
J stochastic differential equations

Up to this point we considered mechanical Hamiltonian systems in thermal equilib-
rium and looked at the reversible addition of thermal energy, leading to adiabatic,
i.e. entropy-conserving changes of state. But this picture is incomplete, as we should
understand better how exactly the many microscopic degrees of freedom of a system
provide thermal fluctuations and how the motion of a single degree of freedom is
changed under the influence of random, stochastic forces, or better, how the distribu-
tion of amplitudes of a system with many degrees of freedom evolves with time, as
every degree of freedom follows its own equation of motion.

An example of such a distribution could be the amplitude distribution p(x)dx of
a harmonic oscillator: Going from x = 0 to x requires mechanical work δW = kx2/2
with the spring constant k. The energy needed is supplied as thermal energy from
the interaction with all other degrees of freedom in the system, δQ = −ST. Energy
conservation would then imply that dE = δW + δQ and therefore that entropy can be
expressed as a function of amplitude of the oscillator, S(x) = kx2/2/(kBT), if there is
no overall change in energy, dE = 0.

S(x) ∼ kB ln p(x) → p(x) =
exp

( S(x)
kB

)
∫

dx exp
( S(x)

kB

) ∼ exp
(
− k
kBT

x2

2

)
(J.505)

i.e. a Gaussian with variance kBT/k, which seems reasonable, as the amplitude of
the random motion should increase with higher temperature and decrease for a
higher spring constant: One should really imagine that there is a trembling of the
pendulum due to thermal fluctuations corresponding to this variance. An observation
of ⟨x2⟩ would immediately determine kB for a system with known spring constant k
and temperature T, with the experimental challenge being the smallness of thermal
fluctuations kBT for reasonable temperatures.

J.1 Brownian motion

Macroscopic objects suspended in a fluid perform a random motion, as first noticed by
Robert Brown, who observed pollen in water under a microscope. Naturally, there are
two types of forces acting on such an object: a frictional force and a random agitation
due to collisions with atoms and molecules in the fluid. The two are not independent,
as state by the fluctuation-dissipation theorem. Writing down an equation of motion
with a friction coefficient D

mẍ = −Dẋ leads to the solution ẋ(t) ∝ exp
(
− t
τ

)
(J.506)

with a time constant τ = m/D, under which all motion ceases. But what about the
random impacting of atoms and molecules that provide fluctuations in energy of the
amount kBT in thermal equilibrium?
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j. stochastic differential equations

J.1.1 Langevin-equation

The key point is to add an external, randomly fluctuation force η(t), as realised by
Paul Langevin:

mẍ(t) = −Dẋ(t) + ση(t) (J.507)

with amplitude σ. This external force has the property that it vanishes on average,
⟨η(t)⟩ = 0 and that its magnitude at different times is uncorrelated, ⟨η(t)η(t′)⟩ =
2 · δD(t − t′), expressed by the Dirac δD-function. As the equation of motion is still
linear, the solution is given as a superposition of the friction term and the time-
integrated effect of the random force:

ẋ(t) = exp
(
− t
τ

)
·

ẋ(0) +

t∫
0

dt exp
(
+
t
τ

)
σ

m
η(t)

 (J.508)

While there is no macroscopic, ordered motion due to ⟨η(t)⟩ = 0,

⟨ẋ(t)⟩ = ẋ · exp
(
− t
τ

)
(J.509)

there is a diffusive motion as can be seen from the variance

⟨ẋ(t)ẋ(t′)⟩ =

ẋ(0)2 exp
(
− t + t′

τ

)
+

(
σ

m

)2
exp

(
− t + t′

τ

) t∫
0

dt

t′∫
0

dt′ exp
(
t + t′

τ

)
· 2δD(t − t′) =

exp
(
− t + t′

τ

) [
ẋ(0)2 − σ2

Dm

]
︸                              ︷︷                              ︸

→0 for t,t′≫τ

+
σ2

Dm
exp

(
− t − t

′

τ

)
(J.510)

Therefore, random fluctuations keep the particle in motion with velocity variance:

⟨ẋ(t)2⟩ =
σ2

Dm
for t = t′ (J.511)

Assuming equipartition between the kinetic and thermal energies then leads to

m
2
⟨ẋ2⟩ =

1
2
kBT such that σ2 = DkBT (J.512)

i.e. the amplitude of thermal fluctuation is related to the friction coefficient: First of
all, that seems to be a surprising result, as D was phenomenological and σwas a model
of the agitation of the fluid due to thermal motion. That the two are related makes a
lot of sense, though, because their microsopci origin is identical: The macroscopic
motion of the object through a fluid causes a momentum transfer onto the atoms
and molecules, and the thermal motion of the atoms and molecules give rise to a
momentum transfer onto the object.
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J.1.2 Random walks

The object suspended in a fluid undergoes a random walk under the influence of
the thermal, random force η(t): We can repeat the above reasoning for the position
x(t) instead of the velocity ẋ(t). The time constant τ−2 can be used to constraint ẍ to
be very small at late times, so an object always slows down. Then, the equation of
motion reads

Dẋ(t) = ση(t) and is solved by x(t) = x0 +

t∫
0

dt
σ

D
η(t) (J.513)

As before, we find that there is no net motion ⟨x(t)⟩ = 0 but that the variance is
nonzero

⟨x2(t)⟩ =
σ2

D2

t∫
0

dt

t′∫
0

dt′ 2δD(t − t′) = 2
(
σ

D

)2
· t → ⟨x(t)2⟩ ∝ t (J.514)

such that the variance increases proportional to t, which is typical for diffusive
processes. The diffustion constant Q is derived as

Q =
(
σ

D

)2
=

kBT
D

(J.515)

commonly known as Einstein’s relation. Substitution of a Stokes-like friction law for
a spherical object of radius r in a fluid with viscosity νρ yields the Stokes-Einstein-
relation:

D = 6π(νρ) · r → Q =
kBT

bπ(νρ) · r
(J.516)

linking viscosity and temperature, in the spirit of the fluctuation-dissipation-theorem.
Fig. 7 gives an impression of discretised random walks in two dimensions, in particu-
lar of the diffusive process scaling ∝

√
t, or rather ∝

√
n in the discrete case.

J.2 Fokker-Planck-equation and evolution of distributions

Up to this point, the Langevin-equation has described the motion of a damped system
under the influence of a thermal fluctuating force. An interesting generalisation is that
of an entire ensemble of particles, which represent a distribution, and where every
particle itself follows its Langevin-dynamics ẍ = −Dẋ + ση(t). On would expect that
the distribution then widens and diffuses, and the time evolution of this distribution
is given by the Fokker-Planck-equation.
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Figure 7: Discrete random walks in 2 dimensions with n = 30 steps each drawn isotropically
from a Gaussian distribution with variance σ2 = 1. The walks are initialised at the origin
and the endpoints are marked with a yellow dot. The typical distance that the random
walks is able to cover is

√
nσ ≃ 5.47, indicated by the circle.
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If ϕ(v, w) is the probability for a velocity change of a particle from υ to υ + w on a
time scale τ, one would write for the velocity distribution

p(υ, t + τ) =

+∞∫
−∞

dw p(υ − w, t)ϕ(υ − w, w) (J.517)

as a convolution integral or a Green-like propagator: How often one observes a
velocity υ depends on how often the velocity υ − w appeared and how likely the
transition from υ − w to υ was.

If τ is chosen to be infinitesimally small then ϕ , 0 only for |w| ≪ |υ| and one
observes only small changes in velocity, suggesting a Taylor-expansion:

p(υ, t + τ) =
∫

dw
(
p(υ, t) −

∂p

∂υ
w +

∂2p

∂υ2
w2

2

) (
ϕ(υ, w) −

∂ϕ

∂υ
w +

∂2ϕ

∂υ2
w2

2

)
(J.518)

Multiplying out this relation and keeping all terms up to order w2 yields these terms:

1.
∫

dw ϕ(υ, w) = 1

2.
∫

dw wϕ(υ, w) = ⟨w⟩

3.
∫

dw w ∂ϕ
∂υ =

〈
∂w
∂υ

〉
= ∂

∂υ⟨w⟩

4.
∫

dw w2ϕ(υ, w) = ⟨w2⟩

5.
∫

dw w2 ∂ϕ
∂υ = ∂

∂υ⟨w
2⟩

6.
∫

dw w2 ∂2ϕ

∂v2 = ∂2

∂υ2 ⟨w2⟩

Collection of these results and resubstitution into the distribution p(υ, t + τ) yields

p(υ, t + τ) =

∫
dw

p(υ, t) · ϕ(υ, w)︸  ︷︷  ︸
1

−p · w ·
∂ϕ

∂υ︸ ︷︷ ︸
3

+ p
w2

2
∂2ϕ

∂υ2︸     ︷︷     ︸
6

−
∂p

∂υ
wϕ︸︷︷︸

2

+
∂p

∂υ

∂ϕ

∂υ
w2︸ ︷︷ ︸

5

+
∂2p

∂υ2 x
w2

2︸︷︷︸
4


(J.519)

such that the evolution equation becomes

p(υ, t + τ) = p(υ, t)
(
1 − ∂

∂υ
⟨w⟩ +

∂2

∂υ2 ⟨w
2⟩ − ⟨w⟩ − ∂

∂υ
⟨w2⟩ + ⟨w2⟩

)
(J.520)

From the Langevin-equation one can obtain an expression for the average change in
velocity: υ changes on the time scale τ, so υ̇ = w/τ = −Dυ, such that

∂
∂υ
⟨w⟩ = −Dτ. (J.521)
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The variance ⟨w2⟩ = 2kBT D
mτ is obtained from the Einstein-relation, which as

well suggests that ∂
∂v ⟨w

2⟩ = 0. Therefore,

p(υ, t + τ) − p(υ, t)
τ

= Dp + Dυ
∂p

∂υ
+ kBT

D
m

∂2p

∂υ2 (J.522)

and in the limit τ→ 0:

∂
∂t

p(t, υ) = D
∂
∂υ

[
(pυ) +

kBT
m

∂p

∂υ

]
(J.523)

which is the sought-after Fokker-Planck-equation. It is a advection-diffusion equation
for the probability distribution p(t, υ) and allows particular stationary solutions, for
instance the Maxwell-Boltzmann-distribution

p ∼ exp
(
− mυ2

2kBT

)
(J.524)

for ∂p/∂t = 0.

J.3 Spectral decomposition of random forces ση(t)

The random force ση(t) is randomly fluctuating, and a Fourier-decomposition

η(t) =
1

2π

∫
dω C(ω) · exp(+iωt) ↔ C(ω) =

∫
dt η(t) · exp(−iωt) (J.525)

would be able to differentiate between fluctuations taking place on different time
scales, by means of the Fourier-transform C(ω). The Wiener-Khinchin-theorem states
that the variances in real and Fourier-space are identical,

⟨η(t)2⟩ =
∫

dt η(t)2 =
∫

dω
2π
|C(ω)|2 (J.526)

and tha tthe correlation function is the inverse Fourier-transform of the spectrum
|C(ω)|2,

⟨η(t)η(t + τ)⟩ =

1
(2π)2

∫
dt

∫
dω

∫
dω′ C(ω)C∗(ω′) · exp(i(ω − ω′)t) · exp(−iω′τ) =∫

dω |C(ω)|2 exp(−iωτ) (J.527)
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With this idea, let’s Fourier-decompose all terms in the Langevin-equation,

υ̇ + Dυ = ση(t) (J.528)

including the time derivatives:

υ(t) =
∫

dω
2π

υ(ω) exp(iωt) → ∂
∂t
υ(t) =

∫
dω
2π

iωυ(ω) exp(iωt) (J.529)

and

η(t) =
∫

dω
2π

C(ω) exp(iωt) (J.530)

The, the Langevin-equation can be written as (iω+ D)υ(ω) = σ ·C(ω) in Fourier-space,
which can be solved for υ(ω) as

υ(t) =
∫

dω
2π

σC(ω)
iω + D

exp(iωt) (J.531)

with the corresponding variance

⟨υ2(t)⟩ =
∫

dt υ2(t) =
∫

dω
2π

σ|C(ω)|2

D2 + ω2 =
kBT
m

(J.532)

using the Wiener-Khinchin-theorem in the second and equipartition in the last step.
The result implies that the thermal energy is present in terms of kinetic energy in
the system, and is assembled from fluctuations on all time scales, weighted by 1/ω2

for large frequencies, but by D2 for small frequencies, as clearly there is damping
relevant for slow motion on large time scales.

J.4 Irreversible processes

J.4.1 Irreversibility in statistical physics

The fundamental physical laws are time reversible, and this is a true statement for the
motion of particles or the dynamics of fields, in all branches of physics. For instance,

m
d2xi

dt2 = −∂iΦ Newton’s equation of motion

∂α∂
αAµ =

4π
c
ȷµ Maxwell’s field equation (in Lorenz-gauge ∂αAα = 0)

d2xµ

dτ2 = −
q

c
Fµν

dxν
dτ

Lorentz-equation of motion

Rµν −
R
2
gµν = −8πG

c4 Tµν − Λgµν gravitational field equation

d2xα

dτ2 + Γ αµν
d. x

µ

dτ
dxν

dτ
= 0 geodesic equation of motion

In all of these examples, time reversibility is ensured by second derivatives (or squares
of first derivatives), and the only case where a deeper explanation is necessary would
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be the Lorentz-equation of motion: The field tensor Fµν is in fact a first derivative of
the potential Aµ, so there is in fact a square of first derivatives as well.

Statistical systems with many degrees of freedom behave very different: While
the dynamics of their fundamental constituents follows time-reversible laws like in
the five examples, the Fokker-Planck equation as a diffusion equation is not time
reversible. It is naturally to observe a widening distributions with time, but not the
opposite. To understand this, let’s have a look at a famous nonlinear equation:

∂tυ
i + (υj∂j )υ

i = −
∂ip

ρ
− ∂iΦ + ν∆υi Navier-Stokes-equation (J.533)

for the evolution of the velocity υi of a fluid element on which pressure p and
gravity Φ is acting, for the particular case of incompressible fluids, ∂iυ

i = 0. ν is the
coefficient of viscosity, which encapsulates the microscopic dynamics of the atoms
the fluid is made of. Ignoring this term for a second and setting ν = 0 recovers the
Euler-equation

∂tυ
i + (υj∂j )υ

i = −
∂ip

ρ
− ∂iΦ Euler-equation (J.534)

for the motion of ideal inviscid fluids which is perfectly time-reversible: Making the
replacements

t → t, ∂t → −∂t , υi → −υi (J.535)

does not change anything in the Euler-equation, but this invariance is broken if ν , 0,
as ∆υi → −∆υi . Clearly, this has to do with the dichotomy between the microscopic
degrees of freedom and the macroscopic motion.

Reversible changes of state, in which the entropy stays constant, proceed over a
sequence of equilibria (such that temperature is defined at every point and changes
because of the change in internal energy), while irreversible changes in state take
place spontaneously under entropy generation. The rate of change of entropy with
time would be given by

∂S
∂t

=
∂x
∂t

∂S
∂x

(J.536)

with a control parameter x of the system, such as the length of a pendulum as dis-
cussed in the section about adiabatic changes. In equilibrium the condition ∂S/∂x = 0
would hold,

ẋ = C
∂S
∂x

=
C
2

∂2S
∂x2

∣∣∣∣∣∣
x0

(x − x0) (J.537)

with a suitable Taylor expansion around the equilibrium value x0.
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This result is a bit surprising when thinking about second-order equations of
motion so typical for e.g. mechanical systems. There, a force ∂Φ/∂x would provide
the reason for acceleration

mẍ = mυ̇ = − ∂
∂x
Φ (J.538)

very unlike thermodynamics, where a first order equation appears:

ẋ = C
∂S
∂x

(J.539)

and the gradient of the thermodynamic potential such as the entropy determines ve-
locity instead of acceleration. But when including dissipative forces into a mechanical
system

mυ̇ + βυ = − ∂
∂x
Φ (J.540)

in the limit of strong damping, βυ≫ mυ̇ one falls back onto a perfectly non-reversible
equation of motion

βυ = βẋ = − ∂
∂x
Φ (J.541)

This would exactly be the limit in which the gradient of a potential is related to a
velocity rather than an acceleration.

An example illustrating this idea might be the following: Imagine a ball submersed
in a liquid, on which a spring is attached. The liquid provides both a heavy damping
of the system as well as a source of thermal fluctuations. The potential Φ = kx2/2
under which the ball moves is provided by the spring with spring constant k. The
kinetic energy E of the ball is coupled to the heat bath as the impacting molecules
of the liquid can transfer kinetic energy. So we would write E = E0 − Φ(x) and
consequently for the entropy S(x) = S(E0 − Φ(x), V, N), in the microcanonical sense.
A Taylor-expansion of the entropy gives

S(x) = S0 −
∂S
∂E0

Φ(x) + . . . = S0 −
1

kBT
Φ(x) + . . . (J.542)

where in the second equality we have substituted the definition of temperature with
∂S/∂E = 1/(kBT). There is a gradient in entropy collinear with the gradient in the
potential,

∂S
∂x

= − 1
kBT

∂Φ
∂x

=
k

kBT
x → ẋ = C

∂S
∂x

= −C
k

kBT
x (J.543)

with a similar proportionality between ẋ and the entropy gradient as before. There-
fore, the solution for the equation of motion of the system is

x(t) ∝ exp
(
− k
kBT

x

)
(J.544)

which is a non-reversible process because of the appearance of a first derivative ẋ
instead of a second derivative ẍ typical for a single, microscopic degree of freedom.
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A second example would be two bodies in thermal contact. The total energy is
simply E = E1 + E2, and under a perturbation ϵ in one of the bodies the total energy
would be conserved, (E1 + ϵ) + (E2 − ϵ) = E. Writing the entropy S as an additive
function dependent on the energies of the two subsystems as S(ϵ) = S1(E1 + ϵ) +
S2(E2 − ϵ) on can Taylor-expand the entropy as

S(ϵ) = S1(E1) + ϵ
∂S1

∂E1︸︷︷︸
= 1

kBT

+
ϵ2

2
∂2S1

∂E2
1

+ S2(E2) − ϵ ∂S2

∂E2︸︷︷︸
= 1

kBT

+
ϵ2

2
∂2S2

∂E2
2

(J.545)

to second order: Then, the two terms ∂S1/∂E1 = 1/(kBT) = ∂S2/∂E2 in thermal equi-
librium, and the higher-order terms are controlled by the smallness of ϵ. Changing
the energy with time leads to a corresponding change in entropy,

∂S
∂t

= ϵϵ̇

(
∂2S1

∂E2
1

+
∂2S2

∂E2
2

)
(J.546)

Contrarily, if there is no equilibrium,

1
kBT1

=
∂S1

∂E1
(E1 + ϵ) =

1
kBT

+
∂2S1

∂E2
1

1
kBT2

=
∂S2

∂E2
(E2 − ϵ) =

1
kBT

+
∂2S2

∂E2
2

and both temperature become equal if there is no perturbation in energy ϵ = 0,
inducing the temperature imbalance. Therefore, the time evolution of entropy

∂S
∂t

= ϵ̇

(
1
T1
− 1

T2

)
(J.547)

is driven by the rate of change of energy, and aims at establishing an equilibrium.

J.4.2 Reversibility in classical mechanics

Classical mechanics is perfectly time-reversible, not only in the Newtonian equation
of motion, but in the Hamiltonian description as well: The Hamilton-function and
the corresponding equations of motion

H =
p2

2m
→ ∂H

∂p
= ẋ,

∂H
∂x

= −ṗ (J.548)

are inveriant under the transformation t → −t, because the canonical momentum
transforms as

p =
∂L
∂ẋ
→ −p (J.549)

as a consequence of the sign change of ẋ, and keeping in mind that the time-derivative
brings in another minus sign. While this is fundamentally true for any Hamiltonian
system and while reversibility of the microscopic world is certainly given, observing
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reversible processes become very unlikely in the macroscopic world, where the system
moves towards increasing its entropy in irreversible processes.

Coming back to the go-to example of the harmonic oscillator with spring constant
k and invoking equipartition between potential and thermal energy

k
2
⟨x2⟩ =

1
2
kBT, → ⟨x2⟩ =

kBT
k

(J.550)

one can compute a typical amplitude for a fluctuation amounting to the thermal
energy kBT. The distribution of amplitudes of an ensemble of harmonic oscillators
in thermal equilibrium is then given by the entropy, S(x) = kBT ln p(x) and comes
out as being Gaussian distributed in the amplitude x (which is only the case of the
harmonic oscillator, as potential energy is ∝ x2)

p(x) =
exp

(
S
kB

)
∫

dx exp
(

S
kB

) =

√
k

2πkBT
exp

(
− k
kBT

x2

2

)
(J.551)

The probability of observing large amplitudes |x| ≫
√

kBT
k in a system with a typical

spring constant k in thermal equilibrium with temperatures that we are used to are
very, very unlikely, as

kBT ∼ 10−21J (J.552)

at room temperature. Vice versa, observing 1J of thermal energy acquired as a
fluctuation out of thermal equilibrium happens at the probability of exp(−1021),
which is an incredibly small number.

In summary, it is absolutely the case that the microscopic laws of Nature are
time-reversible, but macroscopic objects are, in a probabilistic way exempt from
thermal fluctuations, as the energies involved are much, much higher than typical
thermal energies provided at sensible temperatures.
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