
H cosmic structure formation

H.1 Structure formation equations

Structure formation with cold dark matter is driven by self-gravity of cosmic struc-
tures that have been seeded by cosmic inflation as inhomogeneities in the density field.
At the highest degree of simplification, the dark matter density is subjected to fluid
mechanics but without effects of pressure and viscosity (as they would derive from
the microscopic interactions between the particles). While the background on which
structure formation takes place, is a dynamics spacetime conforming to the FLRW-
symmetries, structure formation is well captured in the Newtonian limit, with both
Newtonian gravity in the form of a potential Φ, |Φ| ≪ c2 and with non-relativistic
velocities |υ| ≪ c in the comoving frame.

The formation of cosmic structure is a phenomenon that only involves weak,
Newtonian gravitational fields, slowly moving matter and scales much smaller than
the Hubble scale. Therefore, we are going to use a Newtonian description of gravity on
the relativistic FLRW-background, a nonrelativistic equation of motion and neglect
retardation effects due to the finite propagation speed of the gravitational field as
well as gravitative effects on moving objects such as gravitomagnetic forces.

As coordinates, we use the conformal time η and comoving coordinates xi as
those coordinates are particularly suited for FLRW-spacetimes, implying that the
rate of change of physical coordinate r = ax with physical time gives rise to two
contributions in velocity:

dr
dt

= ȧx + aẋ = aHx + aẋ = aHx + υ (H.388)

with the peculiar velocity υ relative to the Hubble flow. Clearly, both terms would
contribute to a measurement of redshift. The peculiar velocity υ would likewise be
the rate of change of comoving coordinate with conformal time,

υ = aẋ = a
dη
dt︸︷︷︸

=1/a

dx
dη

=
dx
dη

(H.389)

Comoving coordinates have the advantage that the advection of matter due to
the Hubble-expansion is absorbed by the coordinates, and we only need to consider
relative motion of particles with respect to the comoving coordinate frame. Being a
hydrodynamical self-gravitating phenomenon, structure formation is described in
the this comoving frame by the system of differential equations composed of (i) the
continuity equation

∂
∂η
δ + div [(1 + δ)υ] = 0, (H.390)

which relates the time-evolution of the density field to the divergence of the matter
fluxes ȷ = (1 + δ)υ, (ii) the Euler-equation

∂
∂η

υ + aHυ + (υ∇)υ = −∇Φ, (H.391)

which describes the evolution of the peculiar velocity field υ from the gradient ∇Φ
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h. cosmic structure formation

of the peculiar gravitational potential Φ, acting on a fluid element, and finally (iii)
the comoving Poisson-equation

∆Φ =
3
2
Ωm(η) (aH)2δ =

3H2
0Ωm

2a
δ, (H.392)

which gives the gravitational potential Φ induced by the matter distribution δ

(Newton’s constant has been replaced with the definition of the critical density,
ρcrit = 3H2

0/(8πG) and the density parameter Ωm = ρ̄/ρcrit. In the last step, we used
the adiabatic relation

Ωm(a)
Ωm

=
H2

0

a3(1+w)H(a)2
(H.393)

while setting w = 0 for nonrelativistic matter.
The three equations are sufficient to describe the dynamics of the three relevant

fields δ, υ and Φ, because there are no dissipative and pressure forces due to the
collisionlessness of dark matter, and it is not necessary to track the energy balance or
to introduce and an equation of state parametrising the pressure-density relation.

H.2 Linearised equations on an expanding background

Linearisation of the structure formation equations by substituting a perturbative
expansion and neglecting all terms involving products of two or more fields. This
methods yields the linearised continuity equation,

∂
∂η
δ + divυ = 0, (H.394)

and the linearised Euler-equation,

∂
∂η

υ + aHυ = −∇Φ, (H.395)

which are valid as long as the deviation from the mean density is small, |δ| ≪ 1.
The Newtonian Poisson-equation is always linear, or the superposition principle of
classical gravity would not apply.

The three linearised relationships between δ, υ and Φ can be combined into
the growth-equation: By taking the divergence of the Euler-equation and the time-
derivative of the continuity-equation one can eliminate ∂divυ/∂η and re-substitute
the continuity equation to obtain an expression

∂2

∂η2 δ + aH
∂
∂η
δ = ∆Φ (H.396)

where, after substitution of the Poisson-equation for ∆Φ all spatial derivatives have
vanished. This implies that structure growth in the linear regime is homogeneous
and can not depend on position. It merely scales all amplitudes in the density field
with a factor that only depends on time, δ(x, η) = D+(a)δ(x, η = 0), and this factor is
commonly referred to as the growth function D+(a).

One can continue to replace the time derivatives with respect to conformal time η
by derivatives with respect to the scale factor a to obtain
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h.3. peculiar velocity field

d2

da2 D+(a) +
1
a

(
3 +

d ln H
d ln a

)
d
da

D+(a) =
3

2a2Ωm(a)D+(a). (H.397)

where the dependence on the background cosmology is clearer, and reflects the
change of the Hubble function, i.e. acceleration or deceleration in the Hubble rate H(a)
as well as the change of the background matter density with time. The homogeneity
of the growth is the reason why e.g. inflationary models of structure formation can be
investigated by observations of the statistical properties of the large-scale structure
today: Even though inflation takes place at incredibly high redshifts of z ≃ 1030,
the cosmic structure is conserving the density field perfectly as long as it is linearly
evolving.

Homogeneous structure formation corresponds to independently growing Fourier
modes,

δ(x, a) = D+(a)δ(x, a = 1) −→ δ(k, a) = D+(a)δ(k, a = 1), (H.398)

which conserves every statistical property of the initial conditions, in particular
Gaussianity. The Gaussianity of the initial density perturbations is a consequence of
inflation, where a large number of uncorrelated quantum fluctuations are superim-
posed, yielding a Gaussian amplitude distribution due to the central limit theorem.
In fact, homogeneous growth in the linear regime is the reason why investigation of
inflationary processes in structure is possible by observing the large-scale structure
today, even after the cosmic time 1/H0 has passed.

A convenient way for approximating the growth function is the γ-parameter,
introduced by in the study of peculiar velocities:

d ln D+

d ln a
≃ Ωm(a)γ, (H.399)

with γ ≃ 0.6 in ΛCDM. Solving this equation for the growth function yields

D+(a) = exp


a∫

0

d ln aΩm(a)γ

 . (H.400)

In dynamic dark energy models, γ can be approximated by γ ≃ 0.55 + 0.05(1 + w(z =
1)) with the dark energy equation of state parameter taken at unit redshift. The
effect of adding a fluid with a negative equation of state is a slower growth in the
recent cosmic past and a faster growth in the remote past (if the growth function is
normalised to unity today). Solutions for D+(a) for different dark energy cosmologies
are compared in Fig. 10.

H.3 Peculiar velocity field

Matter streams in the large-scale structure drive structure formation: If they converge,
they transport matter into a volume and increase the local density, according to the
continuity equation. In order to investigate the properties of the velocity field one can
carry out a Helmholtz-decomposition into its curl and gradient components θ = divυ
and ω = rotυ. From the Euler-equation one obtains and evolution equation for the
divergence of the matter fluxes ,
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Figure 10: Growth functions D+(a) for different dark energy cosmologies, as well as the
derivative dD+/da

∂
∂η
θ+ aHθ+

3H2
0Ωm

2a
δ = 0 (H.401)

and the corresponding equation for the vorticity ω,

∂
∂η

ω + aHω = 0. (H.402)

With the definition of the differential of the conformal time, da = a2Hdη, one
immediately notices that d lnω = −d ln a, and hence ω ∝ 1/a in the matter dominated
phase: Vorticity can not be generated in linear structure formation in collisionless
fluids, and the flows are necessarily laminar. The divergence θ can be linked to the
evolution of the density field using the continuity equation,

θ = −aH
d ln D+

d ln a
δ, (H.403)

which underlines the fact that in the linear regime of structure formation, the velocity
field is the gradient of a potential. At the same time, eqn. H.403 suggests that a natural
scale for the velocity divergence is the comoving Hubble-rate aH.

H.4 Linear structure formation

The linear growth equation is given by

d2D
da2 +

1
a

(
3 +

d ln H
d ln a

)
dD
da

=
3

2a2Ωm(a)D(a) = 0. (H.404)

Therefore, linear cosmic structure formation is governed by magnitude and time
evolution of two terms: the density of matter as given by Ωm(a) and the term 3 +
d ln H/d ln a describing a change in the expansion rate. This latter term is sometimes

90



h.4. linear structure formation

referred to as Hubble-drag, but although the interpretation as a drag term is formally
correct it does not represent the physical picture correctly. In particular it would be
wrong to formulate a time-scale for Hubble expansion 1/H(t) and compare it to a
time scale t = 1/

√
Gρ because the structure in the overdensity field δ are invariant

in shape and amplitude under Hubble-expansion as both densities ρ(x, a) and ρ̄

scale identically ∝ a−3. The relevant physical mechanism is an acceleration of matter
relative to the Hubble expansion and a change in the expansion velocity, i.e. an
acceleration or deceleration in the cosmological model. This is apparent when writing
the growth equation with e.g. the scale factor a as an evolution parameter. In this
case, the Hubble-drag term reflects a derivative of the Hubble-expansion with a, and
the term 3 + d ln H/d ln a is in fact equal to 2 − q, with the deceleration parameter
q = −äa/ ȧ2.

Linear structure formation is scale invariant, at a rate determined purely by the
FLRW-cosmology through q and H, which determines the evolution of Ωm and hence
of the strength of gravitational fields through the relation

Ωm(a)
Ωm

=
H2

0

a3H(a)2 (H.405)

as a consequence of the continuity equation for normal matter with w = 0, which
itself is a consequence of conserved 4-momentum ∇µTµν = 0. As such, it allows the
investigation of the the cosmological model through the Hubble function and its
derivative if measurements of the amplitude of structures as a function of scale factor
or redshift are available. Redshift information is crucial because the same amplitude
of cosmic structures is reached in different cosmologies at different times, and this
information would be impossible to disentangle without redshift information.

The influence of the two terms 3 + d ln H/d ln a and 2 − q on the growth equation
are straightforward to understand in the context of standard cosmologies with two
relevant fluids, with dark matter dominating at early and dark energy dominating at
late times. In these cosmologies the universe makes a transition from deceleration to
acceleration, which is reflected by the growth rate D(a). During matter domination,
the Hubble function scales H ∝ a−3/2 which transitions in the course of cosmic
evolution to dark energy domination, where in the extreme case of a cosmological
constant H = const. The derivative 3 + d ln H/d ln a would change from 3/2 at early
times to 3 at late times, therefore slowing down structure formation. A similar
behaviour is found in the matter density, which starts at the value Ωm = 1 in matter
domination and drops to 0 when the dark energy component dominates. In summary,
there are now two reasons why structure formation stops at late times under the
influence of a cosmological constant: The driving term involvingΩm, which originates
from the Poisson-equation, becomes very small and the damping term 3+d ln H/d ln a
assumes the largest possible value.

There are certain cosmologies, where the growth equation has particularly simple
solutions. For instance, in a critical FLRW-universe with a constant Ωm = 1 requires
D(a) = a. By substitution into the comoving Poisson-equation one immediately
sees that the Newtonian potentials Φ scale with D+/a and are in this particular
cosmological model constant in linear structure formation.

Therefore, structures grow proportional to the scale factor. For a general cosmol-
ogy one can at least infer the asymptotic behaviour by making a power law ansatz
for D as a function of scale factor at early times, D ∝ aα and consider solution to the
resulting quadratic equation in α, while the exact solution for an arbitrary cosmology
defined in terms of H(a) or q(a), or, in terms of the density parameters and their equa-
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h. cosmic structure formation

tions of state, is only possible numerically. It is sufficient to formulate the ansatz as a
proportionality D ∝ aα because the growth equation is a linear differential equation.
Physically, this means that structure growth continues irrespective of the amplitudes
of the density field.

To begin, we consider the entire linear growth equation again in the Ωm = 1-
cosmology, which yields as a characteristic polynomial α2 + α/2 − 3/2 = 0, which is
solved by α+ = 1 and α− = −3/2: The growth is proportional to the scale factor, as
already found by direct substitution, D+(a) ∝ a, with a secondary solution D−(a) ∝
a−3/2: Due to the fact that the growth equation is of second order in a one expects two
solution branches, which need to be combined by linear combination with suitable
coefficients such that the boundary condition D(a) = 1 at a = 1 is met. Usually one
neglects the branch D−(a) because it decreases rapidly.

In addition, it is possible to illustrate the behaviour of the growth equation of
individual terms are set to zero and are therefore disfunctional. For instance, the
growth in a cosmology with an arbitrary but constant deceleration parameter q, but
where gravity in structure formation has been switched off leads with the same ansatz
D(a) ∝ aα to a characteristic polynomial α(α + 1 − q) = 0 with the two solutions
D+ = const for α = 0 and D− ∝ aq−1. Taking this to extremes, the dark energy
dominated universe with q = −1 and Ωm = 0 has α(α + 2) = 0, implying a constant
growing mode D+ = const and a fast decaying mode D+ ∝ a−2: structure growth
is frozen and the amplitudes reached at the point of dark energy domination are
conserved from that point on.

Conversely, in an artificial inconsistent universe with a constant expansion rate
(vanishing deceleration q = 0) and gravitational fields generated by the large-scale
structure with Ωm = 1 one would obtain α + α − 3/2 = 0, with the solutions α =
(−1 ±

√
7)/2 with a growing α > 1 and a decaying solution α < 1. Clearly, this is the

prototype solution to the differential equation, where the two solutions are modified
in any consistent cosmology relative to their actual deceleration and matter density,
including their evolution.

H.5 Nonlinear structure formation

As long the structure formation is linear, the growth is homogeneous and conserves
the Gaussianity of the initial conditions. Nonlinear structure formation implies inho-
mogeneous growth and the emergence of non-Gaussian features, which is illustrated
by a number of arguments: Non-linearity implies inhomogeneity, because if e.g. a void
reaches underdensities close to δ ≃ −1 (corresponding to ρ ≃ 0), the linearisation fails
and the growth has to slow down locally. Inhomogeneity implies non-Gaussianity
because the initially Gaussian distribution p(δ)dδ becomes wider with increasing
amplitudes δ, but the density δ can not be more negative than −1, requiring the am-
plitude distribution p(δ)dδ to become asymmetric and to acquire a nonzero skewness.
For completing the argument one immediately notices that in inhomogeneous growth,
i.e. a position dependence of the growth rate D+(x, a), the Fourier-modes δ(k, a) be-
come coupled, violating the central limit theorem such that the superposition of
Fourier-modes yields a non-Gaussian amplitude distribution.

• linearity↔ homogeneity

· There are no spatial derivatives in the growth equation, and therefore,
the growth must be homogeneous δ(x, a) = D+(a)δ(x). Only nonlinear
terms would bring in spatial derivatives and make the growth position
dependent.
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h.6. eulerian perturbation theory

· If the density field is close to δ = −1 somewhere, the growth needs to slow
down locally, which leads to different structure formation rates at different
positions which eventually breaks homogeneity.

• linearity↔ Gaussianity

· Linear growth introduces a scaling with a function D+ which itself is a
linear transform and therefore preserves statistical properties.

· Again, if δ approaches −1, the initially Gaussian distribution starts to
become asymmetric, as it generates potentially very large positive values
for δ but has to be zero for δ < −1.

• homogeneity↔ Gaussianity

· Homogeneous growth δ(x, a) = D+(a)δ(x) implies independent growth of
all Fourier-modes δ(k, a) = D+(a)δ(k), as the Fourier-transform is linear. If
a large amount of statistically independent Fourier-modes is superimposed
(by inverse Fourier-transform), the resulting δ is a Gaussian distribution.

· Inhomogeneous growth δ(x, a) = D+(x, a)δ(x) results in a convolution in
Fourier-space

δ(k, a) =
∫

d3k′

(2π)3 D+(k − k′ , a)δ(k′) (H.406)

with a position-dependent growth rate, which breaks the statistical inde-
pendence by coupling Fourier-modes. Then, the resulting distribution can
not be Gaussian anymore.

H.6 Eulerian perturbation theory

The non-linearities in the continuity and Euler-equation make a closed analytical
solution impossible. It is possible, however, to obtain a perturbative solution to the
structure formation equations, which contains the mode coupling mechanism and
describes the generation of non-Gaussianities in nonlinear structure formation. The
non-linearities in the continuity- and the Euler-equation translate to convolutions of
the density and the velocity fields in Fourier space which couple the individual Fourier
modes, violating the central limit theorem and therefore violating Gaussianity. It is
worth noting that in the perturbative expansion each field δ(n) grows homogeneously
at the rate Dn

+(a), but the sum does not.
Applying a perturbative solution means to write out perturbation series for δ and

Θ in terms of powers of the linear solutions

δ(x, t) =
∑
n

δ(n)(x, t) and Θ(x, t) =
∑
n

Θ(n)(x, t) where Θ =
divυ
aH

(H.407)

and substituting them into the fully nonlinear equations:

∂τδ + div((1 + δ)υ) = 0 and ∂τυ + aHυ + (υ∇)υ = −∇Φ (H.408)

where the comoving divergence is computed for the second equation. Differential
equations become algebraic in Fourier space, therefore continuity reads
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h. cosmic structure formation

∂τδ(k) + Θ(k) = −
∫

d3k1

(2π)3

∫
d3k2

(2π)3Θ(k1)δ(k2)δD(k − k12)α(k1, k2) (H.409)

and similarly, the Euler-equation becomes

∂τΘ(k)+aHΘ(k)+
3
2
Ωm(aH)2δ(k) = −

∫
d3k1

(2π)3

∫
d3k2

(2π)3Θ(k1)Θ(k2)δD(k−k12)β(k1, k2)

(H.410)

keeping in mind that products in real space become convolutions in Fourier-space,
here expressed by introducing the Dirac-δD function. The derivatives are expressed
with

α(k1, k2) =
1

k2
1

k12k1 (H.411)

as well as
β(k1, k2) =

1

2k2
1k

2
2

k12k1k2 (H.412)

with the abbreviation k12 = k1 + k2. Substitution of the perturbation series yields a
recursive relation

δn(k) =
∫

d3q1 . . .

∫
d3qnδD(k − q1...n)Fn(q1 . . . qn)δ1(q1) . . . δn(qn) (H.413)

for the density field, as well as

Θn(k) =
∫

d3q1 . . .

∫
d3qnδD(k − q1...n)Gn(q1 . . . qn)δ1(q1) . . . δn(qn) (H.414)

for the velocity divergence. Here, Fn is a function of Fn(Fn−1, Gn−1) and the same for
Gn, all defined inductively starting at F1 = G1 = 1.

The lowest order symmetrised solutions for Fn are F1 = 1 and

F2(q1, q2) =
5
7

+
µ

2

(
q1

q2
+
q2

q1

)
+

2
7
µ2 with µ =

q1 · q2
q1q2

(H.415)

being the cosine of the angle between q1 and q2. Assuming q1 = q2 for simplicity,
the mode coupling function F2 attains the largest value of F2 = 2 if the wave vectors
are parallel (µ = +1), an intermediate value of F2 = 5/7 if q1 ⊥ q2 (µ = 0) and the
smallest value of F2 = 0 if the the wave vectors are antiparallel (µ = −1). Varying the
wave numbers at fixed separation angle µ shows that F2 is smallest if q1 = q2, and that
the mode coupling increases if the wave numbers are chosen differently. From this
point of view, mode-coupling bears resemblance to a resonance phenomenon, where
modes with identical direction of propagation experience the strongest coupling. The
perturbative solution to the system of equations eqns. (H.390) and (H.391) in terms
of a perturbation series in δ and υ is possible due to their renormalisation properties,
which hold exactly in the case of SCDM (Ωm = 1, Ωϕ = 0) and approximately for dark
energy cosmologies. In these cosmologies, the mode coupling kernels themselves
acquire a slow time dependence.
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h.7. dark matter in astrophysical systems

In application to statistics, any correlation function of nonlinear fields can reduced
to a higher-order correlation function of the linearly evolving fields, which obey Gaus-
sian statistics, integrated over momentum space with the mode coupling function as
a weighting function. While odd n-point correlation functions of Gaussian random
fields are equal to zero, even n-point functions can be decomposed into products of
two-point functions by virtue of the Wick-theorem,

⟨δ(k1) . . . δ(kn)⟩ =
∑
pairs

∏
i,j∈pairs

⟨δ(ki)δ(kj )⟩ (H.416)

for which a proof can be found in e.g. and which constitutes an extension of the
well-known relation ⟨δ2n⟩ = (2n − 1)!!⟨δ2⟩n for the higher moments of a Gaussian
random variable δ with ⟨δ⟩ = 0.

H.7 Dark matter in astrophysical systems

With the idea, that all forms of matter, including dark matter, are effected in the same
way by gravity as commanded by the equivalence principle of general relativity one
would conclude in a range of astrophysical system that the strength of gravitational
field can not be explained by luminous matter alone.

H.7.1 Rotation curves of galaxies

Setting up circular orbits for stars in a galactic disk in the gravitational potential of a
galaxies would use the condition

υ2

r
=

dΦ
dr

→ υ2 = r
dΦ
dr

(H.417)

The gravitational potential Φ would result from solving the Poisson-equation for the
total matter density ρ

∆Φ =
1
r2

d
dr

(
r2 dΦ

dr

)
= 4πGρ (H.418)

With a matter profile ρ ∝ 1/r2 one would obtain, after multiplying with r2, integrat-
ing and multiplying with 1

r2 the result

dΦ
dr

= 4πG
1
r2

∫
dr

1
r2 r

2 =
4πG
r

=
υ2

r
(H.419)

implying that the rotational velocity υ does not depend on radius r anymore, suggest-
ing the idea that the galactic disc is embedded into a much larger dark matter halo
with density ρ ∝ 1/r2, which sources the gravitational potential, and which naturally
reproduces the observed flat rotation curves.

There are theories that modify dynamical laws in the regimes of really small
accelerations which can reproduce galaxy rotation curves even if the gravitational
potential is sourced by the visible matter only. The scale at which these MO(dified)
N(ewtonian) D(ynamics) theories change the equations of motion is for accelerations
close to a0 ≃ 10−10m/s2, which corresponds to the acceleration experienced by the
Solar System on its orbit around the Milky Way centre. An example of a rotation
curve in a low surface-brightness galaxy is provided by Fig. 11.
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Figure 11: Rotation curve of the galaxy U11616 with an fit to the rotational velocity as a
function of radius

H.7.2 Virial equilibria of clusters of galaxies

On the scale of galaxy clusters one again notices similar mismatch: The velocities of
the galaxies are too large to be compatible with the gravitational potential if only
visible matter should contribute to it. From the positions qi and the momenta pi of
all galaxies in a cluster one defines the virial G,

G =
∑
i

piqi (H.420)

with the time deriative

dG
dt

=
∑
i

dpi
dt

qi + pi
dqi
dt

=
∑
i

Fiqi + m
∑
i

q̇i q̇i (H.421)

where Newton’s equation of motion dpi /dt = Fi and the definition of momentum
pi = mq̇i was substituted. Particularly in systems with potentials of power-law shape
allow a very compact statement: If Φ is the mutual interaction potential of the particle
j onto particle i

Φ(qi , qj ) ∝ |qi − qj |
n (H.422)

one can find

∑
i

Fiqi = −1
2

∑
i

∑
j

dΦ(qi , qj )

dqij

∣∣∣qi − qj ∣∣∣2
qij

= −1
2

∑
i

∑
j

dΦ(qi , qj )

dqij
qij (H.423)

and in particular for homogeneous potentials of order n that

1
2

∑
i

∑
j

dΦ(qi , qj )

dqij
qij =

n
2

∑
i

∑
j

Φ(qi , qj ) =
n
2

V (H.424)
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h.7. dark matter in astrophysical systems

with V =
∑
i

∑
j
Φ(qi , qj ) and T = m/2

∑
i
q2
i . We can therefore conclude that

dG
dt

= 2T − nV (H.425)

The time averaging yields

〈
dG
dt

〉
=

1
∆t

∆t∫
0

dt
dG
dt
≤ 1
∆t
|Gmax − Gmin| (H.426)

if G has a finite range of values, typically realised for systems bounded in the phase
space coordinates, the average vanishes in the limit ∆t →∞, and therefore the virial
theorem applies,

2⟨T⟩ = n⟨V⟩ (H.427)

For Newtonian gravity with a Coulomb-potential we insert n = −1 and get

⟨T⟩ = −1
2
⟨V⟩ (H.428)

as well as a negative total energy

⟨T⟩ + ⟨V⟩ = ⟨T⟩ − 2⟨T⟩ = −⟨T⟩ < 0 (H.429)

indicating a bound system. ⟨T⟩ can be measured from the velocity of the galaxies
inside the cluster and the potential ⟨V⟩ can be determined from the total mass and
size, typically ⟨V⟩ ∼ M/R. Observations, either of the peculiar velocity of galaxies
and a mass estimate based on luminosity, or of X-ray temperature and luminosity,
show a striking mismatch between data and theory and one would need a n of a
few hundred to reconcile ⟨T⟩ with ⟨V⟩, which is clearly at odds with Newtonian
gravitational potentials, or alternatively, that there is much more gravitating matter
present in these systems compared to luminous matter.

H.7.3 Gravitational lensing

Substituting non-relativistic particles with relativistic photons for probing gravi-
tational potentials leads to the topic of gravitational lensing. Photons travel along
null-geodesics of spacetime, which would be lines with vanishing ds2 for instance on
a Minkowski-background

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
dxidx

i = 0 (H.430)

slightly curved by a (static) gravitational potential |Φ| ≪ c2. It is sufficient to work
with a perturbed Minkowski-metric instead of a FLRW-metric because of conformal
flatness of the background: With a suitable choice of conformal time as a coordinate
light propagation is impervious to the background dynamics and identical to that in
special relativity.
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h. cosmic structure formation

The effective speed of propagation of light is the rate at which the coordinates
pass as a function of time,

c′ =
d|xi |
dt

= c

√√
1 + 2Φ

c2

1 − 2Φ
c2

≃ c
(
1 − 2Φ

c2

)
(H.431)

where we used the approximation 1/(1 + ϵ) ≈ 1 − ϵ for |ϵ| ≪ 1. With c′ , c it is
suggestive to define a refractive index

n =
c′

c
≈ 1 − 2Φ

c2 (H.432)

The factor of 2 in the effective propagation speed is typical for relativistic particles
like photons, on which the effects of gravitational fields is stronger compared to non-
relativistic particles. In fact, gravitational time dilation for non-relativistic particles
is determined through the interpretation of the line element ds as the elapsed proper
time dτ

ds2 = c2dτ2 (H.433)

such that
dτ2 =

(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
dxidx

i (H.434)

If the velocities are small, the displacement in the dxi-directions are small compared
to those into the dt-direction:

dτ2 =
(
1 +

2Φ
c2

)
c2dt2 → dτ ≃

(
1 +

Φ

c2

)
dt (H.435)

with the approximation
√

1 + 2ϵ ≃ 1 + ϵ, again for |ϵ| ≪ 1. Comparing these two
results with Fermat’s principle for photons and Hamilton’s principle for the motion
of massive particles now shows that the effect of gravitational fields on photons is
twice as large as that on non-relativistic particles.

Gravitational lensing would be described by the geodesic equation

d
dλ

kα = −Γ αµν kµkν with kµ =
dxµ

dλ
(H.436)

where the wave vector kµ is tangent to the trajectory xµ(λ) and normalised to zero.
Using the invariance of geodesics under affine reparameterisation we can choose λ to
yield kt = 1, kiki = −1, such that kµkµ = (kt)2 − kiki = 0.

The geodesic equation is an implicit relation: one needs to know the trajectory xµ

as the integral curve over kµ to be able to evaluate the Christoffel-symbol Γ αµν at the
right location: In actual numerical application it needs to be solved as a differential
equation. To circumvent this, one uses the Born-approximation and assumes that
the deflections are small, such that the change of the wave vector δkα are computed
relative to fixed tangents kµ resulting from a solution of the geodesic equation for the
background. Then, only the perturbations δΓ αµν determine the deflection:

d
dλ
δkα = −δΓ αµν kµkν (H.437)

98
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The changes to the propagation direction can be integrated up directly

δkα = −kµkν
∫

dλ δΓ αµν (λ) (H.438)

The perturbed Christoffel-symbols δΓ αµν are given by the usual relation

δΓ αµν =
ηαβ

2

(
∂µhβν + ∂νhµβ − ∂βhµν

)
(H.439)

as derivatives of the weakly perturbed metric

gµν = ηµν + hµν and gµν ≈ ηµν − hµν ≃ ηµν (H.440)

If we assume that the perturbations correspond to Newtonian gravitational potentials,
as the perturbed Christoffel-symbols contain gradients of Φ. To evaluate the geodesic
equation further we can assume that the unperturbed propagation proceeds into the
z-direction and that the gradients in Φ deflect the photons into the perpendicular
directions:

δki = −kµkν
∫

dλ δΓ iµν = −
∫

dλ
(
δΓ itt + 2δΓ itz + δΓ izz

)
(H.441)

Inspecting the explicit expressions for the Christoffel-symbol yields

δΓ itt =
ηiβ

2

(
∂thβt + ∂thtβ − ∂βhtt

)
=

1
2
∂ihtt =

1
c2∂

iΦ (H.442)

as well as

δΓ itz =
ηiβ

2

(
∂thβz + ∂zhzβ − ∂βhtz

)
= 0 (H.443)

and

δΓ izz =
ηiβ

2

(
∂zhβz + ∂zhzβ − ∂βhzz

)
=

1
2
∂ihzz =

1
c2∂

iΦ (H.444)

making heavy use of the diagonal form of the metric and its inverse, and ignoring
derivatives along the direction of propagation z. Collecting all results gives for the
gravitational light deflection angle α̂ = δki /kz ≃ δki

δki = − 2
c2

∫
dλ ∂iΦ (H.445)

In the lensing deflection, the scale of the potential Φ is set by c2, and the factor 2
originates from the fact that photons as relativistic test particles are more sensitive to
gravitational potentials than massive particles. The relevant gradients of Φ are those
perpendicular to the line of sight.
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H.8 Properties of dark matter

A number of experiments (rotation curves of galaxies, virial equilibria in galaxy clus-
ters, gravitational lensing, amplitude of CMB temperature fluctuations) suggests the
existence of non-baryonic dark matter. Dark matter is significantly more abundant
than normal matter, as Ωm/Ωb ≃ 7, and has extreme properties. Apart from exotic
models of macroscopic dark matter such as primordial black holes, many cosmolo-
gists suspect dark matter to be made up from yet undetected elementary particles,
for instance by WIMPs in the TeV-range, or by ultra-light axions. The dark matter
particles are required to interaction by the weak force and by gravity, and they are
required to have these properties:

• Dark matter is cold, meaning that there is little or none thermal motion of the
dark matter particles. Therefore, this kind of dark matter is non-relativistic,
and as there is no thermal motion of the particles, any structures on small scales
seeded by cosmic inflation is preserved: Neither diffusive motion of the dark
matter particles themselves nor radiation pressure can break up small-scale
structures.

• Dark matter is, well, dark and shows no signs of interactions through elec-
tromagnetism: There are no annihilation or decay processes of dark matter
producing photons, nor are there effects of radiation pressure on dark matter
particles.

• In fact, the only appreciable interaction of dark matter is gravitational, and
its presence manifests itself in rotation curves, virial equilibria, gravitational
lensing or in the amplitude of CMB-fluctuations.

• Dark matter is collisionless, meaning that there is only a very small cross-
section for elastic collisions, as demonstrated e.g. by the bullet cluster: In this
system, ob observes a merging of two clusters at high velocity, where the dark
matter component as mapped out by lensing is unperturbed in the passage of
the two clusters, whereas the baryonic component is not, which clearly indicates
differences in the fluid mechanics of the two components: It is not possible
to predict fluid properties like pressure and viscosity from the microscopic
interaction of particles for dark matter.

H.9 Spherical collapse of dark matter haloes

The gravitational dynamics of a homogeneous sphere of matter under its own gravity
is, due to its high degree of symmetry, one of the few exactly solvable systems, in
Newtonian gravity as well as in general relativity. A spherically symmetric pertur-
bation would initially follow the Hubble-expansion, but its own gravity would slow
down the local expansion rate, ultimately stalling the perturbation and decoupling it
from the Hubble-flow, before it collapses on itself. During the collapse one can expect
that virialisation processes take place such that a stabilised bound state is reached, in
which the baryonic component can cool and form stars.
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h.9. spherical collapse of dark matter haloes

In classical gravity the radius R of a spherical perturbation of mass M follows the
Newtonian equation of motion

R̈ = −GM
R2 (H.446)

The instant t at which the radius stalls, Ṙ = 0, defines the moment of turn-around.
With aa and Ra as scale factor and radius at turn-around, respectively, on defines the
dimensionless variables x = a

aa
and y = R

Ra
.

If we assume for simplicity a flat, matter-dominated FLRW background with
Ωm = 1 the Hubble function is given by

H =
ȧ
a

= H0a
−3/2 (H.447)

And, due to flatness and matter-domination, ρ = ρcrit, and we can define a dimen-
sionless parameter

τ = Hat = H(aa)t = H0a
−3/2
a t (H.448)

which allows to re-express the dynamical equations for x as

x′ =
dx
dτ

=
dt
dτ

dx
dt

=
1

Ha
ẋ =

1
Ha

ȧ
aa

=
1

Ha

a
aa

ȧ
a

=
H
Ha

x (H.449)

substituting the Friedmann-equation in the last step. Similarly,

R̈ = −GM
R2 = −4πG

3
ρaR3

a
1

R2 (H.450)

with the background density ρa = 3H2
a

8πGξ the density contrast at turn around ξ > 1. In
a similar way, the dynamical equation for y can be rewritten

y′′ = − ξ

2y2 (H.451)

with the natural initial conditions y
′ ∣∣∣
x=1

= 0 and y
∣∣∣
x=0

= 0. The collapse equations
are solved analytically through

dx
dτ

= x−1/2 → dτ = x1/2dx → τ =
2
3
x3/2 + c (H.452)

as well as

y
′

= ±
√
ξ

√
1
y
− 1 (H.453)

which can be combined to

τ =
1
√
ξ

(1
2

arcsin(2y − 1) −
√
y − y2 +

π

4

)
(H.454)

At turn around x = y = 1 one obtains τ = 2
3 leading to ξ =

(
3π
4

)2
. The density inside
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the halo results from the ratio

∆ =
(
x
y

)3

≈ 1 +
3
5
y︸︷︷︸

=δ

(H.455)

If we now extrapolate the density to x = 1 by δa = δ
x = 3y

5x and use

1
x

=
(3τ

2

)−2/3
≈

(3π
4

)2/3 1
y
→ δa =

3
5

(3τ
4

)2/3
(H.456)

we receive the time τ = 4
3 of the collapse. From this one can deduce a linear growth

up to the critical density δc
δc = 22/3δa ≈ 1.69 (H.457)

at which the collapse sets in.

H.10 Mass function of dark matter haloes

The central result on spherical collapse was the overdensity of δc ≃ 1.69 for a pertur-
bation to collapse in its own gravitational field against the Hubble-expansion of the
background. This number can be used to determine the number of objects such as
clusters or galaxies per comoving volume that can form from initial conditions with
suitably high initial densities. The formalism for achieving this was discovered in
three different contexts: Assuming that the noise in an electric circuit is described by
a one-dimensional Gaussian random field, the probability for a peak in the voltage
exceeding a certain threshold would result from the spectrum of the fluctuations. Sim-
ilarly, the occurrences of waves on the surface of the ocean above a certain threshold
would likewise result from the fluctuation statistics of a Gaussian random field, now
in two dimensions. And lastly, objects like galaxies form if the density exceeds the
threshold for spherical collapse, and how often this happens in a comoving volume
in a Gaussian random field is an application of the same idea in three dimensions.

A spherical perturbation of radius R encloses the mass M

M =
4π
3

R3Ωmρcrit → R = 3

√
3M

4πΩmρcrit
(H.458)

with the ambient density Ωmρcrit, ρcrit = 3H2
0/(8πG), such that each mass M corre-

sponds to a length scale R(M). If we now filter the density field δ by convolution with
a filter WR of spatial size R(M)

δ̄(x) =
∫

d3x′WR(M)(|x − x′ |)δ(x′), (H.459)

then the convolved density field δ̄ consists of fluctuations that are massive enough
that they can form objects of mass M by spherical collapse. In Fourier-space, the
convolution relation reads

δ̄(k) = WR(k)δ(k) (H.460)
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h.10. mass function of dark matter haloes

with the Fourier-transform WR(k) of the filter function. The convolution as a lin-
ear operation does not change fundamentally the distribution of the density field
amplitude, but changes the variance. Working with a Gaussian distribution

p(δ̄, a) =
1√

2πσ2
R(a)

exp

−1
2

(
δ̄

σR(a)

)2 (H.461)

where the variance is growing in linear structure formation according to with the
relation

σ2
R(a) = σ2

R(today)D2
+(a) (H.462)

With this distribution we can ask how often in a fixed comoving volume the
smoothed density field reaches amplitudes sufficient for spherical collapse, i.e. where
the condition δ̄ > δc is fulfilled. The probability of finding those is equal to the volume
fraction filled with halos of mass M,

F(M, a) =

∞∫
δc

dδ̄ p(δ̄, a) =
1
2

erfc
(

δc√
2σR(a)

)
(H.463)

with the complementary error function erfc(). One determines the halo-distribution
by differentiation

∂F
∂M

=
dR
dM

dF
dR

δc

σRD+

d ln σR

dM
exp

−1
2

(
δc

σRD+

)2 (H.464)

because d
dxerfc(x) = 2√

π
exp(−x2). To obtain the comoving number density we divide

the by halos occupied volume fraction by the halo-volume 4π
3 R3 and get

n(M, a) =
ρ0√
2π

δc

σRD+

d ln σR

d ln M
exp

−1
2

(
δc

σRD+

)2 1
M

(H.465)

The mass function or Press-Schechter function n(M, a) is a valuable source of
cosmological information as it is sensitive to the shape of the CDM-spectrum P(k)
through the variance σ2

R and its derivative dσ2/dM. Practical numbers to remember
are about 100 clusters of galaxies above 5 × 1013M⊙/h in a volume of (100Mpc/h)3,
and about 104 galaxies with masses between 1011M⊙/h and 1012M⊙/h in the same
volume. An important caveat is that the number of haloes per comoving volume is not
observable, and neither would be comoving distance, but redshift is straightforwardly
observable. Then, a cosmological probe could be the number of haloes observed within
a fixed solid angle ∆Ω between two redshifts zmin and zmax

N =
∆Ω

4π

zmax∫
zmin

dz
dV
dz

∞∫
Mmin(z)

dM n(M, a(z)) (H.466)

where the minimal mass Mmin(z) for an object to be detectable is commonly de-
termined by the observational technique. But in almost all cases, the magnitude of
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Figure 12: Halo mass function n(M, z) at different redshifts

observable properties of haloes, like luminosity or temperature, scale with halo mass.
The comoving volume evolves with redshift z according to

V =
4π
3
χ3(a(z)) → dV

dz
=

da
dz

dχ
da

dV
dχ

(H.467)

Due to χ = c
∫

da/(a2H(a)) and a = 1/(1 + z) this expression becomes

dχ
da

=
c

a2H
as well as

da
dz

=
1

(1 + z)2 = a2 and therefore,
dV
dz

=
c
H

4πχ2

(H.468)

The halo mass function n(M, z) is shown in Fig. 12 for a ΛCDM-cosmology, in two
different parameterisations. Clearly, the most massive halos only appear at late times
in the Universe.
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