
F canonical ensemble

The canonical ensemble is characterised by temperature T, volume V and particle
number N, instead of energy E, volume V and particle number N (or any other series
of extensive state variables), effectively, the temperature is controlled instead of the
energy. Physically one can reach that by putting the system into thermal contact with
a larger system acting as an energy reservoir: The zeroth law of thermo dynamics will
then make sure that a common equilibrium temperature is reached. If the second
system is very large compared to the first one, it will determine this temperature.

As there are two microcanonical systems in thermal contact with an exchange
of thermal energy, one would write down a common Hamilton function with an
interaction term h(pi , qi , Pj , Qj ) that allows the coupling of the two systems,

H = H(pi , qi) +H(Pj , Qj ) + h(pi , qi , Pj , Qj ) (F.235)

The first Hamilton-function describes a system with f degrees of freedom, the second
Hamilton-function a system with F degrees of freedom, and usually f ≪ F. If the
interaction term h(pi , qi , Pj , Qj ) is zero, the two systems are isolated. We will assume
that the interaction h(pi , qi , Pj , Qj ) is nonzero to allow coupling, but small compared
to the two energies H(pi , qi) and H(Pi , Qi), such that the thermodynamical properties
follow from these two energies alone.

F.1 Marginalisation procedure

For a given phase space coordinate (pi , qi) of the smaller system with an associated
energy H1, the larger system is left with all configurations that are compatible with
the energy E − H1 ≤ H2 ≤ E + δE − H1 which is an immediate consequence of
E ≤ H1 +H2 ≤ E + δE. The probability of finding the smaller system at (pi , qi) needs
to take into account all states (Pj , Qj ), which are compatible with the energies H1 and
H2. Therefore, this probability is given by

W(pi , qi)
∏
i

d3pid
3qi ∝

∏
i

d3pid
3qi

∫
E−H1≤H2≤E+δE−H1

∏
j

d3Pjd
3Qj (F.236)

with the identification

ω2(E) =
dφ2(E)

dE
=

∫
E−H1≤H2≤E+δE−H1

∏
j

d3Pjd
3Qj (F.237)

as the phase space volume of the second system. Mathematically, this is called a
marginalisation: We are interested in the distribution of the smaller system irrespective
of the particular distribution over (Qj , Pj ), so we are integrating out that part of the
distribution.

By integrating of the phase space (pi , qi) with E ≤ H ≤ E + δE we get

W(E1)δE1 ∝ ω1(E1)ω2(E − E1)δE1 (F.238)

which should have a maximum at a certain value Ẽ1 for the energy E1. In fact, in
thermodynamic equilibrium the energy should be distributed among the two parts
of the system in a way that the temperatures become equal. In order to get a feeling
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f. canonical ensemble

for this, let’s look at a Bernoulli-probability as a model, as in the case of ideal gases.
Then,

W(E1) = En1
1 (E − E1)n2 , n1, n2 ∼ 1023 (F.239)

with the logarithm
ln W(E1) = n1 ln E1 + n2 ln(E − E1) (F.240)

and a maximum at

d ln W(E1)
dE1

= 0 yields Ẽ1 = E
n1

n1 + n2
, Ẽ2 = E − Ẽ1 = E

n2

n1 + n2
(F.241)

We expand this probability around the maximum Ẽ1 and write E1 = Ẽ1 + ϵ

ln W(Ẽ1 + ϵ) = n1 ln Ẽ1 + n2 ln Ẽ2 + n1 ln
(
1 +

ϵ

Ẽ1

)
+ n2 ln

(
1 +

ϵ

Ẽ2

)
(F.242)

in a parabolic expansion. Then, the probability around Ẽ1 becomes

ln W(Ẽ1 + ϵ) = const − ϵ
2

2
n1 + n2

Ẽ1Ẽ2
(F.243)

as the linear term is = 0 at the maximum. Consequently, there will be a Gaussian
distribution

W(Ẽ1 + ϵ) = W(Ẽ1) exp
(
− ϵ

2

2
n1 + n2

Ẽ1Ẽ2

)
(F.244)

around Ẽ1, with the variance approaching zero for large n1 + n2, such that the
contribution to the phase space appears at a single, well-defined energy Ẽ1, leaving
E − Ẽ1 to the second system.

Let’s return to the probability W(E1), whose most probable value is defined by

∂
∂E1

(ω1(E1)ω2(E − E2)) = 0 (F.245)

Because the logarithm is monotonic we can conclude

∂
∂E1

lnω1(E1)
∣∣∣∣∣
E1=Ẽ1

=
∂

∂E1
lnω2(E2)

∣∣∣∣∣
E2=Ẽ2=E−Ẽ1

(F.246)

which would suggest the identification

S = kB lnω and
∂ lnω
∂E

=
1

kBT
(F.247)

in contradiction with previous results where

S = kB lnφ and
∂ lnφ
∂E

=
1

kBT
(F.248)
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f.2. canonical ensemble

i.e. the actual phase space volume was replaced by the differential phase space
volume. There is actually no issue because for a highly dimensional phase space most
of the volume is contained in an incredibly thin layer just below the surface such that
the two measures become approximately equal,

lim
N→∞

lnφ
N

= lim
N→∞

lnω
N

(F.249)

such that
φ ∼ ωδE (F.250)

Specifically for an ideal gas one would write

φ = CE
3N
2 as well as ω =

3N
2

CE
3N
2 −1 =

3N
2
φ

E
(F.251)

such that the temperature in both definition coincides,

∂
∂E

kB lnφ =
1
T

=
3
2 NkB

E
=

1
T

=

(
3
2 N − 1

)
kB

E
=

∂
∂E

kB lnω (F.252)

as the difference between N and N − 1 becomes irrelevant.
We are missing now the actual shape of the phase space distribution for a canonical

system, which is defined to be the distribution over the degrees of freedom of the
smaller system by a temperature defined through the larger system, acting as a
reservoir of thermal energy. The energy is shared among both systems, but effectively
in a way that H1(pi , qi)≪ E and from the argument in the previous example, such
that the energy of both parts is well defined and fixed to Ẽ1 and E − Ẽ1 ≃ E, in
particular if the thermostat is huge compared to the controlled system:

lnω2(E − H1) = ln ω2(E2)|E2=E −
∂

∂E2
lnω2(E2)|E2=EH(pi , qi) (F.253)

in the limit E1 = H1 ≪ E2 ≃ E. But at the same time, ∂
∂E lnω2 = 1

kBT , such that

W(pi , qi)
∏
i

d3pid
3qi ∝

∏
i

d3pid
3qiω2(E − H1)dE ∝

∏
i

d3pid
3qi exp

(
−
H(pi , qi)
kBT

)
(F.254)

and similarly

W(E1)dE1 ∝ ω1(E1) exp
(
− E1

kBT

)
dE1 (F.255)

with the Boltzmann-factor appearing, with the effect of down-weighting states of
high energy.

F.2 Canonical ensemble

For defining a new ensemble where temperature T is controlled instead of energy E
we need to be aware of the fact that energy is not fixed anymore, clearly the system
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f. canonical ensemble

can exchange energy with the thermostat through the interaction term of the common
Hamilton-function. Recapitulating the argument about the maximisation of Shannon-
entropy and the search for the ”most random” distribution that is normalised and
for which the expectation value of energy is fixed led to the Boltzmann-factor: For
a given energy all states are equally probable, and states of higher energy are less
probable according to exp(−E/(kBT)). Defining an ensemble average of a phase space
function A(pi , qi) this entire ensemble (not just the (H = E)-surface!), leads to

⟨A(pi , qi)⟩ =

∫ ∏
i

d3pid3qi A(pi , qi) exp
(
−H(pi ,qi )

kBT

)
∫ ∏

i
d3pid3qi exp

(
−H(pi ,qi )

kBT

) (F.256)

i.e. with the weighting function is now being ρ ∼ exp
(
−H(pi ,qi )

kBT

)
instead of a constant

ρ = 0, 1; where in addition the normalising factor N!h3N has been dropped. Then, the
expectation value of energy would be

⟨E⟩ =

∫ ∏
i

d3pid3qi H exp(−βH(pi , qi))∫ ∏
i

d3pid3qi exp(−βH(pi , qi))
(F.257)

and of pressure

⟨p⟩ =

∫ ∏
i

d3pid3qi (−∂H
∂V ) exp(−βH(pi , qi)∫ ∏

i
d3pid3qi exp(−βH(pi , qi))

(F.258)

with p = −∂H/∂V, and the inverse temperature β = 1
kBT .

F.3 Equipartition theorem

Remembering how difficult it was in the microcanonical ensemble to derive the
equipartition theorem, we should try to rederive it in the canonical ensemble. Exploit-
ing the virial law implies 〈

pi
∂H
∂pi

〉
= 2⟨Hkin⟩ = k⟨Hpot⟩ (F.259)

if the Hamilton-function has the archetypical form H ∼ p2 + qk with the potential
being a homogeneous function of order k. Then,

〈
pi

∂H
∂pi

〉
=

∫ ∏
i

d3pid3qipi
∂H
∂pi

exp(−βH(pi , qi)∫ ∏
i

d3pid3qi exp(−βH(pi , qi))
(F.260)

Rewriting the term in the numerator involving the Boltzmann-factor as

∂H
∂pi

exp
(
− H
kBT

)
= −kBT

∂
∂pi

exp
(
− H
kBT

)
(F.261)
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f.4. canonical partition function

with the chain rule gives

〈
pi

∂H
∂pi

〉
=

∫ ∏
i

d3pid3qi (−kBTpi)
∂
∂pi

exp(−βH(pi , qi))∫ ∏
i

d3pid3qi exp(−βH(pi , qi))
= +kBT (F.262)

with a sign change due to an integration by parts to obtain ∂pi /∂pi = 1. Therefore,
we can conclude that on average the kinetic energy and the potential energy for every
degree of freedom are similar and of order kBT, essentially in a one-line calculation!

F.4 Canonical partition function

The idea of the canonical partition function Z is again that the weighting function
in the numerator is the normalisation function in the denominator, such that for
instance the state variable E = H can be generated by differentiation with respect to
β = 1/(kBT). Just as in the discussion of characteristic functions one would proceed
by interchanging differentiation and integration, and have the differentiation act on
the partition function as a carried-out integral:

Z(T, V, N) =
∫

1
N!h3N

∏
i

d3pid
3qi exp

(
−
H(pi , qi)
kBT

)
(F.263)

now with the normalising factor N!h3N , yielding the expectation value for the energy
as a logarithmic derivative: The logarithm makes sure that exactly the right shape of
the canonical average is generated, with a normalisation from the differentiation of
the logarithm, and the state variable to be averaged over as the internal derivative
required by the chain rule:

⟨E⟩ = kBT2∂ ln Z
∂T

= kBT2 1
Z
∂Z
∂T

(F.264)

The expecation value for the pressure p follows in analogy through differentation
with respect to its extensive partner V

⟨p⟩ = kBT
∂ ln Z
∂V

= kBT
1
Z
∂Z
∂V

(F.265)

Given the form of these expressions we should start looking for a suitable thermody-
namic potential:

− F
kBT

= −βF (F.266)

called the Helmholtz-free energy F.

F.5 Helmholtz-free energy F

The Helmholtz-free energy F is obtained through Legendre-transform of the energy E
by replacing the dependence on volume V as an extensive quantity through pressure
p. Therefore, we write

F = E − TS with the differential dF = dE − TdS − SdT (F.267)
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f. canonical ensemble

together with the Euler relation

dE = TdS − pdV → dF = −SdT − pdV (F.268)

Therefore, including 1/(kBT) into the definition of F gives for the differential

d
(
− F
kBT

)
=

F
kBT2 dT− 1

kBT
dF =

F + TS
kBT2 dT +

p

kBT
dV =

E
kBT2︸︷︷︸
∂ ln Z
∂T

dT +
p

kBT︸︷︷︸
∂ ln Z
∂p

dV (F.269)

And therefore

d
(
− F
kBT

)
=

∂ ln Z
∂T

dT +
∂ ln Z
∂V

dV (F.270)

which strongly suggests the definition F(T, V) = −kBT ln Z for obtaining the Helmholtz-
free energy F from the logarithmic canonical partition function, in analogy to S =
kB lnφ in the microcanonical case. Alternatively, one can argue that

Z =
∫ ∏

i
d3pid3qi

N!h3N exp
(
−H(pi , qi)

kBT

)
=

∞∫
0

dE
∫ ∏

i
d3pid3qi

N!h3N︸            ︷︷            ︸
=ω(E)

exp
(
− H
kBT

)
(F.271)

or equivalently

Z =

∞∫
0

dE
d

dE

E∫
0

∏
i

d3pid3qi

N!h3N︸            ︷︷            ︸
=φ(E)︸                 ︷︷                 ︸

=ω(E)

exp
(
− H
kBT

)
(F.272)

such that the canonical partition function originates directly from a reweighting of
the microcanonical phase space density with the Boltzmann-factor: That is in fact
an incredibly intuitive result, as extremisation of Shannon-entropy yields naturally
a uniform distribution at fixed energy and an exponentially decreasing probability
with increasing energy, in accordance with the fundamental postulate of statistical
physics.

F.6 Gibbs-enthalpy

The Helmholtz free energy F(T, V, N) has the temperature being controlled as an
intensive state variable, while V and N are clearly extensive. Physically, this would
mean that there is a larger thermal reservoir acting as a thermostat for the system.
But often, the pressure p is fixed rather than the volume V, for instance in a chemical
reaction at atmospheric pressure if one does not use a closed container for the chemi-
cal substances. A suitable thermodynamic potential with T, p and N controlled is the
Gibbs enthalpy G(T, p, N). Here, apart from being a thermostat the second system is
in pressure equilibrium with the first system, such that E = E1 + E2 and V = V1 + V2.
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f.6. gibbs-enthalpy

In this case one can write

W(E1, V1)dE1dV1 ∼ ω(E1, V1)ω2(E − E1, V − V1)dE1dV1 (F.273)

extending the previous relation by volume. An expansion of the logarithm lnω2 in
terms of energy and volume yields

lnω2(E − E1, V − V1) = lnω2(E, V) − ∂ lnω2

∂E1︸  ︷︷  ︸
= 1

kBT

E1 −
∂ lnω2

∂V1︸  ︷︷  ︸
= p

kBT

V1 (F.274)

and because S = kB lnω,

∂S
∂E

=
1

kBT
∂ lnω
∂E

=
1

kBT

∂S
∂V

=
1
kB

∂ lnω
∂V

=
p

kBT

Looking a the Legendre-transform relation

dE = TdS − pdV → dS =
1
T

(dE + pdV) (F.275)

such that
lnω2(E − E1, V − V2) = lnω2(E, V) − 1

kBT
(E1 − pV1) (F.276)

and the Boltzmann-factor is extended to include pressure work. Using this extended
Boltzmann-factor to compute expectation values in the canonical ensemble gives for
instance for ⟨E + pV⟩,

⟨E + pV⟩ =

∫
dEdV (E + pV)ω(E, V) exp

(
− E+pV

kBT

)
∫

dEdV ω(E, V) exp
(
− E+pV

kBT

) =

kBT2 ∂
∂T

ln
∫

dEdV ω(E, V) exp
(
−

E + pV
kBT

)
(F.277)

and for ⟨V⟩,

⟨V⟩ =

∫
dEdV Vω(E, V) exp

(
− E+pV

kBT

)
∫

dEdV ω(E, V) exp
(
− E+pV

kBT

) = −kBT
∂
∂p

ln
∫

dEdV ω(E, V) exp
(
−

E + pV
kBT

)
(F.278)

where again the variables E + pV or V alone have been generated by suitable differ-
entiation of the partition function, and interchanging differentiation and integration
determines the expectation values as suitable derivatives of the logarithmic parti-
tions functions. These relations lead naturally to the definition of the Gibbs-enthalpy
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f. canonical ensemble

G(T, p, N)

G(T, p, N) = −kBT ln
∫

dEdVω(E, V) →

E + pV = kBT2 ∂
∂T

(
− G
kBT

)
and V =

∂G
∂p

(F.279)

Linking this up to the Legendre-transform of F for the replacement of V with p

G = E − TS + pV → dG = −SdT + Vdp + µdN (F.280)

makes it possible to write

d
(
− G
kBT

)
=

G
kBT2 dT − 1

kBT
dG =

E + pV
kBT2 dT − V

kBT
dp −

µ

kBT
dN (F.281)

Such that a differentiation in T will yield E + pV and a differentiation in p the
corresponding volume. Separating the combined Boltzmann-factor the allows to
compute the partition function for the enthalpy G as following from the canonical
partition function Z defining the Helmholtz free energy F

G(T, p, N) = −kBT ln
∫

dV Z(T, V, N) exp
(
−
pV
kBT

)
(F.282)

with an interesting picture emerging: Replacement of a state variable by Legendre-
transform corresponds to a reweighting of the partition function with a modified
Boltzmann-factor. Naturally we would ask now if a replacement of N with the
chemical potential µ would be possible: This leads to the macrocanonical partition
function. Please keep in mind that a thermodynamic potential can not depend on all
intensive state variables as a consequence of the Gibbs-Duhem relation, so we are
aiming at macrocanonical partitions and their corresponding potentials as functions
of T, V and µ.
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