
D microcanonical ensemble

Any system left unperturbed tends towards thermal equilibrium with a defined
temperature T, which, along with the other state variables that characterise the
system. The internal thermal energy is reflected by the temperature and the heat
capacity and is stored in the system in its microscopic degrees of freedom. In thermal
equilibrium a continuous reshuffling of energy between all degrees of freedom is
taking place, and these microscopical degrees of freedom follow energy-conserving
Hamiltonian equations of motion. Ludwig Boltzmann was the first to realise that in
thermal equilibrium all states compatible with the same energy are equally likely,
and that states of higher energy are less likely to be assumed, where the ratio of
probabilities is given by the Boltzmann factor: A justification of these two properties
of systems in thermodynamic equilibrium would be axiomatic in the sense of a
fundamental postulate, or, it would in fact follow from the notion that the probability
distributions have to maximise the Shannon-information entropy as a measure of
randomness. Effectively, we will assume that in thermal equilibrium the randomness
of how the states are occupied, is as random as possible, with a maximised Shannon-
entropy. It is important to realise that statistical mechanics as the microscopic theory
behind thermodynamics, is perfectly energy-conserving, despite the fact that it deals
ultimately with thermal energy which is often a byproduct of dissipative processes:
We can reconcile these two ideas:A mechanical system can be dissipative on large
scales with e.g. kinetic energy being lost due to friction, but that the true microscopic
degrees of freedom follow energy-conserving Hamiltonian dynamics. The second law
of thermodynamics is an expression of the fact that it is incredibly improbable (but
not) for all microscopic degrees of freedom to conspire and generate macroscopic
motion out of a freak thermal fluctuation. In some sense, thermodynamics becomes
then an effective theory for Hamiltonian systems with many (coupled) degrees of
freedom.

Hamiltonian systems with conserved energies are a consequence of Lagrange-
functions that do not explicitly depend on time. In classical mechanics, the Lagrange-
function L defines the action S

S =

tf∫
ti

dt L(q, q̇) (D.106)

which for the mechanics of a particle is actually the non-relativistic limit of the
arc-length of the trajectory through spacetime, measured in terms of proper time:

ds2 = c2dt2 − dx2 = c2dτ2 → dτ =

√
1 −

(
1
c

dx
dt

)2

dt → dτ =
1
γ

dt (D.107)

such that the arc length S =
∫

ds = c
∫

dτ = c
∫

dt 1/γ with the Lorentz-factor γ.
As 1/γ→= 1 − (υ/c)/2 for small velocities υ = dx/dt ≪ c, one recovers the classical
Lagrange-function, where overall pre-factors and signs do not matter in the Euler-
Lagrange equation.

Hamilton’s principle now stipulates that the physical trajectory taken by the
system corresponds to an extremum of the action, i.e. δS = 0
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δS =

tf∫
ti

dt
(
∂L
∂q
δq +

∂L
∂q̇

)
=

tf∫
ti

dt
(
∂L
∂q
− d

dt
∂L
∂q̇

)
δq (D.108)

with an integration by parts on δq̇ = dδq/dt and a successive integration by parts,
where the boundary terms do not contribute as the Lagrange-function is kept fixed at
the boundary: This rearrangement gives the Euler-Lagrange equation

d
dt

∂L
∂q̇

+
∂L
∂q

= 0 (D.109)

as a tool serving the purpose of isolating the action-extremising trajectory q(t) as a
differential equation.

The canonical momentum of the coordinate q is given by the relation

p =
∂L
∂q̇

(D.110)

and helps to identify conserved quantities: If a coordinate is cyclic, L does not depend
on it directly (and only on its derivative), so that ∂L/∂q = 0. Then, the Euler-Lagrange
equation has the canonical momentum conserved in time evolution,

d
dt

∂L
∂q̇

=
dp
dt

= 0 (D.111)

The conservation of energy in classical mechanics works in a different way, though,
because the time t plays the role of a parameter describing motion, not that of a
coordinate.

Typical Lagrange-functions in classical mechanics have the form

L =
m
2
ẋ2 − Φ(x) (D.112)

for a particle moving in a potential Φ, such that δS = 0 implies the Newtonian
equation of motion mq̈ = −dΦ/dx. But there might be other systems that are per-
fectly amenable to a Lagrangian description, for instance an LC-circuit in electrical
engineering:

L =
L
2

Q̇2 − 1
2C

Q2 → Q̈ +
1

LC
Q = 0 (D.113)

with the charge Q and the current Q̇: Recognising the Lagrange-function of a har-
monic oscillator immediately suggests the angular frequency ω = 1/

√
LC and the

corresponding equation of motion. Very often the kinetic and potential terms of the
Lagrange-function are separate but that is not a necessity. If ∂L/∂q̇ still depends on q
the differentiation d/dt in the Euler-Lagrange equation will read:

q̈
∂2L
∂q̇∂q̇

+ q̇
∂2L
∂q∂q̇

− ∂L
∂q

= 0 (D.114)

A cute example for this would be the harmonic oscillator L = q̇2/2 − ω2q2/2 in
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coordinates x± = q̇ ± ωq, such that L = x+x−/2. While in one dimension the only
requirement would now be that ∂2L/∂q̇/∂q̇ is non-zero, in more than one dimension
∂2L/∂q̇i /∂q̇j would need to be an invertible matrix for isolating q̈.

D.1 Virial theorem

Is kinetic or potential energy the preferred form of energy of a system? Clearly, a
physical system follow its dynamical equation and continuously reshuffles energy
from one energy form to another, but taking averages is time, the system might
preferentially be in a state where one energy form dominates over the others. To show
this might be the case, let’s start at the Euler-Lagrange-equation for any system,

d
dt

∂L
∂q̇
− ∂L

∂q
= 0 (D.115)

and it with the coordinate q. Then, using the Leibnitz-rule,

q
d
dt

∂L
∂q̇
− q∂L

∂q
=

d
dt

(
q
∂L
∂q̇

)
− q̇ ∂L

∂q̇
− q∂L

∂q
= 0 (D.116)

We can break into this relation by individual inspection of the three terms:

1. time everage of the Lagrange-function L over ∆t ≫many dynamical time scales

1
∆t

∆t∫
0

dt
d
dt

(
q
∂L
∂q̇

)
=

1
∆t

(
q
∂L
∂q̇

)∣∣∣∣∣∣∆t
0

=
1
∆t

(qp)|∆t0 ≤
1
∆t

(qmax · pmax) (D.117)

where the result of the integration is estimated to be less than the product of
the largest values for p and q that the integrand assumes between 0 and ∆t.
Clearly, this requires that the integrand and therefore the range of motion is
bounded in p and q. Taking the limit ∆t →∞, makes the term disappear, as ∆t
grows without bounds and qmax · pmax is finite.

2. Lkin is homogeneous of degree 2 in q̇ for non-relativistic mechanics:

Lkin = T =
m
2
q̇2 → q̇

∂Lkin

∂q̇
= 2Lkin = 2T (D.118)

3. L is homogeneous of degree k in q for power-law potentials Φ ∝ qk

Lpot = Φ = qk → q
∂Lpot

∂q
= kLpot = kΦ (D.119)

Therefore, we obtain the relation

2⟨T⟩ = k⟨Φ⟩ (D.120)

between the time-averages of the kinetic and potential energies, with the definition
of the average kinetic energy ⟨T⟩,
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lim
∆t→∞

1
∆t

∆t∫
0

dt T(t) = ⟨T⟩ (D.121)

with an analogous average for ⟨Φ⟩.
The harmonic oscillator has a potential Φ ∝ q2 with the potential being a harmonic

function of degree k = 2, and consequently, ⟨T⟩ = ⟨Φ⟩, and both forms of energy
are on average equal, which is a rather obvious result. After all, q ∝ exp(iωt) and
q̇ ∝ iω exp(iωt), such that the averages ω2⟨q2⟩ and ⟨q̇2⟩ are necessarily equal. For a
Coulomb-potential we have Φ ∝ 1/q, and therefore k = −1 and 2⟨T⟩ = −⟨Φ⟩, which
is fine, because Φ is negative. It is illustrative to increase k to high positive values:
Then, the kinetic energy becomes on average dominant over the potential energy,
⟨T⟩ = k/2 ⟨Φ⟩. For high positive k one obtains a flat potential with very steep walls,
where a particle zooms around in a state of high kinetic energy most of the time and
spends only little time being deflected at the walls where the potential energy is high.
A fun idea is the impossibility of a gravitationally bound ball of photons: There, the
kinetic energy for ultra-relativsitic particles is a homogeneous function of order k = 1
such that the virial theorem would become ⟨T⟩ = −⟨Φ⟩, implying that the total energy
is zero - but it would have to be negative for a bound system!

In summary, the virial theorem makes a statement about the average kinetic
and potential energies in the course of the time evolution and is perfectly valid
for a system with a single degree of freedom, as long as the motion is bounded in
position and momentum. Often it is the case, thought, that systems consist of many
particles and one might wonder if the average of kinetic and potential energy could be
determined instead at a fixed time over the many particles, whether these ensemble
averages are identical to the temporal averages, and whether the virial theorem
applies to ensemble averages as well. Ergodic systems have in fact this property,
although ergodicity is in particular systems difficult to demonstrate.

D.2 Energy conservation

Energy conservation is, from an arithmetic point of view, very similar: Instead of q
we multiply the Euler-Lagrange-equation with q̇:

d
dt

∂L
∂q̇
− ∂L

∂q
= 0 (D.122)

to arrive at

q̇
d
dt

∂L
∂q̇
− q̇ ∂L

∂q
= mq̇q̈ + q̇

dΦ
dq

=
m
2

d
dt

q̇2 +
d
dt
Φ(q) =

d
dt

(
m
2
q̇2 + Φ(q)

)
= 0 (D.123)

with the replacements ∂L/∂q̇ = m and ∂L/∂q = −Φ in the first step, followed by the
time derivative q̇dΦ/dq = dΦ/dt, suggested by the chain rule. The quantity H

H(q, q̇) =
m
2
q̇2 + Φ(q) (D.124)

is the Hamilton-function of the system, which comes out as conserved, dH/dt = 0.
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D.3 Legendre transforms and the Hamilton-function

To be quite exact, H(q, q̇) is not yet the energy, because it is assumed to depend on q̇
but not yet on the canonical momentum,

p =
∂L
∂q̇

(D.125)

The Legendre-transform of the Lagrange-function L

H(q, p) = pq̇ − L(q, q̇(p)) (D.126)

which replaces the variable q̇ by the variable p, can be shown to be conserved using
this argument:

dH
dt

= ṗq̇ + pq̈ − q̇ ∂L
∂q
− q̈ ∂L

∂q̇
=

∂L
∂q

q̇ − q̇ ∂L
∂q

= 0 (D.127)

which is known as the Beltrami-identity. In the first step, we used the derivative of
the canonical momentum,

ṗ =
d
dt

∂L
∂q̇

=
∂L
∂q

(D.128)

together with the Euler-Lagrange equation. With the definition of the canonical
momentum as the derivative p = ∂L/∂q̇ one needs an invertible expression to be able
to write down q̇(p) from p(q̇), which is made sure by the convexity of the functional
L. Then, the Legendre-transform H is likewise convex, ensuring the existence of the
inverse Legendre transform.

I am a bit picky to call only p2/(2m) kinetic energy and not mq̇2/2, for a very
specific reason, even though the Legendre transform of a parabola q̇2 is of course
a parabola p2: The classical Lagrange-function is the non-relativistic limit of the
arc-length of a spacetime-trajectory and acquires the interpretation of energy only
after Legendre-transformation.

D.4 Hamilton-equations of motion

Instead of the Euler-Lagrange equations, which naturally lead to second-order equa-
tions of motions, one can write down equivalent coupled first-order equations of
motions operating on the Hamilton-function H instead of the Lagrange-function L.

∂H
∂p

= q̇ + p
∂q̇

∂p
−
∂q̇

∂p
∂L
∂q̇

= q̇ and
∂H
∂q

= p
∂q̇

∂q
− ∂L

∂q
−
∂q̇

∂q
∂L
∂q̇

= − d
dt

∂L
∂q̇

= −ṗ

(D.129)

The form of Hamilton’s equation of motion allow an incredibly interesting notation, in
particular for the harmonic oscillator, whereH = p2/2+ω2q2/2: Then, ∂H/∂p = p = q̇
and ∂H/∂q = ω2q = −ṗ, such that

d
dt

(
p
q

)
=

(
0 −ω2

1 0

) (
p
q

)
(D.130)
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d. microcanonical ensemble

which is the archetypical form of a symplectic differential equation. The solution to
the system can be written in terms of a matrix exponential,(

p
q

)
= exp

((
0 −ω2

1 0

)
t

) (
p0
q0

)
(D.131)

applied to the initial conditions. Summing up the exponential series with this so-
called symplectic matrix yields the familiar sine and cosine functions.

The question on energy conservation is answered in view of Hamilton’s equation
of motion in a completely different way: Forming the derivative of H which only
depends on p and q (and not on t directly) yields

dH
dt

=
∂H
∂q

q̇ +
∂H
∂p

ṗ =
∂H
∂q

∂H
∂p
− ∂H

∂p
∂H
∂q

= 0 = {H,H} (D.132)

with the definition of Poisson-brackets,

∂A
∂q

∂B
∂p
− ∂B

∂q
∂A
∂p

= {A,B} (D.133)

for any two functions A and B dependent on the canonical momenta and coordinates.
Then, the time evolution of any of such functions is determined by the Poisson
equation of motion,

dA
dt

=
∂A
∂t

+ q̇
∂A
∂q

+ ṗ
∂A
∂p

=
∂A
∂t

+ {H,A} (D.134)

Alternatively, the Lagrange-function can be thought to depend directly on (q, p)
instead of (q, q̇). From the definition of the Legendre-transformation

L(p, q) = pq̇ − H(p, q) (D.135)

one obtains from the two independent Euler-Lagrange equations for the coordinates
p and q directly

d
dt

∂L
∂q̇
− ∂L

∂q
= 0 = ṗ +

∂H
∂q

(D.136)

as well as
d
dt

∂L
∂ṗ
− ∂L

∂p
= 0 = −q̇ +

∂H
∂p

(D.137)

i.e. again the two Hamilton equations of motion.

D.5 Canonical transforms

Within Hamiltonian mechanics there exists a class of coordinate transitions with
covariant transformation of the equations of motion: Effectively, the states of a me-
chanical system form a manifold that is parameterised by coordinates p and q, and
transitions to new coordinates Q = Q(p, q), P = P(p, q) lead to new coordinates for
which the same type of equation of motion is valid:
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d.5. canonical transforms

Q̇ =
∂H̄
∂P

, Ṗ = −∂H̄
∂Q̇

, with H̄ = H(p(P, Q), q(P, Q)) (D.138)

the equation of motion in (Q, P) needs to follow from the same variation of the
Lagrange-function L = QṖ − H̄ as the one in (q, p), so that

S =

tf∫
ti

dt H̄(P, Q) − QṖ =

tf∫
ti

dt H(p, q) − q̇p +

tf∫
ti

dt
dW̄
dt

(D.139)

where the two actions can at most be different by a total time derivative, as

tf∫
ti

dt
dW̄
dt

= W̄(tf ) − W̄(ti) (D.140)

does not contribute to the variation, which is fixed at ti and tf . But this new function
can be used constructively to generate a canonical transform: For instance, the specific
choice

W̄(q, P) = W(q, P) − QP (D.141)

for W̄ with variables q and P

dW
dt

= q̇
∂W̄
∂q︸︷︷︸
=p

+Ṗ
∂W
∂P︸︷︷︸
=Q

(D.142)

is equivalent, if H(p, q) = H̄(P, Q) and if p = ∂W
∂q and Q = ∂W

∂P . Then, in addition, the
functional determinant is

det
(
∂(p, q)
∂(P, Q)

)
= 1 (D.143)

A truly novel concept are infinitesimal canonical transformations: The identity
transform W = q · P does not change anything

p =
∂W
∂q

= P
∂q

∂q
= P and Q =

∂W
∂P

= q
∂P
∂P

= q (D.144)

such that we can define an infinitesimal transform W(ϵ) = qP + ϵw(q, P) controlled
by a small ϵ > 0

p =
∂W
∂q

= P + ϵ
∂w
∂q

→ ∆p = p − P = ϵ
∂w
∂q

(D.145)

as well as

Q =
∂W
∂P

= q + ϵ
∂w
∂P

→ ∆q = q − Q = −ϵ∂w
∂P

(D.146)

31



d. microcanonical ensemble

In the spirit of a Lie-generator we take the limit ϵ→ 0

lim
ϵ→0

∆p

ϵ
=

∂W
∂q

and lim
ϵ→0

∆q

ϵ
=

∂W
∂p

(D.147)

Setting ϵ = ∆t and W = H(p, q)

lim
∆t→0

∆q

∆t
= q̇ = −∂H

∂p
and lim

∆t→0

∆p

∆t
= ṗ =

∂H
∂q

(D.148)

In summary, the time evolution of a Hamiltonian system is itself a canonical
transformation, and the Hamilton equations of motion are the Lie-generators of the
transform: Therefore, the entire dynamical evolution of the system can be mapped
onto evolution equations for the coordinates and the evolution becomes just a coordi-
nate transform. The phase space volume is invariant under canonical transformations,
and therefore the phase space volume needs to be conserved in time evolution too:
This is exactly the statement of Liouville’s theorem.
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