
I statistics in cosmology

I.1 Statistical description of structure and random fields

Structures in the Universe require a statistical description: On large scales, they look
statistically identical and similar in every direction, and predictions from cosmologi-
cal theories such as structure formation concern statistical properties rather than for
instance individual formation scenarios for single galaxies, the principal exception
being our own Milky Way. Suitable tools for a statistical description of e.g. the den-
sity field are random fields: There, one specifies a distribution of field amplitudes
and possible correlations between them taken at different points. Conceptually, a
Gaussian distribution such as

p(δ(x)) =
1√

2π⟨δ(x)2⟩
exp

(
−1

2
δ(x)2

⟨δ(x)2⟩

)
(I.469)

predicts values of the field δ taken at a specified point x for an ensemble of statisti-
cally equivalent universes. Over this ensemble, the variance ⟨δ(x)2⟩ is defined. Now,
descriptive statistics always concerns moments or cumulants of δ over this ensemble
of universe, and the same is true of symmetries like statistical isotropy or homo-
geneity, that is invariance of statistical quantities if x is rotated or shifted. Naturally,
there is only one Hubble-volume in which we can carry out observations, such that
accessing the ensemble for computing statistical quantities is impossible. But there
is the concept of ergodicity, implying that one can construct estimates for ensemble
averages from volume averages, provided that the random field is Gaussian and has
a continuous spectrum, both concepts will be explained below. Gaussian random
fields, i.e. a Gaussian distribution of field amplitudes are of particular relevance in
cosmology, as at least at early times there are very good indications that all fields have
Gaussian statistical properties.

The fluctuations of the cosmic density field δ(x), which are defined as the relative
deviation of the density field ρ(x) from the mean background density ⟨ρ⟩ = Ωmρcrit,

δ(x) =
ρ(x) − ⟨ρ⟩
⟨ρ⟩

, (I.470)

are assumed to be Gaussian with a certain correlation length, meaning that the
probability of finding the amplitudes δ1 ≡ δ(x1) and δ2 ≡ δ(x2) and positions x1
and x2 in a hypothetical ensemble of universes is given by a multivariate Gaussian
probability density,

p(δ1), δ2) =
1√

(2π)2det(Q)
exp

−1
2

(
δ1
δ2

)t
Q−1

(
δ1
δ2

) (I.471)

with the covariance matrix Q:

Q =
(
⟨δ1δ1⟩ ⟨δ1δ2⟩
⟨δ2δ1⟩ ⟨δ2δ2⟩

)
(I.472)

The off-diagonal variance in Q is the correlation function ξ(x1, x2) ≡ ⟨δ1δ2⟩ of the
random field, which describes how fast with increasing distance |x2 − x1| the field
loses its memory on the amplitude at x1. A length scale in ξ(x1, x2) can be interpreted
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i. statistics in cosmology

as a correlation length. Due to the Cauchy-Schwarz inequality,

⟨δ1δ2⟩2 ≤ ⟨δ2
1⟩⟨δ

2
2⟩ → r =

⟨δ1δ2⟩√
⟨δ2

1⟩⟨δ
2
2⟩

(I.473)

the correlation function is always smaller than the geometrical mean of the variances
at a single point, i.e. the covariance Q is positive definite, and the Pearson correlation
coefficient |r | is smaller than unity. Therefore, the Cauchy-Schwarz inequality makes
sure that the distribution I.471 is normalisable, as the determinant det(Q) is ensured
to be positive.

Clearly, if ξ(x1, x2) vanishes the Gaussian probability density separates,

p(δ1, δ2) = p(δ1)p(δ2) (I.474)

and the amplitudes are uncorrelated: The covariance Q becomes diagonal if c is zero,
which has two important consequences: (i) The determinant factorises,

det(Q) = ⟨δ2
1⟩ ⟨δ

2
2⟩ (I.475)

as well as (ii) the quadratic form in the exponent of the distribution I.471,(
δ1
δ2

)t
Q−1

(
δ1
δ2

)
=

δ2
1

⟨δ2
1⟩

+
δ2

2

⟨δ2
2⟩
. (I.476)

The Pearson correlation coefficient r vanishes simultaneously with the correlation
function ξ(x1, x2). It is sensible that the correlations in a random field decrease with
increasing distance between the points where the amplitudes are measured and
correlated, therefore, in the limit r → ∞ we get ξ → 0 as well as r → 0, such that
p(δ1, δ2) = p(δ1)p(δ2) for sufficiently separated points.

The knowledge of the variance is sufficient because all moments of a Gaus-
sian distributed random variable with zero mean are proportional to the variance,
⟨δ2n⟩ ∝ ⟨δ2⟩n. Hence the characteristic function ϕ(t) =

∫
dδp(δ) exp(itδ) =

∑
n
⟨δn⟩(it)/n!

only requires the estimation of the variance ⟨δ2⟩ for reconstructing p(δ)dδ from the
moments ⟨δ2n⟩ by inverse Fourier transform.

If the correlation function ξ(r) = ⟨δ1δ2⟩ only depends on the separation vector
r = x2 − x1, the density field has homogeneous fluctuation properties: Pictorially, this
is a case where the fluctuations are similar (and in fact, statistically equivalent) at
every point in space. In this case it is convenient to transform to Fourier space,

δ(k) =
∫

d3x δ(x) exp(−ikx) ↔ δ(x) =
∫

d3k

(2π)3 δ(k) exp(+ikx), (I.477)

and to consider the variance between two Fourier modes δ(k1) and δ(k2)

⟨δ(k1)δ∗(k2)⟩ = (2π)3δD(k1 − k2)P(k1) with P(k) =
∫

d3r ξ(r) exp(−ikr). (I.478)

Therefore, Fourier modes of homogeneous random fields are mutually independent
and their variance in Fourier-space defines the power spectrum P(k) as the Fourier
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i.1. statistical description of structure and random fields

transform of the correlation function ⟨δ1δ2⟩. If, in addition, the random field is
isotropic, P(k) only depends only the wave number k instead of the wave vector k.
Pictorially, this would be a random field whose fluctuation properties are identical in
every direction. An intuitive counter-example wound be waves of the surface of the
ocean close to a beach, where the wave fronts are roughly parallel to the seafront and
isotropy, which one would expect from the open ocean, is broken.

In this case, the angular integrations in eqn. I.478 can be carried out by introducing
spherical coordinates in Fourier-space, yielding:

P(k) = 2π

∞∫
0

r2dr ξ(r)j0(kr), (I.479)

with the spherical Bessel function of the first kind j0(kr) of order ℓ = 0, being equal
to

j0(kr) = sinc(kr) =
sin(kr)

kr
(I.480)

Cosmological inflation provides a mechanism for generating Gaussian fluctuation
fields with the spectrum P(k),

P(k) ∝ kns T2(k) (I.481)

with the CDM transfer function T(k). T(k) describes the scale-dependent suppression
of the growth of small-scale modes between horizon-entry and matter-radiation
equality by the Meszaros-mechanism. It is well approximated with the polynomial fit
of the type

T(q) =
ln(1 + 2.34q)

2.34q

(
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

)− 1
4 , (I.482)

The asymptotic behaviour of the transfer function is such that T(k) ∝ const for
k ≪ 1 and T(k) ∝ k−2 at k ≫ 1, such that P(k) ∝ kns on large scales and P(k) ∝ kns−4

on small scales. The wave vector is rescaled with the shape parameter Γ ≃ Ωmh,
which corresponds to the horizon size at the time of matter-radiation equality aγm,
and describes the peak shape of the CDM power spectrum P(k). There are weak
corrections due to a nonzero baryon density Ωb

Γ = Ωmh exp
[
−Ωb

(
1 +

√
2h
Ωm

)]
, (I.483)

where Γ is measured in units of (Mpc/h)−1, such that q = k/Γ is a dimensionless wave
vector. The spectrum is usually normalised to the variance of the linearly evolved
density field at zero redshift on a scale of R = 8 Mpc/h,

σ2
R =

1
2π2

∞∫
0

dk k2P(k)W2(kR), (I.484)

with a Fourier transformed spherical top hat filter function,
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Figure 13: CDM-spectrum P(k) today for linear growth

W(x) =
3j1(x)

x
(I.485)

j1(x) is the spherical Bessel function of the first kind of order ℓ = 1.
This particular definition of σ2

R, along with the fact that the power spectrum
has the dimension of a volume, motivates the definition of the dimensionless power
spectrum ∆2(k) ∝ k3P(k),

∆2(k) =
k3

2π2 P(k) → σ2
R =

∞∫
0

d ln k ∆2(k)W2(kR), (I.486)

such that ∆2(k) reflects the fluctuation variance per logarithmic band in k, dσ2
R/d ln k ∝

∆2. It is common to normalise P(k) by the variance σ2
8 on scales of comoving R =

8 Mpc/h, and typical values are σ8 = 0.8 . . . 0.9. The spectrum P(k) is shown in Fig. 13
for linear evolution at the current cosmic epoch.

I.2 Fluctuations on the sky and Limber-projections

A Gaussian random field γ(θ) on the celestial sphere can be characterised by the
correlation function

Cγγ(α) = ⟨γ(θ)γ∗(θ′)⟩ (I.487)

with the separation α = ∢(θ,θ′), because a Gaussian distribution is determined by the
variance, following the argument using the characteristic function of a distribution
outlined in Sect. ??. The averaging brackets ⟨. . .⟩ denote a hypothetical ensemble aver-
age over realisations of the random field, but can be replaced by spherical averages
for estimating the correlation function because of the ergodicity of the ensemble
provided that the random process has a continuous correlation function up to cosmic
variance. The correlation function and the angular power spectrum can be converted
into each other under transformations with Legendre polynomials Pℓ(cos α),
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i.2. fluctuations on the sky and limber-projections

Cγγ(ℓ) = 2π
∫

d cos αCγγ(α)Pℓ(cos α) ↔ Cγγ(α) =
1

4π

∞∑
ℓ=0

(2ℓ+ 1)Cγγ(ℓ)Pℓ(cos α)

(I.488)

using the orthonormality of the Legendre-polynomials Pℓ(cos α):

+1∫
−1

dx Pℓ(x)Pℓ′ (x) =
2

2ℓ + 1
δℓℓ′ . (I.489)

Fluctuations of a quantity like the sky temperature τ(θ) or the galaxy density γ(θ) on
the celestial sphere with homogeneous fluctuation properties can be decomposed in
using the spherical harmonics Yℓm(θ), because they are a complete orthonormal set of
basis functions:

γ(θ) =
∞∑
ℓ=0

+ℓ∑
m=−ℓ

γℓmYℓm(θ) ↔ γℓm =
∫
4π

dΩγ(θ)Y∗ℓm(θ). (I.490)

The orthonormality relation of the spherical harmonics Yℓm(θ) reads∫
4π

dΩ Yℓm(θ)Y∗ℓ′m′ (θ) = δℓℓ′δmm′ , (I.491)

and is not identical to the completeness relation:

∞∑
ℓ=0

+ℓ∑
m=−ℓ

Yℓm(θ)Y∗ℓm(θ′) = δ(θ − θ′), (I.492)

because the spherical harmonics Yℓm(θ) are a discrete basis system. Orthonormality
and completeness are identical in the case of a continuous basis system like the plane
waves exp(±ikx) of the Fourier transform. The variance of the spherical harmonics
expansion coefficients γℓm can be related to the angular power spectrum,

⟨γℓmγ∗ℓ′m′ ⟩ =
∫
4π

dΩ
∫
4π

dΩ′ Cγγ(α)Yℓm(θ)Y∗ℓ′m′ (θ
′), (I.493)

by substituting the decomposition eqn. (I.490) and using the definition of the corre-
lation function eqn. (I.487). The correlation function Cγγ(α) can be replaced with the
angular spectrum Cγγ(ℓ), and the Legendre polynomial can be substituted with the
spherical harmonic’s addition theorem, α = ∢(θ̂, θ̂′):

+ℓ∑
m=−ℓ

Yℓm(θ)Y∗ℓm(θ′) =
2ℓ + 1

4π
Pℓ(cos α). (I.494)

Using the orthonormality relation twice and contracting the Kronecker δ-symbols
yields the final result

⟨γℓmγ∗ℓ′m′ ⟩ = δℓℓ′δmm′ Cγγ(ℓ), (I.495)
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i. statistics in cosmology

i.e. that the variance of the expansion coefficients γℓm is equal to the angular spectrum
Cγγ(ℓ) and that there is no cross-correlation between coefficients on different angular
scale ℓ or different propagation direction m in the case of homogeneous and isotropic
fields.

The Limber equation is used for relating the fluctuation statistics of the 3d source
field to the fluctuation statistics of the projected observable. Both observables, the
iSW-temperature perturbation τ(θ) and the tracer density γ(θ) are derived as line of
sight projections from the source fields ϕ(χθ, χ) and δ(χθ, χ) with weighting functions
Wτ(χ) and Wγ(χ):

γ(θ) =

χH∫
0

dχWγ(χ)δ(χθ, χ) and τ(θ) =

χH∫
0

dχWτ(χ)ϕ(χθ, χ) (I.496)

The angular correlation function Cγγ(α) can be then related to the correlation of the
source field δ(θχ, χ):

Cγγ(α) =

χH∫
0

dχWγ(χ)

χH∫
0

dχ′ Wγ(χ′)
∫

dk k2P(k, χ, χ′)
∫
4π

dΩk exp(ik(x − x′)), (I.497)

with the spatial comoving coordinates x = (θχ, χ) and the solid angle element dΩk in
Fourier space. The power spectrum P(k, χ, χ′) follows from the Fourier transform of
the correlation function of the source field,

⟨γ(θχ, χ)γ∗(θ′χ′ , χ′)⟩ =
∫

d3k

(2π)3 P(k) exp(ik(x−x′)) =
∫

dkk2P(k)
∫
4π

dΩk exp(ik(x−x′))

(I.498)

In order to solve the angular integration, one can take advantage of the Rayleigh
expansion of a plane wave in terms of spherical waves:

exp(ikx) = 4π
∞∑
ℓ=0

iℓjℓ(kx)
+ℓ∑

m=−ℓ
Yℓm(k̂)Y∗ℓm(θ). (I.499)

The angular integration can be carried out while substituting the orthonormality
relation of the spherical harmonics,

∫
4π

dΩk exp(ik(x − x′)) =

(4π)2
∞∑
ℓ=0

jℓ(kχ)jℓ(kχ
′)

+ℓ∑
m=−ℓ

Yℓm(θ)Y∗ℓm(θ′) =

4π
∞∑
ℓ=0

jℓ(kχ)jℓ(kχ
′) (2ℓ + 1) Pℓ(cos α) (I.500)

where in the last step the addition theorem has been used, yielding
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i.3. cosmic microwave background anisotropies

Cγγ(α) = 4π

χH∫
0

dχWγ(χ)

χH∫
0

dχ′Wγ(χ′)
∫

dkk2P(k, χ, χ′)
∞∑
ℓ=0

jℓ(kχ)jℓ(kχ
′)(2ℓ+1)Pℓ(cos α)

(I.501)

Inverting the expression for the angular correlation function Cγγ(ℓ) by multiplying
both sides with Pℓ′ (cos α) and integrating over d(cos α) results in

Cγγ(ℓ) = (4π)2

χH∫
0

dχWγ(χ)

χH∫
0

dχ′ Wγ(χ′)
∫

dk k2P(k, χ, χ′)jℓ(kχ)jℓ(kχ
′) (I.502)

by using the orthonormality relation of the Legendre-polynomials. The expression
can be further simplified if P(k, χ, χ′) is slowly varying in comparison to the spherical
Bessel functions, i.e. if the angles involved are small, which corresponds to approx-
imating the sky as being flat. In this case P(k, χ, χ′) can be moved in front of the
dk-integration, which can then be carried out using the orthogonality relation of the
spherical Bessel functions,

∞∫
0

k2dk jℓ(kχ)jℓ(kχ
′) =

π

2χ2 δD(χ− χ′). (I.503)

We can approximately set P(k) ≃ P(ℓ/χ), giving the final result

Cγγ(ℓ) ≃
χH∫
0

dχ
χ2 W2

γ (χ)P(k = ℓ/χ, χ). (I.504)

A slightly better approximation to the correct result in spherical coordinates can be
obtained by replacing k = ℓ/χwith k = (ℓ + 1/2)/χ. The small-angle approximation
of the Limber eqn. (I.504) generally overestimates the angular power spectrum in
comparison to the correct solution in eqn. (I.502).

I.3 Cosmic microwave background anisotropies

The spectrum CTT(ℓ) of the CMB-fluctuations is given in Fig. 14.
Fig. 15 shows the size of the CMB photosphere from the moment of decoupling

until today, for three different ΛCDM cosmologies.

I.4 Secondary anisotropies in the cosmic microwave background

I.4.1 Gravitational lensing of the CMB

There is a very interesting gravitational lensing effect in the cosmic microwave
background: A typical lensing deflection that photons from the CMB experience
amounts to a few arcminutes, which is small compared to the typical scales on which
the temperatures in the cosmic microwave backgrounds vary, which is roughly on
the degree-scale. Therefore, one expects a small distortion of the CMB-fluctuation
pattern, as hot and cold patches are deformed by roughy a percent. There is no energy
input into the CMB by the gravitational lensing effect, if one assumes the gravitational
potentials to be static (which is a good approximation but which is ultimately flawed
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Figure 14: Angular spectrum CTT(ℓ) of the temperature anisotropies of the CMB
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i.4. secondary anisotropies in the cosmic microwave background

because of the integrated Sachs-Wolfe effect). Lensing, being a gravitational effect, can
not differentiate between photons of different energy and is completely achromatic,
as well as perfectly conserving photon density, energy flux and spectral distribution.
Therefore, we expect that lensing conserves the Planck-distribution of the photons of
the CMB as a thermal source. Because the lensing effect only redistributes photons,
it could not generate structures in a completely isotropic CMB, contrarily, it needs
structures to work on.

In gravitational lensing in astronomy it is rarely the case that one can access the
unlensed situation, where the Solar eclipse of 1919 is a very notable exception. In
almost all other cases of gravitational lensing, one has to make an assumption about
the unlensed case in order to detect the gravitational lensing effect. Obviously, one
would like to make assumptions that are as weak as possible and generic from a
physical point of view. Gravitational lensing changes the statistical properties of the
cosmic microwave background and breaks statistical homogeneity as a symmetry.
With the assumption of a statistically homogeneous unlensed CMB one can quantify
the magnitude of the broken statistical symmetry and therefore measure the weak
lensing effect. It is practical to define a dimensionless amplitude T(θ) of the temper-
ature fluctuations T(θ) in the cosmic microwave background relative to the mean
temperature TCMB = 2.725 Kelvin,

T(θ) =
T(θ) − TCMB

TCMB
, (I.505)

Statistical homogeneity has a very interesting implication for the Fourier-modes
T(ℓ) of the temperature field T(θ). Defining

T(ℓ) =
∫

d2θ T(θ) exp(−iθℓ) ↔ T(θ) =
∫

d2ℓ

(2π)2 T(ℓ) exp(+iθℓ), (I.506)

one can ask the question how the Fourier-modes are correlated, if there is a nonzero
correlation in configuration space. In fact,

⟨T(ℓ)T(ℓ′)∗⟩ = (2π)2TD(ℓ − ℓ′)CTT(ℓ), (I.507)

with the Dirac-function TD,

TD(ℓ) =
∫

d2θ exp(+iθℓ). (I.508)

CTT(ℓ) is the spectrum of the temperature fluctuations and is given by

CTT(ℓ) =
∫

d2θ ξ(θ) exp(−iθℓ), (I.509)

where in the case of statistically isotropic fields the integration can be simplified
according to θℓ = θℓ cosϕℓ and d2θ = θdθdϕℓ by introducing polar coordinates.
Therefore, one observes uncorrelated Fourier-modes in the case of statistically ho-
mogeneous fields. As we will see, the signature of CMB-lensing is to change the
fluctuation statistics of the cosmic microwave background. In particular, it will make
a statistically homogeneous CMB statistically inhomogeneous and will generate corre-
lations ⟨T(ℓ)T(ℓ′)∗⟩ , 0 even if ℓ , ℓ′ . Under the assumption that the unlensed CMB
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i. statistics in cosmology

has been statistically homogeneous, which is a weak assumption that is supported
by models of cosmic inflation, any measurement of these correlations would be an
indication for the gravitational lensing effect.

As the photons of the CMB propagate to us, they have to transverse the cosmic
large-scale structure and experience gravitational lensing. As they are deflected by
gravitational potentials, they seem to change their propagation direction: Instead
of measuring the temperature field T(θ) in the direction θ, the arrival direction is
changed to θ + α, where the deflection angle α is the gradient of the lensing potential
ψ(θ):

T(θ)→ T̂(θ) = T(θ + α) (I.510)

These deflections distort the pattern of hot and cold patches in the CMB, which can
be quantified in a statistical way. To this purpose, assuming that the deflections are
small compared to the angular size of structures in the microwave background, one
can expand the temperature field in a Taylor-series,

T̂(θ) = T(θ + α) = T(θ) +
∑
i

αi∂
iT +

1
2

∑
ij

αiαj∂
i∂jT + . . . . (I.511)

Computing a correlation function of the lensed temperature field yields

⟨T̂(θ)T̂(θ′)⟩ = ⟨T(θ + α)T(θ′ + α′)⟩ (I.512)

and consequently

= ⟨T(θ)T(θ′)⟩+ ∑
i

∑
k

⟨αi(θ)αk(θ′)⟩ × ⟨∂iT(θ)∂′kT(θ′)⟩+

2
∑
ij

⟨αi(θ)αj (θ)⟩ × ⟨∂2
ijT(θ)T(θ′)⟩ + . . . (I.513)

if one assumes that the deflection field is uncorrelated with the temperature field, and
that the distribution of the lensing deflection angle components are symmetric with
zero mean. Both assumptions are physically sensible, because the deflecting large-
scale structure responsible for the gravitational lensing effect is separated by a very
large distance from the CMB, and because the structures responsible for lensing do not
define a preferred direction. The two terms appearing as a correction to the unlensed
temperature fluctuations can be interpreted as a correlated deflection ⟨αi(θ)αk(θ′)⟩
where the lensing deflection αi(θ) at θ is not independent from the deflection αk(θ′) at
θ′ , and as an effect caused by a second-order deflection ⟨αi(θ)αj (θ)⟩ at a single point.
Especially the last effect can be visualised by imagining that CMB photons reaching
us are deflected by some amount into a random direction, leading to a blurring of the
CMB. In fact, the lensed CMB has less structure compared to the unlensed one, as the
blurring causes the contrast of structures to decrease.

114



i.4. secondary anisotropies in the cosmic microwave background

Transforming the Taylor-series to Fourier-space then yields

T̂(ℓ) = T(ℓ)+

i
∫

d2ℓ1

(2π)2

∑
i

αi(ℓ1)(ℓ − ℓ1)iT(ℓ − ℓ1)−

∫
d2ℓ1

(2π)2

∫
d2ℓ2

(2π)2

∑
ij

αi(ℓ1)αj (ℓ2)(ℓ − ℓ1 − ℓ2)i(ℓ − ℓ1 − ℓ2)jT(ℓ − ℓ1 − ℓ2) + . . . ,

(I.514)

applying the two properties of Fourier transforms, i.e. that products become convo-
lutions and that every derivative ∂i generates a prefactor iℓi . Furthermore, one can
replace the deflection angle α(ℓ) by the derivative −iℓψ(ℓ) of the lensing potential ψ.
Inspection of the last relationship shows that the lensed CMB temperature field is
given by the unlensed field, with a series of corrections that involve n-fold derivatives
of T, contracted with n factors of the lensing deflection field α.

Assembling a correlation function ⟨T̂(ℓ)T̂(ℓ′)∗⟩ of the lensed CMB then yields a
series of correction terms to the correlation function ⟨T(ℓ)T(ℓ′)∗⟩ of the unlensed
CMB. If one assumes that the structures that are responsible for gravitational lensing
are separated by a large distance from the structures that cause the temperature
fluctuations of the CMB, one can again factorise the mixed correlation functions

⟨αi(ℓ1)αj (ℓ2)T(ℓ − ℓ1 − ℓ2)T(ℓ′)⟩ = ⟨αi(ℓ1)αj (ℓ2)⟩ × ⟨T(ℓ − ℓ1 − ℓ2)T(ℓ′)⟩, (I.515)

and using the assumption, that the lensing deflection field is isotropic, implying that
the distributions of each of the components of α is symmetric with mean zero, sets
⟨αi⟩ = 0. Then, one obtains for the correlations of T̂ in Fourier space:

⟨T̂(ℓ)T̂(ℓ′)∗⟩ = ⟨T(ℓ)T(ℓ′)∗⟩

+
∫

d2ℓ1

(2π)2

∫
d2ℓ′1
(2π)2

∑
i

∑
k

(ℓ − ℓ1)i(ℓ
′ − ℓ′1)k⟨αi(ℓ1)αk(ℓ′1)⟩ × ⟨T(ℓ − ℓ1)T(ℓ′ − ℓ′1)⟩

+2
∫

d2ℓ1

(2π)2

∫
d2ℓ2

(2π)2

∑
ij

(ℓ−ℓ1−ℓ2)i(ℓ−ℓ1−ℓ2)j⟨αi(ℓ1)αj (ℓ2)⟩×⟨T(ℓ−ℓ1−ℓ2)T(ℓ′)⟩.

(I.516)

The two correction terms that appear at second order have a clear physical inter-
pretation. They involve the correlations ⟨αi(ℓ1)αk(ℓ′1)⟩ and ⟨αi(ℓ1)αj(ℓ2)⟩, showing
that the correlations of the temperature field in fact get changed due to correlations
in the deflection field, which can both be traced back to the spectrum Cαα(ℓ). Both
correction terms introduce correlations between ℓ and ℓ′ as an expression of breaking
of statistical homogeneity. The effect is proportional to Cαα(ℓ), such that the lensing
effect can be measured in a quantitative way.

I.4.2 Thermal and kinetic Sunyaev-Zel’dovich effect

Of all secondary CMB-anisotropies, the thermal Sunyaev-Zel’dovich effect is the most
subtle: There is a redistribution of the CMB-photons in energy in scattering processes
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Figure 16: Spectral modulation of the CMB due to the thermal and kinetic Sunyaev-
Zel’dovich effects

with electrons in galaxy clusters, as illustrated by Fig. 16. Essentially, Compton-
collisions between the CMB-photons and electrons of the intra-cluster medium put
the CMB as a very cold reservoir into thermal contact with the intra-cluster medium
of a galaxy cluster as a very hot reservoir. Consequently, there will be a flow of
thermal energy from the hot electron gas to the cold photon gas, causing a spectral
distortion of the CMB: This is illustrated in Fig. 16, where the peculiar modulation of
the CMB-spectrum if it is observed through a galaxy cluster is depicted. There is a
secondary Sunyaev-Zel’dovich effect caused by the bulk motion of the cluster itself:
In the cluster’s rest frame, the CMB appears anisotropic, and likewise the radiation
pressure exerted on it through Compton collisions, causing effectively the cluster to
be slowed down until it comes to rest in a frame where the CMB appears isotropic.
The kinetic energy of the cluster is transfered to the CMB, and therefore one perceives
photons of higher energy from the direction of a cluster that is approaching the
observer.

I.4.3 Integrated Sachs-Wolfe effect

The integrated Sachs-Wolfe effect is essentially a gravitational lensing effect: In the
same way as spatial gradients ∂iΦ of the gravitational potential Φ have an influence
on the direction of propagation ki of the photons, the time derivative ∂tΦ changes
the frequency (or colour) of photon. Again, working with a Newtonian perturbation
on a flat, Minkowksian background

ds2 = (ηµν + hµν) dxµdxν = −
(
1 +

2Φ
c2

)
dη2 +

(
1 − 2Φ

c2

)
dx2 (I.517)

one can write for the metric gµν = ηµν + hµν with
∣∣∣hµν∣∣∣ ≪ 1 in this preferred frame.

Photons follow null-geodesics defined by kµk
µ = 0 where kµ = (k0, k)t as the wave

vector is tangent to xµ(λ); it is parameterised by an affine parameter λ and for con-
venience normalised to k0 = 1 and k2 = 1. Again, it is sufficient to consider a static
background because of the conformal invariance of null-geodesics, which do not
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change under conformal transformations of the type gµν → a2gµ of the metric gµν.
Effectively, this amounts to ignoring cosmological redshifts while focusing on the
gravitational interaction.

The geodesic equation, which describes the change δkα in kα due to gravitational
interaction now reads:

d
dλ
δkα = −δΓ αµν kµkν (I.518)

where the Christoffel symbol of the weakly perturbed metric transforming the
time-component of kα is given by

δΓ tµν = −1
2

[
∂νhµt + ∂µhνt − ∂thµν

]
. (I.519)

In this approximation of δΓ tµν , the multiplication with the metric gµν was dropped
because it would give rise to terms quadratic in the perturbation hµν.

The first two terms give rise to the conventional Sachs-Wolfe effect, and the last
term with the time derivative ∂thµν of the metric perturbation hµν causes the iSW-
effect. Substitution into the geodesic equation yields:

d
dλ
δkt = −1

2
∂thµν k

µkν (I.520)

The energy shift δk0 of a photon is given by subsequent integration,

δk0 =
1
c2

∫
dλ

[
(kt)2 + k2

] ∂Φ
∂η

=
2
c2

∫
dλ

∂Φ
∂η

(I.521)

such that the energy perturbation is a measure of the integrated growth rate along
the line of sight. Curiously, the iSW-effect is a direct probe of dark energy, as ∂Φ/∂η
vanishes in flat cosmologies with only matter, Ωm = 1.

The integral should be evaluated along the photon geodesic, but one assumes
Born’s approximation, such that the energy shift is obtained perturbatively while the
geodesic remains characterised by the conditions (k0)2 = 1 and k2 = 1 mentioned
above. In a cosmological context, the photon geodesic ds2 = 0 is given by dχ = cdt/a =
cdηwith the conformal time η such that η is would be the natural choice for the affine
parameter λ in the comoving frame. η and λ are linearly related such that their ratio
can be absorbed in the normalisation of k. As a purely gravitational interaction, the
iSW-effect conserves the spectral distribution of photons: Due to the equivalence
principle, gravity treats all photons in the same way, which is true for the iSW-effect
and lensing alike.

I.5 Weak gravitational lensing by the large-scale structure

In Sect. H.7.3 we have already derived the deflection angle α̂ in gravitational light
deflection

α̂i = − 2
c2

∫
dλ ∂iΦ (I.522)

into the direction of the gradients of Φ perpendicular to the line of sight. To be exact,
α̂ is the change in direction between the spatial wave vector entering and leaving the
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gravitational potential, but not yet the change in position as observed on the sky. If a
source is situated at a comoving distance χs and the gravitational potential acting as
the light deflector is at a comoving distance χ, the change in position αi of the source
being at position θi without lensing is given by

α = θ′ − θ (I.523)

so that the source appears at θ′ . Writing θ = x/χs, θ′ = (x + d)/χ2 and α̂ = d/(χs − χ)
suggests that the angular displacement on the sky generated by lensing is

α =
(
1 − χ

χs

)
α̂ (I.524)

where α̂ is computable with eqn. I.522. With comoving distance as the integration
variable and by rewriting the spatial as an angular derivative χ∂i = ∂θ we get

αi = ∂i
θψ with ψ = 2

∫
dχ

χs − χ
χsχ

Φ

c2 (I.525)

defining the lensing potential ψ.
In this entire discussion it would be important to realise that the change in

propagation direction α̂i is only defined because the lens is embedded in a flat
spacetime (or at least a conformally flat spacetime). Then, there is a parallel transport
around the lens through essentially flat space as a reference wave vector, to which
one can compare the actual wave vector that has been properly parallel transported
through the gravitational potential along the physical trajectory, defining a deflection
angle.

Clearly, one needs to make an assumption about the unlensed situation: Generally
one does not know the positions of objects without lensing (Eddington’s Solar eclipse
from 1919 being a very notable exception). Instead, one could try to observe a differ-
ential deflection across the image of a distant object like galaxy: If the deflection field
depends on position, there is such a differential deflection and one observes a change
in shape of the image. Similarly, one could invoke Raychaudhuri’s equation, as the
light bundle of the galaxy forms a geodesic congruence. Then, changes in shape and
size of the light bundle are related to the tidal gravitational fields, or relativistically
speaking, to the curvature experienced by the light bundle. With this idea, if the
observable are galaxy shapes, a weak assumption about the unlensed situation would
be uncorrelated shapes, which would get coherently distorted, as light bundles from
neighbouring galaxies would experience similar tidal distortions.

For changes in shape and size to emerge one needs variations of the deflection
field αi across the image of a galaxy, and as αi is defined as the gradient of the lensing
potential ψ, the changes are induces by second derivatives ψij = ∂i∂jψ of ψ. The
index pair ij runs over x and y and as partial derivatives interchange, ψij is a real
symmetric 2 × 2 matrix. A suitable basis system are the real-valued Pauli matrices,

ψij =
∑
n

anσ
(n)
ij with an =

1
2

∑
ij

σ
(n)
ji Ψ ij (I.526)
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The role of the three different components of ψij = ∂i∂jΨ are:

• convergence κ = a0 = 1
2 (∂i∂jψδij ) = ∆ψ/2, which changes the angular size of a

galaxy isotropically, i.e. by the same amount in the x and y-direction

• shear γ+ = a1 = 1
2σ

(1)
ij ψij = 1

2 (∂2
xψ − ∂2

yψ), which elongates the image in x-
direction while compressing it in the y-direction

• shear γ× = a3 = 1
2σ

(3)
ij ψij = ∂x∂yψ, which stretches an image into the (x + y)-

direction while compressing in the (x − y)-direction

The two components of shear are often combined into a single complex number
γ = γ+ + iγ×.

The convergence κ provides a mapping of the matter density:

κ =
1
2
∆θΨ = ∆θ

χs∫
0

dχ
χs − χ
χsχ

Φ

c2 =

χs∫
0

dχ(χs − χ)
χ

χs
∆x

Φ

c2 (I.527)

using ∆θ = χ2∆x and the small angle approximation x = θχ. Substituting the Poisson-
equation

∆
Φ

c2 =
3Ωm

2χ2
H

δ

a
(I.528)

yields

κ =
3Ωm

2χ2
H

χs∫
0

dχ
χs − χ
χs

χ
D+

a
δ0 (I.529)

Statistically, line of sight expressions like κ =
χs∫
0

dχW(χ)δ can be used in Limber’s

equation to give the angular spectrum of the shear or convergence fields,

Cκκ(ℓ) =

χs∫
0

dχ
χ2 W(χ)2 P(k = ℓ/χ) (I.530)

as a function of the spectrum P(k) of the source field, in our case δ. The spectrum
Cγγ(ℓ) is identical to that of κ.

A quantification of shape could be the ellipticity ϵmeasured in terms of the second
moments of the brightness distribution I(θ)

Qij =
∫

d2θ I(θ) θiθj (I.531)

from which one defines the ellipticity

ϵ =
Qxx − Qyy

Qxx + Qyy
+ 2i

Qxy

Qxx + Qyy
(I.532)
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Figure 17: Tomographic spectra Cγγ(ℓ) of the weak lensing shear

Similarly to lensing shear γ, ellipticity is a tensor with two components, and has the
property to be invariant under rotations of π, as one can easily imagine by rotating
an actual ellipse, and there is a practical notational advantage to combine both
components into a complex ellipticity. In the weak lensing limit, the shear γ operates
on ellipticity according to

ϵ→ ϵ + γ (I.533)

such that an estimate of correlation functions with the observable ϵ provides an
estimate of γ, if there is no intrinsic correlation between the ellipticities without
lensing. The angular spectrum Cγγ(ℓ) is shown in Fig. 17, for a so-called tomographic
measurement, where the galaxies are divided up in redshift intervals.

I.6 Bayes-inference in cosmology

Science knows two types of truths: empirical truths correspond to reproducible,
objective observations, and logical truths to statements that are derived from axioms
in a mathematically consistent way. The way in which science operates is by making
predictions for theories, and comparing them to observations, possibly discarding
the theories in the process: As such, science is a self-correcting process guided by
deduction and inference. Here, inference refers to deriving statistical statements
about model parameters from data, or about the validity of entire model classes. The
issue in this is that Nature provides data only with an added experimental error or
by providing only finite amounts of data with a restricted statistical power: After
all, the Hubble volume is finite. Therefore, an observation can not tell in an absolute
sense if a theory is true, rather, it provides confidence regions and statistical error
estimates, and only allows to differentiate theories that differ by significantly more
than the inherent error of the measurement.

One might wonder how randomness in a measurement comes about: but after
all, it is simply the result of all variables in the measurement process that can not
be controlled in the experiment, because the experimental setup itself is perfectly
predictable by the laws of Nature, as it is clearly part of Nature and does not exist in
a transcendent way, and a better experiment will essentially allow a better control,
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resulting in reduced errors. Recording a set of values yi in a measurement that are
Gaussian distributed with error σi allows to compute the likelihood L({yi} |θµ), here
with the simplifying assumption that all data points are statistically independent,

L({yi} |θµ) ∝
∏
i

exp

−1
2

(
yi − y(xi)

σi

)2 = exp

−1
2

∑
i

(
yi − y(xi)

σi

)2
 (I.534)

that one would make the measurement if the values result from a theoretial model
y(x) with model parameters θµ. A likelihood is, for all intents and purposes, a prob-
ability as it is a number obeying Kolmogorov’s axioms. But there is an important
difference in perspective: Usually, one imagines in a probability that there is a fixed
random experiment that is able to produce outcomes at different probability, but in a
likelihood there is a fixed outcome (the data values yi) for which one considers now
variable models y(x) that differ by the value of their model parameters θµ. For the
Gaussian error process as in eqn. I.534 it is possible to work with the χ2-functional
instead, which is linked to the likelihood by

L({yi} |θµ) ∝ exp

−χ2(θµ)

2

 with χ2 = −
∑
i

(
yi − y(xi)

σi

)2

(I.535)

Therefore, the likelihood is a function of the model parameters and depends of
course on the actual data set. Now, one suspects the true model parameters in the
value that maximises L (or minimises χ2), as the data that one has is most easily
generated by the true model: This is exactly the principle of maximum likelihood. At
the same time, eqn. I.535 shows that the origin of least squares-rule originates from
the Gaussian error in the data.

But there is a very important catch: The likelihood L({yi} |θµ) is able to quantify
how probable it would have been to observe the data for a given choice of θµ, but what
one actually would like to know is the distribution p(θµ| {yi}) of the model parameters
given the observation of the data points. For interchanging the random variable and
the condition one needs to use the Bayes-theorem:

p(θµ| {yi}) =
L({yi} |θµ)

p({yi})
p(θµ) (I.536)

In Bayes’ reasoning, the posterior distribution p(θµ| {yi}), i.e. the distribution of the
model parameters taking the data into account is given by the likelihood L({yi} |θµ),
for which one needs the model to predict the data and the knowledge on the error
process, and the prior distribution p(θµ), which reflects the uncertainty in the model
parameters before one has carried out the experiment, normalised by the evidence
p({yi}),

p({yi}) =
∫

dnθL({yi} |θµ) p(θµ) (I.537)

which is the probability to obtain the data in the first place given the prior infor-
mation. If a new experiment is carried out, the posterior distribution from the last
experiment would serve as a prior for the next experiment.
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Figure 18: Direct gridded evaluation of the supernova likelihood in the parameters Ωm and
the dark energy equation of state w.

As one essentially multiplies peaked distributions in this process, the resulting
distribution will be more peaked as the original ones, indicating that the uncertainty
on a model parameter has been reduced by including more data.

Even though the posterior or the likelihood are computable for a given model
y(x) parameterised by θµ and for a given data set {yi}, this is in practise numerically
very challenging for highly-dimensional parameter spaces. Instead, one uses the
Metropolis-Hastings algorithm (or more efficient variants of it) to generate samples
θµ that are distributed according to the posterior distribution p(θµ| {yi}).

In the Metropolis-Hastings algorithm one performs a random walk in parameter
space on a potential given by the logarithmic likelihood (or the sum of logarithmic
likelihood and logarithmic prior, those quantities exist for distributions from the
exponential family). For evaluating the random walk, one takes a step from θµ
to θµ + δµ, where δµ is a random vector from the so-called proposal distribution.
Comparing L(θµ) with L(θµ + δµ) with the logarithmic likelihood ratio

r = ln
L(θµ + δµ)

L(θµ)
(I.538)

gives two possible options: Either r > 0, in which case one allows the process to jump
θµ → θµ + δµ, as the new point is a better explanation for the data. Or, r < 0, in which
one accepts the step to a point with lower likelihood only in exp(r) of all cases. In this
way, the samples θµ will follow the distribution L(θµ). The comparison between the
gridded evaluation of a supernova likelihood in Fig. 18 with the Metropolis-Hastings
evaluated result in Fig. 19 at a fraction of the computational cost is striking.
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Figure 19: Samples (n = 3 × 103) from the supernova likelihood in the parameters Ωm and
w. The colour indicates the number of the sample resulting from the Metropolis-Hastings
random walk.
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