∞∫
0

dϵ g(ϵ) ln[1 + z exp(−βϵ)]

N(T, V, µ) =

∞∫
0

dϵ g(ϵ)
1

z−1 exp(βϵ) + 1

In particular for a system of N classical fermions in thermal equilibrium (like a gas
of electrons in a metal, for instance), the total number N would be fixed, so you
might wonder why we’re using macrocanonical partitions anyway. The answer is that
macrocanonical partitions make counting so much easier, since we can simply sum
over all states, not the states that are compatible with a total particle number. One
employs macrocanonical partitions while reverse-engineering the chemical potential
µ so that N is fixed, and using the same µ for q(T, V, µ) as well, making everything
consistent.

H.8.1 Density of states for non-relativistic fermions

The definition of density of states depends crucially on the dispersion relation, as
momentum p is exchanged in favour of energy ϵ as the integration variable for the
partition function, with an implicit assumption on homogeneity in configuration
space as well as isotropy in momentum space. With a non-relativistic dispersion
ϵ = p2/(2m) and the differential dϵ = pdp/m one can reformulate the integration as∫

d3x

∫
d3p = V4π

∫
dp p2 = V4π

∫
dϵ 2mϵ

m
p

= V2π(2m)
3
2

∫
dϵ
√
ϵ (H.421)

By integrating over the density of states with ϵ as the integration variable one obtains
for the logarithm of the canonical partition

q(T, V, µ) =
2πV
h3 (2m)

3
2

∞∫
0

dϵ
√
ϵ ln[1 + z exp(−βϵ)] =

2πV
h3 (2m)

3
2

2β
3

∞∫
0

dϵ
ϵ

3
2

z−1 exp(βϵ) + 1
(H.422)

83



h. quantum statistics

and similarly for the particle number

N(T, V, µ) =
2πV
h3 (2m)

3
2

∞∫
0

dϵ
ϵ

1
2

z−1 exp(βϵ) + 1
(H.423)

Similar to the bosonic case one encounters a particular type of integral for fermions

fs(z) =
1
Γ (s)
·
∞∫

0

dx
xs−1

z−1 exp(x) + 1
(H.424)

with the substitution x = βϵ. With the definition of thermal wavelength for non-
relativistic particles

1
λ

=

√
2πmkBT

h2 (H.425)

one can write for the logarithmic macrocanonical parition and the particle number

q(T, V, µ) =
V
λ3 · f 5

2
(z) and N(T, V, µ) =

V
λ3 · f 3

2
(z) (H.426)

The Fermi-Dirac distribution can be reformulated as

1
z−1 exp(x) + 1

= z exp(−x)
1

1 + z exp(−x)
=

z exp(−x)
∞∑
k=0

[−z exp(−x)]k =
∞∑
k=1

(−1)k−1 · zk · exp(−kx) (H.427)

where in the last step the lower summation boundary has been increase by one to
accommodate the prefactor z exp(−x), leading to an alternating geometric series. The
integral eqn. H.424 can then be addressed by substitution y = kx, and differentially
dy = kdx, such that

fs(z) =
1
Γ (s)
·
∞∑
k=1

(−1)k−1 z
k

ks
·
∞∫

0

dyys−1 · exp(−y) =
∞∑
k=1

(−1)k−1 z
k

ks
(H.428)

and for the special case s = 0

f0(z) =
∞∑
k=1

(−1)k−1zk = −1 + 1 −
∞∑
k=1

(−1)kzk =

1 −
∞∑
k=0

(−z)k = 1 − 1
1 + z

=
1 + z − 1

1 + z
=

z
1 + z

≃ z (H.429)

where the last approximation is valid for small z ≪ 1. There is a practical recursion
formula
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Figure 5: Fermi logarithms fs(z) = −Lis(−z) as a function of fugacity z.

∂
∂z

fs(z) =
1
z
fs−1(z) (H.430)

the validity of which can bee seen from this argument: Having the differentiation act
on fN in its integral representation gives

z
∂
∂z

fs(z) =
1
Γ (s)

∞∫
0

dx
xs−1z−1 exp(x)

(z−1 exp(x) + 1)2 (H.431)

which can be integrated by parts to yield

. . . =
1
Γ (s)

(
− xs−1

z−1 exp(x) + 1

∣∣∣∣∣∣∞
0︸                  ︷︷                  ︸

=0, for s>1

+(s − 1)

∞∫
0

xs−2

z−1 exp(x) + 1

)
=

s − 1
Γ (s)

∞∫
0

dx
xs−2

z−1 exp(x) + 1
= fs−1(z) (H.432)

It is actually true for all values of s that fs(z) ∼ z for z ≪ 1, i.e. for small chemical
potentials. Fig. 5 illustrates polylogarithms for different values of s as a function of
fugacity.

H.8.2 Fermi-gases

Non-relativistic gases made out of fermions in thermal equilibrium would follow
exactly the partition function Z(T, V, µ) in eqn. H.422, so the energy is given as

E = − ∂
∂β

lnZ(T, V, µ) = kBT2 ∂
∂T

lnZ(T, V, µ) =
3
2
kBT

V
λ3 · f 5

2
(z) (H.433)
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implying

E =
3
2

NkBT
f 5

2 (z)

f 3
2 (z)

(H.434)

where the last result is obtained through substitution of N. The ratio f5/2(z)/f3/2(z)
approaches one for fugacities z → 1 or for chemical potentials µ→ 0, so the result
for a classical gas is recovered. Similarly, the pressure is given by

p = +kBT
∂
∂V

lnZ(T, V, µ) =
1
λ3 kBT · f 5

2
(z) =

2
3

E
V

(H.435)

which is typical for non-relativistic systems.

H.8.3 Degenerate Fermi-gases in the limit T→ 0

A surprising application in many physical systems is that of a fully degenerate Fermi-
gas, alluding to the fact that all level up to the Fermi-energy are fully occupied and
empty for higher energies. Effectively, this means

kBT ≪ µ → z ∼ 0 (H.436)

and the occupation number ⟨nk⟩ becomes the Heaviside-function Θ(µ − ϵ). In this
limit, the chemical potential µ is identical to the Fermi energy ϵF, which can be
interpreted as the energy of the highest occupied state: Clearly, adding a new fermion
to the system would require exactly this energy to be invested. The integrals for
energy and particle number simplify tremendously due to the simple form of the
Heaviside-function:

E =

µ∫
0

dϵ
2πV
h3 (2m)

3
2 ϵ

3
2 = V ·

(2πm
h2

) 3
2 4

5
µ

5
2
√
π

(H.437)

as well as

N =

µ∫
0

dϵ
2πV
h3 (2m)

3
2 ϵ

1
2 = V ·

(2πm
h2

) 3
2 4

3
µ

3
2
√
π

(H.438)

such that the energy per particle becomes

E
N

=
3
5
µ (H.439)

Interpreting µ as the Fermi-energy shows that the energy per particle is simply 3/5
of the energy of the highest occupied state.Perhaps this result reminds

you of the moment of inertia of
a sphere with radius ϵF = µ! We’ve see that computations in relation to Fermi-Dirac-statistics are always a bit

trickier than the bosonic case, but there is a very neat trick motivated by the addition
theorem of the hyperbolic tangent,

1
exp(x) + 1

=
1

exp(x) − 1
− 2 · 1

exp(2x) − 1
(H.440)
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that allows to write the Fermi-Dirac-distribution as a difference between two Bose-
Einstein-distributions at temperatures T and 2T, which maps every possible compu-
tation onto the simpler bosonic case. The opposite (writing a BE-

distribution in terms of two FD-
distributions) is sadly not possi-
ble.

H.9 Ideal non-relativistic Bose-gas

The discussion an ideal non-relativistic thermal system of bosons concludes our
discussion: From a technical and conceptual point of view it is the most complicated
case, as one needs to deal explicitly with the ground state and its occupation. As
before, we are using macrocanonical partitions functions because they’re so practical
for quantum statistics despite the fact that the particle number N is fixed and despite
the absence of a particle reservoir: Instead, from the explicit computation of particle
number we determine fugacity z and therefore the chemical potential µ to use it in
the partition itself. Specifically, the logarithmic macrocanonical partition function is
given by

q(T, V, µ(N)) = lnZ(T, V, µ) = −
∑
k

ln[1 − z · exp(−βϵk)] (H.441)

and the particle number is computed by summing over the individual occupation
numbers

N(T, V, µ) =
∑
k

⟨nk⟩ =
∑
k

1
z−1 · exp(βϵk) − 1

(H.442)

From the range of possible values of ⟨nk⟩ : 0 ≤ ⟨nk⟩ ≤ N which may be unrestricted
between zero and full occupation one can see that

z−1 exp(βϵk) = exp(β(ϵk − µ)) > 1 (H.443)

which implies that ϵk > µ for all states, otherwise the high occupation numbers could
not be reached; or one would get a divergence as exp(β(ϵk −µ))→ 1 for ϵk = µ. Because
the lowest possible energy is ϵ = 0 one can conclude that the chemical potential is in
fact negative µ < 0, as µ < ϵk ≤ 0 for all states, meaning that 0 ≥ z ≥ 1: This relation
might seem a bit surprising, but this is exactly what one needs to engineer a µ that is
consistent with N.

The continuum for large systems would be given by

∑
k

→

∫
d3x

∫
d3p

h3 =
2πV
h3 (2m)

3
2

∫
dϵ
√
ϵ (H.444)

and allows for a definition of a density of states g(ϵ) resulting from a classical
dispersion relation ϵ = p2/(2m), together with an isotropic momentum distribution.
Then, the logarithmic partition function is written as

q(T, V, µ) = −2πV
h3 (2m)

3
2

∫
dϵ
√
ϵ ln[1 − z−1 exp(βϵ)] (H.445)

along with particle number, which is needed to engineer µ (or z) from N,
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N(T, V, µ) =
2πV
h3 (2m)

3
2

∫
dϵ

√
ϵ

z−1 exp(βϵ) − 1
(H.446)

The last expression neglects the ground state, though: ϵ = 0 implies g(ϵ) = 0, so the
integral does not collect any contribution from the ground state. With fermions, we
did not have this problem as there can only be a single fermion in the ground state,
so for a typical system with many fermions (think of Avogadro’s number 1023) the
mistake is truly neglible. Taking the occupation number into the limit ϵ→ 0 yields

ln[1 − z exp(−βϵ)]|ϵ=0 = ln(1 − z) (H.447)

for the logarithmic macrocanonical partition and

1
z−1 exp(βϵ) − 1

∣∣∣∣∣
ϵ=0

=
1

z−1 − 1
=

1
1
z − 1

=
z

1 − z
(H.448)

for the particle number, and therefore, we should enhance the expressions for
q(T, V, µ) and N(T, V, µ) with these expressions, as the dϵ-integration would not cover
them: First for the partition,

q(T, V, µ) =
2πV
h3 (2m)

3
2

2
3
β ·

∞∫
0

dϵ
ϵ

3
2

z−1 exp(βϵ) − 1
− ln(1 − z)︸    ︷︷    ︸

for the ϵ = 0 state

(H.449)

after an integration by parts, and then for the particle number

N(T, V, µ) =
2πV
h3 (2m)

3
2 ·

∞∫
0

dϵ
ϵ

1
2

z−1 exp(βϵ) − 1
+

z
1 − z︸︷︷︸

for the ϵ = 0 state

(H.450)

Around bosonic partition functions, typical integrals of the form appear,

Lis(z) = gs(z) =
1
Γ (s)

∞∫
0

dx
xs−1

z−1 exp(x) − 1
(H.451)

called polylogarithms, similar to the function fs(z) which had a plus sign in the
denominator instead of a minus. With the definition of thermal wavelength

1
λ

=

√
2πmkBT

h2 (H.452)

for non-relativistic particles and the help of the function gN(z) one quickly obtains
these two compact expressions for the logarithmic partition function and the particle
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Figure 6: Bose logarithms gs(z) = Lis(z) as a function of fugacity z.

number,

q(T, V, µ) =
V
λ3 g 5

2
(z) − ln(1 − z)

N(T, V, µ) =
V
λ3 g 3

2
(z) +

z
1 − z

with the last terms explicitly taking care of the ground state. In the general case one
would need to use the relation ∂J/∂µ = −N to supply the µ(N)-relation to any other
derivative, for instance ∂J/∂V = −p as both depend naturally on T, V and µ, just as
the macrocanonical potential J itself. The invertibility of N(µ) to µ(N) in made sure
because of the monotonicity of the polylogarithms. But please keep in mind that
there is no analytical inverse z = Li−1

s , rather, one needs to find the correct value for z
numerically. Fig. 6 illustrates polylogarithms for different values of s as a function of
fugacity.

The properties of the function gs(z) are related to the Riemann-ζ that we encoun-
tered for the case µ = 0, i.e. for the ideal photon gas. Including z , 1 changes the
calculation slightly, but the general procedure to go through the geometric series is
the same, hence

1
z−1 exp(x) − 1

= z exp(−x)
1

1 − z exp(−x)
=

z exp(−x) ·
∞∑
k=0

(z exp(−x))k =
∞∑
k=1

(z exp(−x))k =
∞∑
k=1

zk exp(−kx) (H.453)

where one obtains almost miraculously two Γ -functions which cancel each other

gs(z) =
1
Γ (s)

∞∑
k=1

zk
∫

dxxs−1 exp(−kx) =
1
Γ (s)

∞∑
k=1

zk

ks

∫
dyys−1 exp(−y)︸                 ︷︷                 ︸

=Γ (s)

=
∞∑
k=1

zk

ks

(H.454)
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with the substitution y = kx and dy = kdx. Please keep in mind that here the fugacity
ranges between 0 and 1. For z = 1 (or µ = 0), though, one recovers the Riemann-ζ
function

gs(1) =
∞∑
k=1

1
ks

= ζ(s) (H.455)

Let’s separate the particle number into the occupation of excited states Nϵ and of
the ground state N0

N =
V
λ3 g 3

2
(z)︸   ︷︷   ︸

Nϵ

+
z

1 − z︸︷︷︸
N0

= Nϵ + N0 (H.456)

to see what happens at low temperatures. The range of possible values for the bosonic
function g 3

2
(z) is

0 ≤ g 3
2
(z) ≤ ζ(3/2) ≃ 2.612 (H.457)

with a bound given by the ζ-function, which can be numerically evaluated to be
ζ(3/2) ≃ 2.612. This provides a mean of estimating the maximum occupancy of the
excited states,

Nmax
ϵ =

V
λ3 ζ(3/2) = V ·

(
2πmkBT

h2

) 3
2

ζ(3/2) ∼ V · T
3
2 (H.458)

which is a finite number and can be controlled by temperature T. The surplus of
particles N − Nmax

ϵ can be accommodated in the ground state, which can encompass
basically all particles if T is only low enough and V is only small enough. Can the
ground state accommodate these particles? Yes! The ground state occupation is given
by

N0 =
z

1 − z
= z + z2 + z3 + ... ≃ N → z =

N
N + 1

→ 1 (H.459)

which can be solved for the chemical potential or the fugacity, which need to come
out as µ = 0 and z = 1, respectively. In the thermodynamic limit where N →∞ and
V→∞ while N

V is kept constant we get

Nϵ

N
+

N0

N
= 1, with Nϵ =

V
λ3 g 3

2
(z), N0 =

z
1 − z

(H.460)

such that one immediately recognises the two cases

for z = 1 :
Nmax
ϵ

N
+

N0

N
= 1 Bose-Einstein-condensation

for z < 1 :
Nϵ

N
= 1,

N0

N
= 0 dilute gas

where condensation would set in by the choice of low T and small V. Clearly,

Nmax
ϵ =

V
λ3 · ζ(3/2) → Nλ3

V
< ζ(3/2) (H.461)
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h.9. ideal non-relativistic bose-gas

which suggests that there is a comparison between the total volume of the system
and N times the volume λ3 associated with each wave packet is going on: If the
particle separation is smaller than the thermal wavelength, quantum mechanical
effects can play a role and the bosonic nature of the wave functions comes to bear.
Then, N > Nmax

ϵ , and condensation sets in.
Interestingly enough, through this construction, one implicitly controls the fugac-

ity or, equivalently, the chemical potential. From an experimental point of view, the
fugacity z is implicitly determined by

N =
V
λ3 g 3

2
(z) (H.462)

as particle number N and volume V (for instance through the design of the atom
trap) are controllable, with temperature then as well the chemical potential µ. In
my personal experience (or lack thereof) I find chemical potential to be a difficult
concept, and in this script we approached it in three different systems: The relativistic
Bose-gas asserts the interpretation of a vanishing particle mass, and the degenerate
Fermi-gas that of the energy of the lowest unoccupied state. The non-relativistic Bose-
gas suggests that µ is determined by the combination of N and V, and enables the
usage of macrocanonical statistics for a quantum system with fixed particle number,
therefore it is perhaps the least physical interpretation of µ.
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I phase transitions

Phase transitions are phenomena related to interacting systems with many degrees
of freedom, where the particles show a collective behaviour if the state variables
are changed. Examples include the condensation of a van der Waals-gas, which
liquefies at low temperatures, the ferromagnetic states of coupled spin systems or the
condensation of quarks and gluons into nuclei. From this point of view, Bose-Einstein-
condensation is very different: It takes place already in ideal systems, purely as a
consequence of the symmetry requirement on the bosonic wave function, without
any interaction between the particles.

I.1 Van der Waals-gases

The Hamilton-function of ideal non-relativistic kinetic systems is given by

H(pi , qi) =
N∑
i

p2
i

2m
(I.463)

as a straightforward sum over the individual kinetic energies. The canonical partition
function is then computed as

Z(T, V, N) =
1

N!

[
1
h3

∫
d3p exp

(
−β p

2

2m

)]N

· VN =
1

N!

( V
λ3

)N
(I.464)

where the integral has units of an inverse length cubed, so we set it to λ−3 to make Z
dimensionless. From the logarithmic partition function one obtains the Helmholtz
free energy F,

F(T, V, N) = −kBT ln Z(T, V, N) (I.465)

and through logarithmic derivatives p = −∂F/∂V = NkBT/V the equation of state
of the ideal gas. The spatial integration

∫
d3q contributions one power of V for

every particle, therefore Z ∝ VN . The spatial integration is non-trivial, if there are
interactions in the system, for instance through a (pairwise) potential in the Hamilton-
function,

H({pi}, {qi}) =
N∑
i

p2
i

2m
+

N∑
i<j

V(|qi − qj |) (I.466)

where the summation condition i < j makes sure that every interaction is only
counted once. The potential keeps the partition function from separating.

Z(T, V, N) ,
1

N!
Z(T, V, 1)N (I.467)

unlike in the non-interacting case. In summary, the effect of the mutual interaction
between the particles is to introduce as a more elaborate d3q-integration, leading to
a new expression for the accessible spatial part of phase space, depending on the
interaction potential.
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i. phase transitions

I.1.1 Typical shapes of interaction potentials

Non-ideal gases are characterised by interactions between their particles, for instance
through a Lennard-Jones-potential

V(r) = 4ϵ
[( r0

r

)12
−
( r0

r

)6
]

(I.468)

where the physical idea would be that at small distances there is repulsion between
the atoms, caused by Pauli-exclusions of the electron shells (called Born-repulsion),
and at large distances one gets induced electrical dipoles, leading to a Coulomb-
attraction. The equilibrium position is given by

dV
dr

= 0 =
[
−12

( r0

r

)11
+ 6

( r0

r

)5
]
· r0

r2 →
( r0

r

)6
=

1
2

and therefore r ≃ 1.12r0

(I.469)

The canonical (We assume that the particle number N is fixed and that volume and
temperature are controlled) partition sum is then given by

Z(T, V, N) =
1

N!

[
1
h3

∫
d3p exp

(
−
βp2

i

2m

)]N

·
∫ ∏

i

d3qi · exp

−β∑
i<j

V(qij )


= Zid(T, V, N) ·

∫ ∏
i

d3qi · exp

−β∑
i<j

V(qij )

︸                                   ︷︷                                   ︸
∼Zint(T,V,N), not factorisable!

with the abbreviation qij = |qi −qj |; and the most important observation would be that
this partition does not separate due to the integral involving the relative distances
between the particle pairs.

Computing the equation of state by isolating the pressure as a function of tem-
perature and volume from the derivative of the Helmholtz free energy F(T, V, N) =
−kBT ln Z(T, V, N), which in turn depends logarithmically on the canonical partition
function yields

p = − ∂F
∂V

= pid + pint = ρkBT(1 + Bρ + ...) (I.470)

such that one immediately notices a correction to the ideal equation of state pa-
rameterised by B. The correction is proportional to the number of particle pairs,
ρ2 ∼ N2 ∼ N(N − 1).

The parameter B can be determined approximatively from a so-called virial
expansion, weirdly enough, one can achieve this and make the problem simpler by
making it more complicated: Using the macrocanonical partition Z(T, V, µ) one can
derive B. The first step is to write out a power-series in the fugacity z = exp(βµ),
where higher-order terms will be neglected. The chemical potential µ is re-introduced
as being small but nonzero, and the same applies to the fugacity:

Z(T, V, µ) =
∑

N

Z(T, V, N)︸      ︷︷      ︸
=ZN

·zN = Z0 + zZ1 + z2Z2 + . . . (I.471)
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i.1. van der waals-gases

where Z0 = 1, as can be easily checked. The interesting term is Z2, because it will
contain the d3q-integration over particle pairs, whose mutual interactions make the
gas non-ideal:

Z2 =
1

2!λ6

∫
d3q1

∫
d3q2 exp(−βV(q12)) (I.472)

For evaluating the integration one can introduce relative coordinates, q2 = q1 + r
with corresponding volume elements, d3q2 = d3r for fixed q1. Then, Z2 becomes

Z2 =
1

2!λ6

∫
d3q1

∫
d3r exp(−βV(r)) =

4πV
2λ6

∫
r2dr exp(−βV(r)) (I.473)

where the first integral becomes simply the volume and the second integral can be
simplified using spherical symmetry of the interaction potential. The macrocanonical
potential

J = −kBT lnZ = −pV →
pV
kBT

= lnZ ≃ ln(1 + zZ1 + z2Z2 + . . .) (I.474)

The logarithm can now be expanded using the smallness of the fugacities with
the Taylor-expansion ln(1 + x) ≃ x − x2

2 , such that the ideal gas law starts acquiring
corrections from terms that reflect the number of particle pairs!

pV
kBT

≃ zZ1 + z2Z2 −
z2

z
Z2

1 + . . . (I.475)

at order z2, with the new quadratic term ∝ Z2
1 appearing due to the Taylor-expansion.

Therefore, this can be compared with our previous result

pV
kBT

≃ V(ρ + Bρ2 + ...) (I.476)

and B is then obtained through a comparison of coefficients. From the fugacity one
can derive derivative expressions according to

z = exp(βµ) → µ =
1
β

ln z and therefore
∂
∂µ

= βz
∂
∂z

(I.477)

such that the particle number N follows from the macrocanonical partition through
differentiation by z instead of µ:

N =
1
β

∂
∂µ

lnZ = z
∂
∂z

lnZ =
∂ lnZ
∂ ln z

≃ zZ1 + z2(2Z2 + Z2
1) (I.478)

where we see a term z = N
Z1

= ρλ3 proportional to particle number, which reproduces
the ideal gas, clearly from the 1-particle partition sum, as in the ideal, separating
case. At quadratic order in z one first obtains an implicit relation

N
Z1

= z +
(

2Z2 − Z2
1

Z1

)
z2 (I.479)
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which is in fact a quadratic equation

Z =
N
Z1

(
1 − N

Z1

2Z2 − Z2
1

Z1

)
(I.480)

With the approximation
√

1 + x ∼ 1 + x
2 −

x2

8 on the arrives, collecting all results, at

pV
kBT

= lnZ = Z1
N
Z1

(
1 − N

N1

(
2Z2 − Z2

1
Z1

))
+

N2

Z1

(
Z2 −

Z2
1

2

)
= N ·

[
1 −

(
Z2 −

Z2
1

2

)
N

Z2
1

]
(I.481)

Since N and V both extensive one can make a replacement in the last term which
makes an identification of the term involving Z1 and Z2 with B(T) possible, keeping
in mind that ρV = N,

B(T) = − V

Z2
1

·
Z2 − Z2

1
2

= −1
2

∫
d3r[exp(−βV(r)) − 1] = −2π

∫
r2dr[exp(−βV(r)) − 1]

(I.482)

As an approximation to the potential we use a piecewise constant function,

B(T) = −2π

d∫
0

dr r2

︸         ︷︷         ︸
small r

−
d+δ∫
d

dr r2[exp(βϵ) − 1]

︸                     ︷︷                     ︸
intermediate r

≃ 2π
3

d3 − 2πd2δβϵ (I.483)

which in the limit δ≪ d and βϵ≪ 1 gives as a final result a correction to the ideal
gas law

pV
kBT

= N
(
1 + B(T)

N
V

)
(I.484)

in the form of a van der Waals-term, reflecting the interaction between the particles.
The interaction strength, the shape of the interaction potential and the physical
extension of the attractive and repulsive part determine together the numerical value
of B.

I.2 Ising-model for ferromagnetism

The Ising-model is a discrete set of spin states, mostly arranged on a regular lattice,
which can interact with an external magnetic field as well as mutually with the direct
neighbours in the lattice. In contrast to paramagnetism where only the interaction
with an external magnetic field and the corresponding term B · dM with a changing
magnetisation dM exist, the collective interactions give rise to ferromagnetic effects
such as spontaneous magnetisation. The Hamilton-function of interacting spins is
given by

H = −J
∑
(i,j)

SiSj − Bµ
∑
i

Si with
∑
(i,j)

=
∑
i

∑
i−n≤j≤i+n

(I.485)

with a fixed summation over the neighbours of each spin at finite range while i , j
in the first term. Multiplying with β and defining K = βJ as well as Q = βµB yields
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βH = −K
∑
(i,j)

SiSj − Q
∑
i

Si (I.486)

The modelling of interactions between spins follows the idea that parallel orientation
is energetically favoured and antiparallel orientation disfavoured. The construction
of a (canonical) partition sum now involves a Boltzmann-weighted summation over
all lattice sites,

Z(K, Q, N) =
∑

S1=±1

∑
S2=±1

· · ·
∑

SN=±1︸                   ︷︷                   ︸
2N possible states

exp(−βH) (I.487)

with possibly periodic boundary condition to avoid edge effects. If J > 0 (or K > 0),
parallel alignment is preferred leading ultimately to a spontaneous magnetisation if
the temperature is not too high (below the Curie-temperature), which is referred to
as ferromagnetism. The magnetisation is given by

M(K, Q) = µ

〈∑
i

Si

〉
(I.488)

The canonical partition sum for a 1-dimensional chain if Q = 0 is given by

Z =
∑

S1=±1

· · ·
∑

SN=±1

exp(K(S1S2 + S2S3 + ... + SN−1SN))

=
∑

S1=±1

· · ·
∑

SN−1=±1

exp(K(S1S2 + S2S3 + ... + SN−2SN−1)) ·
∑

SN=±1

exp(K(SN−1SN))

︸                       ︷︷                       ︸
=exp(+K)+exp(−K)=2 cosh K

= (2 · cosh K)N

so iteratively one obtains Z = (2 cosh K)N , and therefore for the Helmholtz energy F

F = −kBTN · ln
(
2 cosh

J
kBT

)
(I.489)

which reminds us of the result for paramagnetism, and would not show any spin
correlation over large distances; in 1-dimensional lattices one does not observe ferro-
magnetic phase transitions.

I.2.1 Transfer matrix method for the Ising-model

There is an alternative elegant way of computing the canonical partition including
effects of Q, starting again with the Hamilton-function and an additional cyclic
boundary condition on the spin chain, SN+1 = S1:

βH = −K
∑
(i,j)

SiSj − Q
∑
i

Si (I.490)

Defining the transfer function
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i. phase transitions

T(i, i + 1) = exp
(
KSiSi+1 +

1
2

Q(Si + Si+1)
)

(I.491)

one can write the Boltzmann-factor as

exp(−βH) = T(1, 2) · T(2, 3) · · · T(N, 1) (I.492)

including the periodic boundary, as mentioned before. There are only 3 possible
values appearing in in the transfer function T for the possible choices ±1 for Si and
Sj :

T =
(
exp(K + Q) exp(−K)

exp(−K) exp(K − Q)

)
(I.493)

So let’s introduce a quantum mechanical notation with state vectors,

|Si = +1⟩ =
(
1
0

)
, |Si = −1⟩ =

(
0
1

)
(I.494)

such that the entries in the transfer function T follow from forming the expectation
values

T(i, i + 1) = ⟨Si |T|Si+1⟩ (I.495)

This helps us to write the canonical partition as

Z =
∑
{Si }

exp(−βH) =
∑
{Si }
⟨S1|T |S2⟩⟨S2|︸  ︷︷  ︸

=id

T|S3⟩ · · · ⟨SN |T|S1⟩

=
∑

S1=±1

⟨S1|TN |S1⟩ = (TN)11 + (TN)22 = tr(TN) = λN
1 + λN

2

as the sum of the two possible eigenvalues of the transfer matrix, which is diagonal,
ensuring that the eigenvalues exist and are real. The fastest way for getting the
eigenvalues is the computation of the characteristic polynomial:

det
(
exp(K + Q) exp(−K)

exp(−K) exp(K − Q)

)
= 0 (I.496)

which is a polynomial of order 2,

[exp(K + Q) − λ] · [exp(K − Q) − λ] − exp(−2K) =

λ2 − 2 exp(K) cosh Q · λ + exp(2K) − exp(−2K) = 0 (I.497)

Solving for the two zeros λ± yields

λ± = exp(K) · cosh Q ±
√

cosh2 Q − 2 exp(−2K) sinh 2K (I.498)

such that the canonical partition becomes
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i.2. ising-model for ferromagnetism

Z = λN
+ + λN

− = λN
+

1 +
(
λ−
λ+

)N→ λN
+ for large N (I.499)

The previous result is recovered if Q = 0: Then, the first eigenvalue is λ+ = exp(K) +
exp(−K) = 2 cosh K.

The magnetisation is determined either by direct summation or by differentiation
of the canonical partition,

M(T, B) =
1
Z

∑
{Si }

µ

∑
i

Si exp(−βH)

 = µ∂Q ln Z =
µN
λ+

∂Qλ+ (I.500)

and comes out as

M(T, B) =
µN sinh Q√

cosh2 Q − 2 exp(−2K) sinh 2K
(I.501)

which shows an interesting behaviour: For B = 0 and T , 0 the magnetisation
M(T, B) = 0 so that one does not observe a spontaneous transition to a magnetised
state. If the fields are strong, on the contrary, the magnetisation is M(T, B) = µN as
all spins are aligned. The entropy follows from differentiation of the Helmholtz free
energy with respect to temperature,

F = −NkBT ln(2 cosh K)→ S = −∂F
∂T

= NkB(ln(2 cosh K) − K tanh K) (I.502)

with the limit S = NkB ln Z at high temperature and S = 0 at low temperature, in
accordance with the third law of thermodynamics.

I.2.2 Isothermal susceptibility χ

The rate of change of the magnetisation with the external magnetic field is the
magnetic susceptibility, which in this model is determined to be

χ =
1
N

∂M
∂B

=
βµ

N
∂QM =

βµ2

N
∂2

Q ln Z = βµ2∂2
Q ln λ+ =

βµ2

1 − tanh K
(I.503)

which behaves as 1/T for large T: This is the statement of the Curie-law. Looking at
its microscopic interpretation by substitution of the Hamilton-function yields

χ =
βµ2

N
∂Q

 1
Z

∑
{Si }

µ∑
i

Si

 exp

K
∑
(i,j)

SiSj + Q
∑
i

Si


 =

βµ2

N

∑
{Si }

µ∑
i

Si

 exp(−βH) =
βµ2

N

∑
i,j

⟨SiSj⟩

 (I.504)

such that the susceptibility χ is actually the variance in the spin-configurations.
There is no known computation for the Ising partition function in 3 dimensions

or more, and only a very complicated expression for 2-dimensional lattices. Actually,
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i. phase transitions

it’s a pity that the 1-dimensional chain does not go a lot beyond paramagnets and that
phase transitions are reserved to the higher-dimensional cases. But it is one of the few
examples where mutual interactions in non-ideal systems are exactly computable.
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J stochastic differential equations

Up to this point we considered mechanical Hamiltonian systems in thermal equilib-
rium and looked at the reversible addition of thermal energy, leading to adiabatic,
i.e. entropy-conserving changes of state. But this picture is incomplete, as we should
understand better how exactly the many microscopic degrees of freedom of a system
provide thermal fluctuations and how the motion of a single degree of freedom is
changed under the influence of random, stochastic forces, or better, how the distribu-
tion of amplitudes of a system with many degrees of freedom evolves with time, as
every degree of freedom follows its own equation of motion.

An example of such a distribution could be the amplitude distribution p(x)dx of
a harmonic oscillator: Going from x = 0 to x requires mechanical work δW = kx2/2
with the spring constant k. The energy needed is supplied as thermal energy from
the interaction with all other degrees of freedom in the system, δQ = −ST. Energy
conservation would then imply that dE = δW + δQ and therefore that entropy can be
expressed as a function of amplitude of the oscillator, S(x) = kx2/2/(kBT), if there is
no overall change in energy, dE = 0.

S(x) ∼ kB ln p(x) → p(x) =
exp

( S(x)
kB

)
∫

dx exp
( S(x)

kB

) ∼ exp
(
− k
kBT

x2

2

)
(J.505)

i.e. a Gaussian with variance kBT/k, which seems reasonable, as the amplitude of
the random motion should increase with higher temperature and decrease for a
higher spring constant: One should really imagine that there is a trembling of the
pendulum due to thermal fluctuations corresponding to this variance. An observation
of ⟨x2⟩ would immediately determine kB for a system with known spring constant k
and temperature T, with the experimental challenge being the smallness of thermal
fluctuations kBT for reasonable temperatures.

J.1 Brownian motion

Macroscopic objects suspended in a fluid perform a random motion, as first noticed by
Robert Brown, who observed pollen in water under a microscope. Naturally, there are
two types of forces acting on such an object: a frictional force and a random agitation
due to collisions with atoms and molecules in the fluid. The two are not independent,
as state by the fluctuation-dissipation theorem. Writing down an equation of motion
with a friction coefficient D

mẍ = −Dẋ leads to the solution ẋ(t) ∝ exp
(
− t
τ

)
(J.506)

with a time constant τ = m/D, under which all motion ceases. But what about the
random impacting of atoms and molecules that provide fluctuations in energy of the
amount kBT in thermal equilibrium?
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J.1.1 Langevin-equation

The key point is to add an external, randomly fluctuation force η(t), as realised by
Paul Langevin:

mẍ(t) = −Dẋ(t) + ση(t) (J.507)

with amplitude σ. This external force has the property that it vanishes on average,
⟨η(t)⟩ = 0 and that its magnitude at different times is uncorrelated, ⟨η(t)η(t′)⟩ =
2 · δD(t − t′), expressed by the Dirac δD-function. As the equation of motion is still
linear, the solution is given as a superposition of the friction term and the time-
integrated effect of the random force:

ẋ(t) = exp
(
− t
τ

)
·

ẋ(0) +

t∫
0

dt exp
(
+
t
τ

)
σ

m
η(t)

 (J.508)

While there is no macroscopic, ordered motion due to ⟨η(t)⟩ = 0,

⟨ẋ(t)⟩ = ẋ · exp
(
− t
τ

)
(J.509)

there is a diffusive motion as can be seen from the variance

⟨ẋ(t)ẋ(t′)⟩ =

ẋ(0)2 exp
(
− t + t′

τ

)
+

(
σ

m

)2
exp

(
− t + t′

τ

) t∫
0

dt

t′∫
0

dt′ exp
(
t + t′

τ

)
· 2δD(t − t′) =

exp
(
− t + t′

τ

) [
ẋ(0)2 − σ2

Dm

]
︸                              ︷︷                              ︸

→0 for t,t′≫τ

+
σ2

Dm
exp

(
− t − t

′

τ

)
(J.510)

Therefore, random fluctuations keep the particle in motion with velocity variance:

⟨ẋ(t)2⟩ =
σ2

Dm
for t = t′ (J.511)

Assuming equipartition between the kinetic and thermal energies then leads to

m
2
⟨ẋ2⟩ =

1
2
kBT such that σ2 = DkBT (J.512)

i.e. the amplitude of thermal fluctuation is related to the friction coefficient: First of
all, that seems to be a surprising result, as D was phenomenological and σwas a model
of the agitation of the fluid due to thermal motion. That the two are related makes a
lot of sense, though, because their microsopci origin is identical: The macroscopic
motion of the object through a fluid causes a momentum transfer onto the atoms
and molecules, and the thermal motion of the atoms and molecules give rise to a
momentum transfer onto the object.
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J.1.2 Random walks

The object suspended in a fluid undergoes a random walk under the influence of
the thermal, random force η(t): We can repeat the above reasoning for the position
x(t) instead of the velocity ẋ(t). The time constant τ−2 can be used to constraint ẍ to
be very small at late times, so an object always slows down. Then, the equation of
motion reads

Dẋ(t) = ση(t) and is solved by x(t) = x0 +

t∫
0

dt
σ

D
η(t) (J.513)

As before, we find that there is no net motion ⟨x(t)⟩ = 0 but that the variance is
nonzero

⟨x2(t)⟩ =
σ2

D2

t∫
0

dt

t′∫
0

dt′ 2δD(t − t′) = 2
(
σ

D

)2
· t → ⟨x(t)2⟩ ∝ t (J.514)

such that the variance increases proportional to t, which is typical for diffusive
processes. The diffustion constant Q is derived as

Q =
(
σ

D

)2
=

kBT
D

(J.515)

commonly known as Einstein’s relation. Substitution of a Stokes-like friction law for
a spherical object of radius r in a fluid with viscosity νρ yields the Stokes-Einstein-
relation:

D = 6π(νρ) · r → Q =
kBT

bπ(νρ) · r
(J.516)

linking viscosity and temperature, in the spirit of the fluctuation-dissipation-theorem.
Fig. 7 gives an impression of discretised random walks in two dimensions, in particu-
lar of the diffusive process scaling ∝

√
t, or rather ∝

√
n in the discrete case.

J.2 Fokker-Planck-equation and evolution of distributions

Up to this point, the Langevin-equation has described the motion of a damped system
under the influence of a thermal fluctuating force. An interesting generalisation is that
of an entire ensemble of particles, which represent a distribution, and where every
particle itself follows its Langevin-dynamics ẍ = −Dẋ + ση(t). On would expect that
the distribution then widens and diffuses, and the time evolution of this distribution
is given by the Fokker-Planck-equation.
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Figure 7: Discrete random walks in 2 dimensions with n = 30 steps each drawn isotropically
from a Gaussian distribution with variance σ2 = 1. The walks are initialised at the origin
and the endpoints are marked with a yellow dot. The typical distance that the random
walks is able to cover is

√
nσ ≃ 5.47, indicated by the circle.
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If ϕ(v, w) is the probability for a velocity change of a particle from υ to υ + w on a
time scale τ, one would write for the velocity distribution

p(υ, t + τ) =

+∞∫
−∞

dw p(υ − w, t)ϕ(υ − w, w) (J.517)

as a convolution integral or a Green-like propagator: How often one observes a
velocity υ depends on how often the velocity υ − w appeared and how likely the
transition from υ − w to υ was.

If τ is chosen to be infinitesimally small then ϕ , 0 only for |w| ≪ |υ| and one
observes only small changes in velocity, suggesting a Taylor-expansion:

p(υ, t + τ) =
∫

dw
(
p(υ, t) −

∂p

∂υ
w +

∂2p

∂υ2
w2

2

) (
ϕ(υ, w) −

∂ϕ

∂υ
w +

∂2ϕ

∂υ2
w2

2

)
(J.518)

Multiplying out this relation and keeping all terms up to order w2 yields these terms:

1.
∫

dw ϕ(υ, w) = 1

2.
∫

dw wϕ(υ, w) = ⟨w⟩

3.
∫

dw w ∂ϕ
∂υ =

〈
∂w
∂υ

〉
= ∂

∂υ⟨w⟩

4.
∫

dw w2ϕ(υ, w) = ⟨w2⟩

5.
∫

dw w2 ∂ϕ
∂υ = ∂

∂υ⟨w
2⟩

6.
∫

dw w2 ∂2ϕ

∂v2 = ∂2

∂υ2 ⟨w2⟩

Collection of these results and resubstitution into the distribution p(υ, t + τ) yields

p(υ, t + τ) =

∫
dw

p(υ, t) · ϕ(υ, w)︸  ︷︷  ︸
1

−p · w ·
∂ϕ

∂υ︸ ︷︷ ︸
3

+ p
w2

2
∂2ϕ

∂υ2︸     ︷︷     ︸
6

−
∂p

∂υ
wϕ︸︷︷︸

2

+
∂p

∂υ

∂ϕ

∂υ
w2︸ ︷︷ ︸

5

+
∂2p

∂υ2 x
w2

2︸︷︷︸
4


(J.519)

such that the evolution equation becomes

p(υ, t + τ) = p(υ, t)
(
1 − ∂

∂υ
⟨w⟩ +

∂2

∂υ2 ⟨w
2⟩ − ⟨w⟩ − ∂

∂υ
⟨w2⟩ + ⟨w2⟩

)
(J.520)

From the Langevin-equation one can obtain an expression for the average change in
velocity: υ changes on the time scale τ, so υ̇ = w/τ = −Dυ, such that

∂
∂υ
⟨w⟩ = −Dτ. (J.521)
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The variance ⟨w2⟩ = 2kBT D
mτ is obtained from the Einstein-relation, which as

well suggests that ∂
∂v ⟨w

2⟩ = 0. Therefore,

p(υ, t + τ) − p(υ, t)
τ

= Dp + Dυ
∂p

∂υ
+ kBT

D
m

∂2p

∂υ2 (J.522)

and in the limit τ→ 0:

∂
∂t

p(t, υ) = D
∂
∂υ

[
(pυ) +

kBT
m

∂p

∂υ

]
(J.523)

which is the sought-after Fokker-Planck-equation. It is a advection-diffusion equation
for the probability distribution p(t, υ) and allows particular stationary solutions, for
instance the Maxwell-Boltzmann-distribution

p ∼ exp
(
− mυ2

2kBT

)
(J.524)

for ∂p/∂t = 0.

J.3 Spectral decomposition of random forces ση(t)

The random force ση(t) is randomly fluctuating, and a Fourier-decomposition

η(t) =
1

2π

∫
dω C(ω) · exp(+iωt) ↔ C(ω) =

∫
dt η(t) · exp(−iωt) (J.525)

would be able to differentiate between fluctuations taking place on different time
scales, by means of the Fourier-transform C(ω). The Wiener-Khinchin-theorem states
that the variances in real and Fourier-space are identical,

⟨η(t)2⟩ =
∫

dt η(t)2 =
∫

dω
2π
|C(ω)|2 (J.526)

and tha tthe correlation function is the inverse Fourier-transform of the spectrum
|C(ω)|2,

⟨η(t)η(t + τ)⟩ =

1
(2π)2

∫
dt

∫
dω

∫
dω′ C(ω)C∗(ω′) · exp(i(ω − ω′)t) · exp(−iω′τ) =∫

dω |C(ω)|2 exp(−iωτ) (J.527)
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With this idea, let’s Fourier-decompose all terms in the Langevin-equation,

υ̇ + Dυ = ση(t) (J.528)

including the time derivatives:

υ(t) =
∫

dω
2π

υ(ω) exp(iωt) → ∂
∂t
υ(t) =

∫
dω
2π

iωυ(ω) exp(iωt) (J.529)

and

η(t) =
∫

dω
2π

C(ω) exp(iωt) (J.530)

The, the Langevin-equation can be written as (iω+ D)υ(ω) = σ ·C(ω) in Fourier-space,
which can be solved for υ(ω) as

υ(t) =
∫

dω
2π

σC(ω)
iω + D

exp(iωt) (J.531)

with the corresponding variance

⟨υ2(t)⟩ =
∫

dt υ2(t) =
∫

dω
2π

σ|C(ω)|2

D2 + ω2 =
kBT
m

(J.532)

using the Wiener-Khinchin-theorem in the second and equipartition in the last step.
The result implies that the thermal energy is present in terms of kinetic energy in
the system, and is assembled from fluctuations on all time scales, weighted by 1/ω2

for large frequencies, but by D2 for small frequencies, as clearly there is damping
relevant for slow motion on large time scales.

J.4 Irreversible processes

J.4.1 Irreversibility in statistical physics

The fundamental physical laws are time reversible, and this is a true statement for the
motion of particles or the dynamics of fields, in all branches of physics. For instance,

m
d2xi

dt2 = −∂iΦ Newton’s equation of motion

∂α∂
αAµ =

4π
c
ȷµ Maxwell’s field equation (in Lorenz-gauge ∂αAα = 0)

d2xµ

dτ2 = −
q

c
Fµν

dxν
dτ

Lorentz-equation of motion

Rµν −
R
2
gµν = −8πG

c4 Tµν − Λgµν gravitational field equation

d2xα

dτ2 + Γ αµν
d. x

µ

dτ
dxν

dτ
= 0 geodesic equation of motion

In all of these examples, time reversibility is ensured by second derivatives (or squares
of first derivatives), and the only case where a deeper explanation is necessary would
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be the Lorentz-equation of motion: The field tensor Fµν is in fact a first derivative of
the potential Aµ, so there is in fact a square of first derivatives as well.

Statistical systems with many degrees of freedom behave very different: While
the dynamics of their fundamental constituents follows time-reversible laws like in
the five examples, the Fokker-Planck equation as a diffusion equation is not time
reversible. It is naturally to observe a widening distributions with time, but not the
opposite. To understand this, let’s have a look at a famous nonlinear equation:

∂tυ
i + (υj∂j )υ

i = −
∂ip

ρ
− ∂iΦ + ν∆υi Navier-Stokes-equation (J.533)

for the evolution of the velocity υi of a fluid element on which pressure p and
gravity Φ is acting, for the particular case of incompressible fluids, ∂iυ

i = 0. ν is the
coefficient of viscosity, which encapsulates the microscopic dynamics of the atoms
the fluid is made of. Ignoring this term for a second and setting ν = 0 recovers the
Euler-equation

∂tυ
i + (υj∂j )υ

i = −
∂ip

ρ
− ∂iΦ Euler-equation (J.534)

for the motion of ideal inviscid fluids which is perfectly time-reversible: Making the
replacements

t → t, ∂t → −∂t , υi → −υi (J.535)

does not change anything in the Euler-equation, but this invariance is broken if ν , 0,
as ∆υi → −∆υi . Clearly, this has to do with the dichotomy between the microscopic
degrees of freedom and the macroscopic motion.

Reversible changes of state, in which the entropy stays constant, proceed over a
sequence of equilibria (such that temperature is defined at every point and changes
because of the change in internal energy), while irreversible changes in state take
place spontaneously under entropy generation. The rate of change of entropy with
time would be given by

∂S
∂t

=
∂x
∂t

∂S
∂x

(J.536)

with a control parameter x of the system, such as the length of a pendulum as dis-
cussed in the section about adiabatic changes. In equilibrium the condition ∂S/∂x = 0
would hold,

ẋ = C
∂S
∂x

=
C
2

∂2S
∂x2

∣∣∣∣∣∣
x0

(x − x0) (J.537)

with a suitable Taylor expansion around the equilibrium value x0.
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This result is a bit surprising when thinking about second-order equations of
motion so typical for e.g. mechanical systems. There, a force ∂Φ/∂x would provide
the reason for acceleration

mẍ = mυ̇ = − ∂
∂x
Φ (J.538)

very unlike thermodynamics, where a first order equation appears:

ẋ = C
∂S
∂x

(J.539)

and the gradient of the thermodynamic potential such as the entropy determines ve-
locity instead of acceleration. But when including dissipative forces into a mechanical
system

mυ̇ + βυ = − ∂
∂x
Φ (J.540)

in the limit of strong damping, βυ≫ mυ̇ one falls back onto a perfectly non-reversible
equation of motion

βυ = βẋ = − ∂
∂x
Φ (J.541)

This would exactly be the limit in which the gradient of a potential is related to a
velocity rather than an acceleration.

An example illustrating this idea might be the following: Imagine a ball submersed
in a liquid, on which a spring is attached. The liquid provides both a heavy damping
of the system as well as a source of thermal fluctuations. The potential Φ = kx2/2
under which the ball moves is provided by the spring with spring constant k. The
kinetic energy E of the ball is coupled to the heat bath as the impacting molecules
of the liquid can transfer kinetic energy. So we would write E = E0 − Φ(x) and
consequently for the entropy S(x) = S(E0 − Φ(x), V, N), in the microcanonical sense.
A Taylor-expansion of the entropy gives

S(x) = S0 −
∂S
∂E0

Φ(x) + . . . = S0 −
1

kBT
Φ(x) + . . . (J.542)

where in the second equality we have substituted the definition of temperature with
∂S/∂E = 1/(kBT). There is a gradient in entropy collinear with the gradient in the
potential,

∂S
∂x

= − 1
kBT

∂Φ
∂x

=
k

kBT
x → ẋ = C

∂S
∂x

= −C
k

kBT
x (J.543)

with a similar proportionality between ẋ and the entropy gradient as before. There-
fore, the solution for the equation of motion of the system is

x(t) ∝ exp
(
− k
kBT

x

)
(J.544)

which is a non-reversible process because of the appearance of a first derivative ẋ
instead of a second derivative ẍ typical for a single, microscopic degree of freedom.
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A second example would be two bodies in thermal contact. The total energy is
simply E = E1 + E2, and under a perturbation ϵ in one of the bodies the total energy
would be conserved, (E1 + ϵ) + (E2 − ϵ) = E. Writing the entropy S as an additive
function dependent on the energies of the two subsystems as S(ϵ) = S1(E1 + ϵ) +
S2(E2 − ϵ) on can Taylor-expand the entropy as

S(ϵ) = S1(E1) + ϵ
∂S1

∂E1︸︷︷︸
= 1

kBT

+
ϵ2

2
∂2S1

∂E2
1

+ S2(E2) − ϵ ∂S2

∂E2︸︷︷︸
= 1

kBT

+
ϵ2

2
∂2S2

∂E2
2

(J.545)

to second order: Then, the two terms ∂S1/∂E1 = 1/(kBT) = ∂S2/∂E2 in thermal equi-
librium, and the higher-order terms are controlled by the smallness of ϵ. Changing
the energy with time leads to a corresponding change in entropy,

∂S
∂t

= ϵϵ̇

(
∂2S1

∂E2
1

+
∂2S2

∂E2
2

)
(J.546)

Contrarily, if there is no equilibrium,

1
kBT1

=
∂S1

∂E1
(E1 + ϵ) =

1
kBT

+
∂2S1

∂E2
1

1
kBT2

=
∂S2

∂E2
(E2 − ϵ) =

1
kBT

+
∂2S2

∂E2
2

and both temperature become equal if there is no perturbation in energy ϵ = 0,
inducing the temperature imbalance. Therefore, the time evolution of entropy

∂S
∂t

= ϵ̇

(
1
T1
− 1

T2

)
(J.547)

is driven by the rate of change of energy, and aims at establishing an equilibrium.

J.4.2 Reversibility in classical mechanics

Classical mechanics is perfectly time-reversible, not only in the Newtonian equation
of motion, but in the Hamiltonian description as well: The Hamilton-function and
the corresponding equations of motion

H =
p2

2m
→ ∂H

∂p
= ẋ,

∂H
∂x

= −ṗ (J.548)

are inveriant under the transformation t → −t, because the canonical momentum
transforms as

p =
∂L
∂ẋ
→ −p (J.549)

as a consequence of the sign change of ẋ, and keeping in mind that the time-derivative
brings in another minus sign. While this is fundamentally true for any Hamiltonian
system and while reversibility of the microscopic world is certainly given, observing
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reversible processes become very unlikely in the macroscopic world, where the system
moves towards increasing its entropy in irreversible processes.

Coming back to the go-to example of the harmonic oscillator with spring constant
k and invoking equipartition between potential and thermal energy

k
2
⟨x2⟩ =

1
2
kBT, → ⟨x2⟩ =

kBT
k

(J.550)

one can compute a typical amplitude for a fluctuation amounting to the thermal
energy kBT. The distribution of amplitudes of an ensemble of harmonic oscillators
in thermal equilibrium is then given by the entropy, S(x) = kBT ln p(x) and comes
out as being Gaussian distributed in the amplitude x (which is only the case of the
harmonic oscillator, as potential energy is ∝ x2)

p(x) =
exp

(
S
kB

)
∫

dx exp
(

S
kB

) =

√
k

2πkBT
exp

(
− k
kBT

x2

2

)
(J.551)

The probability of observing large amplitudes |x| ≫
√

kBT
k in a system with a typical

spring constant k in thermal equilibrium with temperatures that we are used to are
very, very unlikely, as

kBT ∼ 10−21J (J.552)

at room temperature. Vice versa, observing 1J of thermal energy acquired as a
fluctuation out of thermal equilibrium happens at the probability of exp(−1021),
which is an incredibly small number.

In summary, it is absolutely the case that the microscopic laws of Nature are
time-reversible, but macroscopic objects are, in a probabilistic way exempt from
thermal fluctuations, as the energies involved are much, much higher than typical
thermal energies provided at sensible temperatures.
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X mathematical supplement

X.1 Relative information entropies

The Shannon-entropy S (or, equivalently, the Gibbs-entropy as it is called in the
statistical physics community rather than in the information theory community)

S = −
∑
i

pi ln pi (X.553)

can be extended to measuring the relative entropy between two discrete distributions
pi and qi , yielding the Kullback-Leibler divergence ∆S,

∆S = −
∑
i

pi ln
(
pi
qi

)
=

〈
ln

(
pi
qi

)〉
(X.554)

which really plays its strength when generalised to continuous distributions p(x)dx
and q(x)dx,

∆S = −
∫

dx p(x) ln
(
p(x)
q(x)

)
= −

〈
ln

(
p(x)
q(x)

)〉
(X.555)

The relative entropy comes with a large advantage as it is invariant under trans-
formations of the random variable in the continuous case (the problem does not
arise in the discrete case, anyways). The transformation law is commonly written as
p(x)dx = p(z)dz and results from integration by substitution:∫

dx p(x) =
∫

dz p(x(z))
dx
dz

(X.556)

with a transformation Jacobian J = dx/dz. In contrast to the straightforward entropy
S = −

∫
dx p(x) ln p(x) which transforms to −

∫
dz p(z)[ln(p(z)) + ln J] and picks up

an additional term depending on the transformation, this additional term cancels in
the ratio p(z)/q(z) = p(x)/q(x) of the relative entropy. That effectively means, that the
continuum limit of the Shannon-entropy can not be defined in an invariant way:

S = −
∫

dx p(x) ln p(x) = −
〈
ln p(x)

〉
. (X.557)

Related entropy measures, that are likewise (i) positive definite and bounded by
0, (ii) additive for independent random processes and (iii) growing with the number
of possible outcomes are Rényi-entropies Sα

Sα = − 1
α − 1

ln
∫

dx p(x)p(x)α−1 = − 1
α − 1

ln
〈
p(x)α−1

〉
(X.558)

for any constant 0 < α , 1. There are corresponding definitions of relative entropies
∆Sα

∆Sα = − 1
α − 1

ln
∫

dx p(x)
(
p(x)
q(x)

)α−1

= − 1
α − 1

ln
〈(
p(x)
q(x)

)α−1〉
(X.559)
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One often runs into problems with Rényi-entropies when dealing with conditional
and joint probabilities, which miraculously works with Kullback-Leibler divergences:
Joint probabilities p(x, z) can be generated in in a two-step random process as

p(x, z) = p(x|z)p(z) = p(z|x)p(x) (X.560)

with conditional probabilities, which are obviously connected through Bayes’ law.
The conditional entropy S(z|x) of p(x, z) relative to p(x) is given by

S(z|x) = −
∫

dx
∫

dz p(x, z) ln
(
p(x, z)
p(x)

)
=

−
∫

dx
∫

dz p(x, z) ln p(x, z) +
∫

dx
∫

dz p(x, z) ln p(x) =

−
∫

dx
∫

dz p(x, z) ln p(x, z) +
∫

dx ln p(x)
∫

dz p(x, z) =

−
∫

dx
∫

dz p(x, z) ln p(x, z) +
∫

dx p(x) ln p(x) = S(x, z) − S(x) (X.561)

because of the marginalisation
∫

dz p(x, z) = p(x) in the second term, such that we
can write down the entropy-version of Bayes’ law, making use of the symmetry of
S(x, z):

S(z|x) + S(x) = S(z, x) = S(x, z) = S(x|z) + S(z) (X.562)

which is impossible to formulate in terms of Rényi-entropies due to the logarithm
acting on an integral.
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Y.1 Gibbs-Duhem relation and intensive state variables

When constructing the various ensembles, we started at the fully extensive E(S, V, N)
for the microcanonical ensemble and ended up at J(T, V, µ) for the macrocanoncial
ensemble: Would there be a hypothetical ensemble with fully intensive state variables
T, p and µ? The answer is no, as one would lose all information about the actual size
of the system and the amount of matter involved, and the mathematically accurate
formulation is the Gibbs-Duhem relation.

With the Euler-relation U = TS − pV + µN as a starting point with the correspond-
ing differential dU = TdS − pdV + µdN for the case of three pairs of state variables
variables we see that in every term there is always an intensive state variable asso-
ciated with an extensive one. That means, that in principle one could define 8 = 23

potentials, where 5 of those potentials have names

U(S, V, N) energy dU = TdS − pdV + µdN
F(T, V, N) Helmholtz free energy dF = −SdT − pdV + µdN
G(T, p, N) free enthalpy (Gibbs) dG = −SdT + Vdp + µdN
H(S, p, N) enthalpy dH = TdS + Vdp + µdN
J(T, V, µ) grand canonical potential dJ = −SdT − pdV − Ndµ

Computing the full differential of the Euler-relation U = TS − pV + µN then
suggests:

dU = TdS + SdT − pdV + Vdp + µdN + Ndµ = TdS − pdV + µdN + SdT − Vdp + Ndµ
(Y.563)

When substituting the differential dU = TdS − pdV + µdN on arrives at a relation
between the intensive state variables:

SdT − Vdp + Ndµ = 0 (Y.564)

implying that only 2 of the intensive state variables are actually independent, reduc-
ing the number of possible thermodynamic potentials for 3 pairs of state variables
from 8 to 7.

Y.2 Euler-relation

The state variables S, V and N reflect the size of the thermodynamic system or
the amount of matter present in the system, and for that purpose the energy U is
necessarily a homogeneous functions of order λ = 1 in these variables: Naturally one
would think that the total internal energy of the system has this property,

U(λS, λV, λN) = λU(S, V, N), (Y.565)

and it is easy to imagine just λ copies of the system and to add up all extensive
variables, such that the internal energy of the combined system is λ times larger, too.
Differentiating this relation with respect to λ yields

U(S, V, N) =
∂U

∂(λS)
· ∂(λS)

∂λ︸︷︷︸
=S

+
∂U

∂(λV)
· ∂(λV)

∂λ︸ ︷︷ ︸
=V

+
∂U

∂(λN)
· ∂(λN)

∂λ︸ ︷︷ ︸
=N

(Y.566)
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Setting λ, which was arbitrary, to λ = 1 then gives the Euler-relation

U(S, V, N) =
∂U
∂S︸︷︷︸
=T

·S +
∂U
∂V︸︷︷︸
=−p

·V +
∂U
∂N︸︷︷︸
=µ

·N = TS − pV + µN (Y.567)

There is a differential version to the Euler-equation,

dU = TdS − pdV + µdN (Y.568)

as a differential of U(S, V, N), which is suggested from the first and second law of
thermodynamics:

dU = δQ + δW = TdS − pdV + µdN (Y.569)

which associate the change in thermal energy δQ with TdS and the change in
mechanical energy δW with −pdV + µdN.
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