G FLUID MECHANICS

G.1 fluid mechanics as a continuum theory

The motion of matter on large scale and for small perturbations can be described
by fluid mechanics, such that the evolution of the cosmic density field and the
cosmic velocity field is determined through the equations of fluid mechancis, namely
the continuity and the Navier-Stokes equation, both with gravity as the driving
force of structure formation. For the purpose of this book we restrict ourselves to
nonrelativistic fluid mechanics with a Newtonian description of gravity and Galilean
relativity. The motion of a fluid is primarily determined by the continuity and the
Navier-Stokes equation, which determine the time evolution of the density and
the velocity fields, respectively. Fluid mechanics is a continuum theory, because it
considers the fluids as continuous media without any microscopic structure, and as
such it can only describe fluid elements which are large enough that they contain a
large number of particles. The description of collisionless systems under the influence
of gravity is conceptually not clear, because (i) individual particles can gain very
large velocities in many-body-interactions, such that the particle density might not
be sufficient to define a smooth fluid through averaging of particle properties and
because (ii) self-gravitating systems produce structures on small scales, which are
not wiped out by collisions such that in the averaging process in deriving smooth
fields information on the phase-space structure is lost.

It is very important to notice that both the continuity and the Navier-Stokes
equations are nonlinear, as both involve products between the density and the velocity,
and between the velocity and gradients of the velocity, respectively. In addition, the
equation of state p(p), if present in the Navier-Stokes equation, can be nonlinear as
well and can, in addition depend on other quantities, for instance the entropy density
s or temperature T, leading to additional terms in particular in the vorticity equation.
Alternative, one can choose to work with the momentum density pv instead of the
velocity v, which would render the continuity equation linear but would make the
gravitational force in the Navier-Stokes equation nonlinear.

G.2 From relativistic to non-relativistic fluid mechanics

Energy-momentum conservation in the covariant form V, TF” = 0 is equivalent to
relativistic fluid mechanics of ideal fluids. In the non-relativistic limit with slow
velocities [v] < ¢ on a Minkowski-background with g,, = n,, and I}, = 0. In
the non-relativistic limit, p < pc? and the motion of the fluid elements proceeds
essentially only in d¢-direction:
209,80 + (39 it v 0 j Vp
pc(d:p) + (B'91)P)) = p(drv) +0'9jv)) = =d/p or Jiv+ (VW)v = 7?
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=ulVyu¥=utd,u¥

(G.332)

which is exactly the non-relativistic Euler-equation. Including gravity requires to use
gy instead of 1, with a corresponding nonzero Christoffel-symbol. In the weak-field
limit |®| < ¢? on has the line element

20 20 ;
ds? = |1+ = |c2dt? - (1 - = |dx;dx’ (G.333)
c2? c?
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where only the first term contributes as the displacements in the spatial dx'-directions
are small:

20
gu=1+— (G.334)

The gravitational acceleration is computed from the Christoffel symbols
g%
I‘a}w = — (awgﬁv - avgv_(g + aﬁg}w) (6335)

where in the weak-field limit the inverse metric is replaced by the (inverse) Minkowski
metric g*F = 1% but of course the gradients dpgyuv are kept. In static gravitational
fields d;g,p = 0 and only nonzero spatial derivatives d;gqp = C%aiCDéaﬁ, from which
one would expect gradients d/® to appear:

ul(Vyu?) = ut(dyu” + Ty u®) = uhdyu” + T utu® (G.336)

The three terms naturally correspond to gravitational acceleration in an inhomoge-
neous field, to the Coriolis- and centrifugal accelerations:

M =T% ' ut AT utu DY utu AT W (G.337)
—_———— NN
c oIy, cvf oo
1

The first term is clearly dominating for small velocities

. . S 1.
u'Vou' = utdu’ + FVW uhu® = 9,8 + (V') T, ¢? = —Bafp (G.338)

with the Christoffel-symbol T,

= g+ Buges - dn) = -2
Iy = 5 (018tk + 918kt — Ik &1t) = 2 (G.339)

as only the last term g;; = 2®/c? contributes and the first two terms vanish, because
of the assumption of static gravitational fields. At the same time, the terms I‘ltj and

Fijk offer a natural and consistent way to incorporate other inertial accelerations. So
the final result is the non-relativistic Euler-equation with gravity

o) + 1190 = —éajp -0ld or Jdw+ (VW= —%Vp -Vo (G.340)

It is quite interesting that the nonlinearities in the fluid-mechanical equations have a
relativistic origin, and that one needs empirical reasoning to make sense of them in
classical mechanics. The advective term (v - V)v is interpreted as the rate of change
of the velocity at a fixed point in the laboratory frame as the flow sweeps new fluid
elements to this point which may carry a different velocity (the velocity the fluid
element has had upstream an infinitesimal time in the past), while only d;v is the
proper rate of change of the flow velocity, measured in terms of coordinate time
instead of proper time.
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G.3 Continuity

The continuity equation is an expression of the conservation of matter. If the density
field changes in a volume element at a fixed point it must necessarily be because
fluxes have converged and have transported matter into that element:

d;p + div(pv) = 0. (G.341)

The interpretation of the continuity equation is particularly clear if one applies the
Gauss-theorem:

jdV dip = %J-dv p= %M = —jdV div(pv) = —J-dA - (pv), (G.342)
v v v v

such that the mass M changes if there are fluxes through the surface of the volume
element. The continuity equation is nonlinear because the definition of the flux pv
involves the product of two fields.

G.4 Navier-Stokes equation

The Navier-Stokes equation is the equation of motion for fluid elements as a generali-
sation of Newton’s third axiom,

dyv+ (VW)v = —V—pp - VO + pAv, (G.343)

as it relates the acceleration of a fluid element with the specific force density. Relevant
forces include pressure gradients, gradients in the gravitational potential or viscous
forces. The Navier-Stokes-equation seems to have the shape of an evolution equation,
but in fact it originates together with the continuity equation from a relativistic
conservation equation d, T = 0 with the energy-momentum-tensor T+ of the fluid.
In a chosen reference frame it is possible to separate the conservation equation in the
time-part containing the conservation of mass and a spatial part with the conservation
of momentum.

The time derivative of the velocity, as required by Newton’s equation of motion,
is computed for a field which depends on time and on position. In components one
would write

Ir; Jv;
] i
—v,»(rj, t) = atvi + = (G344)
dt Bt 81’]
With the subsitution of the derivative d;r; = v; one obtains
d dv;
—vi(rj, t) = dyv; + v;=. (G.345)
der P ar;
Rewriting this expression yields
d
—v=dv+(v-V)v. (G.346)

dt

Therefore, the nonlinearity (v - V)v originates purely from the choice of a fixed
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coordinate frame, relative to which the fluid moves: The derivative d,v would indicate
the acceleration or the rate of change of velocity with time of fluid elements which
pass in succession through a fixed position x in space, while the so-called convective
derivative D; = d; + (v - V)v describes the acceleration of a single fluid element as it
moves around, combining the time-derivative d; with the rate of change of velocity
with position (v V)v projected onto the velocity-components themselves. By choosing
instead of a fixed Euler-frame a coordinate frame which moves along with the fluid,
referred to as the Lagrange-frame, the fluid equation of motion becomes linear, by
introducing comoving, Lagrangian coordinates r = r + fdt v and reexpressing all
derivatives.

Both viscosity and pressure originate from collisions between the particles from
which the fluid is composed. The viscosity is usually modelled on the Lamé’-viscosity
coefficients and is able to dissipate kinetic energy from the fluid by friction if velocity
gradients or shear flows d;v; are present. If there is such a phenomenon, one needs
an analogous energy equation to keep track of the evolution of the energy content of
the fluid, in particular because the equation of state might show a dependence on e.g.
temperature or entropy density. We will only consider ideal fluids without viscosity,
because they approximate dark matter well due to its collisionlessness, and cover the
phenomenology of baryonic fluids at low densities.

G.5 Ideal versus viscous fluid mechanics

In contrast to the kinematical terms in fluid mechanics and in contrast to gravity,
effects associated with the microscopic properties of the fluid itself need to have a
phenomenological description. In fact, how bulk properties like fluid-mechanical
pressure and viscosity would be determined from the microscopic interactions be-
tween the particles that the fluid consists of, is yet not fully understood.
The differential change dv of the velocity in a fluid is to first order proportional to
the displacement
dv=(drV)o — dv' = 9;v'dx (G.347)

defining the velocity tensor, which is conveniently decomposed into a symmetric
part (shear) and the antisymmetric part (vorticity)

ajvi = %(ajvi+8ivj)+%(9jvi—aivj) (G348)

i i
€: w;
] ]

Again, this idea is very similar to the Raychauduri-equation: The volume change is
given by . )
dV ~divv ~ 9;v" = €; = tr(e) (G.349)

such that the trace of the velocity tensor induces a change in volume of a fluid
element. Incompressible flows have the unique property that the divergence of their
velocity field is always zero, and hence there can not be any change in the volume of
fluid elements.
In a phenomenological model one can now relate shears in a fluid to stresses and
pressure: In general, the stress tensor o;; is the ith component of the force acting on
a surface element with normal vector into the jth direction: As such, stresses and
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pressure have the same unit of force normalised by area. One can decompose the
stress tensor into the isotropic part pd;; and the anisotropic contribution Gl’-]-

01']' = 0;] - p61] (G350)

where
tr(o) = p tr(d;;) = -3p. (G.351)

so that pressure gets the interpretation of isotropic stress.

Furthermore, the stress tensor is also symmetric 0;; = 0j;. This can be shown by
setting up a counter example which turns out to be aphysical: If stresses act on two
faces of a cube with volume dV = dxdydz, one introduces a torque torque M, if the
stresses are unequal, in contradiction to 0ij = Oji,

M, = 0,y(dxdz)dy - 0,,(dxdy)dz = (0, — 0,,)dV (G.352)

With a Newtonian equation of motion M = I$ with the inertia I = (dy? + dz?)dV for
rotation around the x-axis one would obtain the angular acceleration

¢= ¥ ~V73 (G.353)

Therefore, for V — 0 the volume term V‘% diverges, which leads to the conclusion
that the angular acceleration ¢ diverges, too: Accelerations for the smallest torques
would assume arbitrarily high values, which would be aphysical. A way out is the
condition 0y, = 0, and a symmetric stress tensor o;;.

G.5.1 Bulk and shear viscosity

With the shear as the differential velocity field into which a fluid is embedded and
the stress as the reaction of a fluid element to this external shear it is reasonable
to assume a linear relationship between these two symmetric tensors: This is the
foundational idea of a Newtonian fluid, if in addition the response of the fluid element
is instantaneous to the external shear. The shear tensor ¢;; and the stress tensor Gl’-]-
are related in Lamé parameterisation by introducing two coefficients rjand &,

(T:] = 21’](€ij - ?b,]) + étr(e)6ij (G.354)

with tr(e) = 9;v' — divv is the divergence of the velocity field. The first term param-
eterises a reaction of the fluid in form of anisotropic stresses to the traceless shear,
which would be realised for instance if there is a shearing motion of fluid layers
against each other, motivating the term shear viscosity for 1. But there is likewise a
reaction of the fluid to changes in volume beyond the effects of pressure mediated by
the equation of state: The bulk viscosity & parameterises for this case the magnitude
of anisotropic stresses.

Again, in flows consisting of purely collisionless dark matter, microscopic stresses
and effects of viscosity are not present, but there are, like in the case of pressure,
collective effects with emulate these.

79



G. FLUID MECHANICS

G.5.2 Viscous fluid mechanics

The effects of pressure and viscosity can obviously change the state of motion of a
fluid element, as expressed by the momentum density pv
d .
n dVdiv(pv) =— | dV VD + | dAo (G.355)
A% v A%

such that apart from bulk forces pV® acting on the fluid element as a whole there
are stresses as surface forces . The first term in the momentum equation can be
reformulated as a surface integral, too, yielding

d . d dv
En dV div(pv) = En J dA pv = JdA T (G.356)

\% 4% A%

in a Lagrangian frame that moves along with the flow: Following the fluid element
in this way tracks the momentum evolution as forces are acting on its surface, and
because there is no exchange of matter with the environment of a fluid element, the
time derivative only acts on the velocity. The stresses acting on the surface of the
volume element are given by

jdA o (dA)i;dAni JdA 0‘,']‘1’1]' = JdV iﬁij = JdV Vo (6357)
ox
3% i v v v i

Substituting back gives

dv dv
0qr = p(a + (vV)v) =—-pVD + Vo (G.358)
Introducing viscosity and pressure
’ a ’
(Vo) = (Vo'); = == (pd;j) = (Vo' = Vp); (G.359)
dx!
leads to the expression
1
dv _ 3v + (W) =-VP - Yp +=Vdo’ (G.360)
dt ot PP

If now viscosity is parameterised by the Lamé-coefficients yjand &

, Jd , 2%v; N\ @ Jdug
(vg )i - TX]‘GU = axz - (E B 5) ax,- Bxk (6361)
] N
=div v

and if the fluid is incompressible with the condition divv = 0, the bulk viscosity is
irrelevant and one arrives at the Navier-Stokes equation
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%v + (VV)v=-VP - éVp + pAv (G.362)

with the kinematic viscosity p = 1/p.

G.6 Fluid mechanical similarity and scaling relations

Since nobody has found a general solution to the Navier-Stokes-equation, one wants
to use some properties of mechnical similarity to bring the Navier-Stokes-equation to
an already solved case. One might argue at this point, that classical fluid mechanics
is scale-free from fundamental theory, but scales can enter through macroscopic
properties of the fluid. Therefore we have some "typical’ behaviour of flows and can
use corresponding scale symmetries. For this we first need to look for a dimensionless
form of the Navier-Stokes-equation. To do so, we rescale

X t
== o>t == G.363
X > X L — T ( )

as well as

VoV =

= (G.364)
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=
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It’d be important to realise that the scaling with L and T is relevant for derivatives
in the fluid mechanical equations, but that V as a scale for the velocity is not auto-
matically L/T: There can be high-velocity flows that vary only slowly with time or
position, and vice versa.
Defining dimensionless derivatives is possible by writing
Jd _Jt*ad 14 Jd _oJdx*d 14

ot agtor Tor M 9xT gxor Lox

(G.365)

Rewriting the entire Navier-Stokes equation for incompressible flows in terms of
dimensionless variables and dimensionless derivatives gives
pv 4 V2 nv

. vore P, e MV
T " +pT(vV)v7 LVp pGZi(L+L2Av (G.366)

=g

2
As all prefactors are equal in their units to % one can divide this factor out and

arrive at

L d . wous_ P . GL _,. . 1M .

TV 95V +(vV)v_—WVp—WV(D+mAv (G.367)
~—— —_—— ~— ——

St Eu Fr2 Re!

which defines the scaling numbers:

* Strouhal-number St = % - proper acceleration

_ p . . .
* Euler-number Eu = vz - pressure vs. kinetic energy density

e Froude-number Fr = ,[% - potential vs. kinetic energy density
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* Reynolds-number Re = ; - magnitude of viscous forces

Working with the dimensionless form of the Navier-Stokes equation implies that
the information about the actual physical properties of the system is replaced with the
four scaling numbers. If two flows on physically different scales have the same scaling
numbers, one must be able to map them onto each other by a similarity or scaling
transform. This implies that there should be a classification of fluid mechanical
problems into categories according to the dominating scaling numbers. Again, dark
matter poses the conceptual problem how the Euler- and Reynolds-numbers should
be defined, with the absence of microscopic interactions between the particles there
is no pressure and no viscosity.

G.7 Gravity and the Poisson-equation

The gravitational force in the fluid-mechanical equations

div+ (VV)v = -VO (G.368)

could be determined through the Poisson equation,

AD = 4mGp, (G.369)

and describes gravity in the weak field limit and at distances smaller than the

Hubble-distance such that retardation effects do not play a role. In addition, all
additional gravitational effects on and by moving objects are neglected: In summary,
the equation is valid for |®| < ¢?, |v| < ¢ and on scales < ¢/H.

Due to the fact that it is the same density field p which is driven in its evolution
by gradients V® in the gravitational potential and which is at the same time sourcing
the gravitational potential through the Poisson equation speaks of cosmic structure
formation as a self gravitating phenomenon: Heuristically, a perturbation in the
matter distribution generates a potential, which attracts matter from the surrounding
of the perturbation, making it stronger. Then, the potential becomes deeper and the
fields amplify, such that more matter is falling towards the perturbation, making it
grow rapidly and at an exponential rate with time, if the influence of the background
cosmology is neglected.

G.8 Wave-type solutions and the Jeans-scale

Pressure gradients have an influence on the evolution of the velocity field, and they
typically lead to wave-type solutions: Compressing the medium builds up pressure,
causing the medium to re-expand:

Vp

dv+ (VW)= -——

G.370
o ( )

In order to construct a determined system of differential equations one would need
to specify a relation between pressure p and density p, i.e. an equation of state,
which accompanies the equation of continuity. Then, there are three relations (Euler,
continuity and equation of state) for three fields p, v and p. For collisionless dark
matter, though, pressure would not exist.

Wave-like phenomena are, because they fulfil the superposition principle, ob-
tained as solutions to the linearised Navier-Stokes equation. Linearisations involve

82



G.8. WAVE-TYPE SOLUTIONS AND THE JEANS-SCALE

perturbing the dynamical fields away from their averages p = py + op, p = po + op and
v = 6v. Therefore,

1
d:0p+ podivdv =0 aswellas J,;ov+ p—Vép =0 (G.371)
0

Taking the time-derivative of the continuity equation and the divergence of the
Navier-Stokes euqation defines the wave equation

d%op - o Adp =0 (G.372)
ap Po
~——
=CSZ
if one introduces an equation of state
i ap| .
dp==1 o (G.373)
ap fo b

The derivative ¢Z = dp/dp defines sound speed inside the medium and depends
typically on the thermodynamic change of state, e.g. isothermal and adiabatic.

Combining both gravity and pressure leads to an interesting concept: the Jeans-
scale. If a system of size R and density p collapses under its own gravity, we can
associate a free-fall time scale with the collapse, estimated to be

1

Tff:\ﬁp

and it can provide pressure support on the time scale of the sound-crossing time

(G.374)

= (G.375)
S

Now, comparison between the two time scales suggests that if t7; < 1;, the system
collapses as pressure support can not be established fast enough, and if 17 < 1,
the system is stabilised by pressure against gravity. Re-expressing the time scale as a
length scale lets us define the Jeans-length Ry = ¢ Trfs and the associated Jeans-mass

_4m
=73

4 3

3 _

PR} = 5 53
G

M (G.376)

o

In systems with masses exceeding M; defined for a given c; and p gravity is dominant
over pressure and the system collapses, vice versa, in low-mass systems below Mj,
pressure is able to provide support against gravity. Again, these concepts are irrelevant
for systems consisting of dark matter only, due to its collisionlessness and the absence
of pressure terms from the fluid mechanical equations.
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G.9 Vorticity equation

The vorticity tensor is the antisymmetric part of velocity tensor dv;/dx;

1
Wik = E(ajvk - akv]-) (G.377)

and the vorticity-vector w; can be written as

(x)i = eiijjvk = €ijk(ujk (G378)

or as w = rotv.
The vorticity evolution can be deduced from the Navier-Stokes equation

div+ (VV)v = _VT)P - VO + pAv (G.379)

by application of the operation rot to the equation and by using

2
(vW)v = Vv— -vxVxv (G.380)
2 —_——
arriving at
d;w — rot(v X w) = prot(Av) (G.381)

For an equation of state where pressure only depends on density, p = p(p), the
pressure term assumes the shape

Vp) rotVp 1
rot|— | = -—=VpxVp=0 (G.382)
( P o 2 PP

making use of the chain rule in Vp(p) = g—ZVp. The Leibnitz-rule applied to v x w
suggests

rot(v x w) = (wV)v — (VW)w + w div v +vdiv @ (G.383)
~—— ~——
=0 =0

for incompressible fluids where divv = d;v’ = 0, and because divw = eijkafaka =0
always. Then, making use of

rot(Av) = rot(V divv —rot rotv) = —rot rot rotv = rot rotw = Aw — Vdiv w = Aw

—_— —_—
- " (G384

one arrives at a relation featuring again an advective derivative
diw+ (V- V)w = (0 V)v+ pAw (G.385)

Combining all results gives the vorticity equation, as a dynamical equation for the
vorticity field w:
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Vprp+

Jiw + (VW)w = —wdivu + > HAw (G.386)
Y

which has the form of a convection-diffusion equation. The vorticity equation has a
convective derivative of the form d,w + (v- V)w, implying that the vorticity is advected
in its own velocity field which is given by inverting the definition w = rotv by means
of the law of Biot-Savart,

1
Ir—7

v(r) = fd%' w(r’)xV (G.387)

illustrating that the vorticity field needs to be known in the entire volume for
converting back to the velocity field, as an expression of the nonlocal properties of
this term. Secondly, the sourcing of the vorticity field can take place through the
baroclinic term Vp x Vp, if the density gradient and the pressure gradient are not
parallel. Gravity alone is not able to source vorticity because as a scalar field, it can
not decide about the orientation of the vorticity vector: rotV® = 0, which immediately
suggests the question why spiral galaxies should be rotating, if their dynamics is
dominated by gravity. Lastly, the term pAv causes in conjunction with the term d;w a
diffusion of vorticity with the viscosity p as the diffusion coefficient.

G.10 Effective processes in collisionless systems

Even though dark matter does not show elastic collisions between the particles
and even though there is no microscopic origin of pressure and viscosity, there can
be collective processes of groups of dark matter particles, emulating pressure and
viscosity. After all, we observe that dark matter dominated objects are stable against
their own gravity, due to the random motion of the particles, which acts as an effective
pressure term in a hdyrostatic equilibrium. Similarly, we observe how systems like
galaxies slow down if they enter a high density environment, by a process called
dynamical friction.
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