
X mathematical supplement

X.1 Relative information entropies

The Shannon-entropy S (or, equivalently, the Gibbs-entropy as it is called in the
statistical physics community rather than in the information theory community)

S = −
∑
i

pi ln pi (X.553)

can be extended to measuring the relative entropy between two discrete distributions
pi and qi , yielding the Kullback-Leibler divergence ∆S,

∆S = −
∑
i

pi ln
(
pi
qi

)
=

〈
ln

(
pi
qi

)〉
(X.554)

which really plays its strength when generalised to continuous distributions p(x)dx
and q(x)dx,

∆S = −
∫

dx p(x) ln
(
p(x)
q(x)

)
= −

〈
ln

(
p(x)
q(x)

)〉
(X.555)

The relative entropy comes with a large advantage as it is invariant under trans-
formations of the random variable in the continuous case (the problem does not
arise in the discrete case, anyways). The transformation law is commonly written as
p(x)dx = p(z)dz and results from integration by substitution:∫

dx p(x) =
∫

dz p(x(z))
dx
dz

(X.556)

with a transformation Jacobian J = dx/dz. In contrast to the straightforward entropy
S = −

∫
dx p(x) ln p(x) which transforms to −

∫
dz p(z)[ln(p(z)) + ln J] and picks up

an additional term depending on the transformation, this additional term cancels in
the ratio p(z)/q(z) = p(x)/q(x) of the relative entropy. That effectively means, that the
continuum limit of the Shannon-entropy can not be defined in an invariant way:

S = −
∫

dx p(x) ln p(x) = −
〈
ln p(x)

〉
. (X.557)

Related entropy measures, that are likewise (i) positive definite and bounded by
0, (ii) additive for independent random processes and (iii) growing with the number
of possible outcomes are Rényi-entropies Sα

Sα = − 1
α − 1

ln
∫

dx p(x)p(x)α−1 = − 1
α − 1

ln
〈
p(x)α−1

〉
(X.558)

for any constant 0 < α , 1. There are corresponding definitions of relative entropies
∆Sα

∆Sα = − 1
α − 1

ln
∫

dx p(x)
(
p(x)
q(x)

)α−1

= − 1
α − 1

ln
〈(
p(x)
q(x)

)α−1〉
(X.559)
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x. mathematical supplement

One often runs into problems with Rényi-entropies when dealing with conditional
and joint probabilities, which miraculously works with Kullback-Leibler divergences:
Joint probabilities p(x, z) can be generated in in a two-step random process as

p(x, z) = p(x|z)p(z) = p(z|x)p(x) (X.560)

with conditional probabilities, which are obviously connected through Bayes’ law.
The conditional entropy S(z|x) of p(x, z) relative to p(x) is given by

S(z|x) = −
∫

dx
∫

dz p(x, z) ln
(
p(x, z)
p(x)

)
=

−
∫

dx
∫

dz p(x, z) ln p(x, z) +
∫

dx
∫

dz p(x, z) ln p(x) =

−
∫

dx
∫

dz p(x, z) ln p(x, z) +
∫

dx ln p(x)
∫

dz p(x, z) =

−
∫

dx
∫

dz p(x, z) ln p(x, z) +
∫

dx p(x) ln p(x) = S(x, z) − S(x) (X.561)

because of the marginalisation
∫

dz p(x, z) = p(x) in the second term, such that we
can write down the entropy-version of Bayes’ law, making use of the symmetry of
S(x, z):

S(z|x) + S(x) = S(z, x) = S(x, z) = S(x|z) + S(z) (X.562)

which is impossible to formulate in terms of Rényi-entropies due to the logarithm
acting on an integral.
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