
A statistical physics

The purpose of this script is an introduction into the fundamental concepts of ther-
modynamics and how they are determined from a microscopic model of matter. This
includes especially the concept of the state variables temperature, pressure and chem-
ical potential, and how changes of entropy, volume and particle number introduce
changes in the internal energy; as well as how well thermal energy can be used in
mechanical devices. Restricting ourselves to thermal equilibria where a notion of tem-
perature exists, it is possible to set up partition sums over the microscopic states that
a system might be in and to link these partition sums to thermodynamic potentials:
Ideally, this bridges the gap between thermodynamics as a continuum theory with no
particular assumption about the microscopic properties of a system, and the partition
sum as a reflection of exactly these microscopic properties. Thermodynamics and sta-
tistical physics as the fundamental theory behind it are incredibly general and require
temperature as a concept, joined with occupation statistics of the respective states
of a system and a counting scheme for these states, whether they form a continuum
or are discrete. We will end this lecture by looking at the phenomena of statistical
systems like magnetism or Bose-Einstein-condensation and the dynamics of statistical
systems with the Langevin-equation and the Fokker-Planck-equation. Perhaps the
best way to view the relation between thermodynamics and statistical physics is that
of an effective field theory: Thermodynamics describes systems without any recourse
to their actual microscopic structure, which makes concepts like entropy so difficult
to understand.

Statistical physics is a branch of physics that uses methods of probability theory
and statistics, and particularly the mathematical tools for dealing with large popula-
tions and approximations, in solving physical problems. It can describe a wide variety
of physical systems with an inherently stochastic nature on the microscopic level.
Its applications include many problems in the fields of physics, biology, chemistry,
neuroscience, and even some social sciences, such as sociology and linguistics. Its
main purpose is to clarify the properties of matter in aggregate, in terms of physical
laws governing atomic motion. statistical physics is so incred-

ibly general that you find appli-
cations in all branches of physics
including gravity

Without any idea about atoms and molecules in the time before Ludwig Boltzmann
one would have imagined the atmosphere to be a continuum described by field
quantities like density, pressure and velocity, obeying the Euler-equation

∂tυ + (υ · ∇)υ = −
∇p
ρ
− ∇Φ (A.1)

relating the accelerations of the fluid elements to gradients in pressure p and gravita-
tional potential Φ, for an ideal fluid. Assuming that the atmosphere is static, υ = 0,
and stationary, ∂tυ = 0, results in the hydrostatic equation

∇p
ρ

= −∇Φ (A.2)

For continuing, one needs a (possibly phenomenological) relation between pressure
and density, i.e. an equation of state. If there is a proportionality p ∼ ρ one gets

∇p
ρ
∼
∇ρ
ρ

= ∇ ln ρ = −∇Φ → ρ ∼ exp(−Φ). (A.3)
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a. statistical physics

Assuming that the gravitational potential is homogeneous,

g = −∇Φ = const → Φ = gh → ρ ∼ exp(−h) (A.4)

i.e. the barometric formula with an exponential decrease of density with height h.
The reasoning in statistical physics is very different: Matter is not a continuum

but made of discrete particles, which experience thermal fluctuations in their energy,
due to a continuous reshuffling of energy between all mutually interacting degrees of
freedom. In thermal equilibrium, however, it is possible to write down the probability
of a thermal fluctuation of a certain size, i.e. the probability that the energy ϵ is
borrowed from the system by a single particle or degree of freedom: According to
Ludwig Boltzmann, this probability is given by

p(ϵ) ∼ exp
(
− ϵ

kBT

)
(A.5)

such that large fluctuations in energy are rare, but become less rare when the
temperature T is increased. After a particle has borrowed the energy ϵ, it can climb
in the gravitational field of the Earth to a height ϵ ∝ gh, and the fraction p(ϵ) of all
particles must be the density at height h

ρ ∼ exp(−h) (A.6)

While the result is certainly consistent with the one from continuum mechanics, it
seems to involve a lot of intuition. In particular, eqn. A.5 makes a deep statement
about the probability of a thermal fluctuation to occur: Clearly only applicable in
thermal equilibrium and for systems with a defined temperature but without any
specification of the internal structure of the system there is a universal probability
distribution of a rather simple shape. The only parameter in eqn. A.5 is the Boltzmann-
constant kB with the numerical value

kB ≃ 1.3806503 × 10−23 J
K

(A.7)

which is an incredibly tiny number: Macroscopic objects do not move spontaneously,
in contract to microscopic objects such as atoms or molecules, which are in a state
of constant motion. At room temperature T ≃ 300K there is typically a fluctuating
thermal energy of ϵ = kBT = 4.2 × 10−21J, which is irrelevant compared to e.g. typical
kinetic or potential energies of a macroscopic object.
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