
B thermodynamics

Thermodynamics is the branch of physics that deals with heat, temperature and
their relation to energy and work. The relation between these quantities is defined
by the four laws of thermodynamics, irrespective of the composition or specific
properties of system in question, neither its constituents nor its composition: As
such, thermodynamics is incredibly general and finds applications almost everywhere
where thermal equilibria are possible and temperatures are defined. Statistical physics
is the microscopic theory behind thermodynamics: Here, the actual microscopic
properties of a system matter, and under the assumption of thermal equilibrium
statistical physics provides a relation between thermodynamic quantities through
partition sums. It was the grand accomplishment of Ludwig Boltzmann to realise
that thermal energy is energy distributed in the microscopic degrees of freedom of a
system if it is fundamentally discrete. With a continuum model of matter one does
not have a chance to have this thought, rather, one is forced to think of thermal energy
as a ”fluid” that can be absorbed by any substance, increasing its temperature.

Systems in thermodynamics are characterised by state variables, which fall into
two groups: Extensive state variables are proportional to the amount of matter or
the physical size of the system, and include volume V, entropy S, particle number N,
electric charge ρ or magnetisation M. Each of these state variables has an intensive
state variables as a partner that does not depend on the size of the system, for
instance the pressure p, the temperature T, the chemical potential µ, the external
electric potential Φ and the external magnetic field B. Extensive and intensive state
variables are combined into the Euler-relation, stating that the internal energy U is

U = TS − pV + µN + Φρ + B ·M + . . . (B.8)

Changes dU of the internal energy can be introduced by changing the extensive state
variables and performing abstract work against the intensive state variables,

dU = TdS − pdV + µdN + Φdρ + B · dM + . . . (B.9)

Commonly, we will restrict ourselves to just three of the terms, U = TS−pV +µN and
dU = TdS − pdV + µdN. There are cases where the separation between intensive and
extensive state variables is not as clear, for instance in systems with self-interactions,
i.e. when the potential is sourced by the electric charge density itself, making it
depend on the physical size of the system, too.

B.1 Ideal classical gases

The behaviour of an ideal gas in terms of the three relevant state variables volume V,
pressure p, and temperature T realised as being very dilute, is determined through
three relationships: Firstly, the Boyle-Mariotte law, specifying that pV =const at fixed
T, secondly, the Gay-Lussac law, requiring that V/T =const at fixed p, and thirdly, the
Amontons law, making sure that p/T =const at fixed V. These three statements can
be combined into the ideal gas law

pV = NkBT (B.10)

by realising that the combination pV/T =const= NkB is extensive (well, p and T are
certainly not extensive but V is) and depends on the amount of substance N.
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b. thermodynamics

B.1.1 Van der Waals-gases

The ideal gas law applies only to idealised systems, which are approximated by dilute
gases, so the particle density N/V has to be a relevant quantity. In fact, real gases are
well described the van der Waals-equation,(

p + a
(N

V

)2 )
·
(
V − Nb

)
= NkBT (B.11)

with two empirical constants a and b. The second factor is due to the fact that not the
entire volume V of a system is accessible by the particles, as they are extended and
occupy a tiny but nonzero volume themselves, and the mutual attractive interaction
between the particles leads to an effectively higher pressure. Both effects result
naturally out of the Lennart-Jones-potential between atoms or molecules with a long-
range attractive interaction mediated by electric forces and a short range repulsive
force generated by the exclusion principle.

It should be emphasised that the validity of the ideal gas equation or the van
der Waals-equation does not rely at all on the existence of atoms or molecules as
fundamental constituents, but would be perfectly applicable to a continuum. Then,
the particle number N would get replaced by the gas constant R, and the amount of
substance is characterised by the number n of moles, kBN = Rn. For a single mole,
n = 1, suggesting the relation kBNA = R with Avogadro’s number NA.

B.1.2 Phenomenological temperature measurements

The ideal gas law can be used to determine temperatures, for instance with Gay-
Lussac’s law: T ∝ V at fixed p, such that a measurement of the volume V is indicative
of the temperature T. Surely this measurement is phenomenological as it depends on
a particular substance, and furthermore, it is a bit unclear how a measurement of T
in one system would change under e.g. Lorentz- or Galilei-transformations. For that
purpose, one would like to carry out measurements of temperature mechanically and
convert thermal energy into measurable mechanical energy, with a clear transforma-
tion behaviour under frame changes: This is achieved by Carnot-engines, as we will
see in a second.

It is curious that an ideal gas reaches V = 0 at a given pressure at a finite temper-
ature of −273 degrees Celsius, which is set to be the zero-point of the Kelvin scale.
Although that temperature can never be reached in practice, it can be determined by
means of extrapolation from finite T.

B.2 Zeroth law of thermodynamics

Two systems that are brought into thermal contact exchange thermal energy until
they have reached thermal equilibrium characterised by a common temperature. In
thermal equilibrium the flux thermal energy subsides. Typically the time scale of
reaching thermal equilibrium (if it is defined at all, there are mind-blowing counter
examples) would be determined by the content of thermal energy and the magnitude
of heat flux.
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b.2. zeroth law of thermodynamics

Typically, the change δQ in thermal energy Q associated with a change dT in
temperature T is related by

δQ = CdT (B.12)

with the heat capacity C. In contrast to the change dT of the state variable, the
change is thermal energy depends on how exactly the change in state is achieved:
Therefore, it is not an exact differential. The relation δQ = cdT served historically
as the definition of the calorie by the amount of thermal energy to be added to a
quantity of water to raise the temperature by a certain amount.

Thermal energy is proportional to the amount of substance in a system (again,
there are counterexamples) and is therefore an extensive quantity unlike temperature.
Therefore, it makes sense to define the specific heat cX

C = mcX (B.13)

The index X is meant to illustrate that it matters how the change in state is achieved.
For instance, an ideal gas can change the amount of thermal energy that it contains if
the temperature is increased, but that increase can be conducted while keeping the
pressure p fixed or by keeping the volume V fixed, leading to different results for cX.

B.2.1 Exact and closed differentials

It is commonly the case in changes in state of a thermodynamical system that it
matters how that change in state has been achieved. For instance, an equation state
p(T, V) would exhibit a differential change dp

dp =
∂p

∂T

∣∣∣∣∣
V

dT +
∂p

∂V

∣∣∣∣∣
T

dV (B.14)

so that a pressure change can be done increasing the temperature while keeping the

volume fixed: In this case, the system would react according to ∂p
∂T

∣∣∣∣
V

. Alternatively,

the volume can be changed while keeping the temperature fixed, such that ∂p
∂V

∣∣∣∣
T

becomes relevant. Or even more general, one can combine the two changes dT and
dV.

When trying to answer the question when exactly a change in state is independent
of the way how it has been achieved, the criterion of integrability comes in: If a change
in state is path-independent, it only can reflect the initial and final state,

F =

B∫
A

dF = F(B) − F(A) (B.15)

so changing the system from A to B and back to A along a different path should yield
zero, ∮

dF = 0 (B.16)
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b. thermodynamics

For a function F with the differential

dF =
∂F
∂x

dx +
∂F
∂y

dy = A(x, y)dx + B(x, y)dy (B.17)

one can use the Stokes-theorem in an advantageous way and find∮
dF =

∮
A(x, y)dx + B(x, y)dy =

∫
dxdy

(
∂B
∂x
− ∂A

∂y

)
(B.18)

That integral vanishes if
∂B
∂x

=
∂A
∂y

(B.19)

which is made sure by
∂B
∂x

=
∂2F
∂x∂y

=
∂2F
∂y∂x

=
∂A
∂y

(B.20)

with the interchangeability of the second partial derivatives according to the Schwarz-
theorem. Therefore, the path-independence is made sure by the condition ∂B/∂x =
∂A/∂y.

In the general case one could imagine a inexact differential

δF = C(x, y)dx + D(x, y)dy (B.21)

without C = ∂F/∂x nor D = ∂F/∂y, so that ∂C/∂y , ∂D/∂x, and no valid integrability
condition applies. In these cases, integrals over δF would become path-dependent
and loop integrals will not vanish in general.

B.3 First law of thermodynamics

The foundational idea of the first law of thermodynamics is that thermal energy (or
heat) is a form of energy: It can be converted to and from other forms of energy, while
a global energy conservation law for the sum of all energy forms is fulfilled. For
instance, the change dU in internal energy of a system would consist of the changes
δW of the mechanical (or electromagnetic) energy content as well as of the change
δQ of the thermal energy content:

dU = δW + δQ (B.22)

In contrast to the changes δW and δQ, which depend on the exact way in which
the change in state is done, the internal energy is conserved: If one takes a system
to a certain state and back to the original state along a second path, there can not
be any net change in internal energy. Therefore, dU is an exact differential and the
path-independence of the changes in state are summarised by∮

dU = 0 (B.23)
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b.3. first law of thermodynamics

The conservation of total energy contained in a system as the sum of heat and
mechanical energy can be expressed pictorially by the statement, that it is impossible
to construct a perpetuum mobile of the first kind: That would be a machine that
delivers mechanical work without any changes to its internal state. For the first law of
thermodynamics it is irrelevant if the changes in state are performed over a sequence
of equilibrium states (called reversible changes) or in an arbitrary way such that not
at every instance thermodynamical equilibrium is maintained (called irreversible
changes, although we will not deal with those in this course):

dU = δWrev + δQrev = δWirr + δQirr (B.24)

B.3.1 Isochoric changes of state

Let’s consider an ideal gas as an example, with state variables T and V, on which
the internal energy U(T, V) of the system is thought to depend. Changes dU in the
internal energy are given by

dU =
∂U
∂T

∣∣∣∣∣
V

dT +
∂U
∂V

∣∣∣∣∣
T

dV (B.25)

For isochoric changes in state, the volume V is fixed and consequently dV = 0. There
can not be any work being performed against the pressure, so δW = 0 and the change
in internal energy is necessarily dU = δQ, such that:

δQ =
∂U
∂T

∣∣∣∣∣
V

dT → ∂U
∂T

∣∣∣∣∣
V

= cV (B.26)

leading to the definition of heat capacity at fixed volume V.

B.3.2 Adiabatic changes of state

The situation is very different if one changes the internal energy content of a substance
dU = δQ + δW by increasing the temperature through the addition of thermal energy
and simultaneously by performing mechanical work −pdV against the pressure:

δQ = dU + pdV =
∂U
∂T

∣∣∣∣∣
V

dT +
∂U
∂V

∣∣∣∣∣
T

dV + pdV → δQ = cVdT +
(
∂U
∂V

∣∣∣∣∣
T

+ p

)
dV

(B.27)

in the general case. If, however, the change in state is adiabatic δQ = 0 and no thermal
energy ist exchanged for instance through a perfect insulation of the system,

cVdT +
(
∂U
∂V

∣∣∣∣∣
T

+ p

)
dV = 0 → ∂T

∂V

∣∣∣∣∣
ad

= −
∂U
∂V

∣∣∣
T

+ p

cV
(B.28)

suggesting that the rate at which the temperature changes with changes in the volume
is indeed different for the two cases.
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b. thermodynamics

B.3.3 Isobaric changes of state

Changing the volume at constant pressure is an isobaric change of state. Then, the
volume V(T, p) is dependent on temperature T and pressure p, implying

dV =
∂V
∂p

∣∣∣∣∣
T

dp +
∂V
∂T

∣∣∣∣∣
p

dT (B.29)

where the first term would vanish due to the isobaric condition, dp = 0. Defining the
specific heat at constant p is then

cp =
(
δQ
dT

)
= cV +

(
∂U
∂V

∣∣∣∣∣
T

+ p

)
∂V
∂T

∣∣∣∣∣
p

(B.30)

and is related to the change in temperature with volume by(
∂U
∂V

∣∣∣∣∣
T

+ p

)
= (cp − cV)

∂T
∂V

∣∣∣∣∣
p

(B.31)

Picking up loose threads in the previous calculation then shows that

∂T
∂V

∣∣∣∣∣
ad

= −
cp − cV

cV

∂T
∂V

∣∣∣∣∣
p

(B.32)

for the adiabatic versus the isobaric change of temperature with volume.

B.3.4 Adiabatic index of a gas

The adiabatic index is the ratio of the heat capacity at constant pressure cp to heat
capacity at constant volume cV: These two heat capacities are not identical because
they correspond to different ways in which energy is added to the system.

cp
cV

= κ (B.33)

For an ideal gas one can compute the rate of change of temperature with volume at
constant pressure to be

p

NkB
=

T
V

→ ∂ ln T
∂ ln V

∣∣∣∣∣
p

= 1 and
∂T
∂V

∣∣∣∣∣
p

=
T
V

(B.34)

such that substitution gives

∂T
∂V

∣∣∣∣∣
ad

= −(κ − 1)
T
V

(B.35)

resulting in

d ln T = −(κ − 1)d ln V integrated to T ∼ V−(κ−1) or pVκ = const. (B.36)
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b.3. first law of thermodynamics

An adiabatic process occurs without transfer of heat or mass of substances between
a thermodynamic system and its surroundings. In an adiabatic process, energy is
transferred to the surroundings only as mechanical work, for instance through −pdV,
B · dM or Φdρ.

B.3.5 Entropy

The amount of exchanged thermal energy δQ is not an exact differential as it depends
on the particular way in which the change in state has been performed. But it is
possible to construct a quantity which is in fact an exact differential: Sticking to
our example with δQ = dU + pdV as well as dU = cVdT and an ideal gas with the
equation of state pV = NkBT suggests that

δQ
T

= cV
dT
T

+ NkB
dV
V

(B.37)

is an exact differential called dS,

dS ≡ δQ
T

→ S(T, V) =

T∫
T0

cV
dT
T

+ nkB

V∫
V0

dV
V

(B.38)

provided that the first term only depends on T and the second term only on V.
While this is clear for the second term, it is made sure for the first term by Boyle’s
experiment showing that the specific heat cV does only depend on T: For U(T, V) the
differential reads

dU =
∂U
∂T

∣∣∣∣∣
V

dT +
∂U
∂V

∣∣∣∣∣
T

dV (B.39)

cV is defined as the change of internal energy with temperature and corresponds
to the first term. Boyle observed that in having an isolated gas expand into a larger
volume the temperature does not change: Insolation implies that the change dU of
internal energy must be zero, and the empirical observation of dT = 0 then suggests
that the internal energy can not depend on volume (although we can not know that
yet, makes a lot of sense because internal energy in a gas is the kinetic energy of the
particles, and that would obviously not depend on volume):

dU =
∂U
∂V

∣∣∣∣∣
T

dV = 0 (B.40)

Therefore, internal energy is a function of temperature alone, and so is cV.
S is called the entropy and the differential dS is exact,∮

dS = 0 (B.41)

so that a cyclic change of state always results in a zero change in entropy, and the
change in entropy does not depend on the way a change in state is done, in contrast
to δQ or δW. Please keep in mind that we do not deal with irreversible changes in
state, as they proceed along non-equilibrium states and temperature would not be
defined at every instance.

9

https://en.wikipedia.org/wiki/Entropy


b. thermodynamics

B.4 Second law of thermodynamics

After the realisation that mechanical energy can be converted into thermal energy
and vice versa, and that there is a corresponding energy conservation law for the
total internal energy U, it should be clarified to what extend thermal energy can be
transformed back into mechanical energy; after all, it is clear that mechanical energy
can be completely converted into thermal energy, for instance by friction.

The second law states that a engine, which works in cycles and returns to its initial
state after performing each cycle (so that no energy is stored somehow in the engine)
is not allowed to perform mechanically usable work by just cooling down an energy
reservoir: It is impossible to gain mechanical work out of thermal equilibrium. One
can, however, construct engines that convert thermal energy into mechanical energy,
but they require energy reservoirs at two different temperatures and a temperature
non-equilibrium. Ideally, those Carnot-engines are able to convert thermal energy
into mechanical work, at a given conversion efficiency (that only depends on the
temperatures) which is strictly smaller than unity (as long as we’re dealing with
positive absolute temperatures, we’ll revisit this amazingly interesting point later).

B.4.1 Conversion from thermal to mechanical energy

The Carnot-engine is the prime example of an idealised thermodynamical engine,
which can use mechanical energy to pump thermal energy from a cold reservoir to a
hot reservoir against the natural tendency of thermal energy to flow from hot to cold,
or it can be used to gain mechanical energy from the flux of thermal energy from a
hot reservoir to a cold reservoir. A Carnot-engine is working in a cyclic fashion, so it
does not retain any energy for itself and returns exactly back to its initial state.

One possible realisation of a Carnot-engine is a series of isothermal and adiabatic
changes of state of an ideal gas at two different temperatures: The engine absorbs a
quantity Q1 at temperature T1 from the hot reservoir, and passes a lower quantity
Q2 of thermal energy onto the cold reservoir at temperature T2, possibly delivering
work W. I’d like to emphasise that is any number of possible Carnot-engines, with
the common property that they absorb thermal energy in a reversible way: Because
dS is an exact differential,∮

dS =
∮
δQ
T

= 0 → Q1

T1
=

Q2

T2
(B.42)

Energy conservation implies that Q1 = W + Q2 and therefore for the efficiency η of
the Carnot-engine

η =
W
Q1

(
1 − T2

T1

)
(B.43)

For the case of thermal equilibrium, T2 = T1, η = 0 and W = 0, so no mechanical
work can be performed. All Carnot engines necessarily run at the same efficiency: If
you construct a system where the first engine gains work by having heat flow from T1
to T2 and use that work for powering a second engine to reverse the heat flow, both
the heat flows and the flow of mechanical work should be perfectly balanced and
no net changes can be observed: Otherwise, the more efficient engine would deliver
mechanical work while no changes in temperature are observed, in contradiction
with the second law of thermodynamics.
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b.4. second law of thermodynamics

A highly unusual Carnot-engine is the ratchet and pawl-engine: A propeller is set
into motion by impacting air molecules, but a ratchet-mechanism only allows it to
turn into a single direction. Then one could use the thermal energy contained in the
unordered motion of the air molecules to turn the propeller and possibly lift a weight,
thus performing mechanical energy. If that was possible, one would have converted
thermal energy into mechanical energy in a perfect way, so there must be a catch. So,
for turning the contraption one needs to disengage the ratched by investing δ as an
energy in addition to the energy ϵ for lifting the weight, supplied at temperature T1
of the air. But the ratchet might just disengage randomly, when the energy δmight be
randomly supplied by an impacting air molecule, possibly at a different temperature
T2. The probabilities for both cases to happen are given by Boltzmann-probabilities:

exp
(
− ϵ + δ
kBT1

)
= exp

(
− δ

kBT2

)
→ ϵ

δ
= η = 1 − T2

T1
(B.44)

so that the engine runs at the Carnot-efficiency, and at η = 0 in thermal equilib-
rium T1 = T2. In this context reversibility implies that the universally applicable
Boltzmann-probabilities are characterised by temperature only: If that changes, they
probabilities adjust at once, and there is no lag of the machine to a change in T. I find
it very funny to imagine that both the idealised steam engine and the ratchet and
pawl-machine operate at the same efficiency: Plugging them together such that the
ratchet uses the work provided by the steam engine heats up the air at the propeller
relative to the ratchet in exactly the proportion that is used by the steam engine to
perform work from the non-equilibrium between propeller and ratchet.

B.4.2 Generalised Carnot-engines

Carnot-engines do not have to be constructed in a specific way: Neither do they
need a specific substance like the ideal gas, nor is the term by which mechanical
energy is gained pdV, and the ratchet and pawl-machine is a cute example for
that; reversibility as a condition is enough. All Carnot-engines operate at the same
fundamental efficiency, which can only be a function of the two temperatures

Q2 = Q1f (T1, T2) (B.45)

with efficiency:
η = 1 − f (T1, T2) (B.46)

Carnot-engines are mechanical
devices to measure temperatures,
they convert thermal to mechani-
cal energy at a fixed efficiency that
only depends on the temperatures.

To get some insight into the functional form of f one can build a chain of two
Carnot engines, the first one links a reservoir at T1 with a second reservoir at T2; it
takes in an amount Q1 of thermal energy, generates mechanical work W and dumps
Q2 into the second reservoir: W = Q1(1 − f (T1, T2)) with the wasted thermal energy
Q2 = Q1f (T1, T2). Then, a second Carnot-engine absorbs exactly Q2 at T2, generates
W′ in work and passes Q3 onto T3: W′ = Q2(1 − f (T2, T3)) with the wasted thermal
energy Q3 = Q2f (T2, T3).
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b. thermodynamics

The sum of mechanical work W + W′ = Q1(1 − f (T1, T2)f (T2, T3)),

W + W′ = Q1(1 − f (T2, T3)) (B.47)

needs to be equal to that of an imaginary Carnot-engine linking the first and the
third reservoir directly, i.e. one needs to have transitivity in the efficiencies:

f (T1, T2) · f (T2, T3) = f (T1, T3) (B.48)

Taking the logarithm of the transitivity relation

ln f (T1, T2) + ln f (T2, T3) = ln f (T1, T3) (B.49)

and computing the derivative ∂/∂T1 yields

∂
∂T1

ln f (T1, T2) =
∂

∂T1
ln f (T1, T3) (B.50)

with f (T2, T3) dropping out as it does not depend on T1. Such a differential equation
suggest a separation ansatz ln f (T1, T2) = A(T1) + B(T2) because both sides of the
equation need to be proportional to the same function in T1 and the differentiation
can not mix in a dependence on the other variable. Reverting the logarithm this
would then imply f (T1, T2) = A(T1) · B(T2) and transitivity is naturally fulfilled if
A(T2) = 1/B(T2). Substituting back gives

f (T1, T2) =
B(T2)
B(T1)

(B.51)

and for the efficiency

η = 1 − B(T2)
B(T1)

(B.52)

Therefore, we would call B(T) the thermodynamic temperature as measured by
the Carnot-engine: It is a bit circumstantial at this point that it corresponds to the
temperature T measured with Boyle’s law in an ideal gas. Carnot-engines measure
temperature differences or ratios only, so one needs to have a reference point relative
to which actual temperatures are determined: T = 0 would be an obvious attractive
choice from a practical point of view, but there, the Carnot-efficiency η would be
undefined! The common definition is taken to be the triple point of water. At a
temperature of T = 273.15 K and at a pressure of p = 611.657 Pa the solid, liquid and
gaseous state of water exist simultaneously which is easy to observe.

B.4.3 Entropy and energy conversion

The amounts of thermal energy Qi exchanged with the heat baths at temperature Ti
follow the relation

Q1

T1
+

Q2

T2
= 0 (B.53)
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b.4. second law of thermodynamics

for any Carnot engine operating between two reservoirs. In the continuum limit this
implies ∑

i

δQi

Ti
= 0 (B.54)

for a chain of Carnot engines, while the usable mechanical work is given by

W =
∑
i

δQi (B.55)

but we need to invest mechanical work W′ to put the amount of δQi back into the
reservoir i at temperature Ti :

W′ =
∑
i

δQi
Ti − Tn

Ti
=

∑
i

δQi − Tn
∑
i

δQi

Ti
(B.56)

so that the net gain is:

W −W′ = Tn
∑
i

δQi

Ti
(B.57)

with W = W′ for a loop. Therefore,∑
i

δQi

Ti
→

∮
dQ
T

=
∮

dS = 0 (B.58)

showing the consistency between the Carnot-efficiency and the exactness of the
entropy differential dS. Substituting dS = δQ/T into the first law of thermodynamics
yields

dU = δQ + δW = TdS − pdV (B.59)

where we could replace the inexact differential δQ with the exact dS, introducing T
as the function that makes it integrable or exact. The corresponding Euler-relation
then assumes the form U = TS − pV + µN + . . ..

B.4.4 Irreversible processes and entropy increase in closed systems

Typically, the net change in entropy in a reversible change in state is zero, dS = 0. But
when for instance to systems with different temperature are brought into thermal
contact, the first law of thermodynamics requires that there is a flow of thermal
energy from the hot to the cold body, equilibrating their temperatures. That process
happens spontaneously as a consequence of disequilibrium, and the entropy will
increase.

From the first law of thermodynamics and from the definition of entropy as an
exact differential one gets

dU = TdS → dS =
dU
T

(B.60)
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b. thermodynamics

Defining the specific heat dU = cdT allows us to write the entropy differential as

dS = c
dT
T

= cd ln T with the solution S = c ln T + S0 (B.61)

where S0 is an integration constant. Comparing the entropy before thermal contact

Si = c(ln T1 + ln T2) (B.62)

with that after thermal contact:

Sf = 2c ln
(T1 + T2

2

)
(B.63)

shows that the difference in entropy is in fact positive,

∆S = Sf − Si = c ·
[
2 ln

(T1 + T2

2

)
− (ln T1 + ln T2)

]
≥ 0 (B.64)

because of Jensen’s inequality.

B.4.5 Concave functions and Legendre transforms

One has the freedom to replace state functions by performing Legendre transforms.
The integration of the entropy into the Euler-relation would only be sensible a replace-
ment of S by T and vice versa can be done in a defined way, and for that entropy needs
to be a convex or concave function of T: Then, the Legendre-transform is defined yield-
ing a concave or convex function in return, so that the inverse Legendre-transform is
defined just as well.

In general, convex functions obey the inequality

g(θx + (1 − θ)y) ≥ θg(x) · (1 − θ)g(y) (B.65)

for every value of θ. For the particular choice of θ = 1/2 and the logarithm g(x) = ln x
one gets:

ln
(x + y

2

)
≥ 1

2
(ln x + ln y) (B.66)

By comparison with eqn.B.64 one immediately recognises that the entropy is a convex
function of T.

Furthermore, by writing dU = TdS as the first term in the differential Euler-
relation and noticing that typically the internal energy is proportional to temperature
and the amount of matter a system is composed of, dU = CdT with the heat capacity
C, one realises that entropy should (normally, again, there might be counterexamples)
be extensive, and can be paired with temperature T as an intensive quantity.

B.5 Third law of thermodynamics

There is a rather obscure third law of thermodynamics, which determines the zero-
point of entropy: As we are only concerned with changes in the thermodynamic
variables and potentials only differences matter, and there is a priori no reference
relative to which entropy is measured, unlike temperature T or any form of energy.
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b.5. third law of thermodynamics

Therefore, one postulates that the entropy takes on a constant value, possibly to be
set to zero, as the temperature approaches absolute zero.
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