
F early universe and cosmic inflation

F.1 Need for inflation and scales

There are indications that the Universe underwent an episode of rapid, accelerated
expansion at very early times, commonly referred to as cosmic inflation. Firstly, there
is the horizon problem: If we consider thermal equilibrium in the early Universe,
the horizon scale for this equilibrium is c∆t with the time for equilibration being
roughly equal to the travel time of photons. The observed homogeneity of the cosmic
microwave background is therefore very surprising, it should be made of patches
corresponding to the horizon size as the photons were set free. To make this more
quantitative, one can have a look at the comoving horizon at the time when the CMB
was generated, which was at a redshift of z = 103 or equivalently, a scale factor of
a = 10−3:

χH = c

10−3∫
0

da
a2H(a)

≈ 100 Mpc/h (F.270)

The comoving distance to the CMB is ∼ 10 Gpc/h for ΛCDM. Taking the ratio of
these two scales one arrives at an angular scale of

∆Θ ∼ 1
100

∼ 1◦. (F.271)

This would be an estimate of the patch size for homogeneity on a small scales. This
can be changed by including modification to the Hubble-function at early times, in
particular by making it very small, such that the horizon scale becomes large as a
consequence. Secondly, there is the flatness problem. As we know, the curvature ΩK
is smaller than ΩK ≲ 0.01, which is very small, but it grows in matter and radiation
dominated phases. One can describe this in FLRW-cosmologies with fluids Ωw with
EOS-parameter w and curvature ΩK = 1 −Ωw.

H2(a) = H2
0

(
Ωw

a3(1+w)
+
ΩK

a2

)
(F.272)

wherein ΩK’s behaviour can be described like a fluid with w = −1
3 . We can write

Ωw(a)
Ωw

=
H2

0

a3(1+w)H2(a)
(F.273)

derived from

Ω(a) =
ρ(a)
ρcrit(a)

with ρcrit(a) =
3H(a)2

8πG
(F.274)

Therefore we obtain for curvature in adiabatic evolution

ΩK(a)
ΩK

=
H2

0

a2H2(a)
=

1
Ωw

a3(1+w)−2 + ΩK

(F.275)
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f. early universe and cosmic inflation

which indicates directly the evolution of curvature in the presence of another fluid
the model universe:

(1) if 3(1 + w) − 2 = 0 then w = −1
3 and resulting no changes, as q = 0, ä = 0 using

3(1 + w) = 2(1 + q) for Ω = 1 and therefore ΩK = const. Effectively, there is
another fluid with w = −1/3 present and both fluids keep due to their analogous
evolution the density parameters fixed at constant values.

(2) if 3(1 + w) − 2 > 0 the resulting ä is smaller than 0, thus q > 0 and in result
ΩK is increasing. An additional fluid with an equation of state more positive
than w = −1/3 gives rise to a decelerating universe with an associated growth
of curvature.

(3) if 3(1 + w) − 2 < 0 the fluid EOS-parameter w < −1
3 , further q < 0 and ä > 0,

in this configuration ΩK is decreasing. This case is certainly interesting for us,
as this drives ΩK to small values, as a consequence of the dominating energy
density of the additional fluid with an equation of state more negative than
w = −1/3.

Thirdly, there is the scale problem, which arises if one tries to predict typical scales
of the Universe from natural constants. In the Planck-system, constants are c, G and ℏ,
whereas in the Hubble system we use c, G and Λ, and inflation catapults the Universe

from a system that is described by the Planck length lP =
√

Gℏ
c = 10−35 meters, the

Planck time tP =
√

Gℏ
c3 = 10−43 seconds and the Planck density ρP = c5

G2ℏ = 1096 kg
m3

to a state rather described by the Hubble length lH = 1√
Λ

= 1025 meters, the Hubble-

time tH = 1
c
√
Λ

= 1017 seconds and the Hubble density ρH = c3
√
ΛG

= 10−23 kg
m3 , where

we have made convenient use of the fact that the Universe today is flat and dominated
by Λ (in fact, a yet unexplained coincidence). Very interestingly, there is a factor of
1060 appearing

lH
lP

= 1060 as well as
tH

tP
= 1060 (F.276)

suggesting a factor of 10120 between ρP and ρH. Perhaps a better way to phrase
the scale problem is to ask why the Universe is so large an empty, and it is clear
that accelerated expansion is able to achieve this, by making the Hubble-Lemaı̂tre
parameter small and, by extension, giving the critical density a small value, too.
All in all, these three problems are solved by having an early period of accelerated
expansion, called cosmic inflation: it drives the curvature towards small values,
shrinks the horizon and makes Universe large.

F.2 Why is accelerated expansion (and stopping it) so difficult?

General relativity provides gravity in the form of spacetime curvature for any energy
momentum-tensor Tµν, which is covariantly conserved, gαµ∇αTµν = 0, and the trace
T = gµνTµν of the energy momentum tensor is proportional to the Ricci-curvature, as
required by the trace of the entire field equation:

Rµν −
R
2
gµν = −8πG

c4 Tµν − Λgµν (F.277)
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f.2. why is accelerated expansion (and stopping it) so difficult?

resulting from gµνRµν = R as well as gµνgµν = δ
µ
µ = 4. The trace of the energy

momentum tensor is surely an invariant quantity but unlike electric charges which
can have either of two possible signs, the energy momentum tensor is subjected to
energy conditions, making sure that the energy momentum content of spacetime is
bounded by zero from below and that gravity is attractive. Working with an ideal
fluid

Tµν =
(
ρ +

p

c2

)
uµuν − pgµν (F.278)

one can define the energy conditions through contractions with Tµν and reexpressing
them with density ρ and pressure p.

1. null energy condition (ρ + p ≥ 0) resulting from Tµνkµkν ≥ 0 for all fluids, if kµ

is a null-vector gµνkµkν = 0.

2. weak energy condition (ρ ≥ 0, matter density always positive) resulting from
above’s Tµνuµuν ≥ 0, for time-like uµ with gµνu

µuν = c2 for the tangent uµ =
dxµdτ to a world line xµ(τ) of an observer.

3. strong energy condition (ρ + 3p ≥ 0 for an ideal fluid) resulting from scalar
Rµνuµuν ≥ 0 for all fluids.

Therefore gravity is attractive and curves geodesics towards each other. The three
conditions are subsets of each other and are related to each other by contraction
of kµkν or uµuν with the field equation, similarly to the contraction with gµν, and
working best with an ideal fluid for Tµν. Thus it is very complicated to generate
repulsive gravity, because all together ρ ≥ 0 (weak), ρ + p ≥ 0 (null) and ρ + 3p ≥ 0
(strong) but for repulsion one needs p < −1

3ρ (or w < −1
3 ) resulting in acceleration,

q > 0.
Furthermore, it is clear that in the course of the Hubble expansion, the fluids will

dominated in the order of descending value for their equation of state w: Once one has
established accelerated expansion with a fluid w < −1/3, it is very difficult to return
to e.g. matter domination with w = 0! Keeping in mind that 3(1 + w) = 2(1 + q) for a
critical FLRW-universe with density parameter Ω = 1 for a fluid with an arbitrary
but constant equation of state w on would get a progression

Ωr Ωm ΩK ΩΛ (F.279)

w = +
1
3

w = 0 w = −1
3

w = −1 (F.280)

q = 1 q =
1
2

q = 0 q = −1 (F.281)

To make this explicity, we write down the evolution of the density parameter for a
fluid with fixed equation of state w,

Ωw(a)
Ωw

=
H2

0

a3(1+w)H2(a)
(F.282)

Comparing two such fluids with equations of state w and w′ would result in

Ωw′ (a)
Ωw(a)

=
Ωw′

Ωw
× a−3(w′−w) (F.283)
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f. early universe and cosmic inflation

which increases if w < w′ and decreases if w > w′. Therefore, the fluid with the
most negative equation of state will eventually dominate if the Hubble-function
is monotonic: This result is actually very intuitive, as fluids with more negative
equation of state parameters tend to have a slower evolution of ρ, such that they
eventually dominate. The extreme case of this is Λ with a constant energy density,
whose domination will be the natural target of the evolution of the Universe unless
the densities of the other fluids are so high that they can halt the Hubble function or
make the Universe recollapse.

Therefore, one needs a construction where the Universe is dominated by a fluid
with sufficiently negative equation of state w < −1/3 such that curvature decreases,
but which is able to return eventually back to being dominated by matter with w = 0
or radiation with w = +1/3, in agreement with observations at redshifts z > 1.

F.3 Quintessence and dynamic dark energy

Summarising the key results of the last two sections one sees that (i) accelerated
expansion can be started with a fluid with a sufficiently negative equation of state
but that (ii) it would be difficult to terminate the accelerated expansion and return to
radiation- or matter-dominated, decelerated expansion. The solution to this problem
is to construct a microscopic model behind the energy momentum tensor consisting
of a self-interacting scalar field ϕ, called quintesence, which follows its own dynamics
and which is gravitationally acting on the FLRW-background. Such a system has
a dynamically evolving energy density and an equation of state and can terminate
accelerated expansion naturally.

The Lagrange-density L of a scalar field ϕ on a possibly curved background with
a metric gµν is given by

L(ϕ,∇µϕ) =
1
2
gµν∇µϕ∇νϕ − V(ϕ) (F.284)

with a self-interaction potential V(ϕ) including a mass term V(ϕ) = m2ϕ2/2. The
Euler-Lagrange equation follows directly from variation of the action S

S =
∫

d4x
√
−det g L(ϕ,∇µϕ) (F.285)

where the covolume
√
−det g takes care of non-Cartesian coordinates. Hamilton’s

principle assumes that δS = 0 and therefore

δS =
∫

d4x
√
−det g

(
∂L
∂ϕ

δϕ +
∂L

∂(∇µϕ)
δ(∇µϕ)

)
=

∫
d4x

√
−det g

(
∂L
∂ϕ
− ∇µ∂

∂L
∂(∇µϕ)

)
δϕ (F.286)

after an integration by parts, as done with the Gauss-theorem for integrations on
manifolds, ∫

V

d4x
√
−det g ∇µ(aυµ) =

∫
∂V

dSµ
√∣∣∣det γ

∣∣∣(aυµ) = 0 (F.287)
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f.3. quintessence and dynamic dark energy

for a vector field υ and a scalar field a, which are assumed to reach values of zero on
the integration boundary or at least asymptote towards zero fast enough. Formally,
the co-volume

√
−det g gives rise to an induced measure

√
det γ (a co-area, in lack of

a better expression) on the boundary ∂V, as γ is the induced metric on ∂V, γ = g(∂V).
This leads to∫

V

d4x
√
−det g ∇µ(aυµ) =

∫
V

d4x
√
−det g (∇µa · υµ + a∇µυµ) (F.288)

as the covariant derivative obeys the Leibnitz-rule, implying that if the surface
integral vanishes due to fast enough decaying fields, that∫

V

d4x
√
−det g ∇µa · υµ = −

∫
V

d4x
√
−det g a∇µυµ (F.289)

and everything looks like a straightforward integration by parts.

Deriving now all terms for the Euler-Lagrange equation gives first of all

∂L
∂ϕ

= −dV
dϕ

(F.290)

because the potential V depends only on the field ϕ, as well as

∂L
∂(∇µϕ)

=
1
2

∂
∂(∇µϕ)

(
gαβ∇αϕ∇βϕ

)
=

1
2
gαβ

(
∂∇αϕ
∂∇µϕ︸ ︷︷ ︸

=δ
µ
α

∇βϕ + ∇αϕ
∂∇βϕ
∂∇µϕ︸︷︷︸

=δ
µ

β

)
= gαµ∇αϕ

(F.291)

and further concluding that

∇µ
∂L

∂(∇µϕ)
= ∇µ(gαµ∇αϕ) = gαµ∇µ∇αϕ (F.292)

using metric compatibility of the covariant derivative. Therefore, the quintessence
equation of motion for the field ϕ looks like a wave equation, or better, a covariant
version of the Klein-Gordon equation,

gµν∇µ∇νϕ = −dV
dϕ

(F.293)

driven by the self-interaction V(ϕ), which as stated before, may include a mass-term
for the field ϕ. As this will facilitate the treatment later, we can rewrite the term
gµν∇µ∇νϕ as a covariant divergence for which there is a very practical formula:

gµν∇µ ∇νϕ︸︷︷︸
=∂νϕ=υν

= ∇µ(gµνυν) = ∇µυµ =
1√
−det g

∂µ(
√
−det gυµ) (F.294)

making use of metric compatibility again and introducing the determinant g of the
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f. early universe and cosmic inflation

metric. For illustrative purposes we have defined the linear form υµ = ∂µϕ = ∂µϕ as
the field gradient in ϕ.

Restricting the background now to conform to the FLRW-symmetries on can
determine the covolume to be

√
−det g = a3 and both spacetime and the field ϕ only

possesses an evolution in the t-direction, such that ∂µ → ∂t . Then, the divergence
becomes

gµν∇µ∇νϕ =
1
a3∂t(a

3∂tϕ) = 3
ȧ
a
∂tϕ + ∂2

t ϕ (F.295)

leading us finally to

∂2
t ϕ + 3H(t)∂tϕ = −dV

dϕ
(F.296)

which is the Klein-Gordon equation for the field ϕwith self-interaction V. The FLRW-
background manifests itself as the second term in eqn. (F.296), which is proportional
to H = ȧ/a: For large H it works like a damping term restricting the evolution of
the field ϕ and is aptly named Hubble-drag. But please do keep in mind that there
are no dissipative effects implied, the term purely arises because of the dynamic
background.

F.4 Gravity of the quintessence filed

In the previous section we have derived the equation of motion of a scalar field on a
FLRW-background and arrived at the Klein-Gordon-equation

∂2
t ϕ + 3H(t)∂tϕ = −dV

dϕ
(F.297)

for the field evolution for a given background dynamics encapsulated in H(t). The
background could be defined by a pre-determined Hubble-function H(t) with the
field ϕ as a test object, but the more interesting case is certainly where the field ϕ

itself exerts a gravitational effect onto the background, such that one deals with a
coupled system of (i) the Klein-Gordon-equation for the evolution of ϕ and the (ii)
Friedmann-equation sourced by the energy momentum-content of ϕ for the evolution
of H(t).

If L depends on the field ϕ and its derivative ∇µϕ, but not explicitly on the
coordinates xµ, then there is an associated covariant conservation law:

gµν∇αTµν = 0 (F.298)

Loosely speaking, because the definition of the field dynamics are invariant under
shifts on the manifold, energy and momentum are conserved. A counter example
would e.g. be a position- or time dependent change in the Lagrange-density of e.g.
electrodynamics: Then, the energies of atomic lines would be different in different
places of the Universe, and emission processes in the distant Universe would not be
compatible with absorption processes in the Milky Way.

As in classical mechanics one can construct the Beltrami-identity

δL =
∂L
∂ϕ

δϕ +
∂L

∂(∇µϕ)
δ(∇µϕ) = ∇µ

(
∂L

∂(∇µϕ)
δϕ

)
− ∇µ

∂L
∂(∇µϕ)

δϕ +
∂L
∂ϕ

δϕ (F.299)
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f.4. gravity of the quintessence filed

where on recognises the Euler-Lagrange equation for ϕ

δL = ∇µ
(

∂L
∂(∇µϕ)

δϕ

)
+

(
∂L
∂ϕ
− ∇µ

∂L
∂(∇µϕ)︸               ︷︷               ︸

Euler-Lagrange=0

)
δϕ (F.300)

such that the final result for the variation of L caused by the field variation δϕ is
given by

δL = ∇µ
(

∂L
∂(∇µϕ)

δϕ

)
(F.301)

For δϕ we construct an infinitesimal field variation δϕ through a coordinate shift

ϕ(xµ + δxµ) = ϕ(xµ) +∇νϕ(xµ)δxν + . . . → δϕ = ϕ(xµ + δxµ) − ϕ(xµ) = ∇νϕ(xµ)δxν

(F.302)

under which the Lagrange-density transforms according to

L(ϕ,∇µϕ)→ L(ϕ,∇µϕ) + ∇νLδxν → δL = ∇νL δxν (F.303)

Now, we can write the variation δL as resulting from the field variation δϕ, as there
can not be a variation of the working principle of the field theory with coordinate itself,
according to the assumption that the functional shape and therefore the working
principle of the field ϕ is universal and would not depend on the coordinate xµ:

δL = gµβ∇µLδxβ = ∇µ
(

∂L
∂(∇µϕ)

δϕ

)
= ∇µ

(
∂L

∂(∇µϕ)
∇νϕδxν︸  ︷︷  ︸

=gαβ∇αϕδxβ

)
(F.304)

resulting in

∇µ
(
gµβL − ∂L

∂(∇µϕ)
gαβ∇αϕ

)
δxβ = 0 (F.305)

Identifying the term in the bracket in eqn. F.305 to be the energy-momentum tensor
Tµβ shows the corresponding covariant conservation law

∇µTµβ = 0 (F.306)

for the energy-momentum tensor Tαβ, that results directly from the Lagrange-density
L of the quintessence field ϕ

Tαβ =
∂L

∂(∇αϕ)
gβν∇νϕ − Lgαβ (F.307)

The explicit result Tαβ for the scalar field ϕ by substituting its Lagrange-density

L =
1
2
gµν∇µ∇νϕ − V(ϕ) (F.308)
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into eqn. F.307, making use of

∂L
∂(∇αϕ)

=
1
2
gµν

(
∂∇µϕ
∂∇αϕ︸ ︷︷ ︸
δαµ

∇νϕ + ∇µϕ
∂∇νϕ
∂∇αϕ︸ ︷︷ ︸
δαν

)
= gµα∇µϕ (F.309)

such that one arrives at an expression for the energy-momentum tensor as it is
determined from the gradients ∇µϕ of the field and the strength V(ϕ) of the field’s
self-interaction:

Tαβ = gµαgβν∇µϕ∇νϕ −
1
2
gµνgαβ∇µϕ∇νϕ + V(ϕ)gαβ (F.310)

It is instructive to interpret this result for the the energy-momentum tensor with
that of an ideal fluid

Tαβ =
(
ρ +

p

c2

)
uαuβ − pgαβ (F.311)

and possibly derive ρ and p from the terms ∇ϕ and V(ϕ): In particular for a FLRW-
spactime with spatial homogeneity one should then be able to derive ρ and p, as
they would result dynamically from solving the Klein-Gordon-equation and compute
the evolution of the scale factor a from the Friedmann-equations, such that one has
constructed a coupled dynamical system for ϕ and a, possibly with a dynamical
relation between p and ρ, or, equivalently, a dynamically evolving equation of state
w = p/(ρc2).

Parameterising a FRLW-spacetime with comoving coordinates xµ yields for the
velocities uµ = dxµ/dt = dxµ/dt = (c,0)t as tangents to the world lines of fluid
elements simplifies the energy-momentum tensor tremendously: It will be diagonal
(as the inverse metric gµν is diagonal is the FLRW-case) and have the tt-component

Ttt =
(
ρ +

p

c2

)
utut − pg tt = ρc2 (F.312)

with g tt = 1, and the spatial ii-components

Tii =
(
ρc2 +

p

c2

)
uiui − pg ii = 3

p

a2 (F.313)

as the spatial part of the inverse metric is g ii = −a−2 and ui = 0 for comoving fluid
elements.

Isolating these two components from the energy-momentum tensor for the field
ϕ is straightforward in particular under the assumption of the FLRW-symmetries,
where all spatial derivatives are zero and because the field ϕ is scalar, implying that
∇µϕ = ∂µϕ of which only ∂tϕ is nonzero. Therefore, the density ρ must be

ρc2 = Ttt = g tαg tβ∇αϕ∇βϕ −
1
2
g ttgαβ∇αϕ∇βϕ + V(ϕ)g tt =

1
2

(∂tϕ)2 + V(ϕ) (F.314)

and similarly for the spatial part yielding pressure p
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f.5. slow-roll approximation

3
p

a2 = Tii = g iαg iβ∇αϕ∇βϕ −
1
2
g iigαβ∇αϕ∇βϕ + V(ϕ)g ii = 3a−2 1

2
(∂tϕ)2 − 3a−2V(ϕ)

(F.315)

which can be simplified to

p =
1
2

(∂tϕ)2 − V(ϕ) (F.316)

Combining both results is a construction of the equation of state w

w =
p

ρc2 =
1
2 (∂tϕ)2 − V(ϕ)
1
2 (∂tϕ)2 + V(ϕ)

(F.317)

which gives a direct indication of the gravitational effect of the field ϕ, as both ρ

and p enter the gravitational field equation. In particular, if the evolution of the field
is slow and therefore the kinetic term 1

2 (∂tϕ)2 is much less than the potential term
V(ϕ), one obtains for the equation of state is w ∼ −1. Then, the gravitational effect
of ϕ is identical to that of the cosmological constant Λ and the FLRW-spacetime is
accelerating at q = −1, leading to exponential expansion.

In the course of time evolution with the Klein-Gordon equation

∂2
t ϕ + 3H(t)∂tϕ = −dV

dϕ
(F.318)

one would expect that (∂tϕ)2 increases at the expense of V(ϕ), and that the equation
of state evolves away from the value w = −1, as the slow-roll condition

1
2

(∂tϕ)≪ V(ϕ) (F.319)

is violated. For instance, when 1
2 (∂tϕ)2 ∼ V(ϕ) is reached, the equation of state

becomes w = 0, corresponding to a decelerated universe with q = 1
2 , as if it was filled

with matter. Clearly, the quintessence field shows a variable gravitational effect on
the FLRW-background, and in particular does it provide a mechanism of driving
accelerated expansion to solve the flatness-, horizon- and scale-problems, and a
natural way of stopping inflation and returning to normal expansion dominated by
fluids with less negative equations of state.

F.5 Slow-roll approximation

Cosmic inflation as driven by the scalar field ϕ, if it should solve the horizon and
flatness problems, has to provide accelerated expansion through a negative enough
equation of state and take care that this period of accelerated expansion lasts long
enough. These two conditions are ultimately requirements on the potential V(ϕ),
usually formulated in terms of the two slow-roll parameters ϵ and η:

ϵ =
1

8πG

(
d ln V

dϕ

)2

and η =
1

24πG

(
1
V

d2V
dϕ2

)
(F.320)

which are essentially logarithmic derivatives of the quintessence potential V(ϕ). If
ϵ and η are small, the potential has a small slope and is weakly curved, implying
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that the time evolution of ϕ is weak, slow-roll is maintained for a long time, and
exponential, accelerated expansion is maintained, such that a low spatial curvature
can be realised and the horizon becomes large enough.

A sufficiently negative equation of state parameter w for accelerated expansion is
generated by the slow-roll condition itself, 1

2 (∂tϕ)2 ≪ V(ϕ). This condition implies
directly for the first Friedmann-equation that

H2(t) =
8πG

3
ρc2 =

8πG
3

(1
2

(∂tϕ)2 + V(ϕ)
)
→ H2(t) =

8πG
3

V(ϕ) (F.321)

where we used the slow-roll in the last step. The acceleration ä can be derived from
the latter equation by differentiating it with respect to t, yielding

2H∂tH =
8πG

3
∂tϕ

dV
dϕ

(F.322)

by application of the chain rule to ∂tV(ϕ(t). The slow-roll approximated Klein-
Gordon equation F.321 for the FRLW-background

3H∂tϕ = −dV
dϕ

(F.323)

implies the condition

∂tH = −4πG(∂tϕ)2 ≪ 4πGV(ϕ) (F.324)

as an expression for slow roll, on the basis of the potential and constrains the
evolution of the Hubble-function H. This allows now to formulate the slow-roll
parameters ϵ and η defined in eqn. F.320 in their dependence on the potential V(ϕ).

The square of the approximate Klein-Gordon equation,

(3H∂tϕ)2 =
(

dV
dϕ

)2

(F.325)

together with the Friedmann-equation for H2

32 8πG
3

V(ϕ)2(∂tϕ)2 =
(

dV
dϕ

)2

(F.326)

shows that

(∂tϕ)2 =
1

24πG

(
1
V

dV
dϕ

)2

=
1

24πG

(
d ln V

dϕ

)2

≡ ϵ≪ 1 (F.327)

where the slow-roll parameter ϵ≪ ensures that the kinetic term (∂tϕ)2/2 stays small.

Differentiating the approximate Klein-Gordon equation with respect to t yields

3(∂tH∂tϕ + H∂2
t ϕ) ≃ 3∂H∂tϕ =

d2V
dϕ2 ∂tϕ (F.328)
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where we neglect H∂2
t ϕ over ∂tH∂tϕ and which we divide with ∂tϕ for

3∂tH = −d2V
dϕ2 (F.329)

But because of the fact that ∂tH = −4πG(∂tϕ)2 ≪ 4πGV(ϕ) as derived above, one
can conclude that the second slow-roll parameter η,

(∂tϕ)2 =
1

12πGV
d2V
dϕ2 ≡ η≪ 1 (F.330)

must be small compared to one as well.

F.6 Accelerated expansion in the late Universe

To what limit the accelerated expansion at the current time is related to quintessence
at early times is unclear, but the mechanism works in both cases: at early times,
as cosmic inflation and at late times as dark energy. Whether inflation in the early
Universe is initiated by randomly setting the right initial conditions for the field ϕ
(the exact mechanism of this is still unclear), achieving domination of ϕ in the late
Universe at redshifts below unity in a natural way is equally difficult. Many dark
energy models link accelerated expansion to other physical processes, for instance,
the acquisition of mass in neutrinos.

F.7 Seeding of cosmic structures in inflation

Apart from solving the flatness and horizon problems, cosmic inflation provides a
mechanism for seed fluctuations from which the cosmic large-scale can grow: The
exact mechanism is quite technical, but the fundamental idea is that the comoving
horizon c/(aH) shrinks during the accelerated expanding phase. Fluctuations in the
metric with a fixed comoving wave length are initialised at the instant when they leave
the (shrinking) horizon, at an amplitude that is given by the so-called Bunch-Davies
vacuum, which corresponds to the ground state amplitude of the field ϕ.

The amplitude of these perturbation in ϕ and the associated fluctuations in the
metric δΦ are roughly given by

√
⟨δΦ2⟩ ≃ H2/V(ϕ), which is roughly constant while

the expansion is exponential. One can now relate fluctuations in the potential Φ to
fluctuations in the density field by invoking the Poisson-equation which reads in
Four-space k2Φ(k) = −δ(k).

Then, the relation
|δ(k)|2 ∝ k4 |δΦ|2 ∝ k3P(k) (F.331)

for the variance of the density field fluctuations in Fourier-space applies, which is
related to the variance in the potential fluctuations. If |δΦ|2 is constant as predicted
by the constant Hubble-function, the spectrum P(k) must be ∝ k to give a consistent
scaling.

In reality, there are tiny deviations from perfect exponential expansion, of the
order of the slow-roll parameters ϵ and η. As a consequence, there is a minute
evolution of the Hubble-function and the amplitude

√
⟨δΦ2⟩ becomes a function of

time. As the comoving horizon evolves, that time-dependence can be converted into
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a scale dependence, which effectively makes P(k) ∝ kns with ns ≃ 0.96, deviating
slightly from unity, by a quantity of the order of the slow-roll parameters.
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