
E phase space dynamics

E.1 Phase space Γ

Statistical mechanics as the theory behind thermodynamics is concerned with sys-
tems with many degrees of freedom which follow Hamiltonian, energy-conserving
dynamical laws. For linking mechanical microscopic properties of these systems with
thermodynamic concepts like entropy and temperature we need to introduce some
conceptual ideas.

The phase space of a Hamiltonian system is made up from all coordinates {qi , pi}.
For a system like a collection of point particles interacting with potentials as the
microscopic idea behind a real gas, it would be 6n-dimensional for n particles. As
the Lagrange-function L(qi , q̇i) does not explicitly depend on time, the value of the
Hamilton-function H(qi , pi) interpreted as the energy of the system is conserved: It is
a straightforward visualisation that the system moves on a surface of fixed energy
through phase space Γ . If we combine the phase space coordinates into a vector
x = (qi , pi) the phase space motion proceeds at velocity υ

υ = ẋ = (q̇i , ṗi) =
(
∂H
∂pi

,−∂H
∂qi

)
(E.149)

At the same time, the gradient of the Hamilton-function is given by

∇H(qi , pi) =
(
∂H
∂qi

,
∂H
∂pi

)
(E.150)

such that we can conclude two things:

υ · ∇H = 0 as well as |υ| = |∇H| (E.151)

i.e. that the velocity and the gradient are equal in magnitude but perpendicular to
each other.

E.2 Phase space density ρ

Populating the phase space Γ with an ensemble of physically equivalent systems
(with identical Hamilton-functions) leads to a density ρ of encountering systems at a
certain phase space coordinate. There should be a continuity equation making sure
that in the course of time evolution systems are not spontaneously lost or added to
the ensemble,

∂ρ

∂t
+ div(ρυ) =

∂ρ

∂t
+ ∇ρ · υ + ρdivυ = 0 (E.152)

with the application of the Leibnitz-rule to div(ρυ) and the successive definition of
the advective derivative: As the density ρ(t, xi) is a function of both time and the full
phase space coordinates bundled in x one gets:

d
dt
ρ(t, xi) =

∂ρ

∂t
+ ẋi

∂ρ

∂xi
=

∂ρ

∂t
+ υi

∂ρ

∂xi
(E.153)

The divergence of the velocity υ vanishes, as one can quickly see
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e. phase space dynamics

divυ =
∑
i

∂q̇i
∂qi

+
∂ṗi
∂pi

=
∑
i

∂
∂qi

∂H
∂pi
− ∂
∂pi

∂H
∂qi

= 0 (E.154)

through substitution of the Hamilton equations of motion. With the advective
derivative,

dρ
dt
≡

∂ρ

∂t
+ υ · ∇ρ (E.155)

in the laboratory frame in which the coordinates are defined, and

∂ρ

∂t
= 0 (E.156)

for a comoving observer that is advected with the flow, as for that observer υ = 0.
But is there something that we can say about ∂ρ/∂t in the laboratory frame? This is a
surprising result, as

div (ρυ) =
∑
i

∂ρ

∂pi
ṗi +

∂ρ

∂qi
q̇i =

∑
i

∂ρ

∂pi

∂H
∂pi

+
∂ρ

∂qi

∂H
∂qi

= −[ρ,H] (E.157)

where the Hamilton equations of motion and then the Poisson-bracket was substi-
tuted. For the derivatives of ρ with respect to the phase space coordinates one can do
an intermediate step by differentiating with respect to H first and then continue the
differentiation with the chain rule.

div (ρυ) =
∂ρ

∂H

∑
i

∂H
∂qi

∂H
∂pi
− ∂H
∂qi

∂H
∂pi

=
∂ρ

∂H
[H,H] = 0 (E.158)

where the Poisson-bracket of the Hamilton-function with itself vanishes, setting the
divergence of ρυ to zero. That implies in turn that the partial derivative of ρ in the
laboratory frame

∂ρ

∂t
= 0 (E.159)

vanishes: The distribution of the systems in phase space is non-evolving, neither for
the comoving observer nor for an observer in the laboratory frame. Being advected
with the flow, observers would see a constant density around them, and observing the
flow at any point from the laboratory frame would always yield the same density, too.

E.3 Phase space volume: surface and volume

The volume of the phase space Γ as bounded by a surface of constant energy H ≤ E
would be

φ∗(E) =
∫
H≤E

∏
i

d3qid
3pi (E.160)

where we have introduced the asterisk for the time being as it needs to be corrected
by the Gibbs factor. Adding or removing energy from the system leads to a change
in volume, as the surface of constant energy will move to a different location and
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e.4. microcanonical ensemble

enclose a different amount of volume in Γ : The rate of change of the volume with
energy is simply the derivative of φ∗(E),

ω∗(E) =
d

dE
φ∗(E) =

d
dE

∫
H≤E

∏
i

d3qid
3pi (E.161)

E.4 Microcanonical ensemble

With these ideas it is possible to define the microcanonical ensemble: One populates
the phase space Γ with a large number of physically equivalent systems with the
same Hamilton-function H on the surface of constant energy E. In doing that, one
needs to make an assumption how this ensemble of systems will be distributed on
the hypersurface at constant E. For continuing, one can adopt now the fundamental
postulate of statistical physics and require axiomatically that this distribution ρ is
constant in thermodynamic equilibrium, or, perhaps a bit more insightful, we ask
what distribution ρ would maximise the information entropy as an expression about
the largest possible amount of randomness, which we would suspect to be present
in thermodynamic equilibrium. A constant distribution would in fact extremise
Shannon’s entropy (if there are no boundary conditions to be fulfilled), so we will
work with that! The previous section showed that for a conservative Hamiltonian
system this density ρ, once initialised, is stationary ∂ρ/∂t = 0 but that does not mean
that there is no dynamics going on. The every system in the ensemble is pursuing its
path in phase space Γ , but it is the case that the number of systems that evolve away
from a certain volume in phase space are replaced by new systems moving into that
volume, keeping the density constant.

Therefore, the distribution of systems on the surface of constant energy (or to
be more exact, in an infinitesimally thin shell between energies E and E + δE, for
mathematical convenience) is chosen to be constant, because that imposes the least
assumption on the phase space density.

ρ(E) =

1, if E ≤ H ≤ E + δE

0, elsewhere
(E.162)

such that the number n of systems becomes proportional to the volume between E
and E + dE,

n = ρω∗(E)dE = ω∗(E)dE (E.163)

using the phase space volume element defined above.

E.5 Equipartition theorem

Suppose one would like to determine the average ⟨A⟩ of a function A(pi , qi , t) that
can depend on the coordinates (qi , pi) and possibly on time t. The average should be
characterised by a predefined energy E (which the Hamiltonian system conserves).
There are fundamentally two ways of computing the average, first summing over the
ensemble,
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⟨A⟩ =

∫
E≤H≤E+δE

∏
i

d3qid3pi A(pi , qi , t)∫
E≤H≤E+δE

∏
i

d3qid3pi
=

d
dE

E∫
0

∏
i

d3qid3pi A(pi , qi , t)

d
dE

E∫
0

∏
i

d3qid3pi

(E.164)

where the averages are normalised by the volume. The idea in this equation is that
the ensemble of statistically equivalent systems is distributed evenly over the allowed
phase space volume at coordinates (qi , pi). Every system of the ensemble contributes
to this average with a specific value for A(pi , qi , t). The denominator in the ensemble
average is just ω∗(E).

Secondly, if the system is ergodic, the ensemble average is equal to the average of
a single system in its time evolution,

⟨A⟩ = lim
∆t→∞

1
∆t

∆t∫
0

dt (pi(t), qi(t), t); (E.165)

the idea being that a single system in its time evolution comes by every point of the
allowed phase space volume the exactly the same even measure.

For a specific choice of the phase space function A = p1∂H/∂p1 one can compute
the expectation value of the phase space average by an integration by parts,∫

d3p1 p1
∂H
∂p1

=
∫

d3p1
∂

∂p1
(p1H) −

∫
d3p1 H (E.166)

because obviously ∂p1/∂p1 = 1, and the first term will simply be the evaluation of
the integrand at the boundaries, where H = E.

Applying this simplification to the entire integrand,

E∫
0

∏
i

d3pid
3qi p1

∂H
∂p1

= E · (p1,max − p1,min)

E∫
0

∏
i≥2

d3pid
3qi −

E∫
0

∏
d3pid

3qiH

(E.167)

such that a differentiation with respect to the energy E would yield

d
dE

E∫
0

∏
i

d3pid
3qiH =

1
δE

E+δE∫
E

∏
i

d3pid
3qiH = E

1
δE

∏
i

d3pid
3qi = Eω∗(E)

(E.168)

d
dE

E∫
0

∏
i

d3pid
3qip1

∂H
∂p1

= φ∗(E) (E.169)

〈
pi

∂H
∂pi

〉
=

〈
qi
∂H
∂qi

〉
=
φ∗

ω∗
=

1
d lnφ∗

dE

(E.170)
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e.6. entropy for hamiltonian systems

The equipartition theorem then follows from these considerations: If

d lnφ∗

dE
=

1
kBT

(E.171)

then the average kinetic energy for a non-relativistic system follows from〈
pi

∂H
∂pi

〉
= 2⟨T⟩ ∼ kBT (E.172)

As a consequence of the virial theorem,〈
qi
∂H
∂qi

〉
∼

〈
pi

∂H
∂pi

〉
∼ kBT (E.173)

as well: This is a far-reaching result, and shows that every degree of freedom carries
on average a typical amount of kBT of the total thermal energy of the system.

E.6 Entropy for Hamiltonian systems

Let’s introduce a parameter a in the Hamilton-function H

H = H(pi , qi , a) (E.174)

which can be controlled from the outside and changes the mechanics of the system:
For instance, it could be the length of a pendulum or the distance between the
capacitor plates in an LC-circuit or in fact the volume of a gas in a container. If
changes in a have an influence on the Hamilton-function, energy can be added to or
removed from the system:

dH
dt

= ȧ
∂H
∂a

→ dH =
∂H
∂a

da (E.175)

which leads to an energy gain

dE = lim
∆t→∞

t+∆t∫
t

dt
∂H
∂a

ȧ (E.176)

over the interval ∆t. For an entire ensemble of systems one would write for the
average gain in energy

dE =
〈
∂H
∂a

〉
da (E.177)

where the quantity ⟨∂H/∂a⟩ could be interpreted in an ensemble-average sense, or if
ergodicity is given, as a time average

〈
∂H
∂a

〉
= lim
∆t→∞

1
∆t

t+∆t∫
t

dt
∂H
∂a

(E.178)
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e. phase space dynamics

For the particular case of a being the volume V of a container filled with gas, the
change in energy would be 〈

∂H
∂V

〉
= −p (E.179)

and correspond to the pressure, such that one can write dE = −pdV with dE =
⟨∂H/∂V⟩dV, identical to dU = −pdV! Relations like this one start to bridge the
gap between ensembles of Hamiltonian systems with many degrees of freedom at
thermodynamic quantities. Surely, the next building block of the theory that we need
to understand is the relation between a term like dU = TdS with the underlying
Hamiltonian dynamics.

E.7 Adiabatic invariance of entropy

The phase space volume φ∗(H, a) and its differential change ω∗(H, a) are defined as

φ∗(H, a) =
∫
H≤E

∏
i

d3pid
3qi and ω∗(H, a) =

d
dE

φ∗(E, a) (E.180)

where both quantities depend through the Hamilton-function H on the control
parameter a, which in fact can change the energy and therefore the accessible phase
space volume of the system:

∂φ∗

∂a
da = φ∗(E, a + δa) − φ(E, a) (E.181)

This quantity exactly corresponds to the volume contained between

H(p, q, a) = E and H(p, q, a + δa) = E − ∂H
∂a

δa (E.182)

with the idea that ∂H/∂a points into the direction of smaller energies, but in the
formula we need the inverse gradient, pointing towards higher energies.

∂φ∗

∂a
δa =

∫
δsdO (E.183)

δS is parallel to ∇H

dH =
∂H
∂S

δS (E.184)

and consequently,

|∇H|δs = −∂H
∂a

δa →
∂φ∗

∂a
da =

∫
∂H
∂a

dO
|∇H|

δa (E.185)

In the average defined by the microcanonical ensemble one obtains for the average
change in energy〈

∂H
∂a

〉
=

1
ω∗(E)

∫
∂H
∂a

dO
|∇H|

→
∂φ∗

∂a
= −ω∗(E)

〈
∂H
∂a

〉
(E.186)
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e.7. adiabatic invariance of entropy

Therefore, for an arbitrary change in φ∗(E, a) by da one would obtain

dφ∗ = ω∗
[
dE −

〈
∂H
∂a

〉
da

]
(E.187)

Both changes (dE and da) affect the phase space volume and therefore the entropy

dE =
1
ω∗

dφ∗ +
〈
∂H
∂a

〉
da (E.188)

which is a formula reminiscent of the first law of thermodynamics,

dU = δQ + δW (E.189)

Should we continue by analogy? If this is the case, one would identify the thermal
energy with δQ = 1

ω∗dφ
∗, and consequently the entropy with S = kBφ

∗:

kB

φ∗
dφ∗

ω∗
=

kB

φ∗

[
dE −

〈
∂H
∂a

〉
da

]
(E.190)

Using logarithmic derivatives this can be rewritten as

kBd lnφ∗ = kB
ω∗

φ∗
= kB

1
φ∗

dφ∗

dE

[
dE −

〈
∂H
∂a

〉
da

]
= kB

d lnφ∗

dE

[
dE −

〈
∂H
∂a

〉
da

]
(E.191)

kBd lnφ∗ = kB
d lnφ∗

dE

[
dE −

〈
∂H
∂a

〉
da

]
(E.192)

Comparison with the second law of thermodynamics, dS = 1
T [dE − δW], would

imply that the change dS in entropy

dS = kB · d lnφ∗ (E.193)

is just given by the change in logarithmic phase space volume, with kB as a prefactor
fixing the units. Then, comparing with the definition of temperature as 1/(kBT) =
∂S/∂E, consistency implies that

1
kBT

=
∂ lnφ∗

∂E
(E.194)

The phase space volume of a system and how that volume changes with changing
energy determine entropy and temperature.

E.7.1 Example: adiabatic invariance in a string pendulum

Adiabatic invariance of the phase space volume φ∗ when changing a control parameter
is an incredibly abstract and interesting concept as it defines entropy and what exactly
corresponds to adiabatic changes of state in the underlying mechanics of a system.
We should consolidate this idea by considering a mechanical string pendulum of
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e. phase space dynamics

length l = a which serves as the control parameter. It performs oscillations in angle ϕ
with time t according to the differential equation ϕ̈ + ω2ϕ = 0 with ω2 = g/l, which
follow from variation of the Lagrange-function,

L =
m
2

(lϕ̇)2 + mgl cosϕ ≃ m
2

(lϕ̇)2 + mgl

(
1 −

ϕ2

2

)
(E.195)

The canonical momentum pϕ is just the angular momentum L,

pϕ =
∂L
∂ϕ̇

= ml2ϕ̇ = L (E.196)

so that the Legendre-transform replacing ϕ̇ with L yields the Hamilton-function

H(ϕ, L, l) =
L2

2ml2
+
mgl

2
ϕ2 −mgl = E (E.197)

where we keep the explicit dependence of H on the control parameter l. The phase
space volume φ∗ is given as the integral

φ∗ =
∫
H≤E

dϕdL (E.198)

which in the case of the harmonic oscillator is just and ellipse bounded by the surface
of constant energy, specifically by the semi axes in L

a2 = l22m(E + mgl) and b2 =
2E + mgl

mgl
(E.199)

in ϕ, such that the volume (which is really the area of a 2-dimensional ellipse,
therefore the factor 2π) becomes

φ∗(E, l) = 2π

√
l
g

(E + mgl) (E.200)

The corresponding rate of change of this volume

dφ∗(E, l) = 2π

√
l
g

[
dE +

(
E + 3mgl

2l

)
dl

]
(E.201)

implying that one can operate on dφ∗ both by adding energy dE or by changing the
control parameter dl.

Changing l very slowly in comparison to the typical time scale of the system
would require a force F, as the weight needs to be lifted against the centrifugal force
as well as the outside gravity,

F = −∂H
∂l

=
L2

ml3
−
mgϕ2

2
+ mg (E.202)
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e.8. entropy as phase space volume at fixed energy

The change to the system is required to be slow such that the ensemble is not
disrupted: One needs to maintain an even distribution of the members of the ensemble
over phase space, and a sudden change in the control parameter could potentially
mess up the distribution. On the side of time averages it is imperative that the virial
theorem is not affected, which relates the average kinetic and potential energies: Any
rapid change in the control parameter would affect the ratio between the two energy
forms. Specifically for a harmonic oscillator one gets ⟨T⟩ = ⟨φ⟩ and therefore

⟨L2⟩
2ml2

=
mgl

2
⟨ϕ2⟩ =

1
2

(E + mgl) (E.203)

and therefore for the average force

⟨F⟩ = −
〈
∂H
∂l

〉
= − 1

2l
(E + 3mgl) (E.204)

with ⟨L2⟩ and ⟨ϕ2⟩ re-expressed with the energy E. Changes dE in energy then take
place in performing work by changing the control parameter against this force,

dE = −⟨F⟩dl = −
E + 3mgl

2l
dl (E.205)

Comparison with eqn. E.201 then implies directly that the change in phase space
volume is in fact vanishing, dφ∗ = 0 and, using the results of the previous chapter,
that the corresponding energy is unchanged, dS = d ln(kBφ

∗) = 0. With this, we have
gained a mechanical intuition about adiabatic changes and the invariance of the phase
space volume.

E.8 Entropy as phase space volume at fixed energy

Up to this point, the idea of phase space volume was driven by the geometry of
the boundary surface defined by energy. For continuing one needs to get a bit more
specific, for instance with the example of an ideal gas, consisting of N point particles
with no mutual interaction following a classical dispersion relation

H =
∑
i

p2
i

2m
(E.206)

The corresponding phase space volume φ∗ bounded by H is given by

φ∗ =
∫
H≤E

∏
i

d3pid
3qi (E.207)

While the spatial part of the integration is easy,∫ ∏
i

d3qi =
∏
i

∫
d3qi =

∏
i

V = VN (E.208)

and yields just the total physical volume of the system, taken to the Nth power, the
integral over momentum space is bounded,
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∑
i

p2
i

2m
≤ E, or

∑
i

p2
i ≤ 2mE (E.209)

Effectively, this is the volume C(3N)r3N of a 3N-dimensional sphere of radius r =√
2mE.

φ∗ = C(3N) · (2mE)
3N
2 · VN =

(4π
3
· mE

N
e
) 3N

2
· VN (E.210)

Moving towards the entropy requires the logarithm of the phase space volume,

kB lnφ∗ =
3N
2

kB ln E + NkB ln V +
3N
2

kB ln(2m) (E.211)

with the last two terms being constant. If the relationship between entropy and phase
space volume would be given by S = kB lnφ∗, the definition of temperature would be
sensible,

∂S
∂E

=
3
2 NkB

E
=

1
T

(E.212)

as it corresponds to what we expect from equipartition, E = 3/2 NkBT, as well as the
change of entropy with volume,

∂S
∂V

=
NkB

V
=

p

T
(E.213)

as it corresponds to the ideal gas law, pV = NkBT. But what about the scaling of the
entropy S with particle number?

E.9 Gibbs-paradox

The Gibbs paradox is a thought experiment that shows that eqn. E.211 with terms
that are all proportional to the particle number N is incompatible with the idea that
entropy should be additive. Writing

S =
3
2

NkB ln T+NkB ln V−NkB ln N+Nσ0 =
3
2

NkB ln T+NkB ln
( V

N

)
+Nσ0 (E.214)

with an additional factor ∝ N ln N would remedy this: Imagine a system with
N = N1 + N2 particles in the total volume V = V1 + V2, which can be separated by
inserting a wall, such that two partial systems with N1 and N2 particles in volumes
V1 and V2 exist. In doing that, the density N/V is equal to N1/V1 and to N2/V2.

Before the barrier is removed, the entropies read

S1 =
3
2

N1kB ln T + N1kB ln
V1

N1
+ N1σ0 (E.215)

S2 =
3
2

N2kB ln T + N2kB ln
V2

N2
+ N2σ0 (E.216)

and after removing the barrier, the two entropies need to be combined in an additive
way: S1 + S2 = S. Separating or combining the volumes can be done without any
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to insert the separating wall.

Let’s inspect the terms one by one. The last term is clearly additive, N1σ0 + N2σ0 =
(N1 + N2)σ0, and so is the first term, 3

2 N1kB ln T + 3
2 N2kB ln T = 3

2 (N1 + N2)kB ln T.
The second term is slightly more complicated:

N1kB ln
V1

N1
+ N2kB ln

V2

N2
= kB ln

( V1

N1

)N1
(

V2

N2

)N2
 (E.217)

but the density V/N = V1/N1 = V2/N2 is unchanged:

. . . = kB ln
[( V

N

)N1 ( V
N

)N2
]

= kB ln
[( V

N

)N1+N2
]

(E.218)

The required additional term −NkB ln N can be generated by changing the definition
of entropy,

S = kB ln
φ∗

N!
≃ kB lnφ∗ − kBN ln N (E.219)

with the approximative Stirling-formula:

ln N! ≃ N ln N. (E.220)

The physical origin of the Gibbs-factor is the following: When removing the barrier,
each of the N1 particles in the volume V1 can change place with each of the N2
particles in the volume V2, for which there are N!/N1!/N2! possibilities. Just by
removing the barrier the phase space volume φ∗ would get enlarged by this factor.
This is unphysical, just exchanging the particles would not have any influence on the
physical properties of the system. If one distributes N particles onto N placeholders,
there would be a total of N! possibilities. So one should counteract the increase in
phase space volume by setting

S = kB ln
φ∗

N!
(E.221)

and by the rules of the logarithms, this becomes S/kB = lnφ∗ − ln N! = lnφ∗ − N ln N
using Stirling’s approximation. The inclusion of this so-called Gibbs-factor provides
exactly the right correction to the entropy.

The phase space volume φ∗ bounded by the energy was defined to be

φ∗ ≡
∫
H≤E

N∏
i

d3pid
3qi (E.222)

and has units of an action3N , but should really be dimensionless. Without any
particular deeper meaning in classical mechanics we can choose any scale h with
units of an action to make the phase space volume dimensionless, although it will
become apparent in quantum statistics that this is exactly the right thing to do.
Choosing specifically the Planck-constant h and including the 1/N!-factor already in
the definition of the phase space volume then yields
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φ =
1

h3N N!

∫
H≤E

N∏
i

d3pid
3qi (E.223)

Then, for the ideal gas one would obtain the result

φ =
1

h3N

(4π
3

mE
N

) 3N
2

( V
N

)N
exp

(5N
2

)
(E.224)

In summary, there are two places where quantum mechanics showed up: The proper
de-dimensionalisation of the phase space volume and the Gibbs-factor due to the
indistinguishability of the particles!

E.10 Thermal wavelength λth

We already made use of the Planck-constant h to make the phase space volume φ
dimensionless, up to this point it appears naturally in many quantities without any
particular reference to quantum mechanics, where the de Broglie-wavelength of a
wave packet with momentum p is given by h/λ. Therefore, the classical dispersion
relation suggests that we can assign a length scale λth to any temperature T,

E =
p2

2m
=

1
2m

(
h
λth

)2

= kBT → λth =
h

√
2mkBT

(E.225)

assuming equipartition of the thermal energy kBT. By convention, one usually
absorbs additional factors of π into the definition λth = h/

√
2πmkBT for the thermal

wavelength.
With λth one can write for the phase space volume of an ideal classical gas,

φ =

 V

λ3
th

e
5
2

N

(E.226)

such that the entropy S becomes

S = kB lnφ = kBN

ln
V

λ3
th

+
5
2

 (E.227)

It increases with particle number N because it is an extensive quantity, and compares
the total available volume V with the fundamental size λ3

th of the wave packets
representing the particles, alluding at the number of possibilities to distribute the
wave packets in the volume.

The ensemble average of the phase space function A(pi , qi) would be given by

⟨A⟩ =
∫

E≤H≤E+δE

1
N!h3N

∏
i

d3pid
3qi A(pi , qi)ρ(pi , qi) (E.228)

for an arbitrary density ρ(pi , qi), where the fundamental postulate stipulates that this
density is constant. If, specifically, it is set to ρ(pi , qi) = 1/ω(E) the average becomes
compatible with

44

https://en.wikipedia.org/wiki/Thermal_de_Broglie_wavelength
https://en.wikipedia.org/wiki/Thermal_de_Broglie_wavelength


e.10. thermal wavelength λth

⟨A⟩ =

∫
E≤H≤E+δE

1
N!h3N

∏
i

d3pid3qi A(pi , qi)∫
E≤H≤E+δE

1
N!h3N

∏
i

d3pid3qi
=

d
dE

E∫
0

1
N!h3N

∏
i

d3pid3qi A(pi , qi)

d
dE

E∫
0

1
N!h3N

∏
i

d3pid3qi

(E.229)

where the denominator is by definition the differential phase space density ω(E)

ω(E) =
d

dE

E∫
0

1
N!h3N

∏
i

d3pid
3qi (E.230)

There is no contradiction between eqn. E.228 and eqn. E.229 with ρ(pi , qi) = 1/(ω(E)δE).
At the same time, the entropy S is given by the logarithmic phase space volume

S = kB lnφ (E.231)

so would it be possible to write S as a phase space average as well? And if yes, of what
function? Let’s try out the logarithmic phase space density − ln ρ, with a prefactor of
kB to fix the units:

S =
∫

E≤H≤E+δE

1
N!h3N

∏
i

d3pid
3qi ρ(−kB ln ρ) =

∫
1

N!h3N

∏
i

d3pid
3qi

1
ωδE

(
−kB ln

1
ωδE

)
(E.232)

with the inverse differential volume ρ = 1
ω(E) and the corresponding logarithm

lnω(E) = − ln ρ the entropy becomes

S =
1
ωδE

kB ln(ωδE)
∫

E≤H≤E+δE

1
N!h3N

∏
i

d3pid
3qi (E.233)

where the integral is just ωδE, canceling with the prefactor. In general, entropy is the
ensemble average of the logarithmic phase space density

S = −kB⟨ln ρ⟩ (E.234)

obtained by resubstitution of ρ, which is exactly Boltzmann’s iconic finding. At the
same time, this formula is very reminiscent of Shannon’s entropy for any distribution,
and again there is a deep relationship between statistics and thermodynamics.
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