
C probability theory

C.1 Kolmogorov axioms for probability

Probabilities serve as a quantification of the chances of success in a game, when an
element of randomness is involved. A random experiment consists in a random selec-
tion from a finite and non-empty set of events Ω consisting of individual outcomes.
The power set P (Ω) is the set of all possible subsets (including the empty set) of
Ω. The probability measure is now assigning a probability to each of the possible
selections P (Ω) from the set Ω, and this probability is required to be a real number
between 0 and 1. If Ω has n elements, the power

set P (Ω) contains 2n elements.The probability measure is a probability if it fulfils Kolmogorov’s axioms:

1. p(Ω) = 1

2. p(A) ≥ 0 for all A ⊂ Ω

3. p(A∪ B) = p(A) + p(B) if A∩ B = ∅, otherwise p(A∪ B) = p(A) + p(B) − p(A∩ B)

The first axiom says that the probability of some event in Ω is certainly to come
up, and the second axiom makes sure that the probabilities are always positive.
Probabilities of mutually exclusive events add, as stated by the third axiom. From
these axioms one can draw a number of important conclusions:

1. p(A) + P(C(A)) = p(Ω) = 1, because Ω = A∪ C(A)

2. p(A) ≤ p(B) for A ⊂ B

3. p(A∪ B) + p(A∩ B) = p(A) + p(B)

4. p(A\B) = p(A) − p(A∪ B)

5. p(∅) = 0, from the previous statement with ∅ = A\A

Generalisations to infinite sets is possible by replacing the set of Kolmogorov-
axioms with a Borel-σ algebra.

C.2 Laplace probability

We can narrow down the set A to contain a single element, ω ∈ Ω in the set of possible
outcomes Ω. Then, the probability for a single element is given by

p(A) = p

(⋃
i

Ai

)
=

∑
i

p(Ai) =
∑
i

p(ωi) for A ⊂ Ω (C.67)

where Ai ∩ Aj = ∅ for i , j, such that straightforward additivity is given. ω→ p(ω)
is the probability function which assigns a probability to each ω.

If the elements ωi are equally likely to be selected, like identical lottery tickets,
the probability of selecting an individual one must be the inverse of how many tickets
are available, i.e. the cardinality #(Ω) of the set Ω

p(ω) =
1

#Ω
and therefore p(A) =

#A
#Ω

(C.68)

for any set A grouping a couple of elements ωi into a set. This is exactly Laplace’s
idea about a probability being the number of favourable cases divided by the number
of possible cases.
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C.3 Conditional probabilities and Bayes’ law

Conditional probabilities refer to a random experiment that is carried out in two
steps: Firstly, a subset A ⊂ Ω is selected in the first step, so that the events in the
complement ω ∈ C(A) have been assigned a probability = 0 in the successive second
step of the random experiment: Then, from these preselected objects a new random
selection is made, ω ∈ B under the condition ω ∈ A. The conditional probability of
selecting objects from B under the condition that they have been members of the
selection of A is given by

P(B|A) =
#(A∩ B)

#(A)
with the Laplacian probability P(A) =

#(A)
#(Ω)

(C.69)

Extending the expression by the cardinality #(Ω) of Ω gives

P(B|A) =
#(A∩ B)

#(Ω)
· #(Ω)

#(A)
=

P(A∩ B)
P(A)

(C.70)

Then, Bayes’ law appears naturally from the realisation that P(A∩ B) is symmetric

P(A∩ B) = P(B∩ A) (C.71)

so that one obtains:

P(B|A) · P(A) = P(A∩ B) = P(B∩ A) = P(A|B) · P(B) (C.72)

implying in particular that P(A|B) , P(B|A). A classic example to remember this
result is the following idea: If A corresponds to a person being female (in a biological
or medical sense) and B corresponds to a person being pregnant, P(B|A) ≃ 10−2

(which can be easily estimated from the number of children per woman, and the
duration of a pregnancy in relation to the life expectancy). On the contrary, P(A|B)
is essentially unity. So the gist of Bayes’ law is that switching condition and random
outcome of a conditional random process needs to be corrected by the ratio of the
so-called prior probabilities p(A) and p(B),

P(B|A) = P(A|B)
p(B)
p(A)

(C.73)

C.4 Random variables

Up to this point, the outcome of a random experiment was a selection of events from
the set Ω, all contained in the power set P (Ω). The idea of a random variable x now
is to assign a value x(ω) to each of the possible individual outcomes, and to think of
the probability p(x) in terms of the value rather than the randomly selected elements.
A straightforward example would be the value assigned to lottery tickets: The ticket
that are drawn in a lottery would form the elements in Ω and the random variable x
would be the money that is paid to the winner.

p(x) = P(ω ∈ Ω|x(ω) = x) (C.74)
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c.5. characteristic function and moment generating function

In this case, the probabilities p(x) as a function of x are called a distribution. Clearly,
the same value of the random variable x could correspond to different elements in
Ω, so the probability p(x) collects up the contribution from each element ω which is
assigned the value x.

The expectation value ⟨x⟩ or the first moment of the random variable x following
the distribution p(x) is given by

⟨x⟩ =
∑
ω∈Ω

P(ω) · x(ω) =
∑
i

xip(xi) =
∫

dx p(x) · x (C.75)

glossing over a fundamental difference between finite and infinite sets Ω. Similarly,
the variance ⟨x2⟩ or the second moment is defined

⟨x2⟩ =
∑
ω∈Ω

P(ω) · x2(ω) =
∑
i

x2
i p(xi) =

∫
dx p(x) · x2 (C.76)

which immediately generalises to moments ⟨xn⟩ of arbitrary order,

⟨xn⟩ =
∑
ω∈Ω

P(ω) · xn(ω) =
∑
i

xni p(xi) =
∫

dx p(x) · xn (C.77)

where it is interesting to note that the moments can be defined by summing over the
set of possible events ω or by integrating over the possible range of values for x, as
the probabilities P(ω) and p(x) are not identical.

The normalisation required by the Kolmogorov-axioms suggests a transformation
law for continuous probabilities,

1 =
∫

dx px(x) =
∫

dy
∣∣∣∣∣dxdy

∣∣∣∣∣ · px(x(y)) =
∫

dy py(y) such that p(x)dx = p(y)dy

(C.78)

from the Jacobian appearing in the variable change when integrating by substitution.
Summing random numbers z = x + y from two distributions px(x) and py(y) leads

to a distribution of the sum z which is given by convolution of the two original
distributions,

pz(z) =
∫

dxpx(x)
∫

dypy(y)δD(z−(x+y)) =
∫

dxpx(x)py(z−x) =
∫

dypx(z−y)py(y)

(C.79)

where the δD-distribution selects from all possible values x and y the ones that
make the sum x + y equal to a predefined z. Similarly, the distribution of differences,
products and ratios of random numbers can be computed. Of course everybody
knows that convolutions are most practically computed in Fourier-space, so would
the Fourier-transform of a distribution be a sensible mathematical object?

C.5 Characteristic function and moment generating function

The characteristic function ϕ(t) of a distribution p(x) is defined as the Fourier-
transform,

ϕ(t) =
∫

dx p(x) exp(−itx) = ⟨exp(−itx)⟩ (C.80)
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Substituting the series expansion of the exponential then yields

ϕ(t) =
∫

dxp(x)
∑
n

(−itx)n

n!
=

∑
n

(−it)n

n!
·
∫

dx p(x) · xn =
∑
n

(−it)n

n!
⟨xn⟩ (C.81)

That actually implies that the moments ⟨xn⟩ can be computed by a differentiation

⟨xn⟩ =
1

(−i)n
· dn

dtn
ϕ(t)

∣∣∣∣∣
t=0

(C.82)

instead by an integration process: The n-fold differentiation isolates the nth moment
⟨xn⟩ in the series, because the differentiation of the lower powers in t vanish and the
higher order powers of t are set to zero, leaving just ⟨xn⟩. Related to the characteristic
function is the moment generating function, defined as the Laplace- instead of the
Fourier-transform,

M(t) =
∫

dx p(x) exp(−tx) = ⟨exp(−tx)⟩ (C.83)

such that

⟨xn⟩ =
1

(−1)n
· dn

dtn
M(t)

∣∣∣∣∣
t=0

(C.84)

without having to worry about i. The above result about convolving distributions is
now particularly simple,

ϕz(t) = ϕx(t) · ϕy(t) (C.85)

for the sum z = x + y of two random variables. The Taylor-expansion of lnϕ(t) yields
the cumulants κn as coefficients,

lnϕ(t) =
∑
n

κn ·
tn

n!
(C.86)

which are different compared to the moments, ⟨xn⟩ , κn in general! First of all,
cumulants add when random numbers are added, because lnϕz(t) = lnϕx(t)+lnϕy(t),
and they serve as a quantification, how close a distribution is to a Gauß-distribution.

The Gauß-distribution has the specific functional form

p(x) =
1

√
2πσ2

exp
(
−

(x − µ)2

2σ2

)
(C.87)

and the characteristic function follows straight away to be of equal Gaußian shape,
ϕ(t) = exp(−1

2σ
2t2) with the corresponding logarithm lnϕ(t) ∼ −itµ − t2σ2. Conse-

quently, only the first three cumulants are nonzero κ0 = 1 as a reflection of normal-
isation, the mean κ1 = µ and the variance κ2 = σ2. One should be very cautious at
this point: Cumulants and moments are not identical, and in general one needs Faa’
di Bruno’s formula to convert between them. Hence, the cumulant series truncates
after κ2, so that any higher-order cumulant must contain information about the
non-Gaußian shape of a distribution.
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c.6. information entropies

C.6 Information entropies

It is an abstract but very interesting question how much randomness is contained in
a random process with probabilities pi in the discrete and p(x)dx in the continuous
case. For that quantification one computes Shannon’s information entropy S

S = −
∑
i

pi ln pi = −
∫

dx p(x) ln p(x) (C.88)

which has the properties

1. S ≥ 0 for 0 < pi ≤ 1

2. S = 0 for pi = 1 (certain outcome)

3. pi = 1
#Ω for equally probable outcomes according to Laplace. Then,∑

i

pi =
1

#Ω

∑
i

1 =
#Ω
#Ω

= 1→ S = −
∑
i

1
#Ω

ln
1

#Ω
= ln #Ω (C.89)

Clearly, the first requirement is chosen to have S as a positive number, while the
second and third requirement make sure that the information entropy increases
(logarithmically) as there are more possible outcomes, starting from 0 if there is no
randomness at all.

Information entropy in this definition is additive for independent subsystems.
Having a factorising probability for the events i and j from two different sets pij =
pi · qj and therefore statistical independence,

S = −
∑
ij

pij ln pij = −
∑
ij

piqj
(
ln pi + ln qj

)
= −

∑
ij

p1qj ln pi + piqj ln qj (C.90)

such that separation of the terms yields

S = −
∑
i

∑
j

qj

 pi ln pi +
∑
j

∑
i

pi

 qj ln qj = −
∑
i

pi ln pi −
∑
j

qj ln qj = Sp + Sq

(C.91)

i.e. the entropies of independent random processes are additive.
It should be emphasised that information entropies defined for a continuous

distribution p(x)dx is not invariant under changes of the random variable, which
is not an issue at all for the discrete probabilties. In fact, p(x)dx = p(y)dy as the
transformation law gives

S = −
∫

dx p(x) ln p(x) = −⟨ln p(x)⟩ → S = −
∫

dy p(y) ln
(
p(y)

dy
dx

)
(C.92)

with an additional Jacobian dy/dx. In order to remedy this, relative entropies such
as the Kullback-Leibler divergence have been introduced

∆S = −
∫

dx p(x) ln
(
p(x)
q(x)

)
= −

〈
ln

(
p(x)
q(x)

)〉
(C.93)
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c. probability theory

which measures the relative amount of randomness between two distributions p(x)dx
and q(x)dx. In fact, the same transformation Jacobian dy/dx is introduced for both
p(x) and q(x), thus canceling out.

It is a very interesting thought to consider Shannon’s entropy as a functional for
the distribution pi or p(x)dx and ask for which distribution the information entropy
as a functional is maximised. For instance, the variation of S would be

δS = −
∑
i

(ln pi + 1)δpi = 0 (C.94)

which needs to be augmented by a boundary condition making sure that the resulting
probabilities add up to one, as required by Kolmogorov’s first axiom:∑

i

pi = 1→ δ
∑
i

pi =
∑
i

δpi = 0 (C.95)

such that
δS + λ

∑
i

δpi = 0 (C.96)

implying that
∑

(ln pi + 1 + λ)δpi = 0 and therefore

pi = exp(−(1 + λ)) (C.97)

i.e. a constant probability: Information entropy is maximal for the uniform distribu-
tion, which defines the microcanonical ensemble in statistical physics.

Maximising Shannon’s entropy with additional constraint

U =
∑
i

piEi = ⟨E⟩ (C.98)

with a fixed expectation value U, where we have already chosen suggestive vari-
able names, alongside the normalisation. Formulating both constraints as Lagrange
multipliers for the variation δS entropy

δS = −
∑
i

(ln pi + 1)δpi = 0 (C.99)

would require

1.
∑
i
pi = 1→ δ

∑
i
pi =

∑
i
δpi = 0

2.
∑
i
piEi = U→ δ

∑
i
piEi =

∑
i

Eiδpi = 0

leading to
δS + λ

∑
i

δpi + µ
∑
i

Eiδpi = 0 (C.100)

which can be computed to yield
∑

(ln pi + 1 + λ + µEi)δpi = 0 and solved for the
probabilties to give
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pi = exp(−(1 + λ + µEi)) (C.101)

The two Lagrange multipliers can be determined by resubstituting pi into the two
boundary conditions:∑

i

pi =
∑
i

exp(−(1+λ+µEi)) = 1 → exp(−(1+λ)) =
1∑

i
exp(−µEi)

=
1
Z

(C.102)

with the partition sum Z =
∑
i

exp(−µEi) as well as

∑
i

Ei exp(−µEi)∑
i

exp(−µEi)
= U =

1
Z

∑
i

Ei · exp(−µEi) (C.103)

with the probabitliy

pi =
1
Z

exp(−µE) (C.104)

which looks a bit reminiscent of the Boltzmann-probability,

pi ∼ exp
(
− Ei

kBT

)
(C.105)

if the identification µ = 1/(kBT) is valid. This is the basis of the so-called canonical
ensemble, where states at higher energy are less likely according to the Boltzmann
probability. In summary I’d like to point out that the realisation of entropy max-
imising probabilities replaces the fundamental postulates of statistical physics: It is
superfluous to define the equipartition of states or the Boltzmann-factor in an ax-
iomatic way when in fact the two distributions are the ones that maximise Shannon’s
entropy, subject to boundary conditions. Perhaps it is much more intuitive to imagine
that the equipartition of states is a condition with makes the least assumption about
the system.
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